CONFERENCE EUROPEENNE
SUR LES MALADIES RARES

ECRD

Luxembourg 21-22 Juin 2005
Rapport de la Conférence Européenne sur les Maladies Rares (ECRD) 2005 5

Programme de la conférence .. 5

Membres du comité de programme ... 5

Points principaux de la conférence .. 6

Participants .. 6

Financement de la conférence .. 6

Remerciements ... 9

Introduction ... 10

Les maladies rares en chiffres .. 10

Le paradoxe du caractère rare ... 10

La diversité et l'hétérogénéité des maladies rares ... 11

Caractéristiques communes des maladies rares ... 11

Clarification de certaines notions associées .. 12

Les maladies rares .. 12

Maladies négligées .. 12

Le combat pour la reconnaissance ... 12

Les maladies rares sont une réalité ... 12

Ouverture ... 13

Le message du président d'Eurordis ... 13

La Commission Européenne ... 14

Le ministre de la santé du Luxembourg ... 16

Epidémiologie ... 17

Les maladies rares en chiffres .. 17

Rapport préliminaire tiré d'une étude bibliographique en cours ... 17

Les cancers rares parmi les maladies rares ... 24

Incidence des cancers rares à Granada (1998-2001) ... 24

Diagnostiquer les maladies rares : un défi pour les systèmes de santé .. 26

Retards diagnostiques : les malades perdent confiance en la médecine 26

EurordisCare2, une enquête sur les délais diagnostiques en Europe pour 8 maladies rares 26

Immunodéficience primaire : une illustration claire des retards de diagnostics 30

IPOPI – Organisation Internationale de Malades pour les immunodéficiences primaires, IPOPI 30

Témoignage d'un patient .. 30

Témoignage d'un professionnel de santé ... 31

Comment améliorer le diagnostic ? .. 33

Un réseau pour mieux diagnostiquer la déficience mentale liée à l’X ... 33

Une base de données pour mieux diagnostiquer les anomalies orodentaires 33

Une clinique spécialisée en maladies rares : la clinique ambulatoire pour les maladies rares (RDOC) en Italie .. 34

Rares, mais existantes .. 35

Pas de code, pas de nom, pas d'existence ... 35

Pourquoi devons-nous coder les maladies rares ? ... 36
Recherche et soins ... 39

Recherche pour les maladies rares dans l’UE .. 39

La lutte contre la fragmentation de la recherche .. 40
 Une approche multidisciplinaire .. 40
 Transfert de la recherche académique vers le développement industriel ... 40
 Renforcement de la coopération entre l’académique et l’industriel .. 47
 Des réseaux de chercheurs rassemblés par une organisation de malades .. 48

Les leçons tirées des programmes cadres de l’UE pour la recherche ... 49
 Programmes cadres FP5 et FP6, propositions pour FP7 .. 49

Les réseaux de recherche .. 50
 Le projet intégré européen sur l’ataxie spinocérébelleuse (EUROSCA) ... 50
 Maladie de Wilson : création d’une base de données médicales européenne et conception d’essais cliniques
 contrôlés randomisés ... 51
 EUGINDAT ... 52

La mise en place de réseaux en myologie : donner plus de muscle à la myologie 52

Les succès de la recherche .. 54
 Essais cliniques : recherche dans des domaines ou des pathologies spécifiques, l’essai ESCAPE 54
 Les maladies rares contagieuses dont on peut guérir .. 55
 Prélèvement et partage des tissus et de l’ADN : EuroBiobank ... 56
 Le recueil de données par le Réseau Européen sur les Maladies Démélinisantes Cérébrales ENBDD 58
 Recueil et partage des données des registres .. 59

Construction d’une plateforme technologique : Centre National de Génotypage 61

Traitements et soins .. 63

 La recherche vise l’amélioration de la qualité de vie .. 63
 L’importance de faire des diagnostics précis, plus simples et plus faciles : ... 63
 Solutions thérapeutiques déjà existantes pour les maladies génétiques .. 63
 Conclusions .. 66

 Traiter avec des médicaments orphelins .. 67
 Médicaments orphelins – une vision académique ... 71
 La réglementation sur les médicaments orphelins – Le point de vue d’un représentant de malades 73
 Réglementation sur les médicaments orphelins – Points de vue d’un représentant de l’industrie 75
 Disponibilité des médicaments orphelins en Europe ... 77
 Le point de vue d’un représentant d’un système de santé : l’approche de NICE sur les maladies rares 82
 Points de vue d’une autorité compétente nationale : l’organisme italien des médicaments 84
 Encouragements nationaux pour la recherche et le développement des produits orphelins : Espagne ... 85

L’accès à des soins appropriés – l’organisation des soins ... 88

 Infirmité : les indemnités financières sont-elles adaptées aux maladies rares ? 88

Aniridie .. 89

 Les réseaux cliniques en réponse à la rareté des bases de données et les recommandations
 pour de meilleures pratiques ... 91

 Accès et disponibilité des tests génétiques moléculaires : révéler ce qui justifie des tests à
 l’étranger ... 94

 Regard sur la vie quotidienne ... 96

Politiques nationales contre les maladies rares ... 97

 Comparaison résumée des programmes et pratiques au niveau national .. 97

Flandres .. 102

 Les initiatives pour améliorer les soins contre les maladies rares : le modèle flamand 102

Rapport de la Conférence Européenne sur les Maladies Rares (ECRD) 2005

Avertissement
Ce document est la traduction relue et corrigée du rapport anglais de la conférence. Malgré tous nos soins, des erreurs peuvent apparaître. La version anglaise est la version de référence.

La conférence a rassemblé des malades, des chercheurs, des professionnels de la santé, des experts en politique sanitaire et des représentants de l’industrie de la santé. Le programme a abordé les problèmes actuels et les solutions possibles pour améliorer la situation des personnes vivant avec une maladie rare, ainsi que les actions soutenues par la Commission Européenne.

Les partenaires d’Eurordis étaient :
- Agreenska (Suède)
- ALAN (Luxembourg)
- Alliance Maladies Rares (France)
- SUKL, Czech Drug Control Agency (République Tchèque)
- EUROCAT (Royaume-Uni)
- Federación Española de Enfermedades Rares (FEDER, Espagne)
- Rare Disorders Denmark (Danemark)
- ORPHANET (France)

Programme de la conférence

Membres du comité de programme
Le comité de programme était co-présidé par Ségolène Aymé et Christel Nourissier, avec les membres suivants :
- Ségolène Aymé, Groupe de Travail sur les Maladies Rares et Orphanet, France
- Violetta Anastasiadou, Centre Médical Archbishop Makarios III, Chypre
- Terkel Andersen, Association pour les Hémophiles, KMS, Danemark
- Stéphane Buron, Alliance Maladies Rares, France
- Elisabeth Dequeker, Département de Génétique Humaine, Belgique
- Helen Dolk, Faculté des Sciences de la Vie et de la Santé, Royaume-Uni
- Liz Gondoin, ALAN, Luxembourg
- Katarina Kubackova, Hôpital universitaire de Motol, République Tchèque
- Yann Le Cam, Eurordis, France
- Christel Nourissier, Prader Willi, Alliance Maladies Rares, France
- Anders Olauson, Agrenska, Suède
- Hans-Hilgers Ropers, Institut Max Planck pour la génétique moléculaire, Allemagne
- Rosa Sanchez De Vega, Aniridia Spanish Association, FEDER, Espagne
- Hélène Tack-Lambert, AFM, France
- Domenica Taruscio, Centro Nazionale Malattie Rare, Instituto Superiore di Sanità, Italie
- Josep Torrent-Farnell, Committee for Orphan Medicinal Products, EMEA, Union Européenne
Points principaux de la conférence

Participants

Comme le montre la figure 1 ci-dessous, l’objectif de rassembler tous les intéressés qui agissent contre les maladies rares a été atteint. Professionnels de la santé, représentants des malades, responsables nationaux et européens et représentants venus de l’industrie de la santé se répartissent selon un équitable équilibre. Parmi les 300 personnes présentes, 40 % étaient des hommes et 60 % des femmes.

Les professionnels de la santé comprenaient des médecins traitants, des chercheurs cliniques, des professionnels paramédicaux, des épidémiologistes, etc.

Parmi les représentants des malades, nombre de maladies différentes étaient représentées. La liste des personnes présentes et de leurs organisations ou établissements respectifs est disponible sur le site Web de la conférence (www.rare-luxembourg2005.org).

L’origine géographique des personnes présentes reflétait également un événement justement européen. Aux participants venus de 21 pays européens (UE et AEE), s’ajoutaient ceux venus du Canada, du Vietnam, d’Afrique du Nord et d’Argentine…

La France, probablement plus proche, envoya une délégation plus importante, l’Association Française contre les Myopathies AFM-Téléthon et un réseau bien développé d’acteurs contre les maladies rares dans ce pays apportèrent leur soutien.

Les efforts pour faciliter la participation des personnes dont la langue maternelle n’était pas l’anglais ont été fructueux; chacun put bénéficier d’une traduction simultanée de l’anglais en allemand, en espagnol, en polonais et en français. À l’exception des Polonais, très peu nombreux, l’interprétariat a certainement aidé les personnes présentes à suivre la conférence.

La figure 3 ci-contre montre la répartition des langues au prorata des participants. Cela illustre bien l’impact de l’interprétariat direct au cours des sessions.

Participants à ECRD 2005: Profession

![Diagramme de la répartition des participants par profession](image)

Participants à ECRD 2005: Etat de résidence

<table>
<thead>
<tr>
<th>Pays</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>30.4%</td>
</tr>
<tr>
<td>Allemagne</td>
<td>12.4%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>9.5%</td>
</tr>
<tr>
<td>Belgique</td>
<td>7.4%</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>M.3%</td>
</tr>
<tr>
<td>Italie</td>
<td>4.6%</td>
</tr>
<tr>
<td>France</td>
<td>3.5%</td>
</tr>
<tr>
<td>Italie</td>
<td>3.5%</td>
</tr>
<tr>
<td>RU</td>
<td>3.9%</td>
</tr>
<tr>
<td>Norvège</td>
<td>2.8%</td>
</tr>
<tr>
<td>Suede</td>
<td>2.5%</td>
</tr>
<tr>
<td>Danemark</td>
<td>9.8%</td>
</tr>
<tr>
<td>Autres</td>
<td>25.1%</td>
</tr>
</tbody>
</table>

Langues de la conférence et assistance

<table>
<thead>
<tr>
<th>Langue</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pologne</td>
<td>1.1%</td>
</tr>
<tr>
<td>RU</td>
<td>15.5%</td>
</tr>
<tr>
<td>Allemagne</td>
<td>11.9%</td>
</tr>
<tr>
<td>Espagne</td>
<td>12.4%</td>
</tr>
<tr>
<td>France</td>
<td>33.9%</td>
</tr>
<tr>
<td>Autres</td>
<td>25.1%</td>
</tr>
</tbody>
</table>

Figure 1 : Participants à ECRD 2005 : Profession

Figure 2 : Participants à ECRD 2005: Etat de résidence

Figure 3 : Langues de la conférence
Financement de la conférence
La conférence européenne sur les maladies rares (ECRD) 2005 a été totalement financée par la Commission Européenne et les organisations de malades (se reporter aux détails de la figure 4) pour un montant total de 416 640 €. Le ministre de la santé du Luxembourg a également offert une contribution en nature.

![Diagramme du financement de ECRD 2005]

Organisations de patients par manifestation clinique de la maladie représentée

- Maladies du système nerveux
- Maladies métaboliques
- Maladies de peau
- Maladies cardiovasculaires
- Maladies musculosquelettiques
- Maladies du tissu conjonctif
- Maladies endocriniennes
- Maladies neuromusculaires
- Maladies des yeux
- Maladies du système digestif
- Maladies hémiques et lymphatiques
- Maladies des voies respiratoires
Organisations de patients par famille de maladie représentée

Génétique: 70,5%
Acquise autrement: 1,9%
Lysosomal: 2,9%
Immunologique: 3,8%
Mitochondrial: 3,8%
Autre congénital: 3,8%
Tumeur: 13,3%

Figure 6
Remerciements

Les organisateurs souhaitent remercier tout particulièrement les personnes, organisations ou société suivantes pour leur rôle :

Sa majesté la Grande Duchesse du Luxembourg.

La Chambre de Commerce du Luxembourg
George Peters
Carine Radoux

Pour EURORDIS :

- Yann Le Cam, directeur
- François Houÿez, directeur de projet
- Patrice Régnier, directeur financier
- Flaminia Macchia, fonctionnaire des affaires publiques européennes
- William Gibon, assistant

Contacts Médias : Stefan Chrobok et Aart van Iterson

- Nos partenaires
 - ALAN au Luxembourg
 - Alliance Maladies Rares, Agrenska, FEDER, Maladies Rares Danemark, Agence tchèque pour le contrôle des médicaments, Orphanet et Eurocat
- AFM, Prader Willi France, Psico Ballet
- Les membres du comité de programme

Pour le site Web de la conférence :

- Graphisme : Baptiste Ferrier
- Programmation Php/MySql : Olf Software
- Programmation XHTML/CSS/WAI, intégration, gestion de projet : Gravelet-Multimédia

Prous Science qui retransmet la conférence sur Internet

Les organisateurs de l’événement au Luxembourg : Meetincs SA, André Vasanne et Aurélia Lourenco

Photographe : Harold Moreau

Graphisme : Baptiste Ferrier ferrier77@wanadoo.fr
Imprimeur/ Impression : Graphic 2000
Introduction

Les maladies rares en chiffres

La spécificité principale est le caractère rare : « une maladie rare est une maladie qui survient peu fréquemment ou rarement dans la population générale ». Afin d’être considérée comme rare, chaque maladie spécifique ne peut affecter plus d’un nombre limité de personnes sur l’ensemble de la population. L’Europe en fixe le quota à 1 personne sur 2 000 (citoyens de l’UE). Si cette proportion est modeste, dans une population totale de 459 millions de citoyens européens, elle représente néanmoins 230 000 personnes pour chaque maladie rare. Il est important de souligner que le nombre de malades atteints de maladies rares varie considérablement d’une maladie à l’autre et que la plupart des personnes représentées par les statistiques dans ce domaine souffrent de maladies encore plus rares, affectant seulement 100 000 personnes, voire moins. La plupart des maladies rares touchent seulement des milliers, des centaines, voir quelques dizaines de malades. Ces « maladies très rares » isolent les malades et leurs familles et les rendent particulièrement vulnérables. Il faut noter que la plupart des cancers, ainsi que tous les cancers qui touchent les enfants, sont des maladies rares.

« Malheureusement, les données épidémiologiques disponibles pour la plupart des maladies rares sont inadéquates pour donner des détails solides sur leur nombre de malades. En général ces populations ne sont pas enregistrées dans les bases de données. Beaucoup de maladies rares sont cataloguées comme « autres troubles endocriniens et métaboliques » et il est donc difficile d’enregistrer les malades sur une base nationale ou internationale de manière fiable et harmonisée » (analyse des maladie orphelines pour le « Rapport OMS sur les médicaments prioritaires pour l’Europe et le monde » – 7 octobre 2004).

Il faut souligner que chacun d’entre nous est porteur de 6 à 8 anomalités génétiques, habituellement récessives. En général il n’y a pas de conséquences, mais si deux personnes avec la même anomalité génétique ont des enfants, ceux-ci peuvent être touchés.

Le paradoxe du caractère rare

Les chiffres mentionnés ci-dessus signifient que même si les « maladies sont rares, les malades qui en sont atteints sont nombreux ». Ainsi, il n’est pas si inhabituel d’avoir une maladie rare ».

De même, il n’est pas inhabituel d’« être affecté par » une maladie rare, car toute la famille d’un patient est bien sûr touchée d’une manière ou d’une autre. En ce sens, il est « rare » de trouver une famille où personne – sans aucun ancêtre - touché par une maladie de ce type (ou « inconnue », « inexpliquée », « étrange »).

Une mère raconte :

« À 6 ans, Samuel a été diagnostiqué avec une maladie métabolique rare. Presque trois ans après sa mort, nous sommes toujours une famille affectée d’une maladie rare : j’ai découvert
que j’ai des symptômes parce que je suis porteuse, mon mariage s’est brisé à cause du stress de la perte d’un enfant et ma fille n’a pas pu se présenter à son examen de niveau A tant la perte de son petit frère et de son père lui causaient du chagrin ».

La diversité et l’hétérogénéité des maladies rares

Les maladies rares se caractérisent également par leur chiffre important et la grande diversité de troubles et symptômes variables, non seulement d’une maladie à l’autre, mais également dans la même maladie. De nombreux diagnostics révèlent une grande diversité de sous-catégories pour une même maladie. On estime qu’il existe entre 5 000 et 7 000 maladies rares distinguées aujourd’hui, touchant les aptitudes physiques, capacités mentales, comportements et facultés sensorielles. Les maladies rares diffèrent également dans leur gravité. La plupart mettent en danger la vie des malades, tandis que d’autres sont compatibles avec une vie normale si elles sont diagnostiquées à temps et traitées correctement.

80% des maladies rares ont identifié des origines génétiques, impliquant un ou plusieurs gènes. Elles peuvent être héritées ou dérivées d’une mutation génétique de novo. Elles concernent entre 3% et 4% des naissances. D’autres maladies rares sont causées par des infections (bactériennes ou virales), des allergies ou sont dues à des causes dégénératives, prolifératives ou tératogènes (produits chimiques, radiations, etc.).

Les premiers symptômes surviennent également à des âges très variés. Ils peuvent apparaître à la naissance ou au cours de l’enfance, notamment l’amyotrophie spinale infantile, la neurofibromatose, l’ostéogenèse imparfaite, les troubles de mise en réserve lysosomale, la chondrodysplasie et le syndrome de Rett.

Beaucoup d’autres maladies rares, comme la chorée de Huntington, la maladie de Crohn, la maladie de Charcot-Marie Tooth, la sclérose latérale amyotrophique, le sarcome de Kaposi et le cancer de la thyroïde, ne se manifestent qu’à l’âge adulte.

Il faut également souligner que des conditions relativement communes peuvent dissimuler des maladies rares. Par exemple l’autisme (dans le syndrome de Rett, le syndrome d’Usher de type II, le syndrome de Sotos, le syndrome du X fragile, le syndrome d’Angelman, la phénylcétonurie adulte, la maladie de Sanfilippo,…) ou l’épilepsie (le syndrome de Pena-Shokeir, le syndrome de Feigenbaum Bergeron Richardson, le syndrome de Kohlschutter Tonz, le syndrome de Dravet…). Chez beaucoup d’entre elles, décrites par le passé comme entités cliniques, on soupçonne une origine génétique. Notamment, la déficience mentale, l’infirmité motrice cérébrale, révèlent des conditions de maladies rares dissimulées.

Caractéristiques communes des maladies rares

Malgré cette grande diversité, les maladies rares ont des traits majeurs communs et peuvent presque toujours se caractériser par :

- Grave à très grave, chronique, dégénéréscent et mettent souvent la vie du patient en danger ;
- La plupart du temps, elles touchent les enfants, mais aussi les adultes ;
- Invalidantes : la qualité de vie des malades est gravement compromise car ils manquent considérablement d’autonomie ou la perdent totalement. ;
- Extrêmement douloureuses : la souffrance des malades et de leurs familles est aggravée par la détresse morale et le manque d’espoir thérapeutique ;

Pour un pays membre comme la France, l’incidence de 3 à 4% à la naissance représente de 22 950 à 30 600 nouveaux enfants qui naissent chaque année avec une maladie rare (764 700 naissances vivantes en 2004, Institut National d’Études Démographiques INED). À l’échelle de l’Union Européenne, de 3% à 4% des naissances représentent de 141 900 à 189 200 enfants nés avec une maladie rare chaque année (Eurostat 2003).
- Des maladies incurables, la plupart sont sans traitement efficace. Dans certains cas, les symptômes peuvent être traités pour améliorer la qualité de la vie et l'espérance de vie.

Clarification de certaines notions associées
Fréquents sont les documents et publications où les notions sur les maladies rares, les maladies négligées et les médicaments orphelins ne sont pas clairement définies. Elles sont malheureusement utilisées comme des notions interchangeables. Cette situation en a perturbé la perception et a provoqué une confusion sur ce qu'elles représentent précisément, distinctement et a falsifié leur réalité.

Les maladies rares
Les maladies rares se caractérisent tout d’abord par leur prévalence basse (moins de 1 / 2 000) et leur hétérogénéité. Elles touchent enfants, comme adultes, n’importe où dans le monde. Mais, ces maladies, en minorité, ne sont pas l’occasion d’une forte mobilisation publique et ne représentent pas les priorités médicales publiques. Peu de recherches sont menées. L’industrie pharmaceutique hésite donc à investir dans ce marché si restreint. Ce secteur nécessite donc une régulation économique.

Maladies négligées
Les maladies négligées sont des maladies communes et contagieuses qui touchent principalement des malades vivant dans des pays en voie de développement. Ils ne représentent pas les priorités de santé publique dans les pays industrialisés et peu de recherches sont menées. Négligées par l’industrie pharmaceutique parce que le marché est souvent considéré non rentable. Elles exigeraient une régulation économique et des approches alternatives, afin de créer encouragements et stimulations de la recherche. Ainsi, dans les PVD, les maladies négligées ne sont pas des maladies rares.

Le combat pour la reconnaissance
Les maladies rares sont une réalité
Il est fondamental de réaliser combien les maladies rares peuvent toucher n’importe quelle famille, à n’importe quel moment. Ce n’est pas simplement « quelque chose de terrible qui arrive aux autres », mais une réalité très cruelle qui peut arriver à n’importe qui, soit en ayant un enfant, soit au cours de la vie même.

En fait, la terminologie « maladies rares » ne souligne que le caractère rare d’une mosaïque complexe. On estime 7 000 formes de conditions très variables, parfois mortelles et sévèrement invalidantes. Cette terminologie, qui ne suggère que le caractère rare, place immédiatement une distance rassurante entre les « pauvres personnes auxquelles une chose aussi terrible est arrivée » et la grande majorité de citoyens qui se sentent protégés de la prévalence faible de conditions rares. Si ces maladies étaient officiellement appelées « maladies terribles qui tuent lentement votre enfant – ou vous-même – et dont personne ne s’inquiète » -chose vraie-, les quelques 30 millions de personnes directement affectées concerneraient davantage l’opinion publique.

Heureusement, et grâce au travail sans relâche des organisations de malades et de parents, que nous remercions, les choses changent petit à petit. Jusqu’à récemment, les autorités et les responsables de santé publique ont largement ignoré les maladies rares. Aujourd’hui, et même si le nombre de maladies rares spécifiques connues est toujours très limité, nous observons une prise de conscience forte d’une partie de l’opinion publique et, par conséquent, certaines mesures sont prises par les autorités. Les maladies rares pour lesquelles un simple traitement efficace est disponible sont même dépistées dans le cadre d’une politique de santé publique. Mais ce n’est pas suffisant et il est temps
que les autorités publiques les considèrent comme une priorité de santé publique et prennent des mesures pour soutenir concrètement malades et familles. Comme nous le savons, la plupart de ces maladies impliquent des déficiences sensorielles, motrices, mentales et physiques. Ces difficultés peuvent être efficacement réduites par la mise en place d’une politque publique appropriée.

Comme le souligne l'analyse sur les maladies orphelines dans le rapport OMS sur les médicaments prioritaires pour l’Europe et le monde, « malgré une prise de conscience publique croissante sur les maladies rares au cours des 10 ou 20 dernières années, il existe encore beaucoup de lacunes concernant les connaissances nécessaires au développement de traitements contre les maladies rares. Les responsables doivent réaliser que les maladies rares représentent un problème de santé crucial pour environ 30 millions de personnes dans l’UE ».

Ouverture

Le message du président d’Eurordis
Bienvenue
Terkel Andersen, Président d’Eurordis

C’est un grand plaisir de vous accueillir à l’ouverture de la conférence européenne sur les maladies rares sous la présidence du Luxembourg. Devant nous, nous avons deux jours de présentations ambitieuses et stimulantes sur les moyens d’améliorer la survie, les soins et la qualité de traitement des personnes vivant avec des maladies rares à travers l’Europe. Nous espérons que cette conférence fasse avancer nos recherches pour des solutions meilleures en faveur des malades et des familles atteintes de maladies rares...

Des maladies métaboliques aux cancers rares, les maladies rares offrent une gamme de conditions très hétérogènes.
Elles sont un concept nouveau, mais pas un phénomène nouveau. Il y a 30 ans seulement, les maladies rares auraient été à peine perçues comme un problème par les autorités publiques. Pour beaucoup de membres de la communauté médicale, ces maladies rares auraient vraisemblablement servi de simples « "cas d'étude ». La complexité, d'abord parce que les noms donnés aux maladies n'aident pas à changer cela.
Mais aujourd'hui, les choses ont changé. Les maladies rares génèrent maintenant une prise de conscience générale.
Dans le passé, lorsque les enfants étaient atteints de maladies rares, ils étaient placés en institutions où on leur conseillait de les oublier pour en faire un autre.
De 5 000 à 7 000 maladies rares sont maintenant connues (plus de 1 000 maladies décrites cliniquement et plus de 4 000 où seuls quelques cas sont décrits).
Les maladies rares sont rares, mais les malades sont nombreux. Mais les données manquent pour estimer le nombre de personnes touchées, l'OMS manque de codes et les données épidémiologiques sont inappropriées, voire inexistantes.
Selon les études d'Orphanet, en 2003, 7,5 millions de citoyens européens étaient touchés par les maladies rares les plus communes. Il s’agit d’un problème énorme de santé et de société (1,7% de la population européenne). Ce chiffre peut être multiplié par 3 ou 4 lorsqu’on ajoute les familles et les autres maladies rares.
Les maladies rares les plus graves font peser un fardeau sur la vie des malades. : Ces maladies graves, chroniques, affaiblissantes mettent souvent la vie des malades en danger. Elles causent, des troubles mentaux, l'autisme, l'infirmité motrice cérébrale, la psychose, les problèmes respiratoires et de santé et sont souvent incurables.
Les études d’Orphanet montrent que sur les 230 maladies rares étudiées, 65% apparaissent à la naissance ou au cours de l'enfance et 80% sont génétiques.
Les maladies rares ont un impact énorme sur les conditions de vie du patient, de la famille et sur la société et ont leur lot de conséquences sociales :

- L'errance diagnostique est la période entre la survenue des symptômes et le diagnostic correct. Ce délai est beaucoup trop long, entraînant des traitements inappropriés.
- Même avec un diagnostic, les gens manquent d'informations et d'aide. Cela comprend le manque d'orientation vers des professionnels qualifiés.
- La faiblesse des connaissances scientifiques cause une pénurie de produits thérapeutiques et d'appareils médicaux appropriés.
- Les maladies rares ont des répercussions sociales énormes : elles provoquent la stigmatisation, l'isolement de l'école et entravent les opportunités professionnelles. Les systèmes de soins ne sont pas adaptés pour assurer des diagnostics précoces (insuffisances des connaissances scientifiques, des traitements thérapeutiques et des appareils) et manquent également de bonnes lignes directrices et des soins multidisciplinaires.
- Les gens peuvent vivre plusieurs années dans une situation précaire, même après un diagnostic. Fréquemment, le coût des soins et des traitements est élevé, les familles s'appauvrissent et la sécurité sociale n'est pas assez efficace.

Les chances sont différentes parmi les délais diagnostiques, en fonction des maladies rares. Les malades bénéficient d'opportunités très variables, même dans leur propre pays. Dans une grande mesure, leur vie dépend de la chance ou de ce qui pourrait s'appeler une loterie par le code postal.

Nous avons fait beaucoup de chemin au cours des dix dernières années. Nous avons marqué des progrès avec 270 nouveaux médicaments contre les maladies rares. Ils ont été désignés médicaments orphelins par la Commission Européenne et ont bénéficié également d'une régulation (MO). La régulation des médicaments pédiatriques est en projet, un réseau européen de spécialistes, des programmes de travail pour la DG Recherche s'est créé, des mesures de santé publique ont été prises, pour la DG Santé et Protection des Consommateurs, en particulier le Groupe de Travail sur la Morbidité et la Mortalité s'est constitué avec des représentants académiques et les organisations pour les malades. Nous avons plus récemment vu le Parlement Européen soutenir une nouvelle politique de l'UE sur la mobilité des malades. Enfin, point non négligeable, nous construisons une communauté européenne avec une participation très active des groupes de malades.

Mais il reste encore beaucoup de chemin à parcourir avant de créer une véritable amélioration de la qualité de vie telle que la perçoivent la majorité des malades eux-mêmes et renouveler réellement leurs opportunités.

Mais, malheureusement, nous parlons encore de diagnostics, de survivie et d'accès aux tests cliniques, en répondant très rarement aux besoins et au droit légitime des malades et de leur famille. Nous ne pouvons pas réellement leur apporter un soutien psychosocial, ni une façon de surmonter, ni un impact économique. Nous ne pouvons pas plus créer des conditions d'égalité à l'école que dans la participation à tous les aspects de la vie en général.

Les perspectives à ce jour visent à créer une synergie meilleure entre les progrès scientifiques, la recherche génétique, l'engagement des organisations de malades, les préoccupations de la société. Accroître les politiques publiques nationales, créer une cohésion entre les membres du Parlement de l'UE, les associations, les professionnels et l'industrie de la santé de la communauté scientifique.

La Commission Européenne

Fernand Sauer

Au nom de Marcos Kyprianou, Commissaire de l'UE pour la santé, je souhaite remercier Mars di Bartolomeo, ministre de la santé au Luxembourg et également le comité d'organisation.
Le manque d'informations sur les maladies rares signifie souvent que ces malades (plus de 7% de la population de l'UE) ne bénéficient pas toujours des services de santé dont ils ont besoin. Il n'est cependant pas possible de développer une politique de santé publique européenne spécifique à chaque maladie rare, mais une approche globale vers les maladies rares peut être mise en place dans les domaines de la recherche scientifique et biomédicale, de la recherche de médicaments, de la formation, des informations, des prestations sociales, de l'hospitalisation et du traitement des malades externes.

Les maladies rares étaient considérées comme une priorité dans le programme précurseur de santé de l'UE jusqu'en 2002. Elles le sont toujours dans le programme actuel (2003-2007) et continueront de l'être dans le prochain programme si la proposition de la Commission de l'UE est adoptée par le Parlement et le Conseil de l'UE. Le programme de travail de la DG Santé et Protection des Consommateurs se concentrent sur les échanges d'informations à travers les réseaux européens existants, l'accroissement d'échange d'informations et la coordination inter UE pour encourager la coopération trans-nationale.

En ce qui concerne les médicaments orphelins, l'Agence Européenne des Médicaments (EMEA) a célébré en mars dernier son 10ème anniversaire, car elle a été créée à Londres en 1995. Par la même occasion, elle a célébré 5 ans de plan d'action sur les médicaments orphelins. L'EMEA a apporté à l'Europe et à ses citoyens la meilleure évaluation scientifique de qualité, de sécurité et d'efficacité pour environ 300 produits thérapeutiques.

Grâce aux cinq années de plan d'action sur les médicaments orphelins, l'EMEA a pu désigner à ce jour environ 300 produits contre les maladies rares. Parmi ceux-ci, 20 produits ont obtenu l'autorisation européenne de commercialisation.

J'ai personnellement eu le privilège de participer au lancement du COMP (Comité des Produits Thérapeutiques Orphelins) établi à l'EMEA et lancé en 2000 avec les Professeurs Torrent Farnell, Yann Le Cam et Alistair Kent. C'était le premier comité européen où les organisations de malades étaient représentées de façon directe et permanente.

En ce qui concerne les principaux résultats du programme précurseur d'action communautaire sur les maladies rares 1999-2002, il y a eu 24 projets sur un total de 6,5 millions d'€.

Certains d'entre eux sont devenus des références internationales dans le domaine :
- La base de données d'Orphanet - la plus importante dans l'UE pour les maladies rares et les médicaments orphelins.
- Les projets successifs d'Eurordis pour construire un plan d'action publique sur les maladies rares, en améliorant les informations de qualité et les médicaments orphelins.
- Le réseau d'Eurocat (surveillance des anomalies congénitales en Europe), qui sonde plus d'un million de personnes par an dans 19 pays, apportant des informations épidémiologiques essentielles.
- Enerca (anémies congénitales rares) est un outil d'informations comprenant une liste de centres spécialisés, de définitions et d'informations sur la standardisation des services de diagnostiques.
- Le dernier est la base de données sur les formes rares de démence qui est mise à jour.

Lorsque le nouveau programme de santé publique 2002-2004 est entré en vigueur, sa première priorité était la poursuite de projets majeurs de la période précédente. Par exemple, l'organisation de cette conférence et, en conséquence, le livre blanc européen des maladies rares qui fournit les meilleures pratiques et conseils à tous les MS pour développer et renforcer la coopération de l'UE.
Également la mise en place du secrétariat scientifique pour le groupe de travail sur les maladies rares sous la présidence de Ségolène Aymé. Ce groupe de travail ouvre un forum de discussions et d'échanges de points de vue, d'expertises, d'informations et de connaissances. Il a d'ailleurs participé très activement à l'organisation de cette conférence.

La recherche est également une priorité : le 6ème programme de travail de recherche et les priorités thématiques sous lesquelles les actions sont menées pour s'attaquer aux maladies rares.

Juste un mot sur la coopération de l'UE à travers le groupe de haut niveau sur la mobilité des malades et les services de santé. En 2003, la Commission a invité tous les ministres de la santé et les représentants de 6 ONG, y compris des groupes de malades, à s'engager dans un processus de réflexion sur la mobilité des malades. Cette question était alors perçue par certains comme une menace et comme une opportunité par d'autres.

La Commission a tiré un rapport en avril 2004. Des propositions ont été faites pour permettre une meilleure l'utilisation des ressources européennes, accentuer les informations pour les malades et professionnels et répondre aux investissements santé et infrastructuraux.

L’un des groupes de travail sous l’égide du Groupe de Haut Niveau, s’adresse aux centres de référence. Il est mené par la France et des échanges ont déjà eu lieu avec la Task Force on Rare Diseases.

En conclusion, la Commission a proposé le 6 avril une nouvelle stratégie sur la santé pour l’Europe avec un programme de financement ambitieux, selon les nouvelles perspectives financières.

Le ministre de la santé du Luxembourg
Mars di Bartolomeo

Mesdames et Messieurs,

La construction de l’Europe a besoin de conférences comme celle-ci pour démontrer les avantages des alliances contre les problèmes comme les maladies rares et pour diffuser des messages forts.

Au cours de la présidence européenne par le gouvernement du Luxembourg, nous avons eu l’opportunité, ensemble avec nos partenaires, de faire progresser de manière significative la santé européenne. Bien que la santé publique relève de la compétence nationale et ne figure pas dans les priorités des traités européens, il est possible de marquer des avancées, non pas en obligeant les États, mais en se fondant sur la bonne volonté de tous les États membres.

La santé publique ne connaît pas de frontières.

Au cours de la présidence luxembourgeoise, nous avons également eu l’opportunité de diffuser des messages forts. D’abord, nous avons insisté sur un certain nombre de principes : accès gratuit aux soins, haute qualité des soins dans un coût abordable, sans différence par rapport aux revenus. En se basant sur ces axiomes, nous avons décidé de considérer les services de santé comme différents de tous les autres et de les administrer dans une direction indépendante.

Permettez-moi de mentionner brièvement certaines avancées et succès récents avec un travail commun entre l’OMS et les organisations commissionnées et non gouvernementales :

- La conférence ministérielle européenne de l’OMS sur la santé mentale, « Faire face aux défis, trouver des solutions », Helsinki, Finlande, du 12 au 15 janvier 2005
La conférence sur la santé en ligne 2005 de l’Union Européenne à Tromsø en Norvège, du 23 au 24 mai 2005, a progressé dans sa collaboration pour améliorer substantiellement les services de soins, soutenir des services de santé plus réactifs et susciter un plus grande prise de conscience à travers de meilleures informations.

L’initiative de la présidence luxembourgeoise sur la qualité de vie, encouragea à la protection de la santé en plus du traitement des maladies.

D’autres exemples illustrant la nécessité de travailler ensemble :

VIH/SIDA : au cours des derniers mois, le Sida est devenu une priorité au niveau du Conseil. Les difficultés sont présentes ; une stratégie collaborative montre l’intérêt d’une approche commune dans l’UE.

C’est un grand plaisir de vous accueillir au Luxembourg.

Cela montre encore une fois que seul nous sommes très faibles, mais combien, ensemble, nous pouvons être plus forts. Les Français disent « L’union fait la force ». Dans ce domaine, c’est plus vrai que dans n’importe quel autre. Les maladies rares prisées séparément et ne sont pas une priorité, mais toutes ensemble, elles en deviennent une haute. Merci d’avoir choisi le Luxembourg pour ce forum, le lieu a rendu cette conférence possible.

Je vous souhaite toute la réussite qu’elle mérite, je vous souhaite de réussir dans vos efforts à faire progresser l’Europe dans son combat contre les maladies rares.

Epidémiologie

Les maladies rares en chiffres
Rapport préliminaire tiré d’une étude bibliographique en cours

Cette étude a été initiée par Eurordis en partenariat avec Orphanet.

Justification d’étude

- Des informations très peu documentées sur l’épidémiologie des maladies rares
- Il est important d’estimer le nombre total de personnes touchées et la prévalence par maladie
- Besoin d’évaluer l’histoire naturelle des maladies rares pour adapter les améliorations des soins et du contrôle

Objectifs de l’étude

- Pour évaluer la prévalence en Europe de chacune des maladies rares
- Pour connaître l’âge de survenue, l’espérance de vie et le mode de transmission

Méthode

Sélection d’une maladie rare (pour les besoins de ce rapport)

- Une sélection de maladies rares qui se concentrent sur les plus communes selon les documents existants à ce jour
- Les pages les plus fréquemment demandées sur le site Web d’Orphanet

Stratégie de recherche

Plusieurs sources de données :

- Sites Web : Orphanet, e-medicine, geneclinics et OMIM
MEDLINE a été consulté en utilisant l’algorithme de recherche :
« Nom de la maladie » ET (Epidémiologie [mh] OU Incidence [ti/ab] OU Prévalence [ti/ab] OU Epidémiologie [ti/ab])
Des ouvrages médicaux, des documents de recherches, une littérature spécialisée et des rapports d’experts ont également constitué d’importantes sources de données disponibles.

Limitations de l’étude
- Les taux exacts de prévalence sont difficiles à obtenir auprès des sources de données disponibles
- La cohérence entre les études est très pauvre
- Les méthodes utilisées souffrent d’une insuffisance documentaire
- Il y a confusion entre l’incidence et la prévalence
- Confusion également entre l’incidence à la naissance et l’incidence au cours de la vie.

Résultats
Les résultats préliminaires de l’analyse de 359 maladies rares. Toutes les données n’étaient pas disponibles pour chaque maladie. Davantage de résultats seront disponibles dans quelques mois.

Figure 7 : Âge à la date de survenue de 353 maladies rares (années)
Exclusively in the age range: Exclusivement dans la tranche d’âge
Not exclusively in the age range: Non exclusivement dans la tranche d’âge

Mode de transmission des 359 maladies rares
- mode de transmission autosomique dominant 26,5%
- transmission autosomique récessive 28,1%
- Hérédité liée au sexe 7%
- Plusieurs modes de transmission 10%
- Maladies multigènes/multifactorielles 13,4%
- Maladies sporadiques 8,1%
- Etiologie inconnue 5,8%

Espérance de vie des 323 maladies rares
- Durée de vie normale : 37,5%
- Potentiellement létale à la naissance ou avant l’âge de 5 ans : 25,7%
- Durée de vie réduite, en fonction de la gravité, de la pénétrance ou du type (types enfants, adolescents ou adultes par exemple) de la maladie : 36,8%
Figure 8: Prevalence range: Fourchette de prévalence
Cumulative prevalence: prévalence cumulative
Exceptional: Exceptionnelle
<table>
<thead>
<tr>
<th>Nom de la maladie</th>
<th>Prévalence estimée (/100 000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndrome de Brugada</td>
<td>50</td>
</tr>
<tr>
<td>Protoporphyrie érythropoïétique</td>
<td>50</td>
</tr>
<tr>
<td>Maladie de Gélineau</td>
<td>49</td>
</tr>
<tr>
<td>Syndrome de Guillain-Barré</td>
<td>47,5</td>
</tr>
<tr>
<td>Mélanoine familial</td>
<td>46,8</td>
</tr>
<tr>
<td>Types génétiques d’autisme</td>
<td>45</td>
</tr>
<tr>
<td>Tétralogie de Fallot</td>
<td>45</td>
</tr>
<tr>
<td>Sclérodérmine</td>
<td>42</td>
</tr>
<tr>
<td>Transposition des grands vaisseaux</td>
<td>32,5</td>
</tr>
<tr>
<td>Dystonie focale</td>
<td>30</td>
</tr>
<tr>
<td>Syndrome de Marfan</td>
<td>30</td>
</tr>
<tr>
<td>Lymphome malin non Non-hodgkinien</td>
<td>30</td>
</tr>
<tr>
<td>Rétinite pigmentaire</td>
<td>27,5</td>
</tr>
<tr>
<td>Déficit en alpha-1 antitrypsine</td>
<td>25</td>
</tr>
<tr>
<td>Maladie de Vaquez</td>
<td>25</td>
</tr>
<tr>
<td>Hémie diaphragmatique congénitale</td>
<td>25</td>
</tr>
<tr>
<td>Polyarthrite juvénile idiopathique</td>
<td>25</td>
</tr>
<tr>
<td>Neurofibromatose type 1</td>
<td>25</td>
</tr>
<tr>
<td>Atresie oesophagique</td>
<td>25</td>
</tr>
<tr>
<td>Amyotrophie péronière</td>
<td>24</td>
</tr>
<tr>
<td>VATER association</td>
<td>23</td>
</tr>
<tr>
<td>Syndrome de Coffin-Lowry</td>
<td>22,5</td>
</tr>
<tr>
<td>Maladie du Rendu-Osler-Weber</td>
<td>21,25</td>
</tr>
<tr>
<td>Dermatite herpétiforme</td>
<td>20,2</td>
</tr>
<tr>
<td>Atresie du petit intestin</td>
<td>20</td>
</tr>
<tr>
<td>Atresie duodénale</td>
<td>20</td>
</tr>
<tr>
<td>Syndrome de Ehlers-Danlos de type classique</td>
<td>20</td>
</tr>
<tr>
<td>Maladie de Hirschsprung</td>
<td>20</td>
</tr>
<tr>
<td>Microdélétion 22q11</td>
<td>20</td>
</tr>
<tr>
<td>Sphérocytose héréditaire</td>
<td>20</td>
</tr>
<tr>
<td>Syndrome de Turner</td>
<td>20</td>
</tr>
<tr>
<td>Myocardiopathie dilatée familiale</td>
<td>17,5</td>
</tr>
<tr>
<td>Cancer du sein, familial</td>
<td>17</td>
</tr>
<tr>
<td>Syndrome de MELAS</td>
<td>16</td>
</tr>
<tr>
<td>Leucinose</td>
<td>15,6</td>
</tr>
<tr>
<td>Déficit en acyl-coenzyme A déshydrogénase des acides gras à chaîne moyenne</td>
<td>15</td>
</tr>
<tr>
<td>Syndrome de Lennox-Gastaut</td>
<td>15</td>
</tr>
<tr>
<td>Syndrome du X fragile</td>
<td>14,25</td>
</tr>
<tr>
<td>Myélome multiple</td>
<td>14,25</td>
</tr>
<tr>
<td>Cirrhose biliaire primitive</td>
<td>13,5</td>
</tr>
<tr>
<td>Syndrome de Stickler</td>
<td>13,5</td>
</tr>
<tr>
<td>Sydrome de Williams</td>
<td>13,3</td>
</tr>
<tr>
<td>Maladie de von Willebrand-Jurgens</td>
<td>12,5</td>
</tr>
<tr>
<td>Gastricoschis</td>
<td>12</td>
</tr>
<tr>
<td>Microphthalmie</td>
<td>12</td>
</tr>
<tr>
<td>Omphalocèle</td>
<td>12</td>
</tr>
<tr>
<td>Sarcoïdose</td>
<td>12</td>
</tr>
<tr>
<td>Mucoviscidose</td>
<td>12</td>
</tr>
<tr>
<td>MURCS association</td>
<td>11,25</td>
</tr>
<tr>
<td>Maladie de Stargardt</td>
<td>11,25</td>
</tr>
<tr>
<td>Glioblastome</td>
<td>11</td>
</tr>
<tr>
<td>Drépanocytose</td>
<td>11</td>
</tr>
<tr>
<td>Néoplasie endocrinienne multiple de type 1</td>
<td>11</td>
</tr>
<tr>
<td>Sydrome de Prader-Labhardt-Willi</td>
<td>10,7</td>
</tr>
<tr>
<td>Pelade décalvante</td>
<td>10,5</td>
</tr>
<tr>
<td>Néphroblastomea</td>
<td>10,1</td>
</tr>
<tr>
<td>Pheochromocytome</td>
<td>10</td>
</tr>
<tr>
<td>Syndrome de Duane</td>
<td>10</td>
</tr>
<tr>
<td>Neuroblastome</td>
<td>10</td>
</tr>
<tr>
<td>Maladie de Hodgkin</td>
<td>9,4</td>
</tr>
<tr>
<td>Dermatomyosite</td>
<td>9,25</td>
</tr>
<tr>
<td>Polymyosite</td>
<td>9,25</td>
</tr>
<tr>
<td>Sclérose tubéreuse de Bourneville</td>
<td>8,8</td>
</tr>
<tr>
<td>Nom de la maladie</td>
<td>Prévalence estimée (/100 000)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Myasthénie gravis</td>
<td>8,5</td>
</tr>
<tr>
<td>Hyperplasie surnérale congénitale</td>
<td>8,5</td>
</tr>
<tr>
<td>Syndrome de Rett</td>
<td>8,2</td>
</tr>
<tr>
<td>Maladie de Huntington</td>
<td>8</td>
</tr>
<tr>
<td>Syndrome d’Angelman</td>
<td>8</td>
</tr>
<tr>
<td>Cataracte congénitale totale</td>
<td>7,9</td>
</tr>
<tr>
<td>Hyperplasie surrénale congénitale</td>
<td>8,5</td>
</tr>
<tr>
<td>Syndrome de Rett</td>
<td>8,2</td>
</tr>
<tr>
<td>Maladie de Behcet</td>
<td>7,5</td>
</tr>
<tr>
<td>Immunodéficience commune variable</td>
<td>7,5</td>
</tr>
<tr>
<td>Polyangélite microscopique</td>
<td>7,5</td>
</tr>
<tr>
<td>Dystonie idiopathique de torsion</td>
<td>7,25</td>
</tr>
<tr>
<td>Albinisme oculocutané</td>
<td>7,15</td>
</tr>
<tr>
<td>Dystrophie musculaire facio—scapulo-humérale</td>
<td>7</td>
</tr>
<tr>
<td>Holoprosencéphalie</td>
<td>7</td>
</tr>
<tr>
<td>Angiocholite scléreuse</td>
<td>7</td>
</tr>
<tr>
<td>Syndrome de Sotos</td>
<td>7</td>
</tr>
<tr>
<td>Galactosémie</td>
<td>6,6</td>
</tr>
<tr>
<td>Atrophie optique de type Leber</td>
<td>6,5</td>
</tr>
<tr>
<td>Ostéogénèse imparfaite</td>
<td>6,5</td>
</tr>
<tr>
<td>Syndrome de Smith-Lemli-Opitz</td>
<td>6,5</td>
</tr>
<tr>
<td>Scérose latérale amyotoïphique</td>
<td>6</td>
</tr>
<tr>
<td>Syndrome de Treacher-Collins</td>
<td>6</td>
</tr>
<tr>
<td>Maladie de Tay-Sachs</td>
<td>5,75</td>
</tr>
<tr>
<td>Retinoblastome</td>
<td>5,4</td>
</tr>
<tr>
<td>Syndrome de Rubinstein-Taybi</td>
<td>5,4</td>
</tr>
<tr>
<td>Maladie d’Alzheimer, familiale</td>
<td>5,3</td>
</tr>
<tr>
<td>Syndrome de Zollinger-Ellison</td>
<td>5,3</td>
</tr>
<tr>
<td>Syndrome de Cornélia de Lange</td>
<td>5,25</td>
</tr>
<tr>
<td>Polyposie adénomateux familial</td>
<td>5,25</td>
</tr>
<tr>
<td>Acromégalie</td>
<td>5</td>
</tr>
<tr>
<td>Intolérance au fructose</td>
<td>5</td>
</tr>
<tr>
<td>Dyskinésie ciliaire primaire</td>
<td>5</td>
</tr>
<tr>
<td>Paralysie pseudobulbaire progressive</td>
<td>5</td>
</tr>
<tr>
<td>Porphyrie aiguë intermittente</td>
<td>5</td>
</tr>
<tr>
<td>Délétion 5p</td>
<td>4,6</td>
</tr>
<tr>
<td>Achondroplasie</td>
<td>4,5</td>
</tr>
<tr>
<td>Dystrophie myotonique de Steinert</td>
<td>4,5</td>
</tr>
<tr>
<td>Cééroïde lipofuscinose neuronale</td>
<td>4</td>
</tr>
<tr>
<td>Phénylcétonurie</td>
<td>4</td>
</tr>
<tr>
<td>Syndrome de Smith-Magenis</td>
<td>4</td>
</tr>
<tr>
<td>Maladie de Wilson</td>
<td>4</td>
</tr>
<tr>
<td>Dystrophie musculaire des ceintures type 2A, type Erb</td>
<td>3,8</td>
</tr>
<tr>
<td>CDG syndrome</td>
<td>3,75</td>
</tr>
<tr>
<td>Maladie de Niemann-Pick de type A</td>
<td>3,75</td>
</tr>
<tr>
<td>Acidémie propionique</td>
<td>3,75</td>
</tr>
<tr>
<td>Syndrome de Waardenburg de types 1, 2 et 3</td>
<td>3,75</td>
</tr>
<tr>
<td>Syndrome de Beckwith-Wiedemann</td>
<td>3,85</td>
</tr>
<tr>
<td>Adénoleukodystrophie liée à l’X</td>
<td>3,5</td>
</tr>
<tr>
<td>Syndrome de Goldenhar</td>
<td>3,5</td>
</tr>
<tr>
<td>Syndrome d’Usher</td>
<td>3,5</td>
</tr>
<tr>
<td>Dystrophie musculaire de Duchenne/Becker</td>
<td>3,4</td>
</tr>
<tr>
<td>Néoplasie endocrinienne de type 2</td>
<td>3,3</td>
</tr>
<tr>
<td>Mastocytose systémique</td>
<td>3,3</td>
</tr>
<tr>
<td>Maladie de Von Hippel-Lindau</td>
<td>3,25</td>
</tr>
<tr>
<td>Périartérite noueuse</td>
<td>3,07</td>
</tr>
<tr>
<td>Maladie de Friedreich</td>
<td>3</td>
</tr>
<tr>
<td>Anomalie de Pologne</td>
<td>3</td>
</tr>
<tr>
<td>Atrophie musculaire spinale proximale</td>
<td>3</td>
</tr>
<tr>
<td>Syndrome de Saethre-Chotzen</td>
<td>3</td>
</tr>
<tr>
<td>Wegener granulomatosis</td>
<td>3</td>
</tr>
<tr>
<td>Maladie de Kennedy</td>
<td>2,8</td>
</tr>
<tr>
<td>Cystinose</td>
<td>2,75</td>
</tr>
<tr>
<td>Amaurosis congenita de Leber</td>
<td>2,5</td>
</tr>
<tr>
<td>Syndrome de BOR</td>
<td>2,5</td>
</tr>
<tr>
<td>Nom de la maladie</td>
<td>Prévalence estimée (/100 000)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Pemphigoide bulleuse</td>
<td>2,5</td>
</tr>
<tr>
<td>Syndrome de Kartagener</td>
<td>2,5</td>
</tr>
<tr>
<td>Maladie de Niemann-Pick de type B</td>
<td>2,5</td>
</tr>
<tr>
<td>Elastorrhexie systématisée</td>
<td>2,5</td>
</tr>
<tr>
<td>Maladie de Leigh</td>
<td>2,25</td>
</tr>
<tr>
<td>Syndrome de Peutz-Jeghers</td>
<td>2,2</td>
</tr>
<tr>
<td>Ataxie spino-cérébelleuse autosomique dominante</td>
<td>2,15</td>
</tr>
<tr>
<td>Albinisme oculaire</td>
<td>2</td>
</tr>
<tr>
<td>Syndrome d’Alport</td>
<td>2</td>
</tr>
<tr>
<td>Maladie de Crouzon</td>
<td>2</td>
</tr>
<tr>
<td>Détérioration 4p</td>
<td>2</td>
</tr>
<tr>
<td>Syndrome de Klippel Feil</td>
<td>2</td>
</tr>
<tr>
<td>Histiocytose à cellules de Langerhans</td>
<td>2</td>
</tr>
<tr>
<td>Syndrome de Nail-Patella</td>
<td>2</td>
</tr>
<tr>
<td>Hypoglycémie hyperinsulinémique persistante de l’enfant</td>
<td>2</td>
</tr>
<tr>
<td>Aniridie sporadique</td>
<td>1,75</td>
</tr>
<tr>
<td>Maladie de Fabry</td>
<td>1,75</td>
</tr>
<tr>
<td>Porphyrie Vanegata</td>
<td>1,7</td>
</tr>
<tr>
<td>Syndrome de Budd-Chiart</td>
<td>1,5</td>
</tr>
<tr>
<td>Maladie de Darier</td>
<td>1,5</td>
</tr>
<tr>
<td>Déficit immunitaire combiné sévère, T- B+, lié à l’X</td>
<td>1,5</td>
</tr>
<tr>
<td>Syndrome d’Allagie</td>
<td>1,4</td>
</tr>
<tr>
<td>Syndrome des yeux de chat</td>
<td>1,35</td>
</tr>
<tr>
<td>Syndrome d’Apert</td>
<td>1,25</td>
</tr>
<tr>
<td>Paralysie spastique familiale</td>
<td>1,25</td>
</tr>
<tr>
<td>Maladie de Still débutant à l’âge adulte</td>
<td>1,23</td>
</tr>
<tr>
<td>Maladie kystique des reins de type récessif</td>
<td>1,2</td>
</tr>
<tr>
<td>Syndrome de Pierre Robin</td>
<td>1,2</td>
</tr>
<tr>
<td>Glycogénose de type 2</td>
<td>1,1</td>
</tr>
<tr>
<td>Mucopolysaccharidose de type 3</td>
<td>1,1</td>
</tr>
<tr>
<td>Syndrome de Zellweger</td>
<td>1,1</td>
</tr>
<tr>
<td>Néphronophisise</td>
<td>1,05</td>
</tr>
<tr>
<td>Déficit en 3-hydroxyacyl-CoA déhydrogénase des acides gras à chaîne longue</td>
<td>1</td>
</tr>
<tr>
<td>Maladie de Albers-Schonberg</td>
<td>1</td>
</tr>
<tr>
<td>œdème de Quincke</td>
<td>1</td>
</tr>
<tr>
<td>Syndrome de Louis-Bar</td>
<td>1</td>
</tr>
<tr>
<td>Chondrodysplasie ponctuée rhizométique</td>
<td>1</td>
</tr>
<tr>
<td>Colobome oculaire</td>
<td>1</td>
</tr>
<tr>
<td>Dystrophie musculaire d’Emery-Dreifuss liée à l’X</td>
<td>1</td>
</tr>
<tr>
<td>Anémie de Fanconi</td>
<td>1</td>
</tr>
<tr>
<td>Maladie de Gaucher</td>
<td>1</td>
</tr>
<tr>
<td>Syndrome de Gorlin</td>
<td>1</td>
</tr>
<tr>
<td>Syndrome de Holt-Oram</td>
<td>1</td>
</tr>
<tr>
<td>Paralysie périodique hypokaliémique</td>
<td>1</td>
</tr>
<tr>
<td>Acidémie isovariétique</td>
<td>1</td>
</tr>
<tr>
<td>Mucopolysaccharidose de type 1</td>
<td>1</td>
</tr>
<tr>
<td>Myopathie némaline</td>
<td>1</td>
</tr>
<tr>
<td>Tumeur neuroendocrinienne</td>
<td>1</td>
</tr>
<tr>
<td>Maladie de Thomsen et Becker</td>
<td>1</td>
</tr>
<tr>
<td>Syndrome de Chung-Strauss</td>
<td>0,9</td>
</tr>
<tr>
<td>Syndrome d’Ellis Van Creveld</td>
<td>0,9</td>
</tr>
<tr>
<td>Syndrome de Joubert-Boltshauser</td>
<td>0,85</td>
</tr>
<tr>
<td>Syndrome de Bardet-Biedl</td>
<td>0,8</td>
</tr>
<tr>
<td>Anomalie d’Ebstein</td>
<td>0,75</td>
</tr>
<tr>
<td>Paralysie périodique hyperkaliémique</td>
<td>0,75</td>
</tr>
<tr>
<td>Maladie de Krabbe</td>
<td>0,75</td>
</tr>
<tr>
<td>Mucolipidose de type 2</td>
<td>0,75</td>
</tr>
<tr>
<td>Ostéodystrophie héréditaire d’Albright</td>
<td>0,72</td>
</tr>
<tr>
<td>Syndrome de Menkes</td>
<td>0,7</td>
</tr>
<tr>
<td>Maladie de Niemann-Pick de type Albright</td>
<td>0,7</td>
</tr>
<tr>
<td>Glycogénose de type 4</td>
<td>0,6</td>
</tr>
<tr>
<td>Alpha-sarcoglycanopathie</td>
<td>0,57</td>
</tr>
<tr>
<td>Beta-sarcoglycanopathie</td>
<td>0,57</td>
</tr>
<tr>
<td>Nom de la maladie</td>
<td>Prévalence estimée (/100 000)</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Delta-sarcoglycanopathie</td>
<td>0,57</td>
</tr>
<tr>
<td>Gamma-sarcoglycanopathie</td>
<td>0,57</td>
</tr>
<tr>
<td>Tétrasonie 18p</td>
<td>0,55</td>
</tr>
<tr>
<td>Neurofibromatose de type 2</td>
<td>0,5</td>
</tr>
<tr>
<td>Xérodermie pigmentaire</td>
<td>0,5</td>
</tr>
<tr>
<td>Agammaglobulinémie liée à l’X</td>
<td>0,45</td>
</tr>
<tr>
<td>Syndrome de Cowden</td>
<td>0,45</td>
</tr>
<tr>
<td>Syndrome de Werner</td>
<td>0,45</td>
</tr>
<tr>
<td>Syndrome de Christ-Siemens-Touraine</td>
<td>0,45</td>
</tr>
<tr>
<td>Déficit en glutaryl-CoA déshydrogénase</td>
<td>0,4</td>
</tr>
<tr>
<td>Homocystinurie par déficit en cystathionine bêta-synthase</td>
<td>0,4</td>
</tr>
<tr>
<td>Mucopolysaccharidose de type 4</td>
<td>0,4</td>
</tr>
<tr>
<td>Syndrome de Lesch-Nyhan</td>
<td>0,38</td>
</tr>
<tr>
<td>Syndrome de Pfeiffer</td>
<td>0,38</td>
</tr>
<tr>
<td>Immunodéficience combinée sévère T- B</td>
<td>0,35</td>
</tr>
<tr>
<td>Anémie congénital hypoplasique de Blackfan-Diamond</td>
<td>0,32</td>
</tr>
<tr>
<td>Alkaptonurie</td>
<td>0,3</td>
</tr>
<tr>
<td>Lissencéphalie de type 1 due aux anomalies de LIS</td>
<td>0,3</td>
</tr>
<tr>
<td>Dystonie Dopa-sensible</td>
<td>0,3</td>
</tr>
<tr>
<td>Lipodystrophie de type Berardinelli</td>
<td>0,25</td>
</tr>
<tr>
<td>Progeria</td>
<td>0,25</td>
</tr>
<tr>
<td>Maladie granulomateuse chronique</td>
<td>0,2</td>
</tr>
<tr>
<td>Syndrome de Jeune</td>
<td>0,2</td>
</tr>
<tr>
<td>Nanisme due to growth hormone resistance</td>
<td>0,2</td>
</tr>
<tr>
<td>Neurodégénérescence avec accumulation de fer dans le cerveau</td>
<td>0,2</td>
</tr>
<tr>
<td>Maladie de Creutzfeldt-Jakob</td>
<td>0,19</td>
</tr>
<tr>
<td>Syndrome de Lowe</td>
<td>0,19</td>
</tr>
<tr>
<td>Mucopolysaccharidose de type 6</td>
<td>0,16</td>
</tr>
<tr>
<td>CHARGE association</td>
<td>0,14</td>
</tr>
<tr>
<td>Leucodystrophie métachromatique</td>
<td>0,13</td>
</tr>
<tr>
<td>Syndrome de Barter</td>
<td>0,12</td>
</tr>
<tr>
<td>Dystrophie musculaire de type Fukuyama</td>
<td>0,12</td>
</tr>
<tr>
<td>Syndrome de Walker-Warburg</td>
<td></td>
</tr>
<tr>
<td>Maladie de Santavuori</td>
<td></td>
</tr>
<tr>
<td>Sarcome d’Ewing</td>
<td>0,1</td>
</tr>
<tr>
<td>Hypercholestérolémie familiale (frome homozygote)</td>
<td>0,1</td>
</tr>
<tr>
<td>Maladie de Munchmeyer</td>
<td>0,08</td>
</tr>
<tr>
<td>Tyrosinémie de type 1</td>
<td>0,05</td>
</tr>
<tr>
<td>Déficit congénital en facteur XIII</td>
<td>0,04</td>
</tr>
<tr>
<td>Hypophosphatasie périnatale</td>
<td>0,03</td>
</tr>
</tbody>
</table>
Les cancers rares parmi les maladies rares

Incidence des cancers rares à Granada (1998-2001)
MJ Sanchez-Perez¹, C Martinez Garcia¹, JD Martin-Ortiz¹, M. Posada de la Paz²
1- Registre du Cancer de Granada, Institut Andaloux de la Santé Publique
2- Coordinateur scientifique du réseau REpiER
Poster n° 87

Introduction
An ce qui concerne les cancers rares, trop peu d’informations sont disponibles sur la prévalence, l’incidence et la survie... Les définitions des maladies rares se basent sur la prévalence, mais se bâtissent sur l’incidence pour les tumeurs, bien qu’il n’y ait pas de définition standard acceptée.

Matériaux et méthodes

Résultats

Un total de 14 538 cas a été enregistré dans cette province entre 1998 et 2001, avec un taux d’incidence brute annuel moyen de 450,9 sur 100 000 habitants, pour l’ensemble des cancers. Les cancers rares représentent 7,2% de l’ensemble, à l’exception du cancer de la peau sans présence de mélanome.

En classant les cancers selon le site anatomique (à l’aide du ICD-10) et le sexe, 33 cancers chez des hommes et 34 chez les femmes ont été classés comme des cancers rares. Les résultats sont montrés dans les tableaux ci-dessous.

<table>
<thead>
<tr>
<th>Tableau 3</th>
</tr>
</thead>
</table>

Nombre de cas, taux d’incidence bruts et standardisés dans la population mondiale (ASR-W) pour 100 000 hommes

<table>
<thead>
<tr>
<th>ICD-10</th>
<th>ICD-10</th>
<th>Cas</th>
<th>Taux brut</th>
<th>ASR-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>C33</td>
<td>Trachée</td>
<td>1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>C37</td>
<td>Thymus</td>
<td>1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>C30</td>
<td>Cavité nasale et oreille moyenne</td>
<td>3</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>C72</td>
<td>Moelle épinière, nerfs crâniens & autres parties du SNC</td>
<td>3</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>C88</td>
<td>Maladies immunoprolifératives malignes</td>
<td>3</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>C08</td>
<td>Autres glandes salivaires principales non spécifiées</td>
<td>4</td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td>C70</td>
<td>Méninges</td>
<td>5</td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td>C31</td>
<td>Sinus accessoires</td>
<td>6</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>C33</td>
<td>Leucémie monocytique</td>
<td>6</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td>C38</td>
<td>Coeur, médiastin et plèvre</td>
<td>7</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>C46</td>
<td>Sarcome de Kaposi</td>
<td>7</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>C75</td>
<td>Autres glandes endocriniennes et structures associées</td>
<td>7</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>C74</td>
<td>Glandes surrénales</td>
<td>9</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>C07</td>
<td>Glandes parotides</td>
<td>11</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>C13</td>
<td>Hypopharynx</td>
<td>12</td>
<td>0,8</td>
<td>0,6</td>
</tr>
<tr>
<td>C48</td>
<td>Rétropéritoine et péritoine</td>
<td>13</td>
<td>0,8</td>
<td>0,7</td>
</tr>
<tr>
<td>C21</td>
<td>Anus et canal anal</td>
<td>14</td>
<td>0,9</td>
<td>0,6</td>
</tr>
<tr>
<td>C50</td>
<td>Sein</td>
<td>14</td>
<td>0,9</td>
<td>0,6</td>
</tr>
<tr>
<td>C69</td>
<td>Yeux</td>
<td>14</td>
<td>0,9</td>
<td>0,5</td>
</tr>
<tr>
<td>C40-41</td>
<td>Os</td>
<td>15</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>C09</td>
<td>Tonsille palatine</td>
<td>17</td>
<td>1,1</td>
<td>0,8</td>
</tr>
<tr>
<td>C17</td>
<td>Petit intestin</td>
<td>18</td>
<td>1,1</td>
<td>0,7</td>
</tr>
<tr>
<td>C45</td>
<td>Mésothéliome</td>
<td>18</td>
<td>1,1</td>
<td>0,7</td>
</tr>
<tr>
<td>C73</td>
<td>Glande thyroïde</td>
<td>19</td>
<td>1,2</td>
<td>0,9</td>
</tr>
<tr>
<td>C10</td>
<td>Oropharynx</td>
<td>20</td>
<td>1,3</td>
<td>1,0</td>
</tr>
<tr>
<td>C60</td>
<td>Pénis</td>
<td>22</td>
<td>1,4</td>
<td>1,0</td>
</tr>
<tr>
<td>C11</td>
<td>Partie nasale du spharynx</td>
<td>23</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>C66</td>
<td>Uretère</td>
<td>23</td>
<td>1,5</td>
<td>0,8</td>
</tr>
<tr>
<td>C23</td>
<td>Vésicule biliaire</td>
<td>24</td>
<td>1,5</td>
<td>0,8</td>
</tr>
<tr>
<td>C12</td>
<td>Sinus pyriforme</td>
<td>28</td>
<td>1,8</td>
<td>1,4</td>
</tr>
<tr>
<td>C24</td>
<td>Voie extrahépatique biliaire</td>
<td>33</td>
<td>2,1</td>
<td>1,1</td>
</tr>
<tr>
<td>C81</td>
<td>Maladie de Hodgkin</td>
<td>37</td>
<td>2,3</td>
<td>2,1</td>
</tr>
<tr>
<td>C62</td>
<td>Testicule</td>
<td>43</td>
<td>2,7</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Tableau 4

Nombre de cas, taux d’incidence bruts et standardisés sur le population mondiale (ASR-W) pour 100 000 femmes

<table>
<thead>
<tr>
<th>ICD-10</th>
<th>ICD-10</th>
<th>Cases</th>
<th>Crude rate</th>
<th>ASR-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Oropharynx</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C33</td>
<td>Trachée</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C37</td>
<td>Thymus</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C38</td>
<td>Coeur, médiastin et plèvre</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>C58</td>
<td>Placenta</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C66</td>
<td>Urethre</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C93</td>
<td>Leucémie nonocytique</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>C09</td>
<td>Tonsille palatine</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C30</td>
<td>Cavité nasale et oreille moyenne</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C31</td>
<td>Sinus accessoires</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C72</td>
<td>Moelle épinière, nerfs crâniens et autres parties du SNC</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>C69</td>
<td>Yeux</td>
<td>3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>C74</td>
<td>Glandes surrenales</td>
<td>3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>C45</td>
<td>Mésothéliome</td>
<td>4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>C46</td>
<td>Sarcome de Kaposi</td>
<td>4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>C88</td>
<td>Maladies immunoprolifératives malignes</td>
<td>4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>C07</td>
<td>Glande parotide</td>
<td>5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>C32</td>
<td>Larynx</td>
<td>5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>C70</td>
<td>Méninges</td>
<td>5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>C75</td>
<td>Autres glandes endocriniennes et structures associées</td>
<td>5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>C11</td>
<td>Nasopharynx</td>
<td>6</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>C52</td>
<td>Vagin</td>
<td>7</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>C48</td>
<td>Rétropéritoine et péritoine</td>
<td>8</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>C40-41</td>
<td>Os</td>
<td>9</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>C65</td>
<td>Bassinet du rein</td>
<td>9</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>C17</td>
<td>Petit intestin</td>
<td>11</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>C21</td>
<td>Anus et canal anal</td>
<td>13</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>C15</td>
<td>Oesophage</td>
<td>17</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>C03-06</td>
<td>Bouche</td>
<td>20</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>C01-02</td>
<td>Langue</td>
<td>22</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>C81</td>
<td>Maladie de Hodgkin</td>
<td>27</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>C00</td>
<td>Lèvre</td>
<td>32</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>C51</td>
<td>Vulve</td>
<td>39</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>C24</td>
<td>Voie biliaire extrahépatique</td>
<td>42</td>
<td>2.5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Sur la totalité des cancers rares, 58% et 80% montrent un taux moyen d’incidence annuel inférieur à 1 pour 100 000 hommes et femmes respectivement. Les résultats de Granada sont similaires à ceux obtenus lors d’une étude antérieure menée dans 11 registres de cancers auprès de la population en Espagne entre 1993 et 1997.

Cette étude a été partiellement financée par ISCIII : PIO20686, le réseau REpIER (GO3/123) et le réseau RCESP (C03/09).

Diagnostiquer les maladies rares : un défi pour les systèmes de santé

Retards diagnostiques : les malades perdent confiance en la médecine

EurordisCare2, une enquête sur les délais diagnostiques en Europe pour 8 maladies rares

Madelon Kroneman

[Cet article a été soumis à un magazine scientifique pour publication. Ainsi seul un rapport préliminaire peut être publié dans ce document]

Les diagnostics tardifs des maladies rares sont un problème provoquant des conséquences sur les individus et les familles.
Les maladies rares sont peu prises en considération par le grand public et les professionnels de la santé - même leur diagnostic est donc un problème. Cette enquête a été lancée pour renseigner, à travers les expériences des malades, sur l’étendue, les causes et conséquences des diagnostics tardifs pour 8 maladies rares en Europe. 69 organisations de malades issues de 17 pays ont envoyé des questionnaires en 12 langues à 18 000 malades. Les malades ont renvoyé 5 980 questionnaires remplis à Eurordis, (5 300 ont été analysés) Cette étude constituait la première approche de la question.

Méthodes
Le tableau 5 ci-dessous présente les principales caractéristiques des maladies :

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Génétique</th>
<th>Prévalence 10 000</th>
<th>Principaux aspects cliniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crohn</td>
<td>Non</td>
<td>2-15</td>
<td>digestif</td>
</tr>
<tr>
<td>Mucoviscidose</td>
<td>Héréditaire</td>
<td>3</td>
<td>digestif, respiratoire</td>
</tr>
<tr>
<td>Duchenne</td>
<td>Héréditaire</td>
<td>1,2</td>
<td>neuromusculaire</td>
</tr>
<tr>
<td>Ehlers Danlos</td>
<td>Héréditaire</td>
<td>-</td>
<td>dermatologique, articulations</td>
</tr>
<tr>
<td>X fragile</td>
<td>Héréditaire</td>
<td>1,5</td>
<td>cognitif</td>
</tr>
<tr>
<td>Marfan</td>
<td>Héréditaire</td>
<td>2</td>
<td>cardiovasculaire, ostéoart, OPH</td>
</tr>
<tr>
<td>Prader Willi</td>
<td>Sporadique</td>
<td>0,5</td>
<td>métabolique, cognitif</td>
</tr>
<tr>
<td>Sclérose tub.</td>
<td>Sporadique, Héréditaire</td>
<td>1</td>
<td>neurologique, cognitif</td>
</tr>
</tbody>
</table>

La figure 9 présente, pour chaque maladie, les pays dans lesquels le questionnaire a été envoyé à des malades.

Pour une maladie donnée, le nombre de questionnaires retournés variait entre 485 (pour le syndrome d’Ehlers Danlos) et 1 079 (pour la mucoviscidose). 5 pays étaient sollicités pour la maladie de Crohn et le syndrome d’Ehlers Danlos et 14 participaient (à l’opération) pour le syndrome de Prader Willi.
Population étudiée

La population étudiée était bien répartie géographiquement. Un tiers de ruraux, un tiers de citadins en petites villes et villes moyennes et un tiers vivant en pôles urbains. Les personnes enquêtées provenaient de toutes les catégories professionnelles, avec une légère sur-représentation des secteurs de la gestion et de l’enseignement et une sous-représentation des travailleurs manuels et retraités.

Résultats : les délais entre les premiers symptômes et les diagnostics de certitude

Pour une maladie donnée, il y avait une grande variabilité dans les délais. Pour la plupart des maladies, un diagnostic avait été obtenu sans délai pour un quart ou la moitié des malades. Malheureusement, un nombre important de malades avait dû attendre longtemps avant le diagnostic.

Les derniers 25% des diagnostics demandaient au moins 1,5 ans pour la mucoviscidose, de 3 à 6 ans pour la dystrophie musculaire de Duchenne, le syndrome de Prader Willi, le syndrome du X fragile et la maladie de Crohn, 11 ans pour le syndrome de Marfan et 28 ans pour le syndrome d’Ehlers Danlos !

L’attente des diagnostics n’était pas une période inactive, mais une quête continue. Les malades devaient consulter beaucoup de médecins. Un quart d’entre eux ont consulté au moins 4 médecins pour le syndrome du X fragile, 6 médecins pour le syndrome de Prader Willi et le syndrome de Marfan et 16 médecins pour le syndrome d’Ehlers Danlos.

Avant de recevoir un diagnostic de confirmation, 40% des malades en ont d’abord reçu un erroné, tandis que 60% n’en recevaient aucun.

La tendance aux erreurs diagnostiques dépendait de la maladie (1/4 pour le syndrome de Marfan contre ½ pour le syndrome d’Ehlers Danlos) et du pays (1/3 en Finlande, en Espagne, au Royaume-Uni et en Irlande contre ½ en Autriche, au Danemark, en Allemagne, en Roumanie, en Suède et en Pologne).

Souvent, les erreurs de diagnostic entraînaient diverses interventions médicales: traitements médicamenteux pour 1 patient sur 3, interventions chirurgicales pour 1 patient sur 6 et des soins psychologiques pour 1 patient sur 10.

En plus des conséquences sur les individus, les effets sur les familles cachent un problème extrême. Chez plus de 8% des malades atteints du syndrome de Marfan et de celui d’Ehlers Danlos, naissait un frère ou une soeur touchée. Entre 1 patient sur 10 et 1 patient sur 4 pour 7 maladies relataient un comportement inacceptable parmi des membres de leur famille.

Les conditions de l’annonce du diagnostic étaient loin d’être satisfaisantes : dans 33% des cas il était annoncé dans des termes ou conditions mal choisies dans et inacceptables dans 12,5% des cas. La nature génétique de la maladie n’était pas communiquée au patient ou à la famille dans 25% des cas. Curieux paradoxe, compte tenu de l’origine génétique de 80% des maladies rares.

Conclusions

- Les retards de diagnostic existent et peuvent engendrer des conséquences graves.
- L’information du diagnostic doit s’améliorer ; la communauté médicale doit veiller à ce point.
- Ce sont là les différences entre les pays, mais on ne discerne pas si elles sont culturelles ou structurelles.
- L’obtention d’un diagnostic exact n’est que le début de la lutte des malades atteints d’une maladie rare et de leurs parents.
EurordisCare® est un programme de recherche à l’initiative d’Eurordis en 2002. Il implique des organisations de malades atteints de maladies rares, afin d’étudier et de comparer l’accès aux soins en Europe et entre les différentes maladies rares.

Immunodéficience primaire : une illustration claire des retards de diagnostics

10 Signes d’avertissement d’immunodéficience primaire

L’immunodéficience primaire entraîne chez les enfants et les jeunes adultes des infections récurrentes ou généralement difficiles à guérir. Aux États-Unis, jusqu’à un demi-million de patients souffrent de l’une des cent maladies connues d’immunodéficience primaire. Si vous ou une connaissance êtes touchés par une ou plusieurs des signes d’avertissement suivants, rendez-vous à un médecin. Peut-être y-a-t-il présence d’une immunodéficience primaire sous-jacente.

Au moins huit nouvelles infections des oreilles en une année	Aucun récent enfant profond de la peau ou l’organe.
Au moins deux infections graves des sinus en une année	Muguet persistant dans la bouche ou ailleurs sur la peau après l’âge d’un an.
Au moins deux mois sans antibiotiques avec peu d’effet	Risque d’intraveineuses pour éliminer les infections.
Au moins deux pneumonies en une année	Au moins deux infections profondes.
Enfant qui ne prend pas de poids ou qui ne grandit pas normalement	Antécédents familiaux d’immunodéficience primaire.

Les médecins traitent souvent les maladies sans en aborder la cause sous-jacente.

Les principales organisations représentant la communauté de l’Union Européenne et la communauté internationale de malades atteints d’immunodéficience primaire, infirmiers et médecins ont lancé une campagne afin de sensibiliser les membres du Parlement Européen. La Société Européenne pour les Immunodéficences (ESID), le Groupe International d’Infirmiers pour les Immunodéficences (INGID), l’Organisation Internationale de Malades pour les Immunodéficences Primaires (IPOPI), la Fédération Européenne des Sociétés Immunologiques (EFIS) et la Fondation Jeffrey Modell (JMF) élevé d’une seule voix « Nous appelons la DG Santé et Protection des Consommateurs de la Commission à prendre des mesures d’urgence pour permettre que les immunodéficences primaires soient désignées priorités dans les actions contre les maladies rares au sein du Programme de Santé Publique de l’UE ».

Témoignage d’un patient

Marianna Lambrou, Association contre la Sclérose Tubéreuse, Grèce

À l’âge de 10 ans et lors d’un voyage en Angleterre, Katerina a eu son premier
tomodensitogramme, confirmant une sclérose tubéreuse et révélatrice de tumeurs typiques au cerveau. Elle commençait à souffrir de graves maux de têtes et on lui a diagnostiqué une hydrocéphalie, on lui a donc administré un système de dérivation pour drainer le liquide. Ce type de soin entraîne un changement de vie, car ce système complexe implique également de nombreux voyages en Angleterre pour rencontrer son neurochirurgien. Katerina avait 12 ans.
Elle a été opérée de l’appendicite, mais le système de dérivation a été déconnecté et un autre voyage en Angleterre était donc nécessaire. Elle a ensuite été hospitalisée plusieurs fois dans des hôpitaux privés et publics pour des douleurs et des infections du tractus urinaire. Mais, là, elle ne fut pas diagnostiquée. Malgré des problèmes rénaux, Katerina essayait de vivre une vie « normale ».
Malheureusement, la sclérose tubéreuse a brusquement envahi sa vie et celle de sa mère. Survinrent des douleurs graves dues à des hémorragies et une insuffisance rénale. L’intervention chirurgicale par embolie a aidé à sauver le seul rein de Katerina cinq fois jusqu’à présent.
L’actualisation des données est capitale, non seulement pour la sclérose tubéreuse mais pour étudier correctement n’importe quelle maladie. Katerina a été opérée 15 fois et la moitié des opérations, au moins, auraient pu être évitées si les médecins avaient eu accès aux découvertes et recherches les plus récentes sur la maladie.
Il est primordial que les pays européens travaillent ensemble, car les maladies et leurs remèdes n’ont pas de frontières.

Témoignage d’un professionnel de santé

Prof. Helena Kääriäinen, Département de Génétique Médicale, Hôpital Universitaire de Turku, en Finlande

La confirmation du diagnostic est cruciale. Non seulement grâce à elle nous traitons le patient en conséquence - part après tout la plus importante de nos activités (pronostic, traitement, soins, risques de récurrence pour les conseils génétiques) - mais également elle permet de donner une identité au patient, à sa famille et promeut la recherche.

Avec un diagnostic erroné ou absent, des malades, encore actuellement, passent à côté de possibilités thérapeutiques et ne peuvent pas être orientés vers les centres de traitement adéquats.

Le diagnostic de la maladie rare repose encore sur des fondements similaires aux méthodes des maladies courantes. :
- Auscultation physique attentive
- Historique de la maladie
- Antécédents familiaux

Des techniques plus précises, comme les tests génétiques, ne peuvent être prescrites que sous indices cliniques. Tous les tests ne peuvent donc pas être effectués, ils doivent être guidés par une auscultation médicale préliminaire.
Les informations génétiques peuvent être associées au phénotype et à la présentation clinique selon les données des brochures publiées sur des cas similaires. Les généticiens cliniques ont l’habitude de rechercher les conseils d’experts, parfois à l’étranger.
Mais le préalable est une auscultation bien menée du patient par le médecin traitant.
Dans certains cas, le diagnostic peut être extrêmement rapide. Lorsqu’il est établi une heure après la naissance il peut provoquer un choc émotionnel dans la famille. Au cours des vingt dernières années, des outils très puissants (tests génétiques et bases de données) ont permis un diagnostic étiologique.
Dans les syndromes dysmorphiques rares et de malformation, un diagnostic peut être effectué, grâce aux bases de données très utiles (LMD et POSSUM\(^1\)).

Toutefois, beaucoup de maladies rares sont difficiles à diagnostiquer lorsque leurs symptômes sont courants :
- Les causes rares de tension artérielle élevée
- Les causes rares d’immunodéficience primaire (se reporter à la page 28) : entre 70 et 90% restent probablement sans diagnostic.
- Les causes rares de diabètes.
- Les causes rares de retard mental non syndromique: plus de 50% restent probablement sans diagnostic.
- Les causes rares de surdité, de dystrophie rétinale.

Il y a des difficultés objectives lorsque les malades vivent loin du centre médical (barrière géographique) ou lorsqu’ils parlent une langue différente (barrière culturelle).

Les retards de diagnostic en Europe et aux États-Unis

Confirmant les découvertes de l’enquête d’EurordisCare2, une étude basée aux États-Unis sur les retards de diagnostic a conclu sur des résultats très similaires. Dans une enquête détaillée il y a une dizaine d’années sur les problèmes des personnes atteintes de maladies rares, la Commission Nationale Américaine sur les Maladies Orphelines a noté que :
- 30% des malades attendaient entre 1 et 5 ans avant de recevoir un diagnostic correct
- 15% des malades étaient non diagnostiqués pendant au moins 6 ans

Discrimination

Les malades atteints de maladies rares souffrent presque toujours de discriminations sociales : employeurs, sociétés d’assurance, banques, etc.

Le régime de santé peut également être discriminatoire contre les malades atteints de maladies rares: face aux manques de connaissances, difficultés à diagnostiquer et à ensuite traiter. Devant de trop faibles réussites, les professionnels de santé sont incertains.

Indemnités

Même avec toutes les indemnités financières disponibles, les soins demeurent onéreux et les frais personnels pour faire face à tous les aspects des maladies sont élevés.

La Société Européenne sur la Génétique Humaine a publié des recommandations de politique sur les informations et les tests génétiques dans les domaines de l’emploi et de l’assurance : problèmes techniques, sociaux et éthiques\(^2\) (www.eshg.org). Selon elles, les droits sociaux et l’assurance santé sont essentiels à la structure sociale et bien que répartis différemment selon les pays, ils ne doivent pas être conditionnés par la constitution génétique.

Parmi les solutions envisagées, Prof. Kääriäinen a déclaré que la création de centres de soins spécialisés n’est pas la réponse définitive. L’éducation et la formation à tous les niveaux et dans toutes les professions doivent être une stratégie clé. Le suivi principal doit être assuré là où les personnes vivent et dans leur langue courante. Si les centres spécialisés ou les centres de référence peuvent aider les médecins à gérer les malades, ils n’apportent pas néanmoins des réponses aux soins quotidiens.

\(^1\) POSSUM est un système informatique qui aide les cliniciens à diagnostiquer les syndromes de leurs malades.
\(^2\) Recommandations de la Société Européenne de Génétique Humaine
Comment améliorer le diagnostic ?

Un réseau pour mieux diagnostiquer la déficience mentale liée à l’X
Poster 118, Vincent des Portes, Neuropédiatre, Hôpital Debrousse, Lyon.

La déficience mentale liée à l’X (XLMR) est un groupe hétérogène de plus de 200 maladies rares caractérisées par une déficience mentale aux gravités variables et par une hérédité Mendélienne liée à l’X, soit dominante, soit récessive (pour plus d’informations, se reporter au site Web de mise à jour sur l’XLMR : http://xlmr.interfree.it/home.htm). La prévalence de la déficience mentale liée à l’X (XLMR) est approximativement de 1,8 garçons sur 1 000. Environ deux tiers d'entre eux ont des formes non spécifiques d'XLMR dans lesquelles le trouble cognitif ne se détecte pas dans un trait physique reconnaissable, comme des anomalies squelettiques ou des traits faciaux dysmorphiques.

Au cours des cinq dernières années, plus de quinze nouveaux gènes de l’XLMR ont été identifiés et la vitesse de ces découvertes augmente considérablement. On attend l’identification de près de cent gènes. Quelques familles (seulement) partagent une mutation dans chacun des nouveaux gènes non spécifiques de l’XLMR récemment découverts, et peu de données cliniques ont donc été publiées. Les critères de diagnostics cliniques ne sont pas encore disponibles, en particulier pour la déficience mentale, en l’absence de caractéristiques distinctives, somatiques, métaboliques, radiologiques ou neurologiques.

Une approche multidisciplinaire a été développée, pour améliorer cliniquement les diagnostics, tels la déficience mentale ou un phénomène précis. Elle inclut des neurologues, neuropsychologues et généticiens cliniques pour enfants. Leur réseau national a mis en place une évaluation standardisée clinique psychologique de plusieurs familles touchées par l’MRX. Cette recherche est menée dans le cadre du consortium de collaboration européenne (EuroMRX).

De plus, pour l’optimisation des études multi-sites, nous avons créé une plateforme sécurisée disponible sur Internet (bases de données médicales, Forum HC, Grenoble), spécialement consacrée, à la déficience mentale.

Une base de données pour mieux diagnostiquer les anomalies orodentaires 3

Poster 75, Agnès Bloch-Zupan, Université Louis Pasteur, Faculté Dentaire, France

Déficience mentale liée à l’X

Une approche multidisciplinaire a été développée, pour améliorer cliniquement les diagnostics, tels la déficience mentale ou un phénomène précis. Elle inclut des neurologues, neuropsychologues et généticiens cliniques pour enfants. Leur réseau national a mis en place une évaluation standardisée clinique psychologique de plusieurs familles touchées par l’XLMR. Cette recherche est menée dans le cadre du consortium de collaboration européenne (EuroMRX).

De plus, pour l’optimisation des études multi-sites, nous avons créé une plateforme sécurisée disponible sur Internet (bases de données médicales, Forum HC, Grenoble), spécialement consacrée, à la déficience mentale.

Une base de données pour mieux diagnostiquer les anomalies orodentaires 3

Poster 75, Agnès Bloch-Zupan, Université Louis Pasteur, Faculté Dentaire, France
Les anomalies dentaires en nombre de dents, formes, tailles, couleur de structure et éruption existent en cas isolés ou associés à d'autres traits de syndromes et reflètent un odontogénèse altérée.

Une base de données biomédicales accessible par un site Web interactif phenodent.org fournira des données médicales, génétiques et encouragera l'approche multidisciplinaire dans la prise en charge des malades. Cela facilitera la compréhension de la biologie dentaire et orale, les troubles et les maladies associées - instaurant des diagnostics basées sur la science et des options thérapeutiques. Cela stimulera le recrutement des malades et établira une base à l'analyse moléculaire et aux recherches anatomopathologiques. Ainsi, les malades atteints de troubles orodentaux rares pourront davantage se regrouper et (on pourra plus aisément les repérer) lorsqu'ils susceptible d'être impliqués dans des projets de recherche comme :

- l'identification des mutations dans des gènes connus impliqués dans le développement et les maladies dentaires
- le phénotype/corrélation du génotype
- la génétique de la population, l'identification de nouveaux gènes
- l'expression génique au cours de l'odontogénèse
- corrélations soumis/homme

Cet outil ouvrira à d'autres bases de données génétiques types Orphanet, OMIM et LDDB. Il reliera les centres de diagnostics cliniques participants et les laboratoires de recherche. Il deviendra ainsi un moyen puissant pour les réseaux nationaux (INSERM, GIS maladies rares – réseau odontogénétique sur les maladies rares) et internationaux (Développement et régénération orofacial COST B23 Européenne). Cette plate-forme d'informations facilitera la compréhension de la biologie dentaire, orale et les maladies associées grâce à des diagnostics basés sur des preuves scientifiques et des options thérapeutiques. Redite
Ce travail est partiellement financé par l'INSERM « Réseau de Recherche Clinique ET Réseau de Recherche en Santé des populations 2003 » et COST-STSM-B23-00900.

Une clinique spécialisée en maladies rares : la clinique ambulatoire pour les maladies rares (RDOC) en Italie4
Poster 03, Andrea Bartuli, Hôpital pour enfants Bambino Gesu, Italie.

La RDOC a ouvert ses portes en 2003. Elle réunit une équipe multidisciplinaire de 13 spécialistes en génétique, neurologie, troubles neuromusculaires, endocrinologie, métabolisme, psychologie, immunohématologie, dermatologie, orthopédie et néphrologie. Cette approche transdisciplinaire a démontré une avance réelle dans les soins des malades atteints de troubles rares. Elle offre une réponse intensive aux problèmes complexes communs à ces maladies et réduit les difficultés logistiques de la famille.

Le premier contact a d'abord lieu avec le centre d'appel dédié ou par le portail de l'hôpital (www.rarimanonsoli.it). Le coordinateur de la RDOC vérifie alors si la maladie en question relève d'une approche multidisciplinaire.

Le premier rendez-vous est précédé par une réunion avec un psychologue, à l'écoute des besoins, des attentes du patient et de la famille. Un « responsable des cas » mène alors l'examen clinique avant de présenter le cas à toute l'équipe de spécialistes pour une discussion approfondie. Enfin, avec, la famille, une réunion a lieu pour expliquer le diagnostic et les propositions thérapeutiques.

La RDOC a été contactée par 815 familles et a examiné 118 malades. À leur arrivée, 34% des malades n’avaient pas de diagnostic ou seulement un diagnostic générique. Le département a confirmé le diagnostic initial dans 34% des cas, il en a formulé un alternatif dans 19% des cas et proposé un nouveau et l’a renouvelé dans 47% des cas.

-Bambino Gesù Children’s Hospital in Rome, Italy.
Les principaux symptômes observés étaient :

Tableau 6

<table>
<thead>
<tr>
<th>Symptôme</th>
<th>Pourcentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubles de peau/tissus conjonctifs</td>
<td>16,9 %</td>
</tr>
<tr>
<td>Troubles endocriniens/métaboliques</td>
<td>16,1 %</td>
</tr>
<tr>
<td>Développement de troubles avec des syndromes génétique/de malformation</td>
<td>14,6 %</td>
</tr>
<tr>
<td>Anomalies squelettiques</td>
<td>13 %</td>
</tr>
<tr>
<td>Anormalités immuno-hématologiques</td>
<td>11%</td>
</tr>
<tr>
<td>Malformations et maladies du système nerveux</td>
<td>10 %</td>
</tr>
<tr>
<td>Troubles musculaires/neuromusculaires</td>
<td>6,1 %</td>
</tr>
<tr>
<td>Retard du développement neuromoteur</td>
<td>5,3 %</td>
</tr>
<tr>
<td>Maladies rénales</td>
<td>3%</td>
</tr>
<tr>
<td>Syndromes génétiques de malformation sans déficience développementale</td>
<td>1,5%</td>
</tr>
<tr>
<td>Syndromes neurocutanés</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Troubles cardiovasculaires</td>
<td>1%</td>
</tr>
</tbody>
</table>

La plupart des malades (92%) avaient des symptômes exigeant l’expertise de plusieurs spécialistes et venait à la RDOC des quatre coins de l'Italie (Nord 11%, Centre 55%, Sud 34%). Parmi les échos des familles dans un questionnaire, 66% jugeaient la RDOC TRÈS UTILE et 32%, UTILE. Toutefois, l'enquête n'explorait pas le degré de satisfaction des familles qui contactaient le centre sans consultation médicale subséquente.

Rares, mais existantes

Pas de code, pas de nom, pas d’existence

La plupart des maladies rares n'ont pas de code WHO.

Annet van Betuw, Réseau Européen sur le Chromosome 11q, Centre d’aide sur les Chromosomes

Le trouble de délétion terminale du chromosome 11q est un trouble chromosomique impliquant la perte de l’extrémité du long bras du chromosome 11. C’est une condition très rare, qui affecte entre 1 personne sur 50 000 et 1 personne sur 100 000.

Ces manifestations cliniques incluent notamment les maladies cardiaques, l’insuffisance rénale, les troubles hémostatiques, la cryptorchidie, des infections, une petite taille, des yeux «de chien battu», des difficultés d’apprentissage et comportementales...

Les parents se sentent souvent désespérés car rares sont les articles sur ce trouble, aucun code n’existe pour la condition et un sentiment de solitude émerge souvent.

Un réseau a été créé aux États-Unis en 1996 et en 1997 en Europe. Il s'étend aux conditions causées par les trisomies partielles, les délétions terminales, les délétions interstitielles ou les translocations déséquilibrées.

Grâce à ce réseau, les personnes atteintes de troubles chromosomiques très rares peuvent se contacter. Cette solide base permet recherche et actions concertées.

Pour stimuler la recherche, une première conférence s’est tenue en Europe en 1998, rassemblant 17 familles venues de 7 pays. La moitié des participants étaient associés à la délétion terminale du chromosome 11q ou syndrome de Jacobsen. Cette conférence était soutenue par le Programme de Santé Publique de l’Union Européenne.

Plus tard, universités, responsables, familles, sociétés d’assurance de santé publique et industries de la santé ont été sollicités pour agrandir le réseau.
À travers coordination et communication active, bon concours entre parents et chercheurs, une coopération de haut niveau s’est formée. Les chercheurs eux-mêmes ont joint leurs efforts, créant ainsi un réseau (de coopération) internationale. Donc, dans les magazines scientifiques analysant plus de 110 personnes atteintes de délétion terminale du chromosome 11q, les publications devenaient possibles.

Il est important de coder les maladies, elles sont identifiées sous un nom bien connu, améliorant ainsi la reconnaissance des conditions et encourageant la coopération.

Pourquoi devons-nous coder les maladies rares ?

Dr. Ségolène Aymé, Orphanet, Inserm SC11, France.

Le Dr. Ségolène Aymé a expliqué pourquoi il est important de coder les maladies plus précisément.

D'une part, les informations médicales sont aujourd'hui enregistrées dans la plupart des États membres pour optimiser le recueil des données et leur utilisation. D'autre part, le développement des bases de données est nécessaire aux registres pour la recherche et les soins, aux listes de malades pour la surveillance épidémiologique, etc. Il est donc absolument impératif de définir des codes spécifiques à toutes les maladies.

L'échange de données pour établir une médecine fondée sur de preuves est également une autre raison d'adopter des codes universels.

En dernier lieu, les indicateurs de santé imposent une standardisation des noms et codes de maladies pour l'évaluation et la politique santé, la prise de décision et les études comparatives.

Le codage et la classification des maladies rares sont essentiels pour accomplir ce qui suit : L'indexation des diagnostics médicaux pour

- la surveillance épidémiologique
- la programmation et la prise de décisions
- l'audit des services de soins
- le développement de systèmes experts pour les connaissances médicales

Un système universel de classification doit s'harmoniser pour l'interopérabilité, pour permettre aux experts et non initiés de déchiffrer des termes non ambigus, (car les classifications ne sont pas seulement réservées aux experts). Il faut également pouvoir le réactualiser (3 nouvelles maladies sont publiées chaque semaine dans les brochures scientifiques). Il doit convenir à toutes les situations, aux diagnostics non documentés et aux contextes médicaux complexes.

Jusqu’à récemment, les codes de maladies rares avaient été largement négligés :

- la plupart des maladies n’ont pas de code spécifique
- il n’y a aucun moyen de coder les situations médicale inhabituelles et les spécificités des maladies rares, comme les porteurs sains hétéozygotes et les cas pré-symptomatiques

Les principaux systèmes de classification utilisés sont :

- La classification internationale des maladies (données sur la santé) établie par l’OMS
 - Et ses extensions spécialisées (pédiatrie, neurologie, oncologie...)
- OMIM (gènes et phénotypes génétiques)
- MeSH (dictionnaire des maladies utilisé pour Medline)
- Classifications des experts (utilisées dans des cercles restreints)
- Orphanet (code mais pas de classification)

Quel mode de fonctionnement ? La Classification Internationale des Maladies– OMS
Il s'agit sans conteste de la classification la plus largement utilisée, mais peut-être ne convient-elle pas autant aux maladies rares. Beaucoup de catégories sont trop générales et comprennent trop d'entités médicales possibles. Seules 300 maladies rares possèdent donc un code ICD spécifique.
Par exemple la catégorie : malformations congénitales, déformations et anomalies chromosomiques (Q00-Q99)
Exclut : des maladies enzymatiques (E70-E90)
Se reporter à la figure 11 pour d'autres exemples où l’ICD s’applique à peine à des maladies rares.
OMIM, Online Mendelian Inheritance in Man, est souvent considérée comme une référence pour coder les troubles génétiques. Mais il s’agit en vérité d’un catalogue des phénomènes génétiques humains et de gènes associés plus qu’un système de classification : 12 000 entrées dans le catalogue, ne signifient pas 12 000 maladies, mais 12 000 relations entre les phénomènes et les gènes. * Le terme Online ne me semble pas approprié dans ce cas. Je ne lui ai pas trouvé de nuances, il reste à vérifier. Ma traduction est une pure déduction personnelle.

Structure arborescente du MeSH (extrait)
C’est un système intéressant, car il est utilisé par la Bibliothèque Nationale de Médecine aux États-Unis. Une seule maladie peut posséder différents codes :

Par exemple, le syndrome de Kearns-Sayer apparaît dans trois sections différentes :
Dans la section des maladies musculosquelettiques [C05] :
Les maladies musculaires [C05.651]
Les myopathies mitochondriales [C05.651.460]
Ophthalmopégie externe progressive chronique [C05.651.460.700]
Syndrome de Kearns-Sayer [C05.651.460.700.500]

Ensuite encore dans la section des maladies du système nerveux [C10] :
Maladies des nerfs crâniens [C10.292]
Troubles de la motilité oculaire [C10.292.562]
Ophthalmopégie externe progressive chronique [C10.292.562.775]
Syndrome de Kearns-Sayer [C10.292.562.775.500]

Et enfin dans la section des maladies des yeux [C11] :
Troubles de la motilité oculaire [C11.590]
Ophthalmopégie externe progressive chronique [C11.590.641]
Syndrome de Kearns-Sayer [C11.590.641.500]

Cela vous aide certainement à comprendre quels organes sont impliqués dans chaque maladie, mais ce n’est pas un code unique.

D’autres classifications : par des groupes d’experts
Elles sont produites par des groupes d’experts, publiées dans des journaux scientifiques et médicaux. Chacune d’entre elles sert un but spécifique et elles suivent différentes logiques :
• Par lieu (par exemple : le nerf périphérique/ mononévrite/polynévrite…)
• Par étiologie (par exemple : malformations congénitales/ syndromes génétiques / Chromosomique / tératogénique / inconnu…)
• Par mécanisme (par exemple : troubles métaboliques : porteurs / cycle cellulaire / troubles de réparation….)

38
• Par sous spécialité médicale (par exemple : expression rénale / expression neurologique / formes néonatales…)
• Par gravité (par exemple : fente labiale et palatale / anomalies des membres…)
Ainsi, elles ne sont pas universelles.

Classification d’Orphanet
Situation actuelle : lien entre les classifications de ICD-10 et de OMIM.
• Identifiant unique
• Pas de hiérarchie
• Indexation :
 • OMIM
 • ICD-10
 • Liste de signes/symptômes

Nouvelle version en préparation (2006)
• Identifiant unique
• Indexation :
 • mode d’hérédité
 • âge de début de la maladie
 • Gènes
• Polyhiérarchie
 • MeSH
 • ICD-10
 • Liste des signes/symptômes
 • Classifications des experts

En conclusion :
• Il est nécessaire de développer un système de codage spécialisé et de rassembler les classifications des experts
• Les efforts de collaboration de tous les intéressés sont nécessaires (experts, OMS, Bibliothèque Nationale de Médecine)
• Il faut distribuer des informations (sur tous les systèmes de codage existants) à tous les utilisateurs finaux potentiels pour améliorer l’interopérabilité de tous les codes
• Cet effort fait partie du programme de travail sur les maladies rares

Recherche et soins

Recherche pour les maladies rares dans l’UE

Prof. Hans Hilger Ropers, Institut Max Planck, Berlin

Le Professeur H.H. Ropers a décrit le financement public de l’UE pour les maladies rares dans trois états membres européens :
- **L’Allemagne** : 10 réseaux nationaux (90 projets), 5 millions d’euros / an pendant 5 ans depuis 2003. Bundesministerium für Bildung und Forschung, Projekträger im DLR
À titre de comparaison, le soutien pour la recherche sur les maladies fréquentes en Allemagne est de 135 millions d'euros pour le réseau national de recherche sur les génomes (de 07/2004 à 06/2007), plus 225 millions d'euros pour 17 réseaux de compétence clinique jusqu'en 2008 (Bundesministerium für Bildung und Forschung, Projektträger im DLR).

L’ensemble de ces efforts pour découvrir les gènes qui provoquent les maladies sont importants et les recherches sur les maladies rares ont des répercussions positives sur les maladies plus courantes, comme le montre le tableau 2 : certains gènes responsables des formes monogéniques des maladies courantes ont été identifiés.

<table>
<thead>
<tr>
<th>Forme monogénique de maladies complexes</th>
<th>Aspect clinique</th>
<th>Fréquence de la forme monogénique</th>
<th>Gène identifié</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinome du côlon</td>
<td>3 à 6%</td>
<td>u.a MLH1, MSH2</td>
<td></td>
</tr>
<tr>
<td>Hypercholestérolémie</td>
<td>Environ 4%</td>
<td>LDLR, APOB, FH3</td>
<td></td>
</tr>
<tr>
<td>Diabètes de type 2</td>
<td>> 5%</td>
<td>GCK, HFN4 alpha, HNF1 alpha, IPF1</td>
<td></td>
</tr>
<tr>
<td>Cancer du sein</td>
<td>5 à 10%</td>
<td>BRCA1, BRCA2</td>
<td></td>
</tr>
<tr>
<td>Maladie d'Alzheimer</td>
<td>2%</td>
<td>APP, Presenilin 1 et 2</td>
<td></td>
</tr>
<tr>
<td>Sclérose latérale amyotrophique</td>
<td>10%</td>
<td>SOD1, Alsine</td>
<td></td>
</tr>
<tr>
<td>Démence de type Fronto-temporal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En d’autres termes, la recherche sur les maladies courantes bénéficie de la recherche sur les maladies rares - argument capital pour intensifier les efforts dans ce domaine. D’autres de premier plan pour développer la recherche sur les troubles rares sont :
- Directions principales : trouver les défauts sous-jacents, élucider les mécanismes génétiques
- Disponibilité des techniques et de concepts nouveaux et forts pour élucider les maladies méthodiquement
- Certaines nécessiteront une interaction avec des pays en voie de développement (PVD) et l’UE doit y être préparée
- Améliorer la structure des services génétiques à travers l’Europe (l’étude d’EURORDIS : les conséquences pratiques ?)

La politique de financement de l’UE se caractérise par :
- Le financement limité de la recherche contre les maladies graves, mais le financement massif de la recherche dans les facteurs de risques génétiques de troubles complexes
- À priori, la sélection des groupes de maladie éligibles au support (FP6)
- Aucune stratégie ou coordination d’ensemble

La lutte contre la fragmentation de la recherche

Une approche multidisciplinaire

Prof. Anthony Holland, Département de Psychiatrie, Université de Cambridge, Royaume-Uni

Le discours du Prof. Anthony Holland se fondait sur sa propre tentative de s’engager dans la recherche contre les maladies rares. Psychiatre spécialiste des difficultés d’apprentissage et des insuffisances mentales, son approche est également clinicienne - attentive aux problèmes comportementaux et aux difficultés d’apprentissage -. L’essentiel pour aider les gens est d’avoir une compréhension solide des facteurs qui contribuent à de tels problèmes.
Les objectifs de la recherche contre les maladies rares
- Informer sur le développement de nouveaux traitements ou des stratégies d’intervention spécifiques (médications, traitement physiques, intervention psychologiques)
- Informer sur les pratiques cliniques, éducationnelles ou de soins sociaux, (en particulier sur les types d’intervention éducationnelle qui peuvent le mieux aider les enfants (bonnes pratiques cliniques). Notamment le guide suédois sur l’emploi des hormones de croissance pour le syndrome de Prader Willi, la qualité de vie et les stratégies éducatives)
- La recherche doit aboutir à des principes fondamentaux pour le soutien des personnes. Ils pourraient guider différents aspects du droit et des prestations. Enfin, ils pourraient s’avérer utiles lorsque surviennent des problèmes juridiques (avocat académique travaillant dans le département du Professeur Holland).

Pourquoi la recherche dans le domaine des maladies rares est-elle particulièrement problématique ?
1. D’abord, le caractère rare en lui-même
 - Financement : Il est difficile de trouver des financements pour des troubles n’affectant que quelques personnes sous un climat de forte concurrence avec les maladies courantes comme les celles du coeur ou le cancer
 - L’intérêt de la communauté de recherche et clinique. Celle-ci, subordonnée aux maladies rares, pourrait être davantage intéressée aux maladies courantes, plus banalisées.
 - Recrutement des participants : Il faut impliquer les malades et la recherche ne peut avancer sans leur participation. Par exemple, la compréhension des troubles alimentaires chez les malades atteints du syndrome de Prader Willi aidera à cerner le problème dans d’autres syndromes aux symptômes similaires.
 - Les bénéfices ne semblent concerner que quelques malades. Mais comprendre la maladie permet souvent des applications plus générales. Par exemple, la compréhension des troubles alimentaires chez les malades atteints du syndrome de Prader Willi aidera à transposer le problème dans d’autres syndromes similaires.
 - La diffusion des découvertes doit garantir un accès à tous.

L’une des tensions de la recherche contre les troubles rares, est la difficulté d’obtention des subventions et la modestie des sommes. Il y aura toujours concurrence pour cet argent. Ainsi, comment décidons-nous et qui décide des sujets de recherche? Par exemple, le scientifique dira : « et bien, il existe une approche logique à la recherche contre les troubles rares ». Une fois le trouble identifié – par exemple le syndrome de Prader Willi, s’ensuivent habituellement une recherche épidémiologique, de science basique et ainsi de suite. Mais les familles se sentiront davantage concernées par les troubles du comportement, relevant bien sûr de mes compétences psychiatriques. Là, sont les plus grandes craintes des familles (les difficultés psychologiques, psychiatriques et comportementales). Après quoi, le gouvernement a un rôle politique et pratique. Exemple : au Royaume-Uni, pendant plusieurs années, certains accusaient le vaccin ROR de causer l’autisme. Cette polémique a en fait éloigné les ressources de ce que la plupart d’entre nous verrions comme un programme de recherche plutôt différent dans le domaine de l’autisme. Ainsi, groupes, politiciens, puissants et influents furent bloqués pour savoir comment déterminer le programme de recherche.

2. Deuxièmement, la complexité de la maladie elle-même :
 - Les maladies complexes touchent différentes partie du corps (déficience intellectuelle, coeur, peau...), cela complique les traitements : troubles multi systèmes.
 - Elles nécessitent une approche à long terme (souvent à vie) pour traiter et améliorer la qualité de vie des malades.
 - Différentes perspectives (biologiques, psychologiques et sociales) sont nécessaires. Nous ne pouvons pas compter uniquement sur des médicaments pour traiter une maladie rare.
 - Il faut également des sujets d’éthique spécifiques pour permettre l’assentiment des gens.
3. Troisièmement, les parties concernées par la recherche contre les maladies rares et la tension qui règne entre elles
Pour mieux comprendre les problèmes de la recherche contre les maladies rares, nous devons saisir les intérêts de chaque partie concernée.
- Les malades eux-mêmes bien sûr.
- Mais la famille (et éventuellement d’autres soignants) est également très importante
 o pour apporter des informations
 o pour participer (à la recherche), surtout lorsqu’il s’agit de troubles génétiques
- Les chercheurs, les cliniciens et leurs organisations respectives, qui font progresser les scientifiques
- Les oeuvres de bienfaisance
- L’organisation de la recherche de financement (qui ont leurs propres priorités et permettent le progrès dans des domaines secteurs spécifiques)
- L’industrie
- Les gouvernements
- Les comités éthiques, les accords de gouvernance de recherche.

Le contenu de la recherche
- Les scientifiques après l’identification initiale suivent une approche logique dans le traitement des études épidémiologiques, la science basique qui caractérise le trouble. Le problème restant est comment affecter le financement à la recherche.
- La famille sera plus préoccupée par des symptômes spécifiques qui affectent la vie comme les problèmes comportementaux
- Les gouvernements ont également un rôle très important dans la pratique et la politique.

Pour résumer les problèmes de la recherche contre les maladies rares :
- Celles dues au caractère rare du trouble
- D’éventuels conflits et contrastes sur les priorités de la recherche
- La complexité de la science et le besoin de perspectives académiques différentes
- Le financement et l’organisation de la recherche

Solutions

Quelles sont les solutions ?

L’approche multidisciplinaire dans la recherche contre le syndrome de Prader Willi a soulevé des questions juridiques et éthiques : quel droit a-t-on d’empêcher un patient atteint du syndrome de Prader Willi de manger, dans la mesure où il pourrait mourir une fois qu’il est adulte ?

Comment obtient-on un financement pour démarrer le processus de recherche ?
Habituellement, l’organisation des syndromes prédomine dans la campagne de financement. Comment alors sécuriser le financement à long terme ? Comment soutenir l’expertise créée après la fin du projet de recherche et jusqu’à ce que les résultats soient dans le domaine public ?

Diffusion de la recherche
On ne peut pas sous-estimer l'importance des organisations des syndromes et les groupes de malades. Internet facilite un accès immédiat et un médecin n'a aucune excuse pour ne pas trouver presque sur le champ des informations sur un syndrome donné.

Intégration des recherches de PWS

![Figure 12 : Illustration de l'intégration des disciplines pour une seule maladie : le syndrome de Prader Willi](image)

Pratique et politique

Partenariats de campagnes, cliniciens et chercheurs sont un processus itératif pas à pas. Le rôle des médias doit être profilé prudemment, car parfois une campagne médiatique peut s'avérer contre-productive.

Une étude de la population a suggéré l'hypothèse des morbidités physiques et psychiatriques, puis les études de phénotype et de génotype ont accru l'information sur les sous-types de maladies. Les résultats sur les humains ont été utilisés sur des souris aux gènes neutralisés (cobayes animaux). Les comportements alimentaires ont été explorés avec les autres équipes et les analyses des radiologistes moléculaires pour comprendre les mécanismes du cerveau. L'ensemble a mené à mieux comprendre d'autres problèmes similaires comme le craniopharyngiome ou la démence frontale. Ces recherches ont également suscité des problèmes juridiques et éthiques. Quel droit a-t-on d'empêcher un patient atteint du syndrome de Prader Willi de manger et manger tout ce qu'il veut dans la mesure où il peut mourir une fois qu'il est adulte ?

L'organisation du projet de recherche contre cette maladie en particulier (le syndrome de Prader Willi) a été comme suit :

- Cela a démarré comme un petit projet financé localement
 - Un ou deux chercheurs
 - PWSA (RU)
- Mouvement sur des projets nationaux (financés à travers les fonds nationaux pour la recherche)
 - Petit groupe de recherche (multidisciplinaire)
 - PWSA (RU)
- Finalement comme un projet européen (financé par l'UE)
 - 11 centres académiques (sciences basiques et cliniques)
 - PWSA de France et du Royaume-Uni
 - Autres associations nationales
Transfert de la recherche académique vers le développement industriel

Fc-EDA en tant que nouveau médicament potentiel pour une maladie rare (XLHED)

Prof. Pascal Schneider, Département de Biochimie, Université de Lausanne, Suisse

Le Professeur Pascal Schneider a présenté un exemple inspiré d’une collaboration entre la recherche académique et un partenaire privé. Le projet vise le développement d’un médicament potentiel pour les maladies atteintes de dysplasie ectodermique hypohydrotique liée à l’X.

La figure x ci-dessous présente les étapes successives d’une telle collaboration :

- Les essais scientifiques préalables doivent être menés sur les animaux ou un modèle biologique pour valider le concept.
- Lorsqu’un accord est conclu, une étude de faisabilité peut être programmée. Ainsi explore-t-on le marché, vérifiant les droits de propriété intellectuelle, on pose un programme de financement puis son présentés les problèmes réglementaires et collaborations stratégiques.
- Si le médicament est spécifique à une maladie rare, on peut alors le qualifier de médicament orphelin. Si l’industriel obtient ce statut, l’assistance au protocole peut alors l’aider à concevoir le programme de développement.
- Le développement préclinique peut alors démarrer
- Suivi du développement clinique (phases I, II et III).

Caractéristiques de la maladie

XLHED est une maladie bien connue, rapportée pour la première fois en 1875 par Charles Darwin (les hommes sans dents de Scinde). Elle est liée à l’X, touche la plupart du temps des garçons et est récessive. Le phénotype se caractérise par l’absence ou un dysfonctionnement des cheveux, des dents, des glandes sudoripares…

Des souris et des chiens cobayes sont utilisés pour cette maladie. La figure x montre une souris de type sauvage et une souris mutante atteinte d’une déficience en ectodysplasine A (EDA).

Physiopathologie

Les dents, les glandes sudoripares et les cheveux viennent de groupes de cellules similaires, les placodes. Les placodes sont des intermédiaires de développement qui mettent en évidence des appendices ectodermiques. L’ectodysplasine A est impliquée dans la formation des placodes et sa déficience provoque le XLHED.

Le principe du traitement sur lequel le Prof. Schneider travaille vise à remplacer la protéine d’EDA génétiquement déficiente par une protéine recombinée au moment où les cellules réactives expriment le récepteur d’EDA (in utero ou peu de temps après la naissance). Le récepteur est là, attendant que le signal ordonne aux cellules de se transformer en cheveux, dents ou glandes sudoripares, mais le signal lui-même est absent. Par défaut, les cellules se différencieront en cellules de peau plutôt qu’en cellules de glandes sudoripares ou de cheveux.

L’idée a été testée sur des souris mutantes enceintes: L’EDA a été injecté dans la mère et transporté, comme une immunoglobuline vers l’embryon dans l’utérus. Résultats : la figure x montre une souris non traitée, tandis que la figure x montre une souris traitée avec une queue normale.
D’autres défauts, comme ceux des glandes sudoripares, ont été améliorés de manière similaire.

Le processus : une idée de concept transformée en traitement potentiel

Figure 13

De la recherche universitaire au développement industriel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gène defectueux d’une maladie rare identifié</td>
<td>Idée, Validation du concept, brevet</td>
<td>Partenaire industriel</td>
<td>Designation de médicament orphelin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Développement préclinique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Développement clinique (phase I)</td>
</tr>
</tbody>
</table>

Inventeurs
OG, PS, JT

Université
Lausanne

Industrie
APOXIS

Collaborateurs scientifiques
U Penn/U. Geneva

Organisations de patients
F, I, D, UK, US

Organisations internationales
EURORDIS

Agences d’évaluation
EMEA

Cliniciens
Experts clinique

Peu après, l’équipe a rencontré Eurordis pour connaître l’intérêt de la procédure pour une demande de désignation de médicaments orphelins. Une demande a été soumise au COMP en juin 2005 afin d’obtenir le statut de médicament orphelin. Apoxis est une société biopharmaceutique à responsabilité limitée basée en Suisse, spécialisée dans les traitements innovants. Elle est principalement axée sur la recherche contre une variété de cancers et de troubles auto-immunes. La société est en contact rapproché avec les représentants des organisations de malades atteints de dysplasie ectodermique dans le monde, y compris Olivia Nicolas en France. En parallèle, la consultation s’est déroulée avec Orphanet et Eurordis.

Conclusions
- une solution thérapeutique contre le XLHED est maintenant considérée pour un développement préclinique, dans l’espoir d’entrer dans les essais de phase humaine
- Pour donner à cette molécule une chance de servir les intérêts des malades, l’expertise dans différents secteurs est requise : la science, la biotechnologie, le droit, la médecine …
La collaboration et la compréhension mutuelle des partenaires sont nécessaires.
Les innovations résultent souvent d’interactions entre des domaines distants. Les innovations ne peuvent pas être programmées dans des réunions comme celle-ci.

Renforcement de la coopération entre l’académique et l’industriel

Valérie Thibaudeau, Orphanet, Inserm SC11

Les mesures qui peuvent améliorer la coopération entre l’académique et l’industriel existent et l’une de leurs ambitions est de surmonter les goulots d’étranglement dans le développement des médicaments.
Le Dr. Valérie Thibaudeau a expliqué quelques-unes de ces mesures, sous la supervision d’Orphanet.

Orphanet a développé une série de services qui visent à développer les outils d’informations pour comprendre et intégrer les facteurs qui affectent la coordination de recherche contre les maladies rares. Le service Orphanet est soutenu par la Commission Européenne.

- Pour améliorer les collaborations entre les équipes de recherche
 o Un répertoire de projets de recherche: plus de 2 000 projets nationaux et européens
- Pour améliorer les informations sur les essais cliniques contre les maladies rares
 o Un répertoire d’essais cliniques: plus de 135 études cliniques nationales et européennes
- Pour améliorer le recrutement des malades dans ces essais
 o Un service en ligne en 16 langues, pour enregistrer comme bénévole: plus de 540 malades enregistrés, de 22 pays, plus de 230 maladies
- Pour accueillir le développement de médicaments après que l’idée conceptuelle a été proposée
 o Le projet OrphanXchange

À propos de OrphanXchange
OrphanXchange est un moyen d’accroître les outils de diagnostic et de produits thérapeutiques. Il facilite le partenariat académique/industriel.
OrphanXchange identifie les projets prometteurs :
 ▪ Sélection de projets de recherche académique
 • Listé sur Orphanet
 • Notifiés par les départements de transfert de technologie
 ▪ Enquête pour identifier les produits commercialisés qui pourraient avoir un intérêt potentiel pour traiter les maladies rares
Les partenaires industriels peuvent contacter les chefs de projets de recherches directement pour s’informer sur la recherche et identifier les médicaments candidats potentiels pour leur propre portefeuille.
Actuellement :
- Plus de 125 projets innovants sont listés sur OrphanXchange
- De 400 à 600 visites par mois
- 153 utilisateurs inscrits, dont :
 o 50% de l’industrie pharmaceutique, biotechnologique, capital-risque, conseils
 o 36% de l’académie
 o 7% d’organisations de malades
 o 7% d’autres organisations
- 47 demandes de contact entre l’industrie et l’académie
Pour en savoir plus sur ce projet, visitez le site : www.orphanxchange.org.

Partenariat public de l’UE / privé
- Accès aux produits pharmaceutiques qui ont été ou sont actuellement développés
- Pour la recherche académique préclinique contre les maladies rares
- L’initiative coordonnée par l’institut GIS des maladies rares, avec le soutien de la Fondation Européenne pour la Science

Pour en savoir plus sur ce projet, visitez le site : www.erditi.org.

Autres plateformes

Conclusions
- Les services efficaces pour fournir des informations précises sur les recherches en cours, pour renforcer les collaborations
- Les services d’intérêt à tous les utilisateurs
- L’impact doit être évalué après quelques années
- Défis : réseaux, partenariats, optimisation des ressources existantes

Des réseaux de chercheurs rassemblés par une organisation de malades
ENRAH: action collaborative contre l’hémiplégie alternante
Dr. Tsveta Schyns, coordinateur du Réseau Européen pour la Recherche contre l’Hémiplégie Alternante

Au printemps 2003, une mère et un généticien ont créé l’embryon pour le Réseau Européen pour la Recherche contre l’Hémiplégie Alternante. Ils souhaitaient accélérer la recherche et le développement pour traiter cette maladie rare, mais sévère. L’hémiplégie alternante touche une personne sur deux millions (de 200 à 3 000 cas dans le monde), elle est principalement sporadique et le diagnostic peut être retardé jusqu’à l’âge de vingt ans. La pathophysiologie n’est pas bien comprise, il n’y a pas de traitement curateur.

Deux ans plus tard, le réseau ENRAH (Réseau Européen pour la Recherche contre l’Hémiplégie Alternante) a grandi. Nous dressons la liste de ses membres : Les organisations de malades (Association ENRAH Austria, Association Française de l’Hémiplégie Alternante France, Associazione Italiana per la Sindrome die Emiplegia Alternante Onlus and Associazione la Nostra Famiglia MEDEA Italie), les centres cliniques (Landeskrankenhaus à Klagenfurt en Autriche, Katholieke Universiteit à Leuven en Belgique, Université Charles à Prague en République Tchèque, Fondazione Centro San Raffaele del Monte à Tabor en Italie, le centre médical de l’Université de Leiden aux Pays-Bas, l’hôpital San Joan de Deu en Espagne, le Collège Universitaire de Londres au Royaume-Uni et l’université de Heidelberg en Allemagne).

Un projet de recherche soutenu par le FP6 a démarré avec 14 participants de 9 états membres de l’UE, représentant 9 centres cliniques et 2 organisations de malades. C’est un projet d’une durée de deux ans.

- L’établissement d’un Registre de malades européens
- La création d’un site Web multilingue pour les malades
L'identification d'entreprises concernées de petites et moyennes tailles (SME)
L'intégration des SME dans le(s) réseau(x)
La promotion de leur participation dans les FP 6 et 7

L'importance d'un réseau de malades et scientifiques est large : médecins et chercheurs, à travers un registre de malades peuvent mieux comprendre l'histoire naturelle de la maladie. De plus, il facilite la recherche clinique et les essais cliniques. Non seulement, les malades reçoivent le bénéfice d'un diagnostic précis et des conseils appropriés, mais peuvent aussi rencontrer d'autres personnes atteintes de la même maladie.

Les leçons tirées des programmes cadres de l’UE pour la recherche
Programmes cadres FP5 et FP6, propositions pour FP7
Prof. Ketty Schwartz, Inserm, France

Cette présentation est le rapport d'un atelier organisé par la direction de la santé – maladies majeures de la Commission Européenne, à Bruxelles, du 12 au 13 avril 2005 : identification des besoins en recherche pour la communauté des maladies rares.

Les participants ont été invités à fournir à la Commission Européenne des recommandations spécifiques pour optimiser la recherche sur les maladies rares dans les programmes de l'UE. Les participants représentaient toutes les parties intéressées :
• La Commission Européenne (DG SANCO, DG ENTR, DG RTD)
• Les représentants des malades
• Les coordinateurs et les participants aux projets FP5 et FP6
• L'Agence Européenne des Médicaments (EMEA)
• Les représentants de l’industrie biopharmaceutique

Rappel historique
- Le programme cadre FP5 visait à promouvoir des coopérations en vue d'améliorer la connaissance scientifique. Il a financé 47 projets RD pour un total de 64 millions d’€.
- Le FP6 visait à développer une excellence scientifique et technique pour concrétiser le « secteur de recherche européenne ».
 o La priorité thématique 1 était de traduire les données sur les génomes en applications pratiques pour améliorer la santé humaine.
 ▪ 2 premiers appels ont financé 26 projets sur les maladies rares pour un total de 93 millions d’euros
 ▪ 2 autres appels (en cours) sont prévus pour financer un total de 150 millions d'euros
 o La priorité thématique 8 était de soutenir la définition et la mise en œuvre des politiques communautaires. Elle a financé :
 ▪ En Allemagne : 10 réseaux, 5 millions d’euros / an pendant 5 ans depuis 2003
 ▪ En Espagne : 13 réseaux, 6,6 millions d’euros / an pendant 3 ans depuis 2002
 ▪ En France : Institut GIS des Maladies Rares, 10 millions d’euros pour 2002-2004

En parallèle, la DG Santé et Protection des Consommateurs – programmes pour la santé publique :
Programme d’action 1999 – 2002 : 24 projets pour les maladies rares 6,5 millions d’euros (60% du budget)
Le consensus a été fait sur l’inaptitude du FP6 à définir des sujets et des instruments adaptés aux principales caractéristiques des maladies rares : un grand nombre de maladies, une prévalence faible et une forte hétérogénéité.

Les mots clés qui résument les souhaits des participants étaient :
- flexibilité
- projets émergents
- soutien à long terme
- sujets non centrés sur les maladies rares
- infrastructures
- études (pré)cliniques
- partenaires industriels

Recommandations sur les priorités à fixer :
- Histoire naturelle des maladies
- Phénotypes mendéliens des maladies courantes
- Physiopathologie des maladies rares
- Études précliniques et cliniques précoces, notamment les essais cliniques de phases I et II
- Interventions thérapeutiques avec un encouragement des industriels potentiels
 - thérapies géniques
 - thérapies cellulaires
 - médicaments incluant des thérapies de substitution
 - appareils
- Sciences sociales
 - perception sociale
 - expérience quotidienne
 - impact des diagnostics précoces
 - conseil génétique

Recommandations sur les infrastructures :
Le souhait était d’accéder aux infrastructures existantes avec un budget supplémentaire et/ou de nouvelles infrastructures, comme suit :
- Identification des gènes et de l’aplotype
- Les voies des protéines (protéomique, structure 3D, profil métabolique, screening moléculaire…)
- Animaux cobayes (nématode, xénopus, dard-perche, souris, rat, chien …)
- Gestion des données (hébergement, analyses)
- Biobanques

Le type et la taille des projets, le choix des outils appropriés (réseau d’excellence, projets intégrés, projets spécifiques de recherche ciblés, mesures de soutien spécifiques…) sont laissés au consortium.
Il doit y avoir des soutiens aux projets / équipes émergents et des appels spécifiques en faveur de petits consortiums (par exemple, 3 partenaires, un million d’euros) et également des soutiens financiers pour des « ateliers de développement de projets ».
Dans certains cas, le soutien à long terme doit être possible.

Les réseaux de recherche

Le projet intégré européen sur l’ataxie spinocérébelleuse (EUROSCA)
Poster 5. Holm Graessner, Peter Bauer, Michael Bonin, Nicole Hirlinger, Olaf Riess, Clinique Universitaire de Tübingen

Le registre SCA européen a été créé pour fournir des données standardisées. Cet outil facilite le recrutement continu de malades atteints de SCA (déjà 1 400 en 2004) à travers l’Europe, dans le but de conduire des analyses de liaison, d’identifier des nouveaux gènes liés à l’ataxie et d’étudier l’histoire naturelle de la maladie. Le potentiel pour inclure toutes les familles SCA dans l’analyse de liaison a amené à identifier de nouveaux loci de SCA et à cloner de nouveaux gènes de l’ataxie.

Par la suite, cet effort combiné permettra une recherche systématique à grande échelle des facteurs de modification génétique gènes pour un meilleur pronostic et pour identifier de nouvelles cibles potentielles.

EUROSCA peut être considéré comme un projet prototype qui s’attaque à une maladie rare neurodégénérative d’origine génétique dans toute son ampleur. Les programmes de formation complètent les efforts de recherche et le travail clinique, par exemple par la distribution de méthodes diagnostiques standardisées dans toute l’Europe.

Maladie de Wilson : création d’une base de données médicales européenne et conception d’essais cliniques contrôlés randomisés.

Stuart Tanner et Samantha Parker, de l’Université de Sheffield, ont présenté un réseau sur la maladie de Wilson (WD) pour le compte du Consortium EuroWilson.

Objectifs du projet
Mise en place d’une base de données européenne sur les malades atteints de la maladie de Wilson :
1. Pour déterminer l’incidence
2. Pour déterminer l’incidence relative des sous-types cliniques (hépatique, neurologique, pré-symptomatique)
3. Pour évaluer la faisabilité des essais cliniques contrôlés

La maladie de Wilson présente des défis multiples :
1. Elle affiche une grande variabilité phénoménique. Elle peut se présenter à n’importe quel âge entre 3 ans et plus de 60 ans. Les enfants tendent à avoir une manifestation hépatique, qui peut être fulminante et nécessiter une transplantation d’urgence ou ressembler à une hépatite aiguë ou présenter une cirrhose avec une hypertension portale. Les adultes tendent à avoir une maladie neurologique extrapyramidale, qui débute à des âges variés, à vitesse de progression et gravité variable.
2. Le traitement se fait à l’aide de chélateurs de cuivre ou du zinc. Mais les stratégies thérapeutiques fondée sur des preuves font défaut, car il n’y a pas d’essais cliniques randomisés où les différentes approches peuvent être comparées.
 • Le traitement de départ peut causer une détérioration neurologique
 • Différents centres utilisent différents traitements

À travers ce projet, la qualité de l’évaluation de la maladie doit être améliorée. Une source électronique de documents aidera les médecins lors d’une évaluation neurologique. Ce programme est réalisé en partenariat avec des organismes nationaux : GeneMove, l’association française pour l’étude de la maladie de Wilson et l’unité de surveillance neurologique britannique.

D’autres objectifs visent, d’une part, un réseau de laboratoires de diagnostics moléculaires avec une banque d’ADN pour les futures études de gènes modificateurs. Est également projetée la création de
ressources pour les malades et les professionnels sur le Web, la revue des traitements actuels et de leurs résultats, l’étude de la corrélation génotype-phénotype et des gènes modificateurs.

EuroWilson est financé par la PRIORITÉ 1 DU SIXIÈME PROGRAMME CADRE DE L’UE Sciences de la vie, génomique et biotechnologie pour la proposition de santé no. : 503430 Elle possède la référence d’approbation 04/MRE04/65 de MREC au Royaume-Uni

EUGINDAT

Poster 76, Manuel Palacín, Université de Barcelone

Manuel Palacín a présenté un poster sur un grand réseau de recherche visant à accroître les connaissances scientifiques sur certaines maladies rares congénitales spécifiques (aminoacidurie) :

- cystinurie
- Intolérance aux protéines dibasiques avec lysinurie
- Maladie de Hartnup
- iminoglycinurie et aminoacidurie dicarboxylique

| Maladies des reins, lithiase rénale, aminoacidurie congénitale. EUGINDAT, 6ème FP |
| EUGINDAT est un grand projet de recherche ciblé spécifique de la Commission Européenne, soutenu par le programme cadre 6, qui implique 19 groupes, notamment :
- clinique (4)
- génétique (4)
- physiologique (3)
- biologie moléculaire et biochimie (4)
- bioinformatique (1)
- Groupes de structure des protéines (1)
- Deux PME (Laboratorios Rubio, - fabricant de médicaments consacrés aux maladies orphelines et Ingenium-Pharmaceuticals, - fournisseur de modèles souris mutantes ENU)

EUGINDAT a quatre activités : une plateforme clinique, fournissant une base de données sur l’Aminoacidurie Congénitale Primitive (base de données ACP). Une plateforme de modèles animaux pour la génération de modèles murins (animaux dont les gènes ont été neutralisés ou mutés ENU) de ACP et les transporteurs concernés d’aminoacides et de peptides pour la réabsorption rénale. Une plateforme de structure de protéines 3D pour la résolution des structures de transporteurs d’aminoacides et de peptides. Enfin, une plateforme génétique pour l’identification des mutations qui provoquent l’ACP.

En conséquence, les études physiopathologiques et le développement de nouveaux traitements contre l’intolérance aux protéines de cystinurie et de lysinurie doivent produire des résultats d’ici à la fin du mois de mars 2007.

La mise en place de réseaux en myologie : donner plus de muscle à la myologie !

Dr. Serge Braun, AFM (Association Française contre les Myopathies – Association Française de Dystrophie Musculaire, Evry, France)

L’Association Française contre les Myopathies a développé un vaste réseau pluridisciplinaire pour l’éradication des maladies neuromusculaires. Il regroupe des spécialistes issus d’origines diverses, des scientifiques de recherche fondamentale, des généticiens, des cliniciens, des vétérinaires et des industriels à la croisée de l’anatomie, de la physiologie, de la biochimie, de la neurologie, de la cardiologie, de la pédiatrie et de la physiothérapie.
Cependant, les maladies neuromusculaires sont souvent abordées comme part intégrante de la neurologie par la Faculté de Médecine, alors qu’elles pourraient constituer une spécialité médicale : la myologie. En ce sens, elles sont une science orpheline. Elles représentent 117 maladies neuromusculaires identifiées, à forte hétérogénéité en termes de prévalence, de génétique, de présentation clinique et de tissu associatif.

A propos de certaines d’entre ces maladies, ni l’échelon régional ni l’échelle nationale ne peuvent fournir la masse critique requise pour gagner l’attention du public. Ainsi, devons-nous créer des réseaux.

Depuis sa création en 1958, l’AFM a lancé l’événement télévisé annuel de collecte de fonds, le « Téléthon », qui a recueilli 100 millions d’euros en moyenne par année.

Résultats
Les progrès et les découvertes suivantes ont été faits :
- À compter de 2004, sur les 815 gènes responsables de maladies spécifiques
 o 185 ont été identifiés avec le soutien de l’AFM/Téléthon.
 o Les contributions ont aidé à augmenter les connaissances génétiques sur 746 maladies (à compter d’octobre 2001)
 o 14 banques d’ADN sont soutenues par l’AFM en France, en Europe et en Afrique du Nord
 o 500 projets de recherche sont soutenus

Les maladies neuromusculaires font bien sûr partie des maladies pour lesquelles l’AFM/Généthon a identifié un ou des gènes responsables mais c’est également le cas pour d’autres troubles - cancer de la prostate, certains types de diabètes, la schizophrénie, le syndrome de Rett, etc.

De plus, le génome humain est maintenant décrypté, et plus de 30 essais cliniques ont été lancés avec le soutien de l’AFM, incluant le premier essai de transfert de gènes pour la dystrophie musculaire de Duchenne. Emergent de nouvelles thérapies basées sur la connaissance de l’expression génétique. D’autres actions sont soutenues par une meilleure politique contre les maladies rares - (la participation au groupe de travail pour le Programme National contre les Maladies Rares, le lobby pour la loi sur les indemnités d’invalidité).

Pour développer la myologie au titre de spécialité médicale, l’Institut pour la Myologie a été ouvert en 1997. Il résulte d’un partenariat original entre un groupe de malades (AFM), des instituts de recherche (INSERM, CEA, CNRS), l’Université de Paris VI, un groupe hospitalier (Assistance-Publique - Paris) et l’industrie (essais cliniques, protocoles).

L’Institut offre des services de génétique, de diagnostic et une unité clinique pour évaluer. Un conseil en pathologie musculaire et génétique est ouvert - département ambulatoire (2 700 consultations en myologie, 2 200 consultations en génétique et 1 400 hospitalisations de jour).

L’AFM/Téléthon soutient également le ENMC, basé à Baarn, aux Pays-Bas. Les objectifs de ce nouveau réseau de recherche sont ambitieux. Il entend contribuer à l’éradication des maladies neuromusculaires, améliorer l’efficacité en recherche neuromusculaire, faciliter et soutenir la communication entre chercheurs et cliniciens européens (et internationaux).
Ensemble, l’AFM, le ENMC sont activement impliqués dans les programmes cadres européens.
- dans le 5ème programme cadre de l’UE, le projet Myocluster sur 3 ans (2, 4 millions d’€) pour la dystrophie musculaire d’Emery Dreifuss, les dystrophies musculaires congénitales et la myopathie de Bethlem.
- Au cours du 6ème programme de travail de l’UE, les projets soutenus se sont concentrés sur les troubles rares de la mitochondrie (groupe Eumitocombat, consortium associé au ENMC), les stratégies de traitement rationnelles et MYORES, le premier réseau européen d’excellence, visant à étudier le fonctionnement et les traitements du développement normal et anormal des muscles.

Pour Serge Braun, les prochains défis sont de trouver des solutions :
- pour coordonner les nouvelles technologies (thérapies basées sur les gènes ou thérapies par les cellules souches)
- pour interconnecter les centres NMD pour les essais cliniques multicentriques
- pour homogénéiser les critères d’évaluation et les registres de malades
- pour sécuriser le financement des essais
- pour organiser la participation des malades à la conception et la conduite des essais cliniques
- pour interconnecter les autres plateformes internationales pour une recherche collaborative à travers le monde
- pour établir un contact avec les médecins et les myologistes à travers le monde

L’ENMC adhère totalement aux commentaires récents concernant le prochain appel d’offre dans le FP6 :
- De nouvelles approches de traitements des NMD telles la thérapie génique, la thérapie cellulaire, la réparation des gènes, le saut d’exon et les produits médicamenteux
- Le développement de modèles animaux pour les essais de ces thérapies
- Les registres de malades et les banques biologiques
- L’accord sur les critères d’évaluation des essais cliniques
- Le développement de méthodes non invasives pour évaluer l’efficacité (l’imagerie par exemple)
- Des réseaux de collaboration d’envergure avec l’ENMC, l’AFM et entre partenaires industriels, académiciens, malades et chercheurs médicaux

Les succès de la recherche

Essais cliniques : recherche dans des domaines ou des pathologies spécifiques, l’essai ESCAPE

Poster 64, Elke Wühl, Hôpital Universitaire pour Enfants, Université d’Heidelberg, Allemagne.

Chez les enfants atteints de maladies rénales chroniques, la progression vers l’insuffisance rénale terminale se mêle à une forte morbidité et engendre une qualité de vie médiocre. Chez les adultes, l’inhibition du système rénine-angiotensine ralentit la vitesse de la progression de l’insuffisance rénale. Ce concept n’a pas encore été prouvé chez les enfants, chez qui elle est plus couramment due aux malformations hypo/dysplasiques qu’aux glomérulopathies, comme celles qui sont caractéristiques des maladies rénales chroniques de l’adulte. Le projet vise donc à

5 -Mécanismes moléculaires de la progression des maladies et de la pharmacothérapie rénoprotective chez les enfants atteints d’insuffisance rénale chronique, L’essai ESCAPE. Elke Wühl, Otto Mehls, Franz Schaefer et le groupe d’essai ESCAPE, Hôpital universitaire pour enfants, Heidelberg
évaluer les mécanismes génétiques et moléculaires et les conséquences cardiovasculaires des IRC progressives. Il projette également de développer une stratégie de protection rénale pharmacologique chez les enfants.

Presque 400 enfants atteints d’IRC venus de 33 centres de néphrologie pédiatrique européens ont participé à l’essai. À court terme, quelle que soit la maladie sous-jacente, le traitement au ramipril a nettement fait diminuer la pression artérielle et la protéinurie. Les résultats finaux sur les effets de protection rénale et cardiaque de ce traitement à long terme, seront disponibles à l’été 2006, comme le seront (également) les analyses sur les profils des risques biochimiques et génétiques de la progression des maladies rénales et cardiovasculaires.

Financé par le 5ème programme de travail de la Commission Européenne sur la qualité de vie et la gestion des ressources biologiques (QLG1-CT-2002-00908), Boehringer Ingelheim Stiftung et Aventis Pharma.

Les maladies rares contagieuses dont on peut guérir

Projet européen sur la maladie de Whipple

Poster 73, Gerhard E. Feurle, DRK Krankenhaus, Allemagne

La maladie de Whipple est une infection causée par les actinomycètes *Tropheryma whipplei* (*T. whipplei*). Bien que le *T. whipplei* soit répandu dans l’environnement, la maladie de Whipple est rare, avec une incidence estimée à 0,4 par million. Compte tenu des porteurs sains existants, les facteurs endogènes sont présumés importants. Outre les symptômes - arthropathie, pertes de poids et diarrhées - d’autres organes, notamment le système nerveux central, peuvent être également affectés. Sans traitement, la maladie de Whipple est fatale, alors que la thérapie antibiotique peut éradiquer la bactérie.

Ce projet de 4 ans est financé par la Communauté Européenne FP5 (QLG1-CT-2002-01049) et a démarré en novembre 2002. Dix centres de cinq pays européens collaborent aux différents programmes de recherche :

- Une banque de tissus est établie dans le centre de coordination au Charité Campus Benjamin Franklin à Berlin.
- L’occurrence du *T. whipplei* dans le domaine des eaux usées et chez les travailleurs sains des stations d’épuration des eaux usées est à l’étude à Vienne.
- Le système immunitaire des personnes infectées est à l’étude à Berlin et à Pavie.
- La technique de la puce ADN est utilisée à Berlin en essai sur la susceptibility de l’infection.
- Le *T. whipplei* est cultivé in vitro à Marseille.
- La pathologie est étudiée à Leuven.
- Le premier essai de traitement aléatoire au monde est organisé à Neuwied : l’étude du traitement initial contre la maladie de Whipple (SIMW). Un essai clinique enregistré compare la thérapie antibiotique intraveineuse du Ceftriaxon avec le Meropenem ou l’Imipenem. Ce traitement initial est suivi par deux comprimés de Co-Trim forte 2/jour pendant un an. 42 malades ont été répartis au hasard, pour un suivi de 3 ans. Après la fin des inclusions, un 3ème bras non randomisé a été ouvert.

La diffusion des données des recherches et des informations générales constitue l’un des objectifs. Il est important que ces personnes dispersées atteintes de la maladie en Europe et ailleurs puissent obtenir des informations sur les diagnostics et des conseils sur les traitements actuels. Cela facilite également les inclusions de malades dans les essais thérapeutiques et fournit des organes pour les études des laboratoires. Un site Web a été ainsi lancé, incluant un forum public et une zone restreinte pour les partenaires du réseau : (www.whipplesdisease.info).
Prélèvement et partage des tissus et de l’ADN : EuroBiobank
Le réseau européen de banques d’ADN, de cellules et de tissus

Dr. Veronica Karcagi, Centre National de la Santé Publique Fodor Jozsef NCPH, Budapest, Hongrie

Dr. Veronica Karcagi a présenté une autre initiative européenne - la création et le développement d’une base de données pour l’ADN, les cellules et les tissus.

Quel est son but et pourquoi est-ce utile ?
Les prélèvements humains rares sont utiles, à la fois pour les soins et pour la recherche. Ils peuvent être comparés au prélèvement d’un autre patient au diagnostic déjà connu. Ils peuvent permettre de tester la sensibilité d’un tissu donné à un médicament (candidat donné) ou permettre de déterminer les gènes responsables de tel ou tel types de phénomètes, etc.

Les 12 banques de l’Eurobiobank contiennent un total d’environ 54 000 prélèvements d’ADN et 39 000 prélèvements de tissus sont disponibles.

La figure 14 ci-dessous montre l’activité du réseau en 2004 : le nombre total de prélèvements stockés et distribués par les membres d’Eurobiobank.

Figure 14 : Prélèvements stockés et distribués par les membres d’Eurobiobank en 2004

Nombre total de prélèvements stockés et distribués par les membres d’Eurobiobank en 2004

Les services comprennent :
- L’extraction d’ADN issu de diverses lignées cellulaires
- La biopsie musculaire pour la culture
- Les bonnes pratiques de techniques de culture cellulaire (les aspects de l’aseptisation et de la sécurité de la culture cellulaire), la stérilisation et les essais par la chaleur, la congélation, la cryopréservation, le stockage et la réactivation des lignées cellulaires, la détection des contaminants...
- La culture fibroblastique et des cellules lymphocytes...

Résultats

- Un site Web public pour les chercheurs et les malades avec une section exclusivement réservée à la communication et la collaboration parmi les partenaires du réseau (Intranet d’Eurobiobank). Le site Web est le pivot central du réseau, affichant les informations sur les matériaux disponibles et les activités du réseau.

<table>
<thead>
<tr>
<th>CELLULES</th>
<th>ADN</th>
<th>TISSUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 prélèvements</td>
<td>333 prélèvements</td>
<td>72 prélèvements</td>
</tr>
<tr>
<td>4 277 personnes</td>
<td>31 747 personnes</td>
<td>516 personnes</td>
</tr>
</tbody>
</table>

- Les informations sur le réseau d’Eurobiobank sont diffusées à travers brochures et magazines pour malades, sur posters et/ou par communication orale lors de congrès internationaux. Plusieurs documents scientifiques ont également reconnu l’Eurobiobank.

L’Eurobiobank est financée par la Commission de l’UE FP5 en tant que projet de 3 ans pour la recherche et le développement 2003-2005 (QLRI-CT-2002-02769).

Le réseau d’Eurobiobank est un modèle réussi et opérationnel pour soutenir l’échange et la coopération scientifique. Il a été récompensé par le « Grand Prix 2004 Newropeans » pour « la recherche et la technologie ». Lors de la clôture du Newropeans Democracy Marathon 2003, il a été primé pour avoir contribué de manière significative à la démocratisation de l’Union Européenne où il a comblé le fossé entre citoyens (européens) et construction communautaire.

Les partenaires d’Eurobiobank sont :

1. EURORDIS (Organisation européenne pour les maladies rares)
2. AFM (Association Française Centre les Myopathies) - Paris – France
3. INNCB (Istituto Nazionale Neurologico Carlo Besta) - Milan - Italie
4. Fundación CSAI Carlos III (Fundación para la Cooperación y Salud International Carlos III) - Madrid - Espagne
5. Généthon (Généthon III) – Evry - France
6. UCL (Université Catholique Louvain, Centre de Génétique Humaine) – Bruxelles - Belgique
7. Université de Ljubljana (Faculté de Médecine) - Ljubljana - Slovénie
8. UOM (Université de Malte) - Malte
9. MTCC (Prélèvement de culture de tissus et de muscles à l’institut Friedrich-Baur de l’Université Ludwig-Maximilians) - Munich - Allemagne
10. NHMGB (banque génétique en mutation humaine de Naples, seconde Université de Naples) - Naples – Italie
11. NCPH (Centre National pour la Santé Publique Fodor József) - Budapest – Hongrie
12. Ospedale Maggiore Policlinico - Hôpital polyclinique principal IRCCS (Université de Milan, Département des Sciences Neurologiques) – Milan -Italie
13. NMTB (Université de Padovie, Département des Sciences Neurologiques et Psychiatriques) - Padovie – Italie
Les maladies de dysmyélinisation, la perte de continuité de la gaine myélinique qui affaiblit la conduction de l’impulsion nerveuse. Cela provoque beaucoup de maladies, comme les leucodystrophies - un groupe hétérogène de troubles génétiques qui affectent la substance blanche cérébrale.

En comparaison avec l’une des plus anciennes et des plus grandes banques d’ADN académiques aux États-Unis, la Banque d’ADN et de dépôt de tissus au Centre pour la génétique humaine actuellement :

- Contient les prélèvements de 127 500 personnes
- A établi plus de 65 000 lignées cellulaires
- A rassemblé des données (y compris les antécédents familiaux et les informations cliniques) sur plus de 10 000 familles

Le recueil de données par le Réseau Européen sur les Maladies Démyélinisantes Cérébrales ENBDD

Prof. Odile BOESPFLUG-TANGUY, INSERM UMR 384, Clermont-Ferrand, France

Les leucodystrophies sont un exemple de maladies difficile à aborder. Leur hétérogénéité clinique et génétique complique la description et la reconnaissance des symptômes. Ces maladies multi organiques nécessitent une approche pluridisciplinaire pour obtenir le diagnostic.

Afin d’améliorer les connaissances médicales et scientifiques sur ces maladies, il est nécessaire d’intégrer la diversité des données. Les données médicales cliniques, les prélèvements de tissus, les résultats des recherches, les informations aux personnes et aux familles. Le rassemblement des informations doit respecter les intérêts et le consentement du patient - les données rassemblées doivent être protégées.

La plateforme sur la leucodystrophie

| Information
| (Accès publique) |
| Base de données
| Arbre généalogique
| Donnée individuelle
| (examen clinique, imagerie, électrophysiologie, biologie moléculaire, prélèvement de tissu, etc...)
| Pour une analyse eventuelle, recherche thérapeutique, épidémiologie et identification de gène
| (Réseau d'experts) |

Un arbre généalogique peut être dessiné en ligne pour recueillir des informations sur les familles : examen clinique, grossesse, développement néonatal, biochimie, électrophysiologie, banque de tissus, essais génétiques, imagerie, histophysiologie et médecins traitants … (reportez-vous à la figure 16).

Cette démarche est soutenue par la Fondation pour la Recherche Médicale, GIS Maladies Rares, l'Inserm et l'Association européenne sur la leucodystrophie.

Recueil et partage des données des registres

Prof. José Luis Oliveira, Université d’Aveiro, Portugal

José Luis Oliveira a tenté une démarche similaire. Comment intégrer les données génétiques et les informations médicales sur les maladies rares ? Les sources d’informations sont variées et nombreuses. La sélection des informations les plus pertinentes actualisées et validées est d’une importance majeure pour les chercheurs et les médecins traitants.

Parmi les sources d’informations existantes, sur les bases de données publiques suivantes ont été sélectionnées :

- Orphanet est une base de données dédiée aux informations sur les maladies rares et les médicaments orphelins (www.orpha.net)
- clinicalTrials.gov relie les malades à la recherche médicale aux États-Unis (www.clinicaltrials.gov)
- Le Laboratoire Européen de Biologie Moléculaire EMBL (www.embl-heidelberg.de)
- Swiss-Prot (http://ca.expasy.org/sprot/)
- ProDom offre une gamme globale de familles de domaines protéiques automatiquement générée à partir des bases de données sur les séquences de SWISS-PROT et TrEMBL (http://protein.toulouse.inra.fr/prodom/current/html/home.php)
- KEGG, Encyclopédie Kyoto des Gènes et des Génomes (www.genome.ad.jp/kegg)
- Base de données de GeneCards sur les gènes humaines, leurs produits et leurs implications dans les maladies (www.genecards.org/)
- PharmGKB, est une ressource intégrée sur la façon dont la variation des gènes humains entraîne une variation de notre réaction aux médicaments (www.pharmgkb.org/)
- HGNC, HUGO Gene Nomenclature Committee (www.gene.ucl.ac.uk/nomenclature/)
- EDDNAL, Répertoire Européen des Laboratoires de Diagnostique du l’ADN (www.eddnal.com/)
- GO, Gene Ontology Le projet de Gene Ontology fournit un vocabulaire contrôlé pour décrire les caractéristiques des gènes et des produits génétiques dans tout organisme (www.geneontology.org/)

L’utilisation des diverses sources est organisée dans un protocole de navigation qui est résumé en figure 17 ci-dessous.

Figure 17

À partir de n’importe quelle saisie (nom de maladie), le principe est de guider automatiquement les rappels d’informations à l’aide du protocole prédéfini. Les actions, comme ce qui suit, peuvent servir à :
- Interroger l’OMIM sur des gènes liés ;
- Consulter les informations (Entrez Gene) sur les domaines protéiques, les séquences des nucléotides, le polymorphisme
- Ou sélectionner d’autres bases de données, en fonction du type d’informations que l’utilisateur recherche (cheminement métabolique, site fonctionnel, etc.).

L’objectif principal était de créer automatiquement une carte pour chaque maladie, intégrer toutes les informations pertinentes rassemblées depuis les bases de données publiques distribuées définies dans le protocole de navigation. Le protocole de navigation peut facilement être changé pour s’adapter aux nouvelles bases de données. Ce système repose complètement sur des sources publiques validées, en fournissant des informations depuis le phénotype au génotype. Il est disponible sur le portail : http://www.diseasecard.org.

Construction d’une plateforme technologique : Centre National de Génotypage

Dr. Judith Fischer MD, PhD. (Génotypage) (CNG), Evry, France

Le CNG est une organisation de recherche à but non lucratif basée au Génopole, à Evry, près de Paris. Il fournit une infrastructure technologique à la communauté académique pour identifier les causes génétiques des maladies humaines.

Les instituts de recherche participants sont notamment :
- L’INSERM (Institut National de la Santé et de la Recherche Médicale)
- Le CNRS (Centre National de la Recherche Scientifique)
- L’INRA (Institut National de la Recherche Agronomique)
- Le CEA (Commissariat à l’Energie Atomique)
- FIST (France Innovation Scientifique et Transfert, le département de transfert technologique du CNRS)

Les principaux objectifs sont :
D’abord développer et appliquer le génotypage et les technologies génomiques associées pour identifier les gènes des maladies héréditaires.
Puis soutenir et renforcer les groupes de recherche, laboratoires et centres de recherche en France et à l’étranger (en travaillant sur l’identification des gènes pour chaque maladie).

Les ressources comprennent une plateforme de génotypage et une plateforme de séquençage automatisées. Actuellement, 76 maladies rares sont à l’étude.

<table>
<thead>
<tr>
<th>Tableau 8</th>
<th>OMIM</th>
<th>Transmission</th>
<th>gène</th>
<th>Produit génétique</th>
<th>Non</th>
<th>Année d'identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichthyose lamellaire, LI1</td>
<td>242300</td>
<td>RA</td>
<td>14q11.2</td>
<td>TGM1</td>
<td>Transglutaminase 1</td>
<td>1995</td>
</tr>
<tr>
<td>Erythrodermie ichthyosiforme congénitale non bulleuse NCIE1</td>
<td>242100</td>
<td>RA</td>
<td>14q11.2</td>
<td>TGM1?</td>
<td>Transglutaminase 1</td>
<td>1997/1998</td>
</tr>
<tr>
<td>Ichthyose lamellaire, LIS</td>
<td>606545</td>
<td>RA</td>
<td>17p13</td>
<td>ALOXE3</td>
<td>Lipoxygénases</td>
<td>2002</td>
</tr>
<tr>
<td>Ichthyose lamellaire, LI2</td>
<td>601277</td>
<td>RA</td>
<td>2q33-q35</td>
<td>ABCA12</td>
<td>Transporteur ABC</td>
<td>2003</td>
</tr>
<tr>
<td>Ichthyose lamellaire, LI3</td>
<td>604777</td>
<td>RA</td>
<td>19p12-q12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ichthyose congénitale non érythrodermique non lamellaire NNCI</td>
<td>604781</td>
<td>RA</td>
<td>19p13.2-13.1</td>
<td>ALOX12B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI/NCIE</td>
<td>RA</td>
<td>5q33</td>
<td>Ichthyine</td>
<td>Récepteur ?</td>
<td></td>
<td>2004</td>
</tr>
<tr>
<td>Syndrome de Chanarin-Dorfman (lipidose avec surcharge en triglycérides) NCIE2</td>
<td>275630 604780</td>
<td>RA</td>
<td>3p21</td>
<td>CGI-58</td>
<td>Estérase/lipase/thioésterase</td>
<td>2001</td>
</tr>
</tbody>
</table>

RA : Récessif Autosomique

En conclusion :

- L'infrastructure du CNG offre une technologie de pointe pour des projets de collaboration dans l'étude de la génétique des maladies.
- Les plateformes technologiques développées au CNG permettent à la communauté scientifique et clinique d'initier des programmes nationaux et européens ou internationaux à grande échelle.
- Actuellement les nombreuses collaborations externes couvrent les diverses zones de maladies.
- Leur objectif est de localiser et d'identifier les gènes responsables des maladies, afin de découvrir les polymorphismes chez les gènes candidats ou d'effectuer des génotypages SNP à haut débit.
- Pour soumettre un projet de recherche, contactez-nous par courriel à : project-manager@cng.fr
Traitements et soins

La recherche vise l’amélioration de la qualité de vie

Prof. Stanislas Lyonnet, Prof. Arnold Munnich
Département de Génétique et Unité de Recherches sur les handicaps génétiques de l’enfant (INSERM U-393), Hôpital Necker - Enfants malades, Paris, France
L’importance de faire des diagnostics précis, plus simples et plus faciles :

Tableau 9 : pour chacune de ces maladies rares, la deuxième colonne indique la prévalence, la troisième colonne indique l’outil de diagnostic « d’antan » et la dernière montre, la disponibilité d’un test d’ADN pour simplifier et améliorer le diagnostic. Les anciennes méthodes sont habituellement invasives et moins performantes.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prévalence</th>
<th>Hier</th>
<th>Aujourd’hui : Test ADN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dystrophie musculaire de duchenne</td>
<td>1/4 000</td>
<td>biopsie musculaire</td>
<td>+</td>
</tr>
<tr>
<td>Mucoviscidose</td>
<td>1/2 500</td>
<td>test à la sueur</td>
<td>+</td>
</tr>
<tr>
<td>Amyotrophie spinale</td>
<td>1/6 000</td>
<td>biopsie musculaire</td>
<td>+</td>
</tr>
<tr>
<td>Hémochromatose</td>
<td>1/5 000</td>
<td>ponction - biopsie hépatique</td>
<td>+</td>
</tr>
<tr>
<td>X fragile</td>
<td>1/5 000</td>
<td>caryotype</td>
<td>+</td>
</tr>
<tr>
<td>Dystrophie myotonique</td>
<td>1/5 000</td>
<td>biopsie musculaire</td>
<td>+</td>
</tr>
<tr>
<td>Huntington</td>
<td>1/10 000</td>
<td>présentation clinique</td>
<td>+</td>
</tr>
<tr>
<td>Incontinentia Pigmenti</td>
<td>1/10 000</td>
<td>biopsie dermique</td>
<td>+</td>
</tr>
<tr>
<td>Achondroplasie</td>
<td>1/10 000</td>
<td>Rayons X</td>
<td>+</td>
</tr>
</tbody>
</table>

L’hétérogénéité génétique à l’origine de ces troubles est telle qu’il est impossible de prédire le début d’une maladie lorsque la personne est porteuse d’une prédisposition génétique.

Les tests ne sont pas une activité de la recherche, ils font partie du traitement des malades ou du traitement du porteur lorsque le parent porte un gène sans symptômes. Les connaissances scientifiques servent à aider les malades ou les parents à prendre leurs décisions. Cela fait partie de l’activité médicale et devrait ainsi être transféré et organisé par les conditions de soins cliniques et non pas se limiter à la recherche.

Solutions thérapeutiques déjà existantes pour les maladies génétiques

Même si la thérapie génique s’est accentuée ces dernières années et devrait encore être considérée comme un secteur prometteur, d’autres solutions existent. Elles dérivent principalement des connaissances du génome, mais elles ne constituent pas des thérapies géniques per se :

- Traitement diététique
- Maladies métaboliques réactives aux vitamines
- Greffes d’organes / thérapie cellulaire
- Ingénierie en protéines / médicaments
- Thérapies enzymatiques
- Thérapie génique : les premières étapes…
- Pharmacologie conventionnelle
- Traitement alimentaire contre les maladies enzymatiques

Régime pauvre en protéines : Phénylcétonurie (PKU), hyperammoniémies
Régime riche en cholestérol : Syndrome de Smith-Lemli-Opitz
Mannose: CDG1b Troubles congénitaux de glycosylation
Déficit en phosphomannose isomérase

La mannose, physiologiquement produite à partir de fructose et de glucose, ne peut pas être métabolisée, l’enzyme phosphomannose isomérase n’existant pas. Les manifestations cliniques comprennent des insuffisances hépatiques, des diarrhées profuses et une hypoglycémie. Age de début de la maladie : de 3 mois à 6 ans. Une supplémentation orale en mannose corrige le déficit, comme illustré ci-dessous :

Tableau 10

<table>
<thead>
<tr>
<th>Régime au mannose (0,2 g/kg/jour pour déficit en CDG1b PMI)</th>
<th>T0</th>
<th>2 mois</th>
<th>5 mois</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannose (en µmol/l)</td>
<td><10</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>ASAT</td>
<td>290</td>
<td>95</td>
<td>60</td>
</tr>
<tr>
<td>Facteur XI</td>
<td>5%</td>
<td>46%</td>
<td>76%</td>
</tr>
<tr>
<td>Hypoglycémie</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhée</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomissements</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Maladies métaboliques réactives aux vitamines/cofacteurs/substrats
 Déficit en carboxylase réactif à la biotine (B8)
 Homocystinurie réactive à la pyridoxine (B6)
 L’Ataxie de Friedreich réactive au tocophérol (E)
- Myopathie / cardiomyopathie à surcharge lipidique multisystémique réactive à la carnitine
- Déficiences mentales réactives à la créatine. L’arginine n’est plus métabolisée dans la créatine, naissant alors des anomalies musculaires et cérébrales. Le traitement se base sur le monohydrate de créatine (>1mg/kg/j), deux régimes l’un contrôlé à l’arginine et l’autre haut en ornithine améliorent favorablement les conditions (pas de syndrome extrapyramidal, amélioration de l’épilepsie, amélioration des déficiences cognitives)

- Greffe d’organe / néo-organes / thérapie cellulaire
 Reins : Maladie kystique des reins (PKD), néphronpholite, syndrome d’Alport
 Foie : Déficiences en anti-trypsine α1, atresie des voies biliaires extra-hépatiques, maladies métaboliques
 Coeur : cardiomyopathie obstructive, déficit énergétique
 Moelle épinière : Syndrome du déficit immunitaire combiné sévère, thésaurismose
 SNC : « stimulateur » cérébral

La dystonie de torsion (DYT1) observée dans la maladie de Hallervorden-Spatz, la maladie d’Huntington ou les maladies mitochondriales a été traitée avec succès par chirurgie (prof. Coubes Dr. en neurochirurgie, CHU de Montpellier), en implantant des électrodes dans le noyau Postéro-ventral du Pallidum (lenticularis) guidées par Stéréotaxie RMN (reportez-vous à la figure 18 ci-contre).

Figure 18 : implantation bilatérale des électrodes pour stimuler le noyau en utilisant des piles qui peuvent durer cinq ans.
• Ingénierie en protéine /médicaments
 Hémophilie : Facteur VIII
 Diabète sucré : Insuline
 Retard de croissance : Hormone de croissance
 Hyperplasie surrénale congénitale : Stéroïdes

• Thérapie enzymatique (Genzyme, TKT)
 Maladie de Fabry
 Maladie de Gaucher
 Maladie d’Hurler
 Maladie de Pompe

• Thérapie génique, les premières étapes…
 - Un fossé entre les promesses et les résultats
 - Un nombre de problèmes techniques non résolus
 - Un nombre limité d’indications
 Déficiences immunitaires : avantage sélectif
 Dystrophies rétiniennes : spécificité du tissu
 Erreurs innées du métabolisme
 - Une approche difficile :
 Toxique (adénovirus, OTC, États-Unis)
 Mutagenèse insertionnelle (rétrovirus, déficit immunitaire avec défaut d’expression des molécules HLA, Paris)

• Pharmacologie conventionnelle
 Pour rectifier l’épissage : Atrophie musculaire spinale, dystrophie musculaire de Duchenne ; possibilité de passer d’une forme grave (dystrophie de Duchenne) à une forme moins grave (dystrophie de Becker) en utilisant une oligothérapie par l’antisens
 Pour rectifier l’interprétation : Gentamicine (dans certains cas de mucoviscidose)
 Pour réexprimer un gène foetal : Hydroxycarbamide (maladie de cellules falciformes)
 Pour éliminer/chélater un toxique : Benzoate, cystéamine pour acidémie isovalérique
 Pour verrouiller un passage : NTBC (Tyrosinémie de type I)
 Pour activer un passage : Fibrates, colchicine
 Pour limiter une fonction : Bisphosphonates (ostéogenèse imparfaite)
 Pour remplacer une fonction : Mélatonine (Syndrome de Smith Magenis) : délétion sur le chromosome.17p11, 2, avec déficience mentale, retard du langage, automutilations, accès de rage, hyperactivité et troubles majeurs du sommeil. Comme le montre la figure 19 ci-dessous, le cycle circadien de la production de mélatonine est inversé chez les enfants affectés. Le traitement à la mélatonine inverse ce cycle à un cycle normal, réduit l’anxiété de l’enfant et les symptômes d’accès de rage.
 Pour protéger une fonction : Idebenone (ataxie de Friedreich)

Le cycle de mélatonine est entravé par le syndrome de Smith Magenis comme la figure 19 le montre ci-dessous :
Les biphosphonates sont utiles pour traiter l’ostéogenèse imparfaite (OI), comme le montre la figure 20 ci-dessous.

Figure 20 : avant le traitement, les enfants nés avec un OI peuvent avoir entre 10 et 100 fractures par an (flèches bleues). Après traitement au biphosphonate qui empêche la destruction des os par les cellules ostéoclastes, les fractures surviennent beaucoup moins fréquemment (entre 1 et 2 sur 5 ans).

Conclusions

• L’identification du gène ou de la mutation qui provoque la maladie n’est pas systématiquement obligatoire ni pour le diagnostic, ni pour le traitement
• On ne souffre pas de mutation, mais plutôt de ses conséquences fonctionnelles
• L’identification des mécanismes qui provoquent les maladies aide à concevoir les stratégies thérapeutiques les plus appropriées
• L’identification du mécanisme qui cause la maladie permet de palier ponctuellement par astuces thérapeutiques efficaces et élégantes
• Toutefois, l’identification du génotype mutant peut devenir rapidement très utile pour concevoir des approches moléculaires «à la carte» (saut d’exon, mutations non-sens...)
• Le défi est d’identifier les maladies actuellement traitables
Les financements sont nécessaires, mais insuffisants : « On ne peut pas commander une découverte » Lavoisier

Attention aux promesses, aux pensées uniques et aux dogmatismes ; Un médicament partiellement efficace est mieux que rien... et il ne faudrait négliger aucune approche.

Aucune maladie n’est rare pour ceux qui sont affectés.

Traitser avec des médicaments orphelins

Rapport sur le statut - bénéfices sanitaires après 5 ans de législation sur les médicaments orphelins

Melanie Carr pour le compte de Josep Torrent-Farnell, **MD, Dr.**

Dans sa présentation, Melanie Carr, pour le compte du Prof. Josep Torrent Farnel, a abordé les dispositions réglementaires des médicaments orphelins, l’assistance au protocole, les autorisations de commercialisation et les bénéfices pour la santé publique à ce jour.

La législation européenne sur les médicaments orphelins se compose de deux règlements :

En avril 2000, l’EMEA a reçu la première demande d’appellation pour un produit thérapeutique orphelin.

Comme la loi le prévoit, une révision législative doit avoir lieu après cinq ans de réglementation sur les médicaments orphelins. Ainsi, le Comité pour les Produits Thérapeutiques Orphelins COMP a préparé un rapport pour la Commission - également prochainement en ligne sur le site Web d’EMEA.

Les principales recommandations de ce dossier déterminent cette présentation. Le but de la législation sur les médicaments orphelins est de répondre aux besoins médicaux (insatisfaits) des malades atteints de maladies rares au sein de la communauté. Elle doit reconnaître ces populations au même titre que les autres et leur donner accès aux soins et la politique communautaire doit identifier les maladies rares comme un secteur prioritaire. Grâce à la législation, l’industrie pharmaceutique est donc judicieusement incitée à se pencher sur les médicaments orphelins.

Quels sont les encouragements de l’UE pour les médicaments orphelins ?

- Exclusivité de marché pour 10 ans après l’octroi par l’UE d’une autorisation de commercialisation
- Procédure centralisée : accès direct à la procédure centralisée de l’EMEA pour l’autorisation de mise sur le marché
- Assistance au protocole : conseils scientifiques gratuits pour optimiser le développement
- Réductions des frais : réduction des frais réglementaires centralisés via un fonds spécial de l’autorité budgétaire de l’UE (à ce jour, il représente 12 millions d’euros)
- Subventions de recherche financées par l’UE provenant des programmes des communautés et des États membres

La figure 21 résume l’activité impressionnante de COMP jusqu’à la fin de 2004. Sur plus de 480 soumissions à appellation (cumul depuis 2000), 270 ont reçu une appellation.

L’année 2004 a été un record, avec 108 soumissions.

L’année 2005 semble également être une année active, avec 25 soumissions le mois dernier (mai 2005).

Le Comité a adopté son 300ème avis sur une appellation au cours de sa réunion en mai 2005.

Quels types de produits ont reçu une appellation ?
Une majorité a reçu des appellations en oncologie, en ont également bénéficié les maladies métaboliques, celles de tractus cardiovasculaires et respiratoires, pour en nommer quelques-unes (reportez-vous à la figure 22).

En termes de prévalence, 90% des appellations concernent des conditions qui affectent moins de 3 malades sur 10 000 (reportez-vous à la figure 23) - chiffre très en deçà de la coupe de 5 malades sur 10 000 selon la définition épidémiologique des maladies rares (soit 230 000 personnes).

En termes de produits, 21% des produits soumis étaient des produits biotechnologiques.
Le caractère innovant a été également pris en compte. Le comité a été heureux de constater que 47% des produits soumis étaient novateurs. Les nouveautés
comprennent les produits chimiques atypiques et ceux destinés à la thérapie génique et la thérapie cellulaire.

Assistance au protocole

L’assistance au protocole est essentiellement le conseil scientifique pour les sociétés qui développent des produits médicaux orphelins. Particulièrement importante pour les PME, elle, leur donne accès aux experts réglementaires, scientifiques et, dès le départ, multiplie les possibilités de dialogue avec les experts.

En mai 2005, 99 dossiers pour l’assistance au protocole avaient été reçus. Dans 50% des cas, l’assistance a été sollicitée pour des aspects cliniques du développement, 34% pour les aspects non cliniques, 11% pour les biotechnologies et 5% pour les questions de qualité.

Autorisations de commercialisations orphelines

Jusqu’en avril 2005, 20 autorisations de mise sur le marché par voie centralisée ont été octroyées :

- Le Fabrazyme pour la maladie de Fabry
- Le Replagal pour la maladie de Fabry
- Le Glivec pour la leucémie myéloïde chronique
- Le Tracleer pour l’hypertension artérielle pulmonaire
- Le Trisenox pour la leucémie aigüe promyélocytaire
- Le Somavert pour l’acromégalie
- Le Zavesca pour la maladie de Gaucher
- Le Carbaglu pour l’hyperammoniémie
- L’Aldurazyme pour la mucopolysaccharidose
- Le Busilvex pour la greffe de cellules souches hématopoïétiques
- Le Ventavis pour l’hypertension artérielle pulmonaire
- L’Onsenal pour la polyadénomatose familiale
- Le Litak pour la leucémie à tricholeucocytes
- Le Lysodren pour le carcinome corticosurrénalien
- Le Pedea pour la persistance du canal artériel
- Le Photobarr pour l’œsophage de Barrett
- Le Wilzin pour la maladie de Wilson
- Le Xagrid pour la thrombocytémie
- L’Orfadin pour la tyrosinémie héréditaire de type 1
- Le Prialt pour les douleurs chroniques exigeant une analgésie rachidienne

Trois extensions d’indication ont été autorisées (le Glivec pour la tumeur du stroma gastro-intestinal GIST, pour une utilisation de première intention contre la leucémie myéloïde chronique CML, pour utilisation en pédiatrie CML).

Quinze demandes centralisées sont actuellement en révision et deux autorisations de commercialisation ont été accordées à travers une reconnaissance mutuelle.

Ainsi, le nombre total d’autorisations est de 22.

Bénéfices pour la santé publique

- 22 produits médicaux orphelins ont été mis sur le marché

Les bénéfices pour la santé publique de la réglementation de l’UE sur les médicaments orphelins sont difficiles à évaluer, car elles concernent différents domaines. Il est encore trop tôt pour déterminer leur impact sur la survie, l’espérance de vie et la qualité de vie,
Pour les autres produits désignés on encore commercialisés :

- D’après une étude récente de l’EMEA auprès des sponsors :
 - 33% des produits orphelins sont en finalisation de développement clinique (phase III)
 - près de 40% prévoient de déposer une demande d’autorisation de commercialisation dans les trois prochaines années

Parmi les bénéfices objectifs :

- Le partenariat avec les groupes de malades : le dialogue avec les groupes de malades a eu un impact positif sur la structure du réseau au niveau de l’UE
- L’impact sur la recherche contre les maladies rares
- La transparence et le dialogue proactif avec les parties concernées
- Un niveau accru de sensibilisation scientifique et publique
- La création d’un réseau d’experts (350 experts inscrits)
- Une liaison internationale avec d’autres organismes de régulation, OMS et les ONG sur les maladies négligées

Les futurs défis à venir

- La garantie de la disponibilité et de l’accès de tous les malades à OMP
- Les coûts raisonnables et la durabilité à long terme de l’initiative sur les médicaments orphelins
- Un financement public durable de la part des institutions de l’UE et des institutions nationales
- De meilleures connaissances en matière d’épidémiologie sur les nombreuses maladies rares
- Le renforcement de la programmation de pharmacovigilance précoce et des stratégies de gestion des risques
- La promotion des encouragements nationaux

En conclusion, l’impact véritable sur la santé publique s’est révélé dans les chiffres : 270 désignations ; 45 demandes d’autorisation de mise sur le marché, débouchant sur 22 autorisations de commercialisation. Au regard de ces premiers effets, un potentiel de plus de 1 0430 00 malades sont prêts à en bénéficier.
Médicaments orphelins – une vision académique

Dr Bruce Morland, Pédiatre oncologue, Hôpital pour Enfants de Birmingham au Royaume-Uni

Le Dr. Bruce Morland est oncologue au Royaume-Uni et dirige un réseau sur le cancer pour le développement de nouveaux médicaments. Le Dr. Morland siège également en tant que membre académique du sous-groupe COMP - groupe de travail des parties intéressées.

Le Dr Morland ouvrit sa présentation par une question : y a-t-il vraiment quoi que ce soit dans la réglementation sur les médicaments orphelins qui intéresse l'académie ?

Pour l'industrie pharmaceutique, la réglementation apporte des encouragements, centralise l'appellation, évalue les produits orphelins et donne, l'exclusivité du marché, ce qui n'est pas négligeable.

«C'est pour l'industrie, pas pour l'académie » entend-il souvent. Mais en réalité, la réglementation privilégie les malades, leur suggérant le droit à recevoir la « …même qualité de traitement », définissant un plan pour « ….la qualité, la sécurité, l'efficacité des produits », soutenant « …. La recherche de diagnostics, de prévention et de traitements », etc. Après tout, les académiciens cliniques traitent également les malades !

Promouvoir la recherche contre les maladies rares

L'académie possède des résultats établis en « recherche fondamentale ». Elle est capable de transformer une hypothèse de départ en des tests de laboratoire, puis passe à l'expérimentation animale, mais rarement à l'homme. Très peu d'institutions académiques en Europe, voire aucune, peuvent développer des médicaments. Si les universitaires peuvent accroître le savoir et connaissances, le développement d'un médicament relève (tout de même) du domaine de l'industrie. Ainsi les partenariats entre l'académie et l'industrie sont vitaux :

- Les académiciens (pour le recueil des prélèvements biologiques, des malades volontaires, etc.)
- L'industrie (développement et fabrication de médicaments)

La réglementation a permis aux groupes académiques et à l'industrie de s'associer sans les contraindre et, les collaborations peuvent donc s'amorcer.

Les réseaux académiques sont très forts et développés. Les liens de collaboration existent, bien que la communauté des maladies rares a le sentiment que les centres de recherche n'existent guère.

Lorsqu'un ou deux d'entre eux s'intéressent à la même maladie, quelle est leur collaboration?
Heureusement ou malheureusement, l'académie est extrêmement concurrentielle. « Je veux être la première personne à identifier ce gène, pas vous ! ». Si, pour le Dr. Morland cet élan est très sain, pour d'autres il constitue une barrière potentielle au progrès.

La recherche ne concerne pas seulement la recherche et le développement de médicaments, elle touche aussi l'épidémiologie, les diagnostics, la prévention, etc., des domaines où les centres académiques mènent les efforts.

Financement

Le financement est un élément vital de la recherche académique. Malheureusement, les dimensions politiques de la recherche conduisent à privilégier les « maladies majeures ». Sont donc principalement financées les recherches pour les maladies cardiovasculaires, les personnes âgées, maladies mentales et cancers. La recherche sur les maladies rares peut donc être considérée comme «orpheline», mais la situation est en train de changer.

Le financement de l'UE est disponible. Le budget du pré-FP6 pour les maladies rares pourrait financer de nouveaux projets de recherche, mais sur une base «ad hoc». Le FP6 a donc identifié
spécifiquement le besoin de recherche sur les maladies rares, nous pouvons l’applaudir et le plébisciter. Mais nous n’en connaissons les prévisions à terme. Il y a eu certes, un investissement énorme, mais il faudra plusieurs années avant de connaître les réponses aux questions scientifiques ou les bénéfices pour les malades. Cela arrivera, mais pour le moment il est trop tôt pour se prononcer.

Le futur financement de l'UE FP7

Il y a des signes très encourageants pour le FP7, car le COMP a réussi à influencer le programme. Eurordis a également adopté une position sur le sujet, soulignant les priorités suivantes :

- L’épidémiologie descriptive et analytique
- La caractérisation génétique et moléculaire
- LA pathophysiologie
- L’amélioration des diagnostics
- La recherche thérapeutique
- La recherche en science humaine et sociale

Le financement de l’UE est important, mais ne contribue qu’à 5% du budget total de la recherche disponible dans la communauté. Le rôle des États membres ne doit pas être négligé, car en plus des politiques de recherche nationales, ils décident des encouragements nationaux pour les médicaments orphelins. Si leur niveau varie considérablement d’un pays à l’autre, leur inventaire n’est pas complet et devrait être publié avec une régulière mise à jour - mais les données demeurent difficiles à rassembler.

Le partenariat avec l’industrie est la clé pour augmenter les budgets de recherche. Exceptionnels sont les financements des œuvres de charité et organisations de malades, leur apport et leur structure sont en général petits et individuels.

Promotion des essais sur les maladies rares

Comment menez-vous des essais cliniques efficaces dans les maladies rares ?
Il s’agit de petits nombres de malades ; nous ne pouvons pas utiliser les méthodologies scientifiques conventionnelles pour étudier les maladies rares. Certaines méthodologies nouvelles proposent des essais avec vingt malades, elles doivent encore être validées (et acceptées) par l’ensemble de la communauté scientifique et par les autorités de réglementaires.

En ce qui concerne les essais cliniques, les réseaux sont également essentiels. Dans le domaine du cancer, la situation peut être perçue comme «luxurieuse» et des réseaux d’essais bien établis peuvent multiplier les essais. Grâce à eux, les médicaments contre le cancer ont obtenu des désignations orphelines.

Le financement devient à nouveau un problème pour mener des essais cliniques. Le programme cadre de l’UE a privilégié la recherche fondamentale, au détriment des essais cliniques, pourtant vitaux au développement coûteux de nouveaux traitements.

Dans le domaine des maladies rares, l’industrie s’escrime à trouver les bons collaborateurs et le nombre nécessaire. Ouvrir des centres constitue un défi. Nous travaillons maintenant dans un cadre d’essais cliniques «harmonisés» sans pour autant pouvoir les promouvoir.

Les académiciens doivent donc faire face à beaucoup d’obstacles (et ils le font tous pour de bonnes raisons):
- La conformité aux directives de l’UE sur les essais cliniques
- Le respect de l’éthique
- Les « réglementations » sur les médicaments
- L’approbation des comités de protection des personnes
• La loi sur les tissus humains
• La loi sur la protection des données
Le temps de chacun est compté et, dans le cas des maladies rares, les cliniciens doivent passer à travers les mêmes procédures bureaucratiques pour un ou deux ou cinq cent malades dans le cas d’une maladie courante. Là, est le véritable dilemme, car l’organisation de ces essais cliniques est un fardeau et doit être allégué dans le cas des maladies rares.

La réglementation sur les médicaments orphelins
Il s’agit véritablement d’un processus énorme pour les cliniciens et les malades. Un large éventail de maladies bénéficie maintenant d’un traitement, bien qu’un tiers soit attribué aux cancers et deux tiers aux malades pédiatriques. Pour les autres maladies rares, le Dr. Morland a demandé comment promouvoir les plus orphelins des orphelins ? Produits quasiment dépourvus de toute recherche?

Conclusions
La réglementation sur les médicaments orphelins apporte effectivement des médicaments orphelins aux malades. L’évolution est-elle suffisamment rapide ou non, la question reste ouverte. Traduire les nouvelles découvertes en traitements demeure la difficulté majeure. Seuls les encouragements à la recherche peuvent faire la différence : coordination des financements, promotion des réseaux d’essais. La réduction du fardeau bureaucratique pour les essais cliniques est également une solution clé. Pour finir, nous devons nous rappeler que la réglementation sur les médicaments orphelins ne concerne ni le prestige académique ni le profit industriel, mais l’accès des malades à des thérapies nouvelles, meilleures et plus sûres.

La réglementation sur les médicaments orphelins – Le point de vue d’un représentant de malades
Yann Le Cam, Directeur d’Eurordis et représentant de malades, Vice-président du COMP
Dans son introduction, Yann Le Cam a insisté sur la nécessité de poursuivre et de consolider le travail accompli jusqu’à présent grâce à la réglementation sur les médicaments orphelins. Elle est efficace, n’a pas besoin d’être changée après cinq ans d’adoption, sauf ajustements mineurs.

Cinq années de réussite
Principaux résultats
• La croissance du nombre et de la qualité des dossiers de désignation des médicaments orphelins
• 300 avis positifs pour la désignation de médicaments orphelins !
• Pour les maladies à prévalence basse, avec des médicaments innovants, des bénéfices significatifs sur les traitements existants, de plus en plus basés sur la recherche européenne
• 22 autorisations de mise sur le marché
• Bénéfice potentiel pour un million de malades en Europe
Au cours de ces cinq années, des représentants de malades, pionniers dans le système de réglementation et le dialogue innovant avec toutes les parties concernées ont considérablement apporté.
Une limite toutefois. Contrairement aux attentes, les politiques des États membres sur les médicaments orphelins ne sont pas aussi développées et encouragées dans la législation européenne.

La participation des représentants de malades en tant que membres COMP et membres du groupe de travail du COMP avec toutes les parties concernées est une étape politique majeure. Ils prennent des décisions comme les autres experts et l’EMEA est la seule agence pour les médicaments à leur donner ce rôle.

Une autre participation dans les procédures de réglementation inclue :

- Les représentants de malades en tant qu’experts externes pour COMP ou l’assistance ave protocole.
- Les représentants de malades en tant que membres du groupe de travail entre organisations de malades et l’EMEA/CHMP et le Conseil d’Administration de l’EMEA.
- Les représentants de malades en tant que futurs membres du Comité pour les Médicaments Pédiatriques et du Comité pour les Thérapies Avancées.
- Les représentants de malades à consulter pour évaluer les rapports risques et bénéfices pour une demande d’AMM et lors de la publication d’informations dans la brochure destinée aux malades.

Mais au-delà du succès, nous devons reconnaître le manque de politiques générales européennes et nationales sur les médicaments orphelins. Il nous faut appeler toutes les parties concernées et les responsables, à joindre leurs forces pour combler cette faille.

Cinq problèmes clé pour l’avenir

1er problème : développer plus de médicaments orphelins pour les besoins médicaux non satisfaits.

Au-delà des premières 200 conditions qui bénéficient maintenant d’un médicament orphelin, plus de maladies restent sans traitements.

Proposition :
- les politiques européennes et nationales pour la recherche sur les maladies rares (priorité des recherches, programmes et financement des recherches)
- Élaboration progressive d’un « inventaire de besoins médicaux non satisfaits » et d’un « appel d’offre » par domaine thérapeutique.

2ème problème : améliorer les taux de réussite de développements cliniques pour transformer plus de produits orphelins en médicaments autorisés.

Jusqu’ici, parmi les 300 appellations orphelines, 22 médicaments orphelins sont commercialisés. Si nous comparons le même débit aux États-Unis, où un quart des appellations de produits atterrissent sur le marché, il est trop tôt, mais nous avons besoin d’inventer des moyens d’améliorer ce succès en Europe. Nous devons transformer plus d’« espoirs » de médicaments orphelins en médicaments « réels ».

Proposition :
- Créer un « programme de Subvention de l’UE pour la Recherche Clinique sur les Médicaments Orphelins » dirigé par l’EMEA / COMP à travers des fonds annuels octroyés par la recherche DG FP7.
 Le bureau des médicaments orphelins de la FDA a un budget de 15 millions de dollars chaque année pour initier des études précliniques ou des études de phase I/II. L’Europe pourrait adopter une approche similaire.

3ème problème : promouvoir l’accès des malades aux médicaments orphelins dans chaque État membre.

Nous ne pouvons pas accepter que certains médicaments ne soient toujours pas disponibles dans tous les États membres après leur autorisation de commercialisation.
Propositions :
- Appliquer la Communication de la Commission de juillet 2003 et mettre à disposition les informations sur les médicaments orphelins approuvés. (Disponibilité des médicaments dans chaque État membre, voie de distribution dans chaque pays - officines hospitalières ou pharmacies communautaires, établir le nombre de malades traités)
- Créer un groupe de travail sur la disponibilité des médicaments orphelins à la DG Eentreprise avec des États membres volontaires, les représentants de COMP et les représentants des organisations de malades pour évaluer la valeur ajoutée thérapeutique et définir une tarification (catalogue) européenne de référence avec la société. Ce projet serait un pilote. L’industrie défend souvent une politique tarifaire unique, la jugeant plus adéquate à l’Europe - alors nous tentons l’essai.

4ème problème : **clôre le débat injuste sur la tarification des médicaments orphelins.** Certains prétendent que les médicaments orphelins sont chers, voire trop chers. Que cela signifie-t-il exactement ? Est-ce à dire que tous les malades ne méritent pas le traitement ? Qu’ils n’en valent pas la peine ? Que signifie une évaluation scientifique positive du rapport bénéfices/risques si ensuite quelqu’un me refuse le produit ? Ce débat est injuste et doit être clos. Avant la procédure centralisée, environ 200 autres produits orphelins étaient déjà autorisés en UE, importés des États-Unis, et le prix n’était jamais un problème. Maintenant que certains sont produits, développés, évalués et commercialisés en Europe, avec un retour sur investissement européen et non américain, le prix devrait soudainement devenir un problème ? L’Europe joue contre elle-même ! De plus, les médicaments orphelins autorisés au cours des cinq dernières années ne sont pas plus chers que les autres produits innovants commercialisés au cours de la même période (cf. Le rapport Alcimed pour la Commission Européenne).

5ème problème : **adopter une approche plus internationale pour l’appellation, l’assistance au protocole, l’évaluation pour l’autorisation de mise sur le marché et la disponibilité des médicaments pour les malades.**
Le développement clinique des médicaments orphelins est mondial, mais, les centres d’experts, les malades et les ressources financières sont rares. Le temps est une question de vie ou de mort. Les problèmes soulevés par les organismes de régulation aux États-Unis et dans l’UE sont ou devraient être les mêmes, pour les études de développement clinique et post commercialisation.

Proposition :
- Proposer proactivement une assistance au protocole de l’EMEA/FDA parallèle pour les médicaments orphelins lorsqu’ils ont déjà des désignations des deux côtés
- Explorer et mettre en place une procédure parallèle possible pour les demandes de désignation de médicaments orphelins

Réglementation sur les médicaments orphelins – Points de vue d’un représentant de l’industrie

Dr. Catarina Edfjäll, PhD, Directrice, Liaison de Réglementation Mondiale, Actelion Pharmaceuticals Ltd.

Catarina Edfjall est représentante d’EuropaBio et des entreprises BioPharmaceutiques émergentes EBE, une association de fabricants de médicaments spécialisée dans le développement de la grande majorité de produits orphelins aujourd’hui en Europe.
Selon elle, il est **trop tôt pour juger les résultats de la réglementation sur les médicaments orphelins**- mais le concept est prometteur et l’industrie pharmaceutique dans l’ensemble devrait la soutenir. Cette position a été résumée dans le livre blanc de l’industrie.
L’analyse de l’industrie conclut que les maladies rares sont maintenant identifiées comme zone de priorité pour une action communautaire dans le cadre de travail de la santé publique en Europe. Toutefois, il semble que les États membres ont besoin de mieux comprendre l’esprit de la réglementation et d’adopter une politique plus active sur les encouragements nationaux. L’étude d’Alcimed a confirmé que le prix d’un médicament orphelin dans l’UE est lié à la rareté de la maladie et aux systèmes de santé. Toutefois, la réglementation ne se concentre pas sur les programmes de recherche ou sur l’accès. Dans l’UE, seule une action limitée a été entreprise jusqu’ici pour stimuler le développement des médicaments orphelins (OMP). Les expériences américaines et japonaises montrent l’encouragement des investissements industriels dans le développement et la commercialisation des médicaments orphelins lorsqu’ils peuvent obtenir l’exclusivité de marché.

Pour améliorer la réglementation, l’industrie a fait 9 recommandations (reportez-vous au livre blanc de l’industrie) :

1. Entreprendre des programmes d’éducation pour faire prendre de conscience des maladies rares en Europe, à l’échelle nationale et continentale.
2. Établir un réseau dans toute l’UE pour les tests diagnostiques sur les maladies rares pour intervenir rapidement sur les malades.
4. Augmenter la compréhension de la réglementation dans les États membres et éliminer les conflits avec les législations nationales.
5. Réviser les encouragements pour le développement OMP dans les États membres (Article 9).
6. Éliminer la confusion autour de l’exclusivité de marché de 10 ans (article 8(2)) et interprétations correctes.
7. Réviser les éléments dissuasifs au développement national des médicaments orphelins. Par exemple (donner) des conditions supplémentaires pour les données cliniques et rentables.
9. Coordonner et rationaliser la recherche sur les maladies et le développement des thérapies dans l’UE au sein de la Commission et avec l’EMEA et la FDA.

Il faut travailler sur ces recommandations et la Commission doit les mettre en place dans un esprit de collaboration avec tous les intéressés.

À propos de la 6ème recommandation, Catarina Edfjall a expliqué que l’exclusivité de marché est le plus grand encouragement de la réglementation de l’UE et combien il faut la protéger. Selon elle, la révision de l’exclusivité de marché ne devrait se baser que sur les critères de la désignation.

Le risque est que la confusion sur le sujet pourrait éroder l’encouragement. À son avis, elle n’entraîne pas une hausse des prix, mais la rareté de la maladie.

Comme le montre la figure 25, l’exclusivité de marché ne fournit aucun monopole Pour l’hypertension artérielle, existent beaucoup d’options thérapeutiques, dont certaines ont un statut de médicament orphelin. Finalement, l’exclusivité de marché procure une exclusivité partielle, relative à des produits similaires : les produits similaires et concurrentiels doivent être cliniquement supérieurs.
La réglementation orpheline n’a PAS créé de monopoles - exemple PAH
Produits approuvés pour le traitement de PAH
- Ca-Bloqueurs de voie oral
- epoprostenol prostacycline i.v.

Produits orphelins Approuvés pour le traitement de PAH
- bosentan ERA oral
- iloprost prostacycline inhalé
- (sildenafil (USA) PDE-5 oral)
- (Treprostinil (F) prostacycline s.c.)

Produits orphelins pour le traitement de PAH
- sitaxentan ERA oral
- ambrisentan ERA oral
- tadalafil PDE-5 oral
- vardenafil PDE-5 oral

Évaluation de l'accès réel des maladies aux médicaments orphelins après leur autorisation de mise sur le marché par la Commission européenne : tel est l'objectif d'une étude régulière menée par Eurordis.

Seule une partie des malades a accès à un produit orphelin, lorsqu'il existe. Un groupe de malades se définit par sa prévalence, mais en réalité tous les cas ne sont pas diagnostiqués. D'ailleurs, parmi ceux qui le sont, tous les malades ne correspondent pas aux indications du traitement. (Par exemple quand seule une formule pour adulte est commercialisée sans information sur le dosage pour les...
enfants). Une autre barrière se dresse dans les contre-indications : les troubles des fonctions hépatiques ou rénales peuvent contre-indiquer un traitement chez une personne dûment diagnostiquée.

D’autre part, le délai administratif de placement d’un produit sur le marché est un obstacle important. Il existe même pour les malades qui ne peuvent pas attendre pour être traités.

Plusieurs facteurs expliquent (mais ne justifient pas du tout) ce délai :

- Le délai de fixation du prix (les négociations entre le détenteur de l’autorisation de mise sur le marché et les autorités des États membres).
- Le délai de décision du remboursement (pour les produits orphelins, le bénéfice potentiel significatif est évalué quand le COMP donne un avis positif pour la désignation. Au moment de l’autorisation de mise sur le marché, elle jauge si le bénéfice est toujours significatif. Ainsi la thérapie a valeur ajoutée devrait être automatiquement remboursée dans chaque État membre/EEE).
- Les médecins cernent très mal les bénéfices réels de ces médicaments et renâclent à les prescrire. Cela peut être le cas lorsqu’un médecin traitant n’a pas participé aux essais cliniques en tant que chercheur ou lorsque aucun essai clinique n’a été mené dans son pays.
- L’absence de recommandations consensuelles sur le traitement.

Pourquoi surveiller la disponibilité des médicaments orphelins dans les États membres de l’UE/EEE ?

Eurordis est fondé à surveiller la disponibilité des médicaments, dans l’intérêt des malades et selon la directive du Conseil 89/105/EC. Elle définit les délais des États membres pour placer les produits sur le marché après leur autorisation :

- **DIRECTIVE DU CONSEIL du 21/12/1988** – transparence des mesures de réglementation de tarification des produits thérapeutiques pour l’Homme. Et les inclure dans les systèmes d’assurance-maladie nationaux (89/105/EC)

 - **Article 2**
 - Un délai légal de 90 jours pour définir un prix, qui peut être prolongé à 180 jours s’il y a des questions
 - **Article 6**
 - L’inscription de produits thérapeutiques dans la liste des médicaments couverts par les systèmes d’assurance-maladie sous 90 jours.
 - L’ensemble de la période prise par les deux procédures n’excède pas 180 jours (prolongation possible s’il y a des questions)
Résultats d’Eurordis
Le tableau 11 ci-dessous présente les 12 premiers produits thérapeutiques orphelins autorisés avant le 31 décembre 2003 (avec un début en 2000 pour les tous premiers médicaments orphelins commercialisés). Pour ces produits, Eurordis a consulté plusieurs sources :

<table>
<thead>
<tr>
<th>Fabrazyme</th>
<th>Genzyme</th>
<th>Maladie de Fabry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repaglin</td>
<td>TKT Europe</td>
<td>Maladie de Fabry</td>
</tr>
<tr>
<td>Trisenox</td>
<td>Cell Therapeutics</td>
<td>Leucémie aigué promyélocyttaire</td>
</tr>
<tr>
<td>Tracleer</td>
<td>Actelion</td>
<td>Hypertension artérielle pulmonaire</td>
</tr>
<tr>
<td>Glivec</td>
<td>Novartis</td>
<td>Leucémie myéloïde chronique - Tumeurs stromales gastro-intestinales</td>
</tr>
<tr>
<td>Somavert</td>
<td>Pharmacia</td>
<td>Acromégalie</td>
</tr>
<tr>
<td>Zavesca</td>
<td>Oxford GlycoSciences/ Actelion</td>
<td>Maladie de Gaucher</td>
</tr>
<tr>
<td>Carbaglu</td>
<td>Orphan Europe</td>
<td>Déficit en N - acétylglycine synthétase</td>
</tr>
<tr>
<td>Aldurazyme</td>
<td>Genzyme</td>
<td>Mucopolysaccharidose de type I</td>
</tr>
<tr>
<td>Busulfex</td>
<td>Pierre Fabre</td>
<td>Traitement préliminaire avant HPCT</td>
</tr>
<tr>
<td>Ventave</td>
<td>Sohering</td>
<td>Hypertension pulmonaire primaire</td>
</tr>
<tr>
<td>Orsened</td>
<td>Pharmacia-Pfizer</td>
<td>Polyposes adénomateuses familiale</td>
</tr>
</tbody>
</table>

- IMS-Health, a permis de détecter les ventes dans un échantillon de pharmacies dans chaque État membre (sauf au Danemark)/EEE
- Les titulaires de l’AMM
- Les Organisations de malades, ont rendu compte de la disponibilité réelle des produits
- Les Autorités Compétentes Nationales

La figure 27 ci-dessous présente le nombre de produits orphelins disponibles à la fin de la phase de receuil des données.

À l’exception du Danemark, aucun des États membres n’avait placé tous les 12 produits sur le marché, un an ou plus après leur autorisation de commercialisation. Le nombre médian de produits réellement placés sur le marché est de 5 sur les 12.

Figure 27 : nombre de produits orphelins disponibles à la fin de la phase de rassemblement des données

Un premier groupe d’États membres/ EEE font mieux que la moyenne : l’Autriche et la France (11), la Suède (10), la Finlande, l’Allemagne et les Pays-Bas (9), puis l’Italie, l’Espagne et le Royaume-Uni (8).

Pour un second groupe, seule la moitié ou moins des produits autorisés est disponible : en Irlande, au Portugal, en Norvège, en Belgique, au Luxembourg et en Grèce.

Dans le dernier groupe, principalement représenté par des États membres entrés dans la communauté en 2004, entre 0 et 4 produits seulement sont disponibles.

Discussion
Un premier commentaire est la difficulté à obtenir les informations sur la disponibilité des médicaments. Même si toutes les sources possibles étaient sollicitées, certaines...
données peuvent manquer, car chaque source possède ses limites :

- Les échantillons de pharmacie. La méthode risque de ne pas être suffisamment sensible pour déterminer les ventes de médicaments orphelins même lorsque la taille des échantillons est relativement grande. Par exemple, seuls 3 hôpitaux fournissent du Fabrazyme en France (un total de 1 200 officines hospitalières, alors que l’échantillon compte 300 pharmacies et n’était pas susceptible de détecter des ventes)

- L’industrie. Sur 10 MAH contactés et malgré leur intention collective de participer, 6 ont fourni une partie ou la totalité des données requises (Actelion, Cell Therapeutics, Genzyme, Novartis, Orphan Europe et Pfizer) pour 9 produits sur 12, 1 a refusé (TKT) et 2 n’ont jamais répondu (Pierre Fabre, Shering Plough)

- Les organisations de malades. Les principaux contacts ne savent pas toujours où trouver les informations.

- Les pharmaciens (contactés directement par Eurordis)
 - Les officines hospitalières qui fournissent la totalité des 12 produits orphelins considérés sont extrêmement rares.
 - Une étude parmi elles devrait impliquer un grand nombre de pharmaciens

- Les autorités compétentes nationales. Elles peuvent renseigner sur les résultats négociés des prix et remboursements, mais détiennent très peu d’informations sur la réelle disponibilité ou utilisation des produits.

Les explications possibles des délais inter-pays sont nombreuses.
D’abord, les mécanismes de tarification conformément aux programmes de réglementation nationale diffèrent d’un pays à l’autre. Dans certains pays, il s’agit du prix moyen des prix déjà négociés dans d’autres États (pays de référence). Dans ce cas, tant que les négociations se poursuivent dans les pays de référence, aucune moyenne ne peut être calculée.

Tableau 12

<table>
<thead>
<tr>
<th>Pays</th>
<th>Pays de référence</th>
<th>Base de calcul</th>
<th>Prix re-calculé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grèce</td>
<td>Moins cher en Europe</td>
<td>Moins cher en Europe</td>
<td>Non</td>
</tr>
<tr>
<td>Irlande</td>
<td>Danemark, France, Allemagne, Pays-Bas, R-U</td>
<td>Moyenne la plus basse et prix R-U</td>
<td>Non</td>
</tr>
<tr>
<td>Italie¹</td>
<td>Tous états UE</td>
<td>Moyen</td>
<td>Oui</td>
</tr>
<tr>
<td>Pays-Bas</td>
<td>Belgique, France, Allemagne, R-U</td>
<td>Moyen</td>
<td>Oui</td>
</tr>
<tr>
<td>Portugal</td>
<td>France, Italie, Espagne</td>
<td>Plus bas</td>
<td>Non</td>
</tr>
</tbody>
</table>

Remarque : ¹ Utilisé pour calculer le prix de certains produits seulement. En ce qui concerne les nouveaux produits innovants, les prix sont négociés par Panos Kanavos, LSE Health et Social Care 2001

Les médicaments ne sont pas tous distribués par les mêmes canaux : systèmes de distribution nominatif par malade, programme de remboursement au cas par cas, les fonds spéciaux pour les maladies graves, acheteurs privés ou publics, etc.. Pour chaque système, et afin que plusieurs d’entre eux coexistent régionalement, la décision est un processus complexe rarement transparent. D’autre part, les maladies rares ne sont pas encore une priorité de santé publique dans la plupart des 25 États membres et pour 3 pays EEE, bien que la réglementation appelle à des mesures incitatives nationales.
Enfin, indépendamment du prix en lui-même, la responsabilité des pharmacies accroît les délais :
- Que les volumes de vente soient grands ou petits, les officines hospitalières doivent budgéter l’achat de nouveaux produits pour l’année suivante :
 - Pas de budget « à guichet ouvert »
- Lorsque la décision des achats dépend d’un budget annuel, le responsable doit sélectionner les malades pour lesquels il ou elle peut se permettre d’acheter des médicaments :
 - Pour des produits orphelins qui coûtent 150 000 € par patient par an, 600 000 € sont nécessaires pour traiter 4 malades
 - Avec le même montant, 50 personnes atteintes du VIH peuvent être traitées chaque année.

Propositions pour alléger le processus
- Mise en place d’un nouveau Comité de l’UE ou d’un sous-groupe du Comité de transparence de l’UE :
 - Pour compléter l’évaluation de l’amélioration du service médical rendu (ASMR) de chaque médicament orphelin
 - Pour proposer un prix raisonnable, un prix catalogue européen, défini après discussion avec le titulaire de l’AMM
- Une procédure européenne mise en place par des États membres volontaires regroupant leur expertise sur les médicaments orphelins
- Opinion d’expert
 - Pas d’obligation de prix unique en UE. Seule une « AMSR de référence » et un "prix de référence" limités aux médicaments orphelins utilisables par les États membres pour leurs propres décisions. Une nouvelle législation n’est pas nécessaire.

L’étape suivante: mieux documenter la disponibilité des produits autorisés
La réglementation communautaire (EC) No 726/2004 du 31 mars 2004 sur l’autorisation et la supervision des produits thérapeutiques pour Homme et animaux a établi un organisme de médicaments européens, et confère à l’EMEA un rôle dans la documentation de l’utilisation réelle des produits commercialisés :

Conclusions
Il est frappant de constater que la plupart des États membres n’ont pas mis sur le marché dans les délais légaux les produits orphelins approuvés par la procédure centralisée. Selon notre étude, une source à elle seule ou des bases facilement accessibles ne peuvent fournir les informations nécessaires sur la disponibilité des médicaments. Les médicaments orphelins mis sur le marché suivent des voies complexes. Les détenteurs d’autorisation de commercialisation eux-mêmes, ont des difficultés à obtenir des informations sur leurs propres produits (définition de la disponibilité, commercialisation, distributeurs, importations…) Un rassemblement structuré des données est nécessaire et une collaboration est possible avec EuroMedStat sur cette question. En conclusion, l’accès aux médicaments existants et autorisés est la priorité première des malades. La tarification nationale et les négociations de remboursement augmentent trop souvent les délais d’accès à ces produits.
Le point de vue d’un représentant d’un système de santé : l’approche de NICE sur les maladies rares

Prof. Peter Littlejohns, Directeur de la santé clinique et publique, Institut National pour la Santé et l'Excellence Clinique au Royaume-Uni.

Qu’est-ce que NICE ?

L’Institut National pour la Santé et l’Excellence Clinique (NICE) est l’organisation indépendante responsable de la promotion de la bonne santé, de la prévention et des traitements des maladies. L’institut a été créé le 1er avril 1999 pour définir des standards cliniques nationaux et gérer les nouvelles interventions appropriées au système national de santé NHS. Il constate que les nouvelles interventions onéreuses, n’arrivent pas jusqu’au malade de manière équitable, juste et rapide comme elles le devraient. L’Institut possède trois centres :

- **Le Centre pour l’Excellence de la Santé Publique : élaborer les lignes directrices**
 - Interventions de santé publique, pour des actions sur les individus
 - Les programmes de santé publique, pour les actions sur les populations

- **Le Centre pour l’Évaluation des Technologies de la Santé : évaluer la rentabilité des médicaments et leurs sécurité**
 - Évaluations technologiques
 - Procédures d’intervention

- **Centre pour la Pratique Clinique**
 - Lignes directrices cliniques sur la gestion des malades

- Fondé sur les preuves (la sécurité, l’efficacité et surtout la rentabilité). NICE n’évalue pas les coûts, car celui-ci relève de la responsabilité du gouvernement mais évalue les bénéfices d’une intervention au prorata des réactions indésirables et la valeur d’ensemble pour les services de santé.
- Transparent (valeurs scientifiques et sociales). Ces décisions sont importantes et tous les groupes ont donc le droit de participer au processus de décision.
- Inclusif (toutes les parties concernées)

Expérience de NICE dans l’évaluation des interventions concernant les maladies rares

« Le Département de la Santé et le gouvernement de l’Assemblée Welsh ont demandé à NICE s’il avait à évaluer les médicaments orphelins ».

La méthode

Tableau 13

<table>
<thead>
<tr>
<th>Pays</th>
<th>Nombre d’individus affectés</th>
<th>Prévalence (pour 10 000 personnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>États-Unis d’Amérique</td>
<td><200 000</td>
<td>7,5</td>
</tr>
<tr>
<td>Japon</td>
<td><50 000</td>
<td>4,0</td>
</tr>
<tr>
<td>Australie</td>
<td><2 000</td>
<td>1,1</td>
</tr>
<tr>
<td>Union Européenne</td>
<td><215 000</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Au cours des six dernières années, NICE a évalué la valeur des produits orphelins, comme l’illustre la figure 28 ci-dessous. Certains d’entre eux étaient considérés comme non rentables et n’étaient pas soutenus par le centre (barres en rouge). D’autres, chers mais hautement rentables, étaient soutenus...
(barres en vert). Les données illustrées représentent le coût en £ par année-personne sans invalidité ou les années de vie gagnées.

Figure 28

Y a-t-il des interventions à la fois très rares et très chères ? Pour les médicaments ultra orphelins, NICE a décidé d’évaluer les interventions correspondant à une définition plus stricte : « Produits pour des conditions avec une prévalence de moins de 1 sur 50 000 » autrement dit « produits pour des conditions avec moins de 1 000 cas au Royaume-Uni ».

C’était le cas pour les médicaments orphelins suivants :

<table>
<thead>
<tr>
<th>Condition</th>
<th>Traitement</th>
<th>Cas de prévalence au Royaume-Uni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phénylcétonurie</td>
<td>Modification alimentaire</td>
<td>500</td>
</tr>
<tr>
<td>Hémophilie B</td>
<td>Nonacog alfa</td>
<td>380</td>
</tr>
<tr>
<td>Maladie de Gaucher (de type 1)</td>
<td>Imiglucerase, Miglustat</td>
<td>200</td>
</tr>
<tr>
<td>Maladie de Fabry</td>
<td>Fabrazyme, Miglustat</td>
<td>70 à 140</td>
</tr>
<tr>
<td>Mucopolysaccharidose (de type 1)</td>
<td>Laronidase</td>
<td>500</td>
</tr>
</tbody>
</table>

L’évaluation de la rentabilité consiste à équilibrer la valeur du produit avec la qualité de vie. Il n’y a pas de plafond automatique - aucun coût au-dessus duquel un médicament est déclaré non rentable. Il existe cependant une probabilité. Lorsque le coût augmente considérablement, parce qu’il comprend d’autres facteurs que la rentabilité. L’équité et l’impartialité sont notamment prises en compte si c’est

6 -Prend en compte, à la fois la quantité et la qualité de vie générées par les interventions de soins de santé. Nous avons là le produit arithmétique d’espérance de vie et une mesure de la qualité des années de vie restantes.
le seul médicament à pouvoir guérir... Il n’y a ni valeurs économiques, ni production par calcul. En revanche, le processus ouvre à discussion large et ouverte, où toutes les parties peuvent exprimer leurs points de vue.

Méthode de NICE

• NICE a institué un atelier interne sur les médicaments orphelins pour considérer les questions mentionnées ci-dessus (février 2004) et étudier la manière dont les experts de NICE ont abordé les questions au cours des six dernières années.
• Conférence du Royal College des médecins de NICE (octobre 2004), avec la participation des malades.
• Le Conseil des Citoyens (le public) a débattu sur les médicaments orphelins (novembre 2004) pour élargir la consultation avec les contribuables.
• Réunion des malades avec NICE (décembre 2004)
• Étude de faisabilité, y compris la réunion du comité d’évaluation (mars 2005)

La consultation avec les citoyens a permis de tirer des conclusions utiles :
Le public attend que le système national de soins de santé NHS puisse donner aux traitements onéreux des coûts raisonnables pour les conditions ultra-orphelines. Deux mises en garde ont été listées :
- Les prix commerciaux appliqués par les fabricants sont raisonnables.
- Les coûts d’opportunité sont tolérables
Une étude de faisabilité a été menée avec l’industrie pour vérifier le réalisme de ces principes. Les phases de l’enquête consistaient à :

• évaluer la preuve de l’efficacité clinique et de la rentabilité de l’utilisation de l’enzymothérapie de remplacement pour le traitement contre la maladie de Gaucher de type 1
• organiser une réunion d’évaluation indépendamment du programme
• Les fabricants étaient totalement impliqués dans le développement du rapport d’évaluation et de son processus.
 – Ils ont participé à la réunion du Comité d’Évaluation en tant qu’observateurs et experts externes
• Aucune orientation n’a été publiée par NICE, car il s’agissait d’un projet pilote
• Les résultats de l’exercice de faisabilité seront rapportés par NICE au Département de la Santé

Conclusions

• L’évaluation des médicaments mentionnés «appellation orpheline» ne souffre d’aucune difficulté scientifique ou technique (bien qu’ils soient susceptibles d’avoir des taux de rentabilité différentiels ICER plus hauts et qu’ils soient donc analysés de plus près)
• Le processus normal de NICE pour les médicaments contre les maladies de prévalences supérieures à 1 personne sur 50 000
• Besoin de nouveaux processus pour les médicaments « ultra-orphelins » (coûts d’acquisition élevés, utilisés seulement dans les maladies ultra-orphelines et dans les maladies graves à vie)
• Proposition à présenter au Département de la Santé

Points de vue d’une autorité compétente nationale : l’organisme italien des médicaments

Dr. Domenica Taruscio pour le compte du Dr. Nello Martini.
La stratégie de l’organisme italien des médicaments pour la recherche et les maladies rares se base sur plusieurs actions spécifiques :

- Un fonds spécifique est dédié aux maladies rares (sous paragraphe 19 de l’article 48 de la loi établissant l’organisme italien des médicaments).
- Un pourcentage de ce fonds doit être consacré à la recherche sur l’utilisation des médicaments.
- 50% seront attribués à un fonds national pour les médicaments orphelins et les médicaments non encore autorisés. Ils représentent l’espoir d’un traitement contre les maladies rares
- Les 50% restants seront utilisés pour :
 - Mettre en place un Centre National d’informations indépendantes sur les médicaments
 - Mettre en place un programme de pharmacovigilance active visant à conseiller et éduquer les praticiens généraux et les pédiatres
 - Mettre en place une recherche sur l’utilisation des médicaments, en particulier des comparaisons (tête à tête) entre les médicaments pour la démonstration de la valeur thérapeutique ajoutée, y compris les médicaments orphelins *

Actuellement, 9 produits orphelins commercialisés en UE sont remboursés à 100% en Italie *(Somavert (Pegvisomant), Zavesca (Miglustat), Aldurazyme (Laronidase), Carbaglu (acide carglumique), Ventavis (iloprost), Fabrazyme (α-galactosidase A), Trisenox (anhydride arsénieux), Tracleer (Bosentan) et Glivec (Imatinib)).

Encouragements nationaux pour la recherche et le développement des produits orphelins : Espagne

Les mesures pour la disponibilité des médicaments orphelins et la recherche, les informations et le soutien sur les maladies rares.

Poster 53, Bonet F(1), Salinas C(1), Alsina C(1), Bel E(1) et membres du GITER et du REpIER(2).

(1) Departamento de Farmacia y Tecnología Farmacéutica. Universidad de Barcelona. España
(2) Consejería de Sanidad y Consumo, Dirección General de Consumo y Salud Comunitaria, Servicio de Epidemiología de la Junta de Extremadura.

L’auteur a exposé les mesures prises en Espagne favorisant directement ou indirectement recherche, la disponibilité et informations sur les médicaments traitants, préventifs et permettant le diagnostic des maladies rares. Les lois nationales espagnoles avaient pris en compte besoins de «certains groupes de malades », mais depuis la publication de la réglementation EC 141/2000, l’attention se concentre spécifiquement sur les maladies rares, avec un nombre croissant de mesures différentes.

Dans le domaine des maladies rares, les lois nationales fixe les règles générales et les communautés autonomes ont le pouvoir de les développer. Mais, sachant la diversité de mesures selon les politiques de s maladies rares, certaines communautés ont élargi les droits des malades.

La régionalisation de la politique santé rend difficile l’accès à ces informations, en raison de la régionalisation par ailleurs, des informations majeures ne sont pas publiées.
Recherche et informations sur les maladies rares

<table>
<thead>
<tr>
<th>Règles nationales</th>
<th>Mesures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Règles régionales</td>
<td></td>
</tr>
</tbody>
</table>

Disponibilité des traitements et autres mesures sociales

<table>
<thead>
<tr>
<th>Règles nationales</th>
<th>Mesures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Décret Royal 1348/2003 du 31/10/2003, BOE 04/11/2003</td>
<td>Il s’adapte à la classification des médicaments pour l’ATC. Il inclue beaucoup de médicaments dans la liste des non remboursables, mais il peut y avoir des exceptions dans le cas des médicaments orphelins. La loi 25/1990 sur les produits thérapeutiques (art 94) et le Décret Royal 83/1993 sur leur remboursement avaient précédemment considéré le cas de « certains groupes de malades ».</td>
</tr>
<tr>
<td>Ordre ministériel du 03/03/1999</td>
<td>Il réglemente l’oxygénothérapie à domicile. Il inclue les traitements utilisant des aérosols contre la mucoviscidose.</td>
</tr>
<tr>
<td>Règles régionales</td>
<td></td>
</tr>
<tr>
<td>Galicia: Loi 7/2003 du 09/12/2003, BOE 19/12/2003</td>
<td>Loi sur les soins de santé. Les malades atteints de maladies rares ont droit à des programmes de soins de santé spécifiques, menés à travers des centres de soins de santé publics.</td>
</tr>
<tr>
<td>Date</td>
<td>Documentation</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>18/12/2003</td>
<td>soins de santé pour les malades atteints de maladies rares</td>
</tr>
<tr>
<td>Extremadura : Résolution de 17/02/2003, DOE du 08/03/2003</td>
<td></td>
</tr>
<tr>
<td>Catalogne : lettre circulaire non publiée du gouvernement catalan</td>
<td></td>
</tr>
</tbody>
</table>
L’accès à des soins appropriés – l’organisation des soins

Infirmité : les indemnités financières sont-elles adaptées aux maladies rares ?

Les malades atteints de maladies rares ne sont pas bien pris en considération et sont souvent peu remboursés.

Rosa Sánchez de Vega, Federación Española de Enfermedades Raras (FEDER)

D’après Rosa Sanchez de Vega, les indemnités financières ne sont pas adaptées aux maladies rares, car les connaissances médicales sont trop limitées pour la plupart d’entre elles. Les malades qui en sont atteints ont des besoins spécifiques qui devraient être couverts par le système public de santé.

Dans la plupart des pays de l’UE, les indemnités financières sont octroyées selon le degré d’infirmité. Or, un médecin, responsable de l’évaluation peut manquer de connaissances. S’il ne connaît ni la profondeur : ni l’origine de la maladie, il ne peut établir de pronostic, ignore le traitement, les phases aiguës ou chroniques . Dans ce cas, le malade ne recevra pas une indemnité financière suffisante ou ne bénéficiera pas de prestations d’invalidité.

Rosa Sanchez de Vega a listé les types de soins à prescrire aux malades atteints de maladies rares, en permanence, au cours de leur maladie. Cette liste interroge immédiatement la couverture des systèmes de soins de santé et sociaux dans l’UE.

Besoin médicaux directs
• Visites à l’hôpital et en cabinet dans un centre d’expertise ou autres conditions médicales
• Tests biologiques et génétiques, examens complémentaires
• Traitement
 - Chirurgical
 - Produits thérapeutiques (médicaments prescrits et MVL)
 - Bandages
 - Crèmes
 - Gouttes pour les yeux
 - Régime et aliments spéciaux
 - Soins psychologiques et ergothérapie
 - Physiothérapie
 - Orthophonie
 - Thérapies alternatives ou d’adjonction
• Séjour de patient interne
 - Séjour court, séjour moyen, séjour long
 - Frais journaliers d’hôpital
• Hospitalisation à domicile
• Centre de soins résidentiel et à long terme, facilités de soins de base, maisons, centre éducationnel

Besoin médicaux indirects
• Transport
• Appareils adaptés
• Chaise roulante
• Soins aux enfants
• Les coûts indirects :
Une étude qualitative a été menée en Espagne sur six maladies rares (aniridie, ataxie, épidermolyse bulleuse simple, leucodystrophie, naevus géant congénital et granulomatose de Wegener (vascularité systémique)).

Aniridie

L’aniridie est une maladie congénitale des yeux qui entraîne une baisse de la vue. L’absence clinique de l’iris est associée à des conditions graves provoquant des cataractes, cornée opaque, glaucome, nystagmus, hypoplasie maculaire et du nerf optique. Il n’existe pas de traitement spécifique contre l’aniridie.

<table>
<thead>
<tr>
<th>Type de soins essentiels pour les malades</th>
<th>Niveau de remboursement</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soutien à l’école et au travail</td>
<td>Remboursé par l’Organisation Nationale pour les Aveugles</td>
<td></td>
</tr>
<tr>
<td>Aides techniques et visuelles</td>
<td>Remboursé par l’Organisation Nationale pour les Aveugles</td>
<td></td>
</tr>
<tr>
<td>Lentilles de contact couleur thérapeutiques, lunettes de soleil</td>
<td>0%</td>
<td>Non pas un besoin esthétique, mais un besoin physique pour empêcher la détérioration de l’œil en raison de l’absence d’iris.</td>
</tr>
<tr>
<td>Chirurgie spécifique de l’œil</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Ataxie

L’ataxie est l’incapacité à coordonner des mouvements musculaires volontaires, provoquant ainsi une mobilité instable et une démarche ébrieuse. L’ataxie est un groupe hétérogène de troubles caractérisés par une ataxie progressive de la démarche, du maintien et des membres. Une dysarthrie et/ou des troubles oculomoteurs dus à une dégénérescence cérébelleuse en l’absence de maladies coexistantes.

Le processus de dégénérescence peut se limiter au cervelet ou impliquer également la rétine, le nerf optique, les systèmes ponto-médullaires, les noyaux gris centraux, le cortex cérébral, les tractus spinaux ou les nerfs périphériques.

<table>
<thead>
<tr>
<th>Type de soins essentiels aux malades</th>
<th>Niveau de remboursement</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiothérapie à vie</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Aides techniques</td>
<td>Selon la région et les revenus</td>
<td></td>
</tr>
<tr>
<td>Ergonomie à domicile</td>
<td>Selon la région et les revenus</td>
<td></td>
</tr>
<tr>
<td>Soutien à l’école et au travail</td>
<td>Selon la région</td>
<td></td>
</tr>
</tbody>
</table>

Épidermolyse bulleuse

Il s’agit d’un ensemble de fragilités de la peau. Des ampoules et des érosions apparaissent spontanément, ou après un traumatisme physique léger. Il existe plusieurs formes d’épidermolyse bulleuse congénitales et héréditaires, ainsi que des “formes acquises”. Les principales caractéristiques incluent des lésions profuses de la peau, des muqueuses et une cicatrisation subséquente produisant...
parfois une synéchie et des rétractions de la peau ou des tendons. Un retard de croissance peut être observé et chez les adultes, une déformation par une fusion de tous les doigts et des orteils à l'apparence de mitaines. Une sténose oesophagienne, anale et des troubles oculaires sont courants.

Tableau 19

<table>
<thead>
<tr>
<th>Type de soins essentiels aux malades</th>
<th>Niveau de remboursement</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crèmes dermatologiques</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Physiothérapie</td>
<td>Selon la région et les revenus</td>
<td></td>
</tr>
<tr>
<td>Bandages</td>
<td>Selon la région et les revenus</td>
<td></td>
</tr>
<tr>
<td>Gouttes pour les yeux</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Chirurgie spéciale</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Leucodystrophie
Les symptômes sont liés à une démyélinisation progressive du système nerveux central (CNS) (cerveau et/ou moelle épinière) et insuffisance adréénale périphérique (maladie d’Addison). Les premières manifestations sont des déficiences cognitives modérées, suivies par une démyélinisation progressive du système nerveux central. L’acuité visuelle diminue, s’accompagne d’une surdité centrale, une ataxie cérébelleuse, une hémiplegie, des convulsions, une déméntie provoquant un état neurovégétatif ou entraînant la mort en quelques années.

A un stade précoce de la maladie, la greffe de moelle osseuse peut stabiliser et même inverser la démyélinisation cérébrale chez les garçons atteints par sa forme cérébrale. Aucune autre thérapie (huile de Lorenzo, immunosuppresseurs et interferon-beta) ne s’est révélée efficace.

Naevus géant congénital
Des tâches brunes apparaissent à la naissance. Il s’agit d’un trouble congénital de la peau qui couvre entre 10 % et 90 % de la peau d’un bébé.

La chirurgie est nécessaire et s’effectue généralement dans une région différente ou même dans un autre État membre. Les frais supplémentaires non remboursés incluent non seulement la chirurgie et un traitement spécifique, mais également des voyages, des soins, des séjours post-opératoires et une assistance.

Granulomatose de Wegener (WG) – vascularités systémiques
La WG est une inflammation nécrosante des vaisseaux sanguins. Sa forme complète se caractérise cliniquement par des manifestations aux oreilles, au nez. Elle gagne la gorge, les poumons et les reins. La WG apparaît en moyenne à 45 ans et cette maladie grave peut être fatale si elle n’est pas traitée. Toutefois, les traitements actuellement disponibles peuvent contrôler son évolution et même guérir la plupart des cas, bien que les rechutes soient fréquentes.

Périodes cruciales
Les difficultés à obtenir un degré d’infirmité correct ou une allocation d’invalidité

Tableau 10

<table>
<thead>
<tr>
<th>Type de problème</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitement pharmaceutique</td>
<td>Peut représenter 80% du revenu minimum de la famille</td>
</tr>
<tr>
<td>Absence au travail</td>
<td>Risque de perte d’emploi</td>
</tr>
<tr>
<td>Allocation d’invalidité ou degré d’infirmité</td>
<td>La maladie évolue par éruptions ou épisodes aigus, l’infirmité est inconstante. L’évaluation de l’infirmité est donc difficile entre deux épisodes</td>
</tr>
</tbody>
</table>

90
Conclusion
Les besoins, bien sûr essentiels aux malades ne sont pas disponibles car trop faiblement remboursés. De plus, les différents niveaux de remboursement répartis en régions de résidence et/ou de revenus familiaux introduisent des inégalités dans l’accès aux soins.

Il était intéressant de comparer les remboursements de soins entre différents États membres de l’UE. Aussi, un questionnaire qualitatif a été envoyé aux Alliances Nationales sur les Maladies Rares au Danemark, en Allemagne (B.A.G.H), en France (Alliance Maladies Rares), aux Pays-Bas (VSOP), en Grèce (Greek Rare Disease Alliance) et en Espagne (Federación Española de Enfermedades Raras).

Tableau 21 : Comparaison des remboursements pour des types spécifiques de soins dans 5 États membres de l’UE. Pour chaque type de soin, les personnes interrogées ont indiqué si le type de soin était remboursé dans leur pays et à quel niveau. Les quotas plus hauts se situaient au Danemark et en Allemagne, diminuaient en France et aux Pays-Bas et chutaient en Grèce et en Espagne.

En conclusion générale, Rosa Sanchez de Vega a déclaré que les indemnités financières ne devraient pas dépendre de l’évaluation subjective du professionnel responsable du rapport sur l’infirmité. Elles ne doivent pas non plus être calculées selon la région ou le pays européen. La régionalisation des systèmes de soins répartie par lieux de résidence (dans quel État membre de l’UE et dans quelle région de l’État membre) est une erreur majeure. Le revenu familial est aussi un paramètre qui conditionne l’accès aux soins et leur équité.

Les réseaux cliniques en réponse à la rareté des bases de données et les recommandations pour de meilleures pratiques

Dr. Cornelia Zeidler, Registre International de la Neutropénie Chronique Grave, École de Médecine de Hanovre en Allemagne

Pour résumer les propos sur l’utilité des réseaux cliniques, le Dr. Cornelia Zeidler a expliqué l’importance d’un réseau bien organisé pour les malades atteints de neutropénie chronique grave. Il permet de totaliser les données et convie un nombre suffisant de malades pour :

- Les analyses épidémiologiques et démographiques
- Augmenter les connaissances sur le cours naturel de la maladie
- Étudier les sous-groupes et les nouveaux troubles
• Comprendre le mécanisme des défauts géniques des familles dans l'index héréditaire
• Surveiller les séquelles tardives et les symptômes concomitants
• Évaluer la réponse au traitement et les résultats
• Mesurer l’impact sur la qualité de vie
Dans l’ensemble, le but reste d’améliorer les diagnostics, traitements et pronostics.

Que savait-on sur la neutropénie chronique grave en 1980 ?
- Rolf Kostmann a décrit un caractère récessif autosomal avec neutropénie grave au nord de la Suède en 1956 "Morbus Kostmann"
- Aux décomptes du nombre total de neutrophiles (ANC) lors du diagnostic, ils étaient inférieurs à 500 par mm3, voire absents dans le sang périphérique (la normale est 1 500 par mm3)
- Les infections bactériennes graves étaient fréquentes et pouvaient déjà surgir au cours des premiers mois de la vie
- Les plupart des malades mouraient d’infections bactériennes au cours de leur petite enfance malgré les traitements antibiotiques
- Des cas de transformation maligne en leucémie ont été rapportés dans des publications
- La greffe de cellules souches était le seul traitement disponible

1994 : création d’un registre
- Le premier essai clinique avec le facteur de croissance hématopoïétique G-CSF (facteur de croissance des granulocytes et monocytes) a été lancé.
- 1994 – 2000 : Le SCNIR a été fondé par Amgen Inc. pour la collecte de données de sécurité sur le traitement contre G-CSF (filgrastim) annuellement rapporté au FDA.
- 2000 : le soutien financier continu a été stoppé, après le rapport final de sécurité de FDA. SCNIR est donc devenue une fondation américaine indépendante
- Depuis 2000 : la collecte de données s’est étendue pour inclure des sous-diagnostics et inscrire des malades non traités, mais le soutien financier et la branche européenne d’Amgen ont été radicalement coupés..

Le soutien de la Commission Européenne
Pour poursuivre le registre, un projet à obtenu le soutien de la Commission Européenne à partir du 31 décembre 2001 jusqu’au 31 décembre 2004 (programme sur l’action de la Direction pour la Protection des Consommateurs et la Santé Générale de la Communauté des maladies rares).

Les objectifs du projet étaient :
- d’établir et d’étendre un réseau européen sur SCN
- de promouvoir l’éducation des médecins et des malades
- d’améliorer les diagnostics et la thérapie

Inscription européenne
Un total de 329 malades est maintenant inscrit. La répartition par pays est comme suit :

<table>
<thead>
<tr>
<th>Tableau 11</th>
<th>Pays</th>
<th>Malades</th>
<th>Pays</th>
<th>Malades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autriche</td>
<td>12</td>
<td>Maroc</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Belgique</td>
<td>25</td>
<td>Pays-Bas</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>République Tchèque</td>
<td>3</td>
<td>Norvège</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>6</td>
<td>Pologne</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>128</td>
<td>Portugal</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>62</td>
<td>Russie</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grèce</td>
<td>10</td>
<td>Serbie - Monténégro</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Irlande</td>
<td>10</td>
<td>Espagne</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Collecte de données : promesse d’une base de données accessible sur Internet

Collecte de données sur une base annuelle :
- les événements infectieux et non infectieux, les évaluations physiques, les traitements, les grossesses et la mort
- examens (moelle osseuse, cytogénétique, densité osseuse)

Questionnaires spécifiques pour :
- leucémie, greffe de moelle osseuse, grossesse, ostéoporose, splénectomie, vascularités, glomérulonéphrite, mort

Comment ces procédés ont-ils augmenté les connaissances sur la maladie ?
À travers ce registre, la communauté scientifique a appris que :
• la neutropénie congénitale apparaît dans les populations de tous les MS européens
• l’incidence est approximativement de 2 cas par million de personnes (0,2 habitants sur 100 000). Plus de recherches épidémiologiques sont nécessaires.
• les différents troubles génétiques sont résumés sous le terme CN :
 • caractère récessif du nord de la Suède – M. Kostmann
 • familles consanguines dans les pays d’Europe du Sud, défaut génique récessif
 • hérité dominante dans les familles des pays d’Europe du Nord
 • apparition spontanée chez la majorité des malades
 • les défauts génétiques pour certains sous-groupes ont été identifiés, mais sont encore inconnus dans d’autres sous-groupes de CN
 • de nouveaux sous-groupes peuvent être identifiés par des symptômes concomitants inconnus au début du registre, par exemple, les retards de croissance, les anomalies d’organes
 • chez la majorité des malades, l’administration quotidienne de G-CSF induit des décomptes de neutrophiles suffisants, empêchant ainsi les infections bactériennes
 • chez les sous-groupes de CN, le risque d’une transformation maligne en leucémie augmente d’environ 15%
 • on rapporte l’ostéopénie / ostéoporose chez environ 30 à 50% des malades atteints de CN dont le contenu minéral osseux a été examiné

Le sous-diagnostic qui a également été suivi et documenté
1) Neutropénie congénitale
 - syndrome de Kostmann
 - syndrome de Shwachman-Diamond
 - glycogénose de type 1b
 - syndrome de Barth
 - autres

2) Neutropénie cyclique

Résultats : lignes directrices sur les meilleures pratiques
Préliminaires :
- connaissances sur le cours naturel d’une maladie, séquelles tardives, réponse au traitement et événements indésirables liés au traitement
- nombre suffisant de malades, ce qui ne peut être accompli à une échelle nationale

Pour les malades atteints de neutropénie congénitale grave :
• (Établir) différents sous-types par des modèles hétérogènes d’hérédité et de phénotypes cliniques et conseils de traitements spécifiques
• incidence de la transformation maligne dans les sous-types de neutropénie congénitale. Les malades en danger sont alors sous observation rapprochée
• les résultats des traitements contre la leucémie. La greffe de moelle osseuse (BMT) supprime la chimiothérapie. Elle est devenue une thérapie de front et un protocole européen sur la greffe de moelle osseuse a été soumis au EBMT.

Limites du réseau sur les maladies rares
• le soutien financier continu est nécessaire pour maintenir la bonne qualité du registre :
 – l’entretien d’une base de données européenne
 – les réunions régulières avec les partenaires pour l’échange des informations
 – l’organisation de sessions de formation et d’ateliers
 – les publications et les présentations scientifiques
• les maladies rares ne sont pas éligibles pour la plupart des subventions nationales et internationales
• les fondations sur les maladies rares manquent de fonds suffisants pour soutenir les registres et les réseaux de manière continue

Figure 29

Accès et disponibilité des tests génétiques moléculaires : révéler ce qui justifie des tests à l’étranger

Dr. Elettra Ronchi, OCDE

Le Dr. Elettra Ronchi a souligné les difficultés et défis des tests en génétique moléculaire -(tirés d’une étude de l’OCDE publiée en 2005 et disponible sur le site Web
Bien que ces informations aient été collectées par l’OCDE, les points de vues présentés à l’ECRD 2005 rassemblent expressément l’interprétation des données par le Dr. Ronchi.

Les données disponibles sont issues de 827 laboratoires à travers 18 pays : Autriche, Belgique, Canada, République Tchèque, Finlande, France, Allemagne, Irlande, Italie, Japon, Norvège, Portugal, Espagne, Suède, Suisse, Turquie, Royaume-Uni et États-Unis.

Un mot sur l’OCDE

L’OCDE est un forum politique unique sur les problèmes de politique économique et sociale sur la santé, l’environnement et l’éducation.

Les tests géniques et les maladies rares
La majorité des maladies rares identifiées étant des conditions génétiques, les tests génétiques constituent un élément essentiel du diagnostic.

Le tableau 23 ci-dessous dresse une liste des conditions géniques et des cibles de gènes pour lesquels des dispositifs in vitro sont disponibles sur le marché en Europe.

Tableau 23 : maladies à gène unique et cibles de gènes pour lesquels des dispositifs de diagnostics in vitro sont disponibles sur le marché en Europe.

<table>
<thead>
<tr>
<th>Antitrypsine alpha 1</th>
<th>Néoplasie endocrinienne multiple de type 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apolipoprotéine E</td>
<td>Gène du méthylène tétra-hydro-folate réductase</td>
</tr>
<tr>
<td>Syndrome de Blooms</td>
<td>Mucopolisose IV</td>
</tr>
<tr>
<td>Cancer du sein (héritaire)</td>
<td>Maladie de Neiman-Pick</td>
</tr>
<tr>
<td>Maladie de Canavan</td>
<td>Neurofibromatose de type 2</td>
</tr>
<tr>
<td>Maladie de Charcot-Marie</td>
<td>Ornithine carboxytransférase</td>
</tr>
<tr>
<td>Cancer du colon (héritaire)</td>
<td>Maladie de Pélizaeus-Merzbacher</td>
</tr>
<tr>
<td>Connexine 26</td>
<td>Prédisposition familiale au cancer colorectal</td>
</tr>
<tr>
<td>Mucoviscidose</td>
<td>Prédisposition familiale à la thrombose</td>
</tr>
<tr>
<td>Syndrome de Digeorge</td>
<td>Protéine C</td>
</tr>
<tr>
<td>Dystrophie musculaire de Duchenne</td>
<td>Mutation de prothrombine</td>
</tr>
<tr>
<td>Facteur V Leiden</td>
<td>Rétinoblastome</td>
</tr>
<tr>
<td>Dysautonomie familiale</td>
<td>Syndrome de Rett</td>
</tr>
<tr>
<td>Anémie de Fanconi</td>
<td>Gène SHOX</td>
</tr>
<tr>
<td>X fragile</td>
<td>Syndrome de Sotos</td>
</tr>
<tr>
<td>Maladie de Gaucher</td>
<td>Atrophie musculaire spinale</td>
</tr>
<tr>
<td>Glycogénose</td>
<td>Maladie de Tay Sachs</td>
</tr>
<tr>
<td>Hémochromatose</td>
<td>Thiopurine méthyltransférase TPMT Exon 7/10</td>
</tr>
<tr>
<td>Récepteur de lipoprotéine de faible densité</td>
<td>Lipoprotéine de très haute densité</td>
</tr>
<tr>
<td>Syndrome de Marfan</td>
<td>Syndrome de Williams</td>
</tr>
</tbody>
</table>

De plus en plus de tests sont effectués chaque année, comme l’illustre la figure 30. L’augmentation différentielle est de 25% de plus en nouveaux tests effectués chaque année depuis 2000.

L’étude a principalement révélé la grande disparité géographique des tests disponibles à travers les pays de l’OCDE.

Cette disparité géographique ne s’explique pas seulement par la prévalence différente des maladies, mais le contexte économique est un facteur déterminant.

7 Essai d’assurance de la qualité et d’aptitude pour les tests de génétique moléculaire : rapport d’une étude sur 18 pays membres de l’OCDE. www.OECDbookshop.org
En 2003, les frais de santé avaient engagé 8,6% du PIB dans les pays de l’OCDE. La part publique des dépenses de santé représente 72% du total. Alors que tous les gouvernements prennent des mesures pour contrôler les coûts, cela se traduit par des coupes de budgets et des contrôles sur les tests génétiques.

Les dispositions de la réglementation sur les tests génétiques sont très semblables aux autres dispositions dans d’autres secteurs de la santé.

Un autre fait : les gouvernements n’ont pas de moyens clairs et rationnels pour contrôler ce secteur.

Un autre fait : grâce au progrès accompli dans les génomes humains et la génomique les connaissances sur l’historique génétique des maladies ont augmenté. Un grand nombre de troubles génétiques, combinés à la nécessité d’analyses spécifiques de diagnostics pour chacun, interdit aux pays d’offrir une gamme exhaustive de tests de diagnostics pour toutes les conditions génétiques connues.

Résultats
Selon l’étude, 64% des laboratoires observés ont reçu des spécimens provenant d’autres pays. Les échanges de prélèvements sont donc internationaux.
74% de ces échanges sont pour les maladies rares et 24%, concernent la recherche.
Plus de 18000 prélèvements ont été échangés en 2002 dans 18 pays participants.

Barrières principales de ces échanges
1. Il n’existe pas de cadre stratégique international pour la désignation des services de tests pour maladies rares. Cette question relève du débat sur les centres de référence et leurs critères.
2. Il n’existe pas de mécanisme en place pour les orientations dans le système, mais seulement des réseaux professionnels informels. Cela dit, assurer la qualité et la disponibilité des tests dans le contexte économique est important pour éviter la duplication des conditions de test.
3. Aucun mécanisme de remboursement.

Conclusions et solutions
- L’échange international est une caractéristique très étendue des conditions des services de tests sur les maladies rares. L’internationalisation des tests est une réalité et sera maintenue.
- Les tests transfrontaliers impliquent une grande majorité de laboratoires.
- L’une des plus grandes préoccupations. Les responsables manquent d’une bonne pratique internationale en assurance qualité. Lorsqu’un prélèvement arriver dans un laboratoire étranger, il doit être traité et manipulé dans un même esprit d’assurance qualité.
- Des efforts doivent être considérés pour améliorer l’accès, la couverture et le remboursement de tous les tests qui ont prouvé leur utilité médicale. Mais il n’y a pas d’entente partagée pour l’évaluer. Il s’agit pourtant d’une tâche majeure, nationale et internationale.

Remarque finale
L’OCDE suivra cette étude en instaurant des lignes directrices (inspirées) des meilleures pratiques d’assurance qualité pour les tests génétiques fin de 2006. Une consultation publique sera lancée début 2006.

Regard sur la vie quotidienne
Elisabeth Wallenius, Sällsynta Diagnoser, l’Association Suédoise sur les Maladies Rares

L’association nationale pour les personnes atteintes de maladies rares en Suède a été fondée le 7 novembre 1998. Ses objectifs sont d’améliorer la qualité de la vie des personnes atteintes de maladies rares, leur donner voix et améliorer leur situation
grâce à la coopération.
Pour ce faire, Sällsynta Diagnoser a lancé une étude pour évaluer les perceptions et l’impact des troubles rares dans la vie quotidienne.

Les objectifs de l’étude étaient de mesurer :
- La situation quotidienne pour les membres
- Quels problèmes affrontent-ils dans la vie quotidienne
- L’envergure des problèmes
- Similitudes et différences entre les différents diagnostics

Sur un questionnaire envoyé à des malades suédois 1 660 l’ont retourné (taux de réponses : 60 %). Les enquêtés représentaient environ 30 diagnostics différents.

Conséquences de la maladie pour la famille

Conséquences pratiques et liées au temps.
Certaines maladies rares demandent énormément de temps, L’ichthyose, par exemple, est un trouble de la peau, contre lequel existent des onguents, mais ils longs à appliquer. Sans compter le nettoyage et lavage qui occupent une part importante de la journée.

Une autre durée doit être prise en compte. Long également est le temps à consacrer à l’administratif pour être remboursé, appels téléphoniques pour obtenir une visite ou un examen spécial, etc.

Les conséquences psychologiques, sociales et financières étaient également mentionnées par les enquêtés. On doit donc (se) consacrer davantage (de recherches) à mieux documenter l’impact des maladies rares.

Les questions destinées aux malades eux-mêmes concernaient les soins spécialisés, la réhabilitation, les premiers soins de santé, la santé dentaire et estimaient la qualité de ces services.

Lorsqu’ils n’étaient pas satisfaits, les malades déclaraient :
- le plus couramment que, les médecins ignorent le diagnostic
- puis un sentiment de ne pas être pris au sérieux
- et finalement tous les symptômes sont considérés comme dérivés du diagnostic, donc « on ne peut rien faire »

À nouveau, la nécessité d’obtenir un diagnostic exact dès que possible était un point capital.

Politiques nationales contre les maladies rares

Comparaison résumée des programmes et pratiques au niveau national

Dr. Domenica Taruscio, Centre National sur les Maladies Rares, Italie

Cette présentation se base sur une étude spécifique élaborée par l’EMEA et conduite par Dr. Ségolène Aymé pour la Task Force on Rare Diseases. Le propos s'appuie par ailleurs, sur une étude menée par le projet NEPHIRD, soutenu par le Programme de Santé Publique de la DG Santé et Protection du Consommateur et coordonnée par le Dr. Domenica Taruscio.

La comparaison des initiatives nationales a été possible pour certains États membres, mais pas tous : Belgique, Danemark, Estonie, France, Allemagne, Italie, Pays-Bas, Espagne, Suède, États-Unis et Royaume-Uni.
Pas de définition standardisée sur le caractère rare
Là où la réglementation 141/2000 de l’UE sur les médicaments orphelins définit une maladie rare en utilisant le plafond épidémiologique de 5/10 000, certains États membres utilisent des plafonds différents : 1/10 000 en Suède, 1/50 000 au Royaume-Uni.

Les principales caractéristiques des programmes nationaux des États membres

<table>
<thead>
<tr>
<th>États membres</th>
<th>8 centres pour la génétique humaine affiliés aux universités</th>
<th>6 unités d’hôpitaux universitaires publics pour les anomalies métaboliques néonatales</th>
<th>le Fonds National pour la Recherche Scientifique possède un groupe de contact sur les maladies rares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgique</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Danemark</td>
<td>- 11 groupes de travail ont été formés pour établir des programmes de traitements contre 11 maladies rares spécifiques pour modèles de travail</td>
<td>- groupe de travail créé par le Conseil National de la Santé pour produire des recommandations pour l’organisation des diagnostics et des soins</td>
<td>- deux centres de référence</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Estonie</td>
<td>- la Fondation Estonienne de Science fournit des subventions pour la recherche (environ 40 à 50 000 € sur 4 ans)</td>
<td>- diagnostics néonataux de l’ADN, dépistage néonatal</td>
<td>- soutien annuel du gouvernement pour l’Association de Malades d’Estonie.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>France</td>
<td>- Programme National sur les Maladies Rares 2005-2008 (reportez-vous à la présentation d’Alexandra Fourcade ci-dessous)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Allemagne</td>
<td>- Programme National de financement pour la recherche sur les maladies rares : démarré en 2003, 5 millions d’euros en 2004</td>
<td>- financement de 10 réseaux sur les maladies rares pour une période initiale de 3 ans avec une prolongation possible après 2 ans d’exercice.</td>
<td>- il existe également un programme public sur les essais cliniques et les thérapies innovantes</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Le Réseau National sur les Maladies Rares, décret 279/2001,
prévoit :
- l’application des activités de prévention (par exemple, l’acide folique)
- le développement de la surveillance épidémiologique
- la mise en œuvre des diagnostics et de l’intervention des soins
- la promotion des informations pour les citoyens et de la formation des médecins
- le Registre National sur les Maladies Rares à l’Istituto Superiore di Sanità
- environ 500 maladies rares sont totalement couvertes (diagnostics et traitements)
- plusieurs réseaux sur les maladies rares (par exemple, la mucoviscidose)

Pays-Bas
- le Comité Directeur sur les Médicaments Orphelins :
 - établi en 2001 (Ministre de la Santé)
 - pour encourager le développement des médicaments orphelins
 - pour améliorer la situation des malades atteints de maladies rares
 - centres de référence clinique :
 - les 8 centres médicaux académiques sont les principaux centres de référence clinique
 - également d’autres hôpitaux peuvent être validés comme centres (par exemple, 16 centres pour l’hémophilie, 1 centre pour les maladies de Gaucher et de Fabry).
 - les fonds du Ministère de la Santé, de l’Aide Sociale et des Sports sont dégagés
 - pour préparer un programme sur les maladies rares et les médicaments orphelins,
 - à l’Organisation des Pays-Bas pour la Recherche sur la Santé et le Développement de la Santé (ZonMw) (jusqu’à 250 000 euros)
 - programme d’encouragement de recherche et de l’innovation (1996-2011) :
 - projets subventionnés sur les maladies rares : ~7% (50 projets sur 729 au total) en 1998-2004
 - budget annuel de 9-10 millions d’euros
 - programme de recherche sur la thérapie génique (2005-) :
 - 2 projets sont attribués sur les maladies rares
 - budget de 2 millions d’euros
 - nouveau programme sur les maladies rares et les médicaments orphelins, Ministère de la Santé (2005/2006) :
 - préparation du programme
 - budget de 250 000 euros
 - programme de BioPartner FSG/STIGON :
 - pour établir des entreprises de hautes technologies dans les sciences de la vie, y compris les produits thérapeutiques pour les maladies chroniques et rares.
 - Financé par plusieurs ministères et institutions scientifiques (budget d’environ 9 millions d’euros).
 - le Comité de Direction sur les Médicaments Orphelins octroie de l’argent pour la recherche sur les maladies rares (50 000 euros)
 - un développeur commercial de médicaments orphelins a démarré en 2005 en Hollande pour inciter chercheurs académiques et industries pharmaceutiques à développer des médicaments orphelins
 - projet financé par le Ministère de la Santé pour 4 ans
 - pour information :
 - www.orphandrugs.nl : informations générales sur les maladies rares et les médicaments orphelins
 - www.erfocentrum.nl : informations sur des maladies rares spécifiques
 - le Comité de Direction sur les Médicaments Orphelins tient d’un centre d’informations sur les maladies rares et les médicaments orphelins
- l’alliance hollandaise de malades VSOP a démarré un groupe de travail sur les maladies rares en 2000 et s'apparente à un centre d'informations pour les malades atteints de maladies rares
- le Fonds Stichting PGO subdivise les organisations nationales de malades. Il décline les maladies rares et comprend des infections très spécifiques. Cette fondation est financée par le Ministère de la Santé

Espagne - période 1999-2003
- organisme National de Recherche sur la Santé :
 - projets
 - RETICS (réseaux de recherche)
 - projet « besoins particuliers sur les maladies rares » (Ministère des Affaires Sociales)
 - Institut National de Recherche sur les Maladies Rares (Instituto de Salud Carlos III)
 - projets européens
 - période 2004 – en cours
 - Centre National sur les Maladies Rares (Ministère des Affaires Sociales)
 - 12 réseaux de recherche (par exemple, anémie de Fanconi)
 - une nouvelle stratégie nationale sur les maladies rares est en discussion
- Institut National de Recherche sur les Maladies Rares (Instituto de Salud Carlos III)
 - Comité de Direction sur les Maladies Rares (12 réseaux)
 - liste des médicaments orphelins disponibles sur le site Web REpIER
 - programme national de dépistage néonatal
 - direction des centres de diagnostics sur les maladies génétiques et métaboliques (site Web INERGEN, REC-GEN)
 - fonds publics et privés pour soutenir les organisations de malades (FEDER)
 - discussion lancée sur les centres de référence

Suède - critères du caractère rare : 100 / 1million (1 / 10 000)
- le Conseil Suédois de Recherche en Médecine soutient la recherche sur les maladies rares (1,1 millions d’euros en 2005)
 - actions financées au niveau national :
 - la Base de Données Suédoise d'Informations sur les Maladies Rares (Conseil National Suédois sur la Santé et l’Aide Sociale) : informations sur les maladies rares, services, etc. (www.sos.se/smhk)
 - le Centre Suédois d’Informations sur les Maladies Rares Smågruppscentrum, académie de Sahlgrenska, Université de Gothenburg (smagruppscentrum@sahlgrenska.gu.se)
 - Agrenska AB (www.agrenska.se) : bulletin d’informations d’Ägrenska ; projets éducatifs
 - mesures de prévention / diagnostics précoces / traitement des maladies rares :
 - le dépistage national néonatal du PKU, de la galactosémie, de l’hyperthyroïdisme congénital, de l’hyperplasie adrogénitale congénitale
 - centres : Centres de référence listés dans une catalogue national
 - coordination nationale
 - travailler en partie sur les anomalies innées du métabolisme (l’Association Nationale Suédoise pour les Pédiatres)
 - le réseau nordique contre la Mucoviscidose
 - « Sällsynta Diagnoser » (diagnostic rare) groupe d’encadrement suédois sur les maladies rares, associé à EURORDIS, bénéficie du soutien du Conseil Suédois de la Santé et de l’Aide Sociale, 110 000 d’euros par an (environ 40 maladies rares)
 - ajout des organisations de malades (supplémentaires) pour les maladies rares

Royaume-Uni - pas de catégorie mondiale pour « les maladies rares »
- beaucoup d’initiatives régionales, aucun projet national
- programme du Groupe National de Consultation d’Autorisation de Spécialistes (NSCAG) pour les centres de référence en ce qui concerne les maladies très rares :
 - définition : prévalence 1 : 50 000 ou moins
 - besoin d’un programme au niveau national
 - des services pour 32 maladies très rares ou traitements (par exemple, greffes d’organes majeurs) sont spécialement financés et contrôlés (le système a fait ses preuves pendant plus de 15 ans)
 - des services sont attribués après avoir consulté les professionnels médicaux et groupes de malades et étudié les standards de services de développement
 - une attention particulière sur cinq ensembles fondamentaux pour contrôler la qualité. Sont inclues des études sur la satisfaction des malades et l’application des taux d’accès depuis les régions isolées

En résumé :

Tableau 13

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>Belgique</th>
<th>Allemagne</th>
<th>Danemark</th>
<th>Estonie</th>
<th>Espagne</th>
<th>France</th>
<th>Italie</th>
<th>Hollande</th>
<th>Suède</th>
<th>Royaume-Uni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmes nationaux / Centres nationaux</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réseaux nationaux / Registres nationaux</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures des fonds publics sur les maladies rares (maladies rares ou groupes spécifiques)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comité Directeur sur les maladies rares au niveau ministériel</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comité Directeur sur les médicaments orphelins</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bases de données sur les maladies rares</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bases de données sur les médicaments orphelins</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recherche : Programmes spécifiques</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recherche : les maladies rares, un sujet de priorité</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soutien public pour les organisations de malades</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Différents États membres, approches plurielles:
 - variabilité des politiques
 - évaluation variable des besoins nationaux
- Beaucoup de pays possèdent des structures publiques
- Peu de pays ont des programmes nationaux
- Faiblesses des informations épidémiologiques dans l'U.E
Besoin de programmes de recherche ciblés européens (E-Rare)
Les politiques nationales doivent accorder une attention appropriée au rôle des organisations de malades

Flandres
Les initiatives pour améliorer les soins contre les maladies rares : le modèle flamand

Dr. Annick Vogels, Centre de Génétique Humaine, Leuven en Belgique

Le Centre de Génétique Humaine rassemble différentes activités clé :
- travail clinique (département de génétique clinique)
- collaboration avec les organisations de malades/soignants
- travail moléculaire (cytogénéticiens et généticiens moléculaire)
- recherche scientifique
- enseignement

Activités cliniques
La clinique génétique de Leuven offre un service de consultation génétique multidisciplinaire. Il s'attache particulièrement aux formes syndromiques des troubles rares du développement (par exemple, service intégré pour 60 personnes atteintes du syndrome de Prader-Willi, plus de 200 personnes atteintes du syndrome de délétion du chromosome 22q11). Ce service a été créé il y a vingt ans. Cette clinique génétique est un lieu de rencontre pour tous ceux qui s’intéressent aux maladies génétiques rares. Le Centre pour la Génétique Humaine de Leuven constitue un lieu pour toutes les disciplines avec un intérêt partagé pour les maladies génétiques rares et permet une interdisciplinarité (redite). Travaillent entre autre ensemble, des scientifiques en génétique, des professionnels de la santé, spécialistes moléculaires, des psychologues, des infirmiers et des travailleurs sociaux. Elle rassemble ceux qui s’intéressent aux aspects cliniques, éthiques et sociaux des maladies rares.

Activités de recherche
Le Département de Génétique Clinique du Centre pour la Génétique Humaine est une autorité internationale pour :
- L’identification de nouveaux syndromes de malformation (dysmorphologie)
- L’identification de gènes impliqués dans la pathogenèse des malformations congénitales, des retards mentaux (principalement des formes liées à l’X) et des troubles du développement en général (principalement l’autisme).

Enseignement/ Education
Le centre encourage enseignement et recherche contre les maladies génétiques rares à travers la formation. Sont accueillis des étudiants du 3ème cycle et postdoctoral, on parfait l'éducation génétique des professionnels de la santé, ont lieu séminaires et réunions, rapports et publications se multiplient / promeuvent le domaine.

Exemple du fonctionnement du centre : le syndrome Velo-Cardio-Facial : une approche multidisciplinaire
L’approche au centre est axée sur le patient lui-même. Pour cette maladie génétique, le généticien est le spécialiste référant - contact permanent du patient.
Puis, un premier cercle de médecins spécialisés participent aux soins : un cardiologue, un oto-rhino-laryngologiste, un
orthophoniste et un psychologue. Un second cercle de professionnels de soins de santé peut également intervenir si nécessaire : un orthopédiste, un pédopsychiatre, un physiothérapeute ou un endocrinologue.

En complément au traitement clinique, le centre offre également d'autres services :
- Des sessions de groupes pour **les parents et les soignants** (régime, santé physique, problèmes psychologiques, problèmes comportementaux, mise à jour des recherches scientifiques…). Les **enfants bénéficient de conseils et suivi** (régime, éducation, problèmes psychologiques)
- Visite à l’école ou à l’institution
- Collaboration avec l’association de parents (problèmes au jour le jour, réunions, recherche, informations)

La même approche est organisée pour d’autres maladies : syndrome du X fragile, syndrome de Williams, syndrome de Prader Willi, neurofibromatose, dystrophie myotonique, syndrome de Smith Magenis, syndrome de Turner, syndrome d’Angelman et syndrome de Rett.

Conclusion

L’intégration des soins, de la recherche et d’autres services utiles aux malades et aux soignants dans les mêmes installations a prouvé son utilité. L’interaction du travail clinique, moléculaire, de la recherche, de l’enseignement et de la collaboration avec l’association de parents est fructueuse. Les malades sont satisfaits et diagnostiqués tôt. Au cours des vingt dernières années, à l’exception d’un cas, tous les enfants atteints du syndrome de Prader Willi ont été diagnostiqués, avant l’âge de 2 ans en Belgique, et leur poids était (constamment) contrôlé.

Danemark

Centres de référence au Danemark

Torben Grønnebæk, Président du Centre Danois sur les Troubles Rares

Les centres de référence ne représentent qu’une partie de l’ensemble de l’organisation des soins de santé, mais ils sont importants. Ils s’assemblent au puzzle, parmi beaucoup d’autres établissements.

En 1993, le conseil danois sur la santé a lancé un rapport sur la façon de mieux organiser les soins pour les maladies rares.

De 1994 à 1996, 11 groupes de travail ont été structurés. Ils établissent des programmes de traitement de pointe pour 11 maladies spécifiques qui serviront d’études de cas. Cette réflexion a fécondé des lignes directrices de pointe

- Meilleure pratique sur le diagnostic, la surveillance du traitement et des soins
- Collecte de données, connaissances scientifiques et coordination
- Une description des problèmes sociaux, psychologiques, éducatifs et professionnels était également incluse

En 1997, a été créé par le Conseil National de la Santé un groupe de travail constitué des professionnels de la santé et des représentants de malades. Cette commission est mandatée pour faire des recommandations sur l’organisation future de diagnostics et de traitements contre les maladies rares. Cette commission est mandatée pour élaborer des stratégies sur l’organisation future...

Ces recommandations incluaient :

- L’édification de deux centres pour les maladies rares, à l’Est et à l’Ouest du Danemark.
• Le développement de programmes de référence de pointe pour des maladies rares spécifiques ou pour des classes d'entre elles.
• Une répartition des responsabilités entre les centres de référence et les hôpitaux régionaux/locaux :
 • Hôpitaux régionaux
 • Premier contact, diagnostic préliminaire, orientation vers le centre de référence
 • Surveillance des malades (surtout les enfants.
 • Veille du statut général de croissance et de santé, contact avec les autorités locales sociales et éducatives
 • Accomplissement de bilans de santé réguliers
 • Problèmes aigus
 • Contact avec le médecin de famille
 • Centres de référence
 • Diagnostic, traitement et surveillance spécialisés
 • Programmation et surveillance d'ensemble du traitement des malades
 • Coordination des mesures prises par les diverses spécialités dans une fonction d'équipe multidisciplinaire ainsi que la coordination entre le niveau central et le niveau régional
 • Consultation incluant une consultation génétique
 • Collecte, enregistrement et diffusion des connaissances sur les diagnostics et les traitements
 • Recherche et développement, développement de la qualité, formation
 • Développement de programmes de référence pour d'autres maladies
 • Coopération internationale

Certaines de ces responsabilités respectives doivent encore être clarifiées :
• Qui est responsable de la gestion de l'ensemble des soins (diagnostics, traitements, contenus et durée des bilans de santé, etc.) ?
• Qui est responsable de la coordination des soins ?

La situation aujourd'hui au Danemark

Le Danemark possède deux centres de référence :
• Le Centre pour les maladies rares de l'hôpital universitaire d'Aarhus
• La clinique pour les troubles rares de l'hôpital universitaire de Copenhague

Il reste néanmoins des problèmes, car tous n'ont pas été résolus à la création des centres. En 2003, Rare Disorders Denmark a mené une étude sur le panel de soins offert et l'indice de satisfaction du traitement. L'enquête fut menée auprès de 900 personnes atteintes de troubles rares et a obtenu 71% de réponses sur 24 organisations de malades interrogées.

Les résultats positifs ont été décrits par les personnes enquêtées : la satisfaction des malades était plus important lorsqu'ils étaient traités dans l'un des deux centres.
• Des programmes d'actions individuelles ont amélioré la satisfaction des malades
• Coordination et cohérence étaient considérées comme primordiales.
• La cohérence dans la gestion des soins nécessitait un coordinateur personnel

Des résultats moins positifs étaient également mentionnés :
• Les programmes de référence n'existent toujours que pour 11 maladies
• Les accords entre les centres et les autorités régionales n'existent pas
• Aucun coordinateur régional n’a été assigné
• Seul un faible pourcentage de malades atteints de maladies rares bénéficie d' un programme d'action individuelle
Conclusions

- Il a fallu neuf ans pour établir un rapport
- Tel quel, il peut s’appliquer à d’autres situations nationales sous quelques modifications. La rédaction d’un nouveau rapport prendrait encore plus de temps !
- Les agences du gouvernement n’ont pas étudié le processus de mise en place
- La direction dans deux hôpitaux universitaires où les centres sont placés n’a accordé aucune attention aux demandes de rapports
- Le personnel des centres doit être mieux formé : il n’y a pas d’espace pour l’amélioration de la coordination des soins, de la programmation et du dialogue avec les médecins locaux
- Le rôle des organisations de malades n’a pas été formalisé dans la mise en place du processus
- Comme on élève des enfants, les petits enfants ont sans cesse besoin d’attention chaque jour, chaque minute….

France

Dr. Alexandra Fourcade, Département pour l’Organisation des Soins de Santé, Ministère de la Santé

- Professionnels et malades manquent de connaissances et d’informations. Ce défaut cause des diagnostics erronés
- Pas de stratégie mondiale pour les maladies rares : les moyens cliniques sont basées sur le choix individuel plutôt que des structures spécialisées organisées.
- Les différences de remboursement des soins, des indemnités et dans l’accès aux produits thérapeutiques
 - Manque de surveillance épidémiologique de ces maladies
 - Inventaire en cours des projets de recherche actuels (groupe d'intérêt scientifique, Pr. A. FISCHER).
 - Manque d’adaptation entre les innovations thérapeutiques et leur financement (réforme du financement des hôpitaux).

Stratégie
- L’organisation des soins de santé (Pr. L.GUILLEVIN, Hôpital Cochin, Paris)
- Information, éducation (Dr S.AYME, ORPHANET)
- Recherche (Pr. A. FISCHER, GIS - Institut des maladies rares)
- Surveillance épidémiologique (Dr. J. BLOCH, INV)
- Stratégies de dépistage (Pr. D. SICARD, Comité National sur l’Éthique)
- Soutien social et psychologique et accès aux produits thérapeutiques (Alliance Maladies Rares, Eurordis)

10 axes
Augmentation des connaissances sur l’épidémiologie des maladies rares
Reconnaissance de la spécificité des maladies rares (enregistrement sur la liste des maladies à long terme)
Amélioration de l’information aux malades, aux professionnels de la santé et au public
Amélioration de la formation des professionnels de la santé
Organisation de dépistages et d’accès aux tests de diagnostics
Amélioration de l’accès aux systèmes de soins de santé et de la qualité des soins
Maintien des efforts de développement des produits thérapeutiques orphelins (OMP)
Réponse aux besoins spécifiques des malades dans les réformes pour les handicaps
Amélioration du dynamisme de la recherche et de l’innovation
Amélioration du développement de partenariats nationaux et européens

Financement

<table>
<thead>
<tr>
<th>Priorité 1</th>
<th>Augmenter les connaissances sur l’épidémiologie des maladies rares</th>
<th>2 millions €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorité 2</td>
<td>Reconnaître la spécificité des maladies rares (enregistrement sur la liste de troubles chronologiques à long terme)</td>
<td>3,2 millions €</td>
</tr>
<tr>
<td>Priorité 3</td>
<td>Développer des informations pour les malades, les professionnels de la santé et le grand public en ce qui concerne les maladies rares</td>
<td>0,4 millions €</td>
</tr>
<tr>
<td>Priorité 4</td>
<td>Former les professionnels de la santé pour mieux les identifier</td>
<td>20 millions €</td>
</tr>
<tr>
<td>Priorité 5</td>
<td>Organiser des dépistages et l’accès aux tests de diagnostics</td>
<td>30 millions €</td>
</tr>
<tr>
<td>Priorité 6</td>
<td>Améliorer l’accès aux systèmes de soins de santé et de la qualité des soins de santé</td>
<td>22,5 millions €</td>
</tr>
<tr>
<td>Priorité 7</td>
<td>Maintenir les efforts de développement des produits thérapeutiques orphelins</td>
<td>0,6 millions €</td>
</tr>
<tr>
<td>Priorité 8</td>
<td>Répondre aux besoins spécifiques des malades atteints de maladies rares</td>
<td>20 millions €</td>
</tr>
<tr>
<td>Priorité 9</td>
<td>Promouvoir l’avancée de la recherche et de l’innovation</td>
<td>0,16 millions €</td>
</tr>
<tr>
<td>Priorité 10</td>
<td>Développer des partenariats nationaux et européens</td>
<td>98,86 millions €</td>
</tr>
</tbody>
</table>

Centres de référence
Organiser les soins de santé autour de quelques « centres répertoriés de référence » :
- Les centres de direction déjà reliés à d’autres pôles de soins, dont le soutien sanitaire et social,
- Les centres de direction pour l’expertise scientifique (recherche clinique, médicaments basés sur les preuves),
- 18 groupes sur les maladies rares sélectionnés par un comité d’experts,
- entre 90 et 100 « centre répertoriés de référence » à la fin du programme.
- Les centres d’expertise pour une maladie rare ou un groupe de maladies rares,
- Niveau sous-national / régional, national ou européen.

Missions
- Seconde opinion pour établir ou confirmer le diagnostic,
- Émission et circulation de lignes directrices cliniques et organisationnelles,
- Information et éducation professionnels (de la santé), des malades et leurs familles,
- Recherche et surveillance épidémiologique,
- Coordination des réseaux sanitaires et sociaux.

Critères d’évaluation
- Activité (nombre de malades)
- Organisation du processus de gestion médicale
 - Expertise multidisciplinaire,
 - Prescription et suivi des produits thérapeutiques orphelins chers,
 - Plateforme technologique (tests biologiques hautement spécialisés, biologie moléculaire)
 - Coordination des réseaux
 - Information / formation (malades, professionnels de la santé, réseaux)
- Recherche :
 - publications
 - projets cliniques et de recherche financés
- Production des lignes directrices sur les bonnes pratiques
- Surveillance épidémiologique, développement des indicateurs de santé associés.

Centres sélectionnés : pas de critère géographique
- Maladies rares sélectionnées
 - Une maladie extrêmement rare : le syndrome d’Ondine (1 centre national de référence accrédité)
 - Ou maladies neuromusculaires : 2 centres accrédités en 2004.10 environ sont prévus à la fin du programme.

Conclusions
Centres répertoriés sur les maladies rares :
- Une opportunité de mettre en place une voie clinique pour les malades et leurs familles,
- Un lieu pour définir et instituer des lignes directrices cliniques et organisationnelles,
- Un lieu pour la prescription initiale des médicaments orphelins,
- Un réseau d’experts sur les maladies rares pour conseiller le Programme National d’Assurance Maladie en France.
Bulgarie

Importance des centres de référence - promoteurs et sensibilisateurs aux maladies rares en Europe

Poster 1, Dr. Rumen Stefanov, MD, PhD,Centre d’Information sur les Maladies Rares et les Médicaments Orphelins (ICRDOD), Bulgarie.

Si les centres spécialisés sur les maladies rares en Europe sont en très petit nombre, leur impact sur la santé publique est néanmoins énorme :

1. Pour les malades, parents et médecins, ils actualisent des informations de qualité sur la maladie.
2. Ils multiplient les données sur les cadres des hôpitaux, laboratoires génétiques, cliniques et les principales équipes médicales.
3. Ils affinent l’information sur l’épidémiologie des maladies rares.
4. Passerelles entre les malades et les systèmes publics de soins de santé, ils défendent le droit de recevoir des soins de qualité.

Un groupe d’experts a soumis une proposition officielle au Ministère de la Santé en Bulgarie pour l’établissement d’un programme national sur les maladies rares et les médicaments orphelins.

Avec la Fondation pour la Prise en Charge et le Traitement de la maladie angiomateuse fatale (Hongrie), a été organisé le premier atelier sur les angio-oédèmes héréditaires (HAE) en Bulgarie. Un centre HAE a donc été créé, des tests immunologiques ont été octroyés et plusieurs cliniciens ont été formés pour accentuer la qualité des soins de santé.

Le colloque a réuni 14 orateurs, 132 inscriptions, 97 personnes (représentants d’académies (73%), gouvernement (14%), associations de malades (8%) et industrie (5%)). L’Union des Philatélistes de Bulgarie a publié une couverture à l’occasion de l’inauguration et créa une marque postale spéciale. Un tel événement est capital pour amplifier l’audience des maladies rares et cette conférence a eu un grand impact sur l’opinion public.

En conclusion, la création de centres pour les maladies rares dans chaque État membre doit être encouragée, car les États membres sont très différents (par leur système de soins, leur langue, leur statut économique, traditions, etc.) et il est difficile de les unifier à l’échelle européenne.

Espagne

L’organisation du système de soins de santé: la régionalisation peut être au détriment des malades.

Photo 57, Cristina Salinas, Facultad de Farmacia, Universidad de Barcelona.

Les auteurs ont exploré les conséquences de la régionalisation de l’accès aux soins.

La Constitution Espagnole de 1978 établit dans son Article 2 la reconnaissance de l’autonomie des régions. L’Article 148 fixe leurs compétences et leur attribue entre autres la santé. L’Article 149, paragraphe 16 définit les compétences exclusives de l’État en matière de santé. «La santé à l’étranger, bases et coordination générale du secteur ; législation sur les produits pharmaceutiques ».

Le cas de la phénylcétonurie est un exemple des conséquences de la régionalisation des soins de santé. Il est essentiel de détecter cette pathologie chez les nouveau-nés afin de prévenir de futures complications comme de graves retards mentaux et altération cerveau, maladie mentale, des attaques, tremblements et problèmes cognitifs. Pour prévention secondaire, un régime spécifique pauvre en protéines peut être prescrit aux premiers jours de la vie (les malades ont besoin de produits sans phénylalanine).

Ce régime adapté n’est pas un produit pharmaceutique en soi, et ne relève donc pas de la compétence de l’État central. Toutefois, les produits sans phénylalanine sont beaucoup plus chers que les produits courants (se reporter à la figure 33). Les produits spécialement fabriqués à teneur réduite en phénylalanine sont plus cher et ont un impact économique sur les familles. Mais, la disponibilité et l’accès (remboursement) varient d’une région à l’autre.

Figure 33 : coût de quatre produits sans phénylalanine par rapport à des produits courants. Différentes régions en Espagne nuancent leurs programmes lorsqu’elles répartissent ces produits. Ils sont vendus en pharmacies similaires à des coopératives, sont remboursés partiellement ou non… Même lorsque les produits sont disponibles à prix coûtant, ils demeurent plus chers que les produits courants.
Luxembourg
Organisation d’interventions thérapeutiques dans les maternelles et les écoles au Luxembourg

Liz Gondoin-Goedert, Président de l’« Association Luxembourgeoise pour les personnes atteintes de maladies neuromusculaires et de maladies rares » ALAN asbl

Liz Gondoin-Goedert a expliqué comment les soins sociaux pour les enfants atteints de maladies rares sont organisés au Luxembourg. Après évaluation des problèmes d’un enfant à l’hôpital, ses parents contactent un groupe de soutien ou un travailleur social pour s’informer sur leurs droits.

Ils apprennent notamment que leurs allocations familiales (indemnités financières) ont doublé. Dans certains cas, les parents peuvent obtenir des congés supplémentaires ou bénéficier d’une réduction d’impôts.

Les interventions médicales précoces pour les enfants au Luxembourg
Lorsque commencent les interventions précoces, les enfants peuvent rester pendant un certain temps à l’hôpital.

A leur retour à la maison, l’équipe d’une organisation médicale (hôpital, centre de réhabilitation ou association pour les interventions précoces) les prend en charge.

À l’âge de 4 ans, on les inscrit dans une organisation éducationnelle.

De nombreux services sont disponibles pour ces enfants : Beaucoup d’entre eux s’adressent à ceux ayant des besoins particuliers, qui né cessitent des soins au cours de leur petite enfance. Les services de thérapie fonctionnelle ou pédagogiques se déclinent comme suit :

- Le Service de thérapie en maternelle et centre d’aide pour les enfants
- Le département d’interventions orthopédagogiques à la maternelle (SIPO)
- Le groupe d’étude et d’aide pour le développement des enfants (GEADE)
- La section d’éducation à la maternelle du centre d’orthophonie
- Services ambulants pour les interventions thérapeutiques précoces à l’école (SREA)

Il est important de proposer, la thérapie précoce à ces enfants.

Le service de thérapie à la maternelle rassemble différents spécialistes - médecins et personnel paramédical : pédiatres, physiothérapeutes, orthophonistes, ergothérapeutes, pédagogues et psychologues _ prennent en charge bébés et enfants entre 0 et 4 ans, présentant un ou plusieurs problèmes de :

- Difficultés motrices
- Difficultés sensorielles
- Difficultés comportementales
- Difficultés développementales
- Problèmes de communication et de langage
- Problèmes de déglutition

Le but du service d’intervention orthopédagogique à la maternelle, créé en 1980, offre une stimulation pédagogique au sein de la famille, aux bébés et aux jeunes enfants atteints de déficiences motrices ou à des enfants retardés. Les interventions précoces s’adressent aux enfants qui, de 0 à 4 ans, présentent des troubles du développement ou des déficiences (mobilité, comportement, langage, perception).

Un autre service - le groupe d’étude et d’aide pour le développement des enfants. Dès que possible (entre 0 et 4 ans), il tente de réduire et améliorer les altérations du développement liés à l’environnement social et familial. Un service d’informations renseigne sur toutes questions concernant le jeune enfant. Enfin sont proposés, des groupes de jeux animés par des éducateurs.
Le **Service éducation à la maternelle du centre d'orthophonie** est conçu pour les enfants de 2 à 4 ans et se concentre sur les problèmes d’expression et/ou d’audition.

Les **services extra-hospitaliers des interventions thérapeutiques précoces à l’école (SREA)** coopèrent avec différents départements du secteur. Ce service extra-hospitalier intervient lorsqu’un enfant rentre à l’école et détermine son potentiel à suivre le programme scolaire. Avec ce service, un enfant peut être pris en charge entre 3 et 12 heures par semaine.

- Pour le soutien éducatif
- pour le soutien pédagogique
- pour soutenir l’intégration de l’enfant dans l’école

De la maternelle au lycée, ce département aide les enfants à poursuivre leur cursus scolaire normalement.

Ceux nécessitant des soins paramédicaux - besoin de vider la vessie, de nettoyer les tubes, etc. - peuvent être suivis pendant les vacances scolaires.

Les groupes de physiothérapeutes offrent leurs services l’école, sous autorisation de l’enseignant, du directeur ou du maire.

Les physiothérapeutes peuvent également offrir leurs services aux infirmières en cas de besoins (supplémentaires): thérapie respiratoire, thérapie pour les enfants atteints de plexus facial et thérapie pour les enfants atteints de maladies neuromusculaires.

Aspects financiers

En général, les associations ont signé un contrat avec l’État du Luxembourg et, la plupart de ces services sont ainsi couverts financièrement.

Appareils et équipements médicaux spécialisés

Si, nombreux sont les cas où les malades sont confrontés à un large panel d’équipement médical spécialisé (les pays voisins proposent un choix vaste) leurs médecins n’en mesurent pas toujours l’étendue.

Une fois le nouvel équipement choisi, les malades ont du mal à rembourser si l’appareil n’est pas couvert par une assurance.

Bien que les systèmes d’assurance maladie soient très ouverts aux nouvelles inventions et techniques éprouvées, de longues (périodes de) procédures administratives demeurent nécessaires pour les laisser apparaître dans le catalogue officiel (des appareils remboursés).

Une organisation de malades est dans ce cas importante. Elle aide les familles à alléger leur fardeau administratif (obtention de l’appareil et remboursement.)

Conclusions

En général, nous souhaiterions un rassemblement des autres services pour promouvoir les interventions de traitement à l’école, pendant les vacances scolaires ou durant les cours de sport.

Il est primordial d’aider ces enfants à développer une vie sociale normale et à pouvoir participer aux activités de temps libre comme les autres. Nous souhaitons (donc) que davantage d’écoles, voire toutes, participent à ce programme.

Région de Veneto

La loi italienne 279/2001

Poster116, Paola Facchin, Unité de Médecine sur l’Épidémiologie et la Communauté, Département de pédiatrie, Université de Padua

La loi italienne 279/2001 a créé un régime spécial de prestations pour les malades atteints de maladies rares. Selon cette réglementation, les régions italiennes ont la responsabilité de créer un
réseau d'hôpitaux spécialisés sur les structures existantes à l'excellence attestée (dans le domaine des soins et de la recherche).

Depuis 2000, la région de Veneto – nord-est de l'Italie, 4,5 millions d'habitants - a instauré un système de veille et d'écoute sur place pour les maladies rares. Ce système apporte :
- des traitements et des soins spécifiques pour les maladies rares, basés sur un réseau de services de santé, décliné par type de maladies rares
- des outils de diagnostics, des médicaments orphelins et autres produits pharmaceutiques gratuits
- un système d'informations inter-hospitalier, passerelle entre les centres de santé locaux, les pharmacies, 3 500 médecins généralistes et les pédiatres. Un registre clinique est également en ligne pour les malades
- les services fournis directement au domicile du patient
- les données épidémiologiques utiles aux responsables pour la programmation santé et les processus d'évaluation.

Le système
Cadre technologique
Situés dans les hôpitaux universitaires et les hôpitaux régionaux, les centres sélectionnés pour les troubles rares sont connectés par un réseau intranet. 55 centres de santé sont reliés aux services pharmaceutiques et 3 500 médecins généralistes. L'ensemble alimente la base de données Oracle centrale unique à travers 3 niveaux avec une application Java de navigateur Web.

Contenu des informations, flux et gestion
Toutes les données collectées sont axées sur les malades. Chacun d'entre eux, nouvellement identifié est répertorié dans le système par diagnostic et certification de sa maladie. Là, commence son enregistrement clinique de santé. (En temps réel), sont immédiatement disponibles toutes les informations, et notamment celles des programmes cliniques et gestion définis par le centre d'excellence. Les centres de santé, médecins généralistes et malades peuvent l'investiguer moyennant un code-clé individuel. Les prescriptions de médicaments et de produits diététiques sont directement envoyés aux malades (à leur domicile). Toutes les informations collectées sont organisées, augmentant les connaissances sur l'histoire naturelle des troubles rares.

Activité
De 2000 à octobre 2004 :
- 4,5 millions d'habitants contrôlés
- 8 961 malades inscrits
- 8 012 enregistrements cliniques de santé et programmes de traitement disponibles en ligne
- 4 234 prescriptions de médicaments ou de produits diététiques
La répartition des âges est illustrée en figure 34. Les cas pédiatriques représentent 24,9% de tous les malades atteints de maladies rares qui sont enregistrés dans le registre. Les jeunes adultes (entre 15 et 39 ans) représentent 37% du fichier actif. Depuis octobre 2004 jusqu’à maintenant, la création de Wide Area (WA) dédié aux maladies rares a aidé au repérage des données. (Cet organisme inclut la région de Friuli Venezia Giulia et de la région Trentino Alto Adige (provinces de Trento et Bolzano). Grâce à Wide Area:

- 7 millions d’habitants ont pu être contrôlés
- 14 141 malades ont pu être enregistrés

Répartition des maladies

9 000 patients atteints de maladies rares – région de Veneto 2001-2004

Figure 35
Réseaux de malades

Vivre avec une maladie rare: l’importance du rôle joué par une association

AMSN (Association des Malades atteints du Syndrome Néphrotique)
Poster 8, Philippe Juvin, Nicole Lhermitte, Gérald Genthon-Troncy

Le syndrome néphrotique idiopathique se caractérise par une protéinurie massive. La prévalence est d’environ 16/100 000 chez les enfants et probablement inférieure chez les adultes. La cause du syndrome néphrotique idiopathique reste inconnue, mais il pourrait s’agir d’un trouble primaire des lymphocytes T entraînant un dysfonctionnement du podocyte glomérulaire. Les études génétiques chez les enfants atteints de syndrome néphrotique familial ont identifié des mutations des gènes qui encodent d’importantes protéines de podocyte.

Traitement
Afin d’éviter des effets extrêmes de la protéinurie, les médicaments utilisés dans le traitement de ce syndrome incluent des corticoïdes, le lévamisole, le cyclophosphamide, le mofetil et la cyclosporine. La réponse des corticoïdes est dans la logique du type histologique du syndrome néphrotique. Ces médications ont de considérables conséquences. De hautes doses de traitement aux corticoïdes peuvent engendrer l’obésité, des retards de croissance et une augmentation de la sensibilité aux infections, à l’hypertension, à l’ostéoporose, aux cataractes et au diabète sucré.

Objectifs de l’AMSN
L’association a été créée en janvier 2003 avec pour objectif de :
- Cesser d’isoler des malades atteints du syndrome néphrotique et de les mettre en contact les uns avec les autres ...
- susciter un dialogue et fournir des informations sur les contraintes et effets secondaires des traitements
- agir ensemble pour optimiser les traitements et soutenir la recherche.

Projets de l’AMSN
- Une brochure d’informations à publier dans les unités de néphrologie
- Un livret pratique pour les familles
- La promotion de la recherche sur les syndromes néphrotiques (financement, récompenses)
- Actions (de concert) avec les autorités et laboratoires spécialisés pour reconnaître cette infirmité et en rembourser les coûts. (Par exemple, l’hormone de croissance est efficace et lutte contre la diminution de croissance chez les enfants due aux corticoïdes)
- La vigilance contre l’abandon des produits à rentabilité basse, comme le lévamisole
- Une réunion d’information annuelle entre les familles, les médecins et les chercheurs.
Formation et information

Les guides de bonnes pratiques de soins et de prise en charge

Lignes d’écoute et informations écrites

Lesley Greene, Climb, le Centre national d’information et de conseils sur les maladies métaboliques

Lorsque les parents et les malades vivent l’expérience d’une maladie rare, ils ont besoin immédiatement d’informations importantes :

- Sur la fidélité du diagnostic,
- Sur l’état des recherches,
- Sur l'identification des spécialistes ou centres d’excellence / centres de référence
- Sur les options de traitement.
- Ce que l’avenir réserve.

Qui a besoin de savoir ?

Les malades et les parents diffèrent par des conditions rares et ultra-rares, en leur culture et langue, par leur localisation géographique, etc.

Le programme et actions pour les maladies rares (PARD 3) se composait :

- d’une étude qualitative interrogant 31 associations
- d’une étude quantitative : analyse de 372 questionnaires retournés par 18 pays, une vue d’ensemble sur les besoins, les sources d’informations, les outils, les services et les attentes

Figure 36

Première solution : un manuel et des lignes directrices (se reporter à la figure 36)

L’un des principaux objectifs était d’identifier les sources d'information pour les lignes d’aide. Auprès de deux sources principales : médecins spécialistes et conseillers médicaux. Le réseau des maladies rares suit (reportez-vous à la figure 37). Les sites Web n’étaient que quatrième. « Son propre médecin » et « les organisations gouvernementales » avaient peu d’informations à fournir sur les maladies rares : cela illustre dans quelle mesure la communauté des maladies rares manque d’informations.
Figure 37: source principale d'informations pour les services d'aide

L'étude a également exploré les sources de financement pour les services : les organisations comptent principalement sur les donateurs membres et les donateurs privés, suivis par les opérations de
collecte de fonds. Les administrations privées et publiques représentaient des ressources secondaires de

Figure 38 : Sources de financement : pourcentage d’organisations mentionnant la source

sources secondaires de financement. Les pays comprenant des gouvernements régionaux (l’Espagne, l’Italie) s’attendaient à ce que la région soit la source de financement et là où le soutien à la recherche par des groupes de malades est plus important (Europe Occidentale), l’industrie aurait pu financer davantage. Les organisations gouvernementales et les établissements européens étaient loin dans la liste. La fragilité des ressources de financement signifie que n’importe quel service aura des problèmes de cohérence pour être à même de continuer à travailler de manière efficace.

Un autre aspect important était d’évaluer comment la qualité des lignes d’assistance était atteinte et contrôlée. 63% des lignes d’assistance utilisaient des bénévoles et pour 81% des lignes d’assistance, le service se trouvait dans une aire respectant la confidentialité. 86% ont gardé contact avec l’appelant, donc ils développent véritablement une relation avec les appelants.

Qui sont les personnes qui demandent ces informations ? Figure 39

Les malades eux-mêmes recherchent activement des informations : ils représentent 54% des demandes, bien que les maladies rares soient souvent invalidantes. Il y avait une différence nette entre la mère et le père : les rôles sont répartis entre la mère en tant que soignante et le père en tant que source de revenu pour la famille. Les pères peuvent parfois refuser de reconnaître la maladie.

Dans quelle mesure les lignes d’assistance étaient-elles accessibles ?

Les lignes d’assistance qui sont opérées par des personnes qui ne sont pas payées, depuis chez elles, sont disponibles 24h/24, 7 jrs/7. Une fois que du personnel payé est employé, probablement parce que les lignes d’assistance développent la « force électronique » (sites Web, etc.), alors les lignes d’assistance fonctionnent aux heures de bureau.

Dans quelle mesure les besoins des appelants ont-ils été satisfaits ?

L’ensemble des besoins des appelants ont été satisfaits et les lignes d’assistance pouvaient fournir les informations requises. Les organisations se sont montrées réticentes à discuter ou à révéler des informations sur les pronostics.
Figure 40 : questions posées et réponses reçues

Quel est l’impact du manque d’information ?
Les impacts très négatifs du manque d’information sont listés ci-dessous :

Tableau 14

<table>
<thead>
<tr>
<th>Type d’impact</th>
<th>Mentionné par % de répondants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation/Soins inappropriés</td>
<td>63%</td>
</tr>
<tr>
<td>Mauvaise prise de décision</td>
<td>59%</td>
</tr>
<tr>
<td>Frustration</td>
<td>58%</td>
</tr>
<tr>
<td>Sentiment d’impuissance</td>
<td>49%</td>
</tr>
<tr>
<td>Peur</td>
<td>48%</td>
</tr>
<tr>
<td>Soutien financier insuffisant</td>
<td>36%</td>
</tr>
<tr>
<td>Colère</td>
<td>32%</td>
</tr>
</tbody>
</table>

Conclusions
Les lignes d’assistance et les informations écrites sont les principaux services fournis aux organisations de malades, avec des malades et des mères comme principaux utilisateurs.

Pour assurer la qualité des lignes d’assistance, les conditions suivantes ont été acceptées :
- Les bénévoles et le personnel rémunéré doivent être formés et les prestations doivent être contrôlées et évaluées
- Les lignes d’assistance pour développer un outil commun
- Des services matures peuvent guider des services en développement
- La base du financement doit être soutenue par les gouvernements et l’UE pour la stabilité et la continuité

Pour assurer l’accès aux lignes d’assistance :
- Les groupes de malades, plus fiables sources d’information, doivent augmenter les réseaux
- Les professionnels intéressés ont besoin d’une source centrale à laquelle ils peuvent se référer en toute confiance
- Les brochures doivent être uniformes, de haute qualité, dans un langage approprié aux utilisateurs dans chaque région (appropriés également au niveau d’éducation)
Les sites Web doivent être faciles d’utilisation et liés les uns aux autres pour des prestations optimales.

Deuxième solution : un nouvelle initiative Eurordis, le projet Rapsody

Rapsody : Solidarité pour les malades atteints de maladies rares (projet soumis dans le cadre de l’appel d’offres 2005 du programme de la Communauté Européenne sur la santé publique). Ce projet vise à améliorer l’accès aux services essentiels et leur qualité au niveau de l’UE. Dans ce projet, une action concertée pour les lignes d’assistance sur les maladies rares en Europe (CARHE) est programmée.

- Elle établira un réseau en UE de lignes d’assistance sur les maladies rares
- Elle développera des outils standardisés pour la collecte de profils
- Elle donnera une formation pilote aux conseillers des lignes d’assistance
- Elle instaura un observatoire européen pour collecter les procédures et enregistrer les données
- Et elle développera un système d’identification et de réseaux destiné aux malades très isolés

Ressources Internet pour la communauté des maladies rares

![Prof. Jörg Schmidtke](image)

Prof. Jörg Schmidtke, Coordinateur d’Orphanet en Allemagne, Institut de Génétique Humaine, École de Médecine de Hanovre

Internet est un outil puissant, à la fois pour

- **diffuser les informations**
 - à tous les intéressés
 - adaptées à tous
 - accessibles mondialement
- **créer des réseaux virtuels**
 - pour mettre un terme à l’isolation
 - pour promouvoir la collaboration
 - pour créer des communautés

De 1997 à 2004, le Directorat Général de Santé DG et de Protection des Consommateurs a soutenu des réseaux qui utilisent largement Internet comme outil de communication. Pour en mentionner quelques-uns qui ne pourraient pas fonctionner sans Internet :

- Les **maladies pulmonaires** rares : mise en place de critères de diagnostiques et de centres de référence / de formation (Prof. Popper, Autriche)
- Réseau d’information sur les **immunodéficience**s (Prof. Vihinen, Finlande)
- Euromusclenet : **maladies musculaires** en tant que prototype de troubles rares et invalidants : création d’un réseau européen d’informations (Prof. Spuler, Allemagne)
- **Neutropénie chronique grave** : réseau européen sur l’épidémiologie, la pathophysiologie et le traitement (Dr Schwinzer, Allemagne)
- **Maladies rhumatismales pédiatriques** : un réseau européen d’informations (Prof. Martini, Italie)
- Transfert d’expertise sur les **maladies métaboliques** rares chez les adultes (Prof. de Valk, Pays-Bas)
- **Anémie congénitale** rare : réseau européen d’informations (Prof. Vives Corrons, Espagne)
- Association Charge et **Syndrome d’Usher** en Europe (Mr. Hawkes, Royaume-Uni)
- Formes rares de **démence** (Alzheimer Europe)
Tous les projets menés par des professionnels de la santé incluaient plus ou plus le même type d’approche :
- Production d’informations pour les malades et les professionnels de soins de santé
- Répertoire de services (cliniques, laboratoires, groupes de soutien)
- Système basé sur le Web pour la collecte de données épidémiologiques
- Forum de discussion entre les professionnels

Plus d’informations et d’outils éducatifs choisis sur Internet
- www.esgh.org (ESHG)
- www.genetests.org (Genetests)
- www.kumc.edu/gec/prof/genecour (Université du Kansas)
- www.humgen.umontreal.ca/int/ (Prof. Bartha M. Knoppers)
- www.vh.org (Hôpital virtuel)

Limites d’Internet en tant que source d’informations
Inconvénients souvent mentionnés en faisant référence à Internet en tant que source potentielle d’informations
- Pas trop peu, mais trop d’informations
- Pas de règles de validation
- Les recherches d’informations peuvent prendre du temps
- Une expérience qui peut s’avérer frustrante

Ainsi, une question importante se pose …
Comment NAVIGUER (et s’en sortir) dans le domaine des informations sur les maladies rares ?

Une solution est proposée par Orphanet :
- un seul point d’entrée pour toutes les maladies rares documentées
- informations contrôlées par des pairs
- révision annuelle
- mise à jour permanente

Le service ne se limite pas à fournir des informations. Un objectif ambitieux est d’identifier les fossés existant dans la lutte contre les maladies rares et de structurer les informations de manière à promouvoir les collaborations et les contacts, par exemple :

<table>
<thead>
<tr>
<th>Problèmes abordés</th>
<th>Outils fournis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manque d’informations</td>
<td>Encyclopédie sur les maladies rares</td>
</tr>
<tr>
<td></td>
<td>• articles et extraits de revues</td>
</tr>
<tr>
<td></td>
<td>• rédigés par des experts</td>
</tr>
<tr>
<td></td>
<td>• révisés par des pairs</td>
</tr>
<tr>
<td></td>
<td>• plus de 1 300 maladies</td>
</tr>
<tr>
<td>Manque d’expertise</td>
<td>Répertoire d’experts</td>
</tr>
<tr>
<td>Trop peu de collaborations et de partenariats</td>
<td>Répertoires de projets de recherche (échanges d’orphelins, voir infra)</td>
</tr>
<tr>
<td>Difficultés à inscrire des bénévoles dans les essais cliniques</td>
<td>Répertoire d’essais cliniques</td>
</tr>
<tr>
<td></td>
<td>Service de recrutement en ligne</td>
</tr>
</tbody>
</table>

Orphanet est également un répertoire de services, dans 20 pays :
- Cliniques
- Essais
- Projets de recherche
• Groupes de soutien
• Réseaux
• Registres
• Essais cliniques

Les pays participants ont rejoint le projet d’une façon irrégulière, en raison de contraintes financières :
1997 : France
2001 : Belgique, Italie, Suisse, Allemagne
2002 : Espagne, Autriche
2003 : Portugal
2004 : Irlande, Royaume-Uni, Finlande, Danemark, Estonie, Lettonie, Roumanie, Grèce, Turquie, Bulgarie, Pays-Bas, Hongrie

Typologie des utilisateurs d’Orphanet

Tableau 16

<table>
<thead>
<tr>
<th></th>
<th>Parmi 12 000 utilisateurs quotidiens en mars 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malades et familles</td>
<td>Malades 14,1%</td>
</tr>
<tr>
<td>Malades</td>
<td>14,1%</td>
</tr>
<tr>
<td>Parents</td>
<td>8,3%</td>
</tr>
<tr>
<td>Famille</td>
<td>10,9%</td>
</tr>
</tbody>
</table>

Contenu actuel de la base de données

- 3 713 maladies et synonymes
- 2 463 extraits (traduction en cours)
- 624 articles de revues
- 751 laboratoires de diagnostiques pour 943 maladies
- 1 952 projets de recherche sur 1 154 maladies
- 858 organisations de malades associées à 1 431 maladies
- 1 312 cliniques spécialisées
- 4 832 professionnels de la santé
- 4 379 autres pages Web

Futurs développements

- détailler les données
- établir une encyclopédie destinée aux non professionnels
- pour obtenir plus de financements national
- pour éditer et distribuer des versions imprimées spécifiques aux pays
- pour s’établir en tant que partenaire des intéressés dans les maladies rares à des niveaux nationaux

Formation des familles et des soignants en Norvège

Britta Nilsson, Centre Frambu sur les troubles rares, en Norvège

Un mot à propos de Frambu

- Frambu est un centre national sur les troubles rares
- Il recouvre environ 60 troubles
Il propose des services aux utilisateurs, aux familles et aux professionnels locaux et régionaux
Il propose également des services et supplémentaires et des services sociaux
Il est financé par le Ministère de la Santé et les Services de Soins
Frambu est l’un des 17 centres sur les troubles rares en Norvège
La Norvège bénéficie d’une longue expérience en programmes nationaux sur les maladies rares, le premier a été lancé en 1990 et a duré jusqu’en 1993 ; le plus récent a été lancé entre 1994 et 1997.

Groupes de maladies couvertes par Frambu
- Les syndromes et les troubles génétiques avec les délais de développement
- Troubles des chromosomes sexuels
- Syndromes de surcroissance
- Troubles musculaires apparaissant à l’enfance
- Encéphalopathies progressives
- Syndromes neurocutanés

Un lieu de dialogue
Frambu est un lieu de dialogue pour les utilisateurs, les familles, les frères et soeurs et les professionnels. Les utilisateurs/familles peuvent acquérir des connaissances, prendre des conseils auprès des professionnels, échanger leurs expériences, discuter de sujets différents, bénéficier d’activités physiques, se focaliser sur la lutte, les relations, l’estime de soi et l’autonomisation et forger des relations d’amitié durables.....

Activités internes
Frambu propose une large gamme de services à ses utilisateurs :
- Des cours d’information pour les utilisateurs et les familles
- Des camps d’été
- Des écoles et des maternelles
- Des rassemblements saisonniers pour les représentants des organisations d’utilisateurs
- Des ateliers, des séminaires et des conférences

Combien de personnes participent aux activités de Frambu ?
Cours d’informations pour les familles et les utilisateurs : un total de 1 160 personnes ont séjourné à Frambu en 2004 ; 453 utilisateurs (malades), 499 parents et 208 frères et soeurs.
Quatre camps d’été différents ont été organisés en 2004, pour 101 enfants entre 10 et 16 ans et pour 74 autres, entre 17 et 30 ans. Ces camps ont duré deux semaines et les enfants séjournent seuls dans les camps, aucun parent ou frère ou soeur n’étaient présents.

Formation
Les cours pour les utilisateurs et les familles
La formation principale est liée au diagnostique, mais pas seulement : il existe des droits sociaux et des pronostics, la génétique et la vie quotidienne sont également couvertes. Cela consiste en un cours de présentation de deux semaines, suivi d’un cours d’une semaine sur la scolarité, les droits sociaux, l’amitié, s’installer dans son propre logement, le soutien technique, les passe-temps…
Lorsque les parents écoutent les lectures, en participant à des groupes de discussion ou en prenant conseil auprès d’experts, les enfants sont à la maternelle ou à l’école. La maternelle et l’école accueillent toutes deux les enfants atteints de maladies, ainsi que leurs frères et soeurs. Des éducateurs spécialisés ont été formés pendant plus de vingt ans.
Activités / formations mobiles
La diffusion des informations, la collaboration et la consultation dans la communauté locale où vit l’utilisateur :
- Ateliers et séminaires dans différentes régions, communautés
- Collaboration avec des établissements cliniques et des instituts de recherche
En 2004, des visites depuis Frambu ont pu être rendues à un total de 150 utilisateurs et leurs professionnels. En général, deux professionnels, par exemple un médecin et un éducateur spécialisé, se déplacent dans la communauté des utilisateurs pour une diffuser les informations et collaborer avec les professionnels locaux et régionaux pendant un ou deux jours.

- Les syndromes et les troubles génétiques avec un retard de développement
- Troubles des chromosomes sexuels
- Syndromes de surcroissance
- Troubles musculaire apparaissant au cours de l’enfance
- Encéphalopathies progressives
- Syndromes neurocutanés

Recherche

- La collecte de données sur les expériences quotidiennes
- Les projets de recherche

Documentation et information

- Internet et intranet
- Publications – livrets, brochures, livres
- Vidéos
- Vidéocaférences
- Informations en ligne (téléphone, Internet)

En savoir plus sur Frambu
www.frambu.no. La plus grande partie du site est en norvégien.

La fondation Ågrenska : un programme familial

Anders Olason, Président d’Ågrenska, Göteborg

L’infirmité d’un enfant affecte tous les membres d’une famille, ainsi, le programme familial d’Ågrenska est orienté sur toute la famille. Le programme familial propose une opportunité unique pour les familles de se rencontrer et d’échanger leurs expériences concernant une même maladie rare.

Pendant leur séjour, les parents bénéficient d’un programme contenant les informations médicales et psychosociales les plus récentes, les informations sur les conséquences du trouble et sur le soutien que propose la société.

« Afin de comprendre ce que c’est d’être le parent d’un enfant infirme, il faut être soi-même parent d’un enfant infirme ! »
Åke Martinsson
Les professionnels venus de l'environnement local de l'enfant sont invités à assister pendant deux jours au programme parental. Les frères et soeurs et les enfants atteints de maladies bénéficient d'un programme qui convient à leurs besoins.

Pour mieux intégrer les enfants atteints de maladies rares dans notre société, les outils éducationnels eux-mêmes doivent être pris en compte dans le cadre du traitement.

Les objectifs du programme familial développés par la fondation Ågrenska en Suède visent à obtenir des informations sur les conséquences éducatiionales et à les diffuser aux enseignants, aux enseignants de maternelles et aux autres qui rencontrent les enfants dans des activités quotidiennes.

Méthodes
- Utilisation de matériaux d'observation contrôlés et validés qui sont approuvés par l'Université de Göteborg.
- Des observations systématiques d'enfants *avec le même diagnostique* sont effectuées dans les activités scolaires d'Ågrenska, au cours du programme familial.
- Des lectures sur le syndrome aux parents et aux professionnels accompagnant les enfants.
- Compte-rendu et connexion avec les enseignants locaux des enfants.

Résultats
- Entre 1990 et 2004, 140 diagnostiques rares différents ont été observés à Ågrenska.
- De partout en Suède.
- Visite de plus de 2 200 familles.
- Visite de plus de 3 300 parents.
- Visite de plus de 2 400 enfants et adolescents avec un diagnostique rare en visite.
- Visite de près de 3 000 frères et soeurs.

Résultats des perspectives des familles
- Les parents se sentent « normaux ».
- Les familles ont le sentiment d' « avoir un pouvoir », en rencontrant d'autres dans la même situation.
- Les parents acquièrent de nouvelles connaissances afin de contrôler leurs propres vies.
- Les enfants diagnostiqués rencontrent d'autres enfants qui ont les mêmes diagnostiques.
- Les frères et soeurs rencontrent d'autres frères et soeurs.

Vue d’ensemble du programme familial, automne 2005
- Semaine 35 Achondroplasie
- Semaine 37 Syndrome d’Usher de type 1
- Semaine 38 Ostéogenèse imparfaite (OI)
- Semaine 40 Syndrome de délétion du chromosome 22q11
- Semaine 41 Neurofibromatose de type 1
- Semaine 43 Paraparésie spastique
- Semaine 45 Dysmélie – Amputation congénitale
- Semaine 46 Histiocytose de Langerhans
- Semaine 48 Hydrocéphalie, (sans myéloméningocèle, MMC)
- Semaine 49 Atrésie anale

Bulletin d’information
Un journaliste d’Ågrenska résume et compile les lectures et les informations provenant du programme parental au cours du programme familial pour un bulletin d’information sur la maladie.
Avant que l’information soit mise à la disposition au public, les chargés de cours lisent et enregistrent leurs avis sur les résumés. Les informations médicales sont continuellement mises à jour, en
coopération avec les chargés de cours. Une description des cas uniques est incluse dans le bulletin d'information sur chaque maladie, décrivant les défis quotidiens que rencontrent les familles.

Autres projets

Agrenska a lancé une initiative avec une école sur mesure pour aider à trouver des solutions ergonomiques pour tous les types d’infirmités que les personnes atteintes de maladies rares peuvent rencontrer dans la vie.

En illustration, la figure x présente quelques-unes des idées suggérées par les élèves participants. Toutes ne seront pas concrétisées, mais au moins les efforts pour améliorer la vie quotidienne des personnes infirmes sont possibles : s'alimenter, se laver, s’exprimer, trouver sa voie, s’amuser.

Formation sur la médecine génétique, les nouvelles technologies

Poster 60, Giovanni Romeo – Fondation Européenne sur la Génétique – Bologne

Cours européens sur la médecine génétique et les groupes d’intérêt pour la génétique

Au cours des 50 dernières années, les accomplissements scientifiques dans tous les domaines des sciences de la vie ont amené à une base commune de connaissances unifiées et également à des approches méthodologiques communes incluant des domaines spécialisés de la médecine. Le rôle central de la génétique et de la génomique en médecine est maintenant largement reconnu par la recherche biomédicale, comme pour la formation avancée des nouvelles générations de scientifiques. Grâce aux résultats du projet sur les génomes humains, les gènes responsables d’un nombre croissant de maladies rares peuvent maintenant être identifiés. Le terme « médecine génétique » implique l’utilisation de la génétique comme outil dans la recherche biomédicale et dans la formation avancée devient l’une des principales caractéristiques de la médecine moderne.

L’école européenne de médecine génétique (ESGM) est un bord d’attaque de la formation avancée dans le domaine de la médecine génétique et plus de 5 000 élèves ont assisté à ses cours durant les 18 dernières années (visitez le site www.eurogene.org). Au cours de trois dernières années, la formation ESGM a été marquée par l’expérimentation de nouvelles approches technologiques et méthodologiques. En utilisant une technologie de webdiffusion, l’ESGM propose maintenant ses cours à des participants virtuels qui ne peuvent pas se déplacer au centre principal de formation situé à Bertinoro (en Italie). Suivant ce modèle, la version virtuelle des cours sera transmise vers des centres de formation par satellite à travers toute l’Europe. Ce format de « cours hybrides » vise à attirer de nouveaux participants aux cours d’ESGM sans leur demander d’investir le temps et les ressources nécessaires au déplacement.

Dans un avenir proche, l’ESGM, en collaboration avec des associations de professionnels et des organisations de malades, offrira une série de cours visant à augmenter la prise de conscience sur les troubles génétiques et la compréhension des troubles génétiques et envisage de collaborer avec les groupes d’intérêt pour la génétique dans la demande de subventions européennes.
Droits des malades : mobilité, soins dans un pays étranger. Décisions de la Cour de Justice Européenne.

L’accès transfrontalier aux soins : une vision de la Cour de Justice Européenne

Dr. Piet van Nuffel, Secrétaire Juridique à la Court de Justice des Communautés Européennes, Luxembourg

Résumé

L’organisation des soins de santé et de la sécurité sociale est une question pour laquelle les États membres n’ont pas transféré les pouvoirs à l’Union Européenne. Dans l’organisation de leurs systèmes de soins de santé nationaux, les États membres doivent toutefois prendre en compte les principes fondamentaux du droit européen, comme le droit de libre circulation des malades. Dans une série de jugements, en commençant par les affaires Kohll et Decker, la Cour de Justice a clairement établi que toute règle nationale qui effectue des remboursements de traitements médicaux fournis à l’étranger sous réserve d’une autorisation préalable, doit être justifiée par des objectifs d’intérêt général comme l’équilibre financier du système de sécurité sociale et le besoin de maintenir un service médical et hospitalier équilibré ouvert à tous.

Alors qu’une autorisation préalable peut être ainsi justifiée pour un traitement hospitalier à l’étranger, ce n’est normalement pas le cas pour les soins ambulatoires à l’étranger. Dans ce dernier cas, la condition d’autorisation préalable constituera une restriction injustifiée de la liberté de recevoir des services, que l’État d’origine du patient applique ou non un système de remboursement ou des prestations en nature.

Bien que le droit européen n’exclue pas un système d’autorisation préalable à l’étranger, il requiert qu’un tel système, quel qu’il soit, se base sur des critères objectifs et non discriminatoires. Sous cette condition, les États membres sont libres de déterminer quels traitements seront payés pour leur système de sécurité sociale. Là où des autorisations préalables dépendent de la nécessité du traitement à l’étranger, l’autorisation ne peut être refusée que si un traitement identique ou aussi efficace pour le patient peut être obtenu sans délai indû dans l’État membre où le patient réside. Une autorisation préalable ne peut pas être refusée seulement parce qu’il y a des listes d’attente sur le territoire national, c’est-à-dire en raison de sous capacité. L’existence des listes d’attente est centrale à l’affaire Watts ajournée, dans laquelle on a demandé à la Cour de Justice si le besoin d’attribuer des ressources en fonction des priorités médicales peut justifier de refuser à certains malades la prestation d’un traitement à l’étranger aux frais du service de santé national.

Droits aux soins médicaux à l’étranger dans le cadre de la réglementation de la Communauté Européenne :

✔ Si un assuré à l’étranger a besoin d’un traitement dans l’État où il séjourne (formulaire E111)
✔ Si l’assuré est autorisé à aller dans un autre État pour y recevoir un traitement (formulaire E112)

- Le droit aux prestations sous les conditions de l’État d’accueil
- L’autorisation ne doit pas être refusée par l’État d’origine du patient si :
 - Les prestations sont couvertes dans l’État d’origine
 - Le traitement n’est pas disponible dans l’État d’origine dans les délais médicalement justifiables en fonction de l’état de santé du patient
Droits aux soins médicaux à l’étranger en dehors de la réglementation de la Communauté Européenne :

Affaires Kohll et Decker : le patient n’a pas demandé d’autorisation préalable aux soins dans un état différent de l’état de résidence

Les articles 30 et 36 du Traité de la Communauté Européenne excluent les réglementations nationales sous lesquelles l’établissement de sécurité sociale d’un État membre refuse de rembourser un assuré sur une base à un taux forfaitaire pour les frais d’une paire de lunettes avec des verres correcteurs achetée chez un opticien établi dans un autre État membre, sur le fait qu’une autorisation préalable est requise pour tout produit médical à l’étranger.

- Demande d’autorisation en examen :
 - Car cela peut être considéré comme une barrière à la libre circulation des marchandises ou des services
 - Cela peut-il se justifier ? En général, les États membres objectent qu’en l’absence d’une telle autorisation,
 - L’équilibre financier du système de sécurité sociale pourrait être défectueux
 - Menaçant ainsi l’objectif de maintenir un service médical et hospitalier ouvert à tous.

L’article 22 Reg. 1408/71 vise à permettre à un assuré autorisé par l’institution compétente à aller dans un autre État membre pour y recevoir un traitement approprié à sa condition. Il ne vise pas à réglementer et ainsi n’empêche pas, de quelque façon que ce soit, le remboursement par les États membres, aux tarifs en vigueur dans l’État compétent, des frais de produits thérapeutiques achetés dans un autre État membre, même sans autorisation préalable.

L’obligation d’obtenir une permission préalable doit être classée comme une entrave à la libre circulation des marchandises, puisqu’elle encourage les assurés à acheter ces produits sur le territoire national, plutôt que dans d’autres États membres et est ainsi responsable de l’enrayement de leurs importations.

Elle ne se justifie pas par le risque de nuire gravement à l’équilibre du système de sécurité sociale, puisque le remboursement à un taux forfaitaire des frais d’achat de lunettes et de verres correcteurs dans d’autres États membres n’a pas d’effet significatif sur le financement ou l’équilibre du système de sécurité sociale, pas plus qu’elle ne se justifie sur la base de la santé publique afin d’assurer la qualité des produits thérapeutiques fournis aux assurés dans d’autres États membres, puisque les conditions d’adoption et la poursuite de la réglementation des professions ont été le sujet des directives communautaires.

Demande d’autorisation pour des soins hospitaliers (Affaires Smits/Peerbooms et Van Riet)

Cette demande de soins hospitaliers est considérée comme justifiée, car l’impact des visiteurs étrangers qui recherchent des conseils ou des soins peut être considérable :

- nécessité de programmer le nombre d’hôpitaux, leur répartition géographique, leur mode d’organisation, leur équipement et la nature des services médicaux
- but de contrôle des coûts et de prévention du gaspillage des ressources financières, techniques et humaines
- assurer un accès suffisant et permanent au traitement hospitalier de haute qualité

Conditions d’autorisation

- les soins hospitaliers doivent être assurés et remboursés dans l’État d’origine (Smits/Peerbooms)
- demande de « nécessité » pour un traitement à l’étranger (Smits/Peerbooms)
 - aucune nécessité si un traitement identique ou équivalent est disponible sans délai indû
- les listes d’attente sont-elles cohérentes ? (Müller-Fauré/Van Riet; Watts?)
Quand un assuré est-il couvert pour un traitement à l'étranger ?

✓ Traitement lors d'un séjour à l'étranger
 • Pas besoin d'autorisation (E111)
 • Couvert selon les conditions de l'État d'accueil
✓ Soins ambulatoires à l'étranger
 • Si autorisé avec E112 : couvert selon les dispositions de l'État d'accueil
 • Sans autorisation préalable : remboursé selon les termes de l'État d'accueil
✓ Soins hospitaliers à l'étranger : autorisation préalable nécessaire
 • Si autorisé avec E112 : couvert selon les termes de l'État d'accueil
 • Remboursé selon les termes de l'État d'origine si autorisé autrement

Droits de mobilité des malades : un défi pour les soins de santé ?

✓ Complications administratives
✓ Une stimulation pour un changement structurel ?
✓ La cour sera-t-elle ensuite guidée par nos représentants politiques ?

Conclusion

La jurisprudence de la Cour a rappelé à la Commission d’inclure des dispositions sur la mobilité des malades dans sa proposition de Directive sur les services dans le marché interne. Dans le contexte politique actuel, il n’est pas certain qu’une discussion sur cette « directive Bolkestein » entraînera une codification de la jurisprudence de la Cour. Pourtant, l’intervention législative dans le domaine améliorerait certainement la transparence et la certitude juridique pour tous les intéressés.

Stratégies pour la prévention

Stratégies basées sur l'évaluation de l'évidence épidémiologique

Prof. Helen Dolk, EuroCat, université d'Ulster

La prévention des maladies rares est possible, dans une certaine mesure.
 • La prévention primaire consiste en :
 • Avant la survenue de la maladie
 • Attaquer la ou les causes de base de la maladie
 • Changer l'environnement ou la résistance/susceptibilité
 • La prévention secondaire consiste en :
 • La maladie a commencé mais les symptômes ne sont pas apparus
 • Détecter et traiter tôt pour empêcher le développement de la maladie
 • par exemple le dépistage chez les nouveau-nés pour la phénylcétonurie
 • La prévention tertiaire consiste en :
 • La maladie est devenue symptomatique
 • Soigner, contrôler ou empêcher les complications

Épidémiologie par rapport aux stratégies de prévention primaires :
 • Quelle est l'incidence de la maladie dans la population ?
 • Quelles distinctions établir entre les malades et les gens sains dans la population ? / comment circonscrire / repérer les personnes malades dans la population ?
 • Age, sexe, heure, endroit, statut social
 • Que cause la maladie ?
 • Environnement, gènes, et leur interaction
 • Quelles sont les autres pistes et ramifications de causes ?
• Différences dans l'incidence : quelles proportions et pourquoi?
• Combien de maladie pourrions-nous empêcher grâce à différentes stratégies de prévention ?
• Dans quelles mesures les différentes stratégies de prévention provoqueraient-elles des inégalités (lors de la maladie ?)
 ° Mise en oeuvre d'une stratégie préventive : comment évaluer / anticiper ses chances de réduire la maladie et es inégalités devant la maladie (de la maladie)?

Figure X : un plan d'action préventif : de l'identification des problèmes à la veille des résultats.

EUROCAT : Surveillance européenne des anomalies congénitales.
 • Réseau européen des enregistrements de populations pour la surveillance épidémiologique des anomalies congénitales.
 • A débuté en 1979, maintenant financé par le programme de santé publique de l'UE
 • Plus de 1,2 million de naissances examinées par an en Europe
 • 40 enregistrements dans 19 pays

Stratégies de prévention primaires possibles :
 – Prescription d'acide folique périconceptionel
 – Vaccination par exemple rubéole congénitale
 – Soin préconceptionnel et de grossesse pour les femmes à risque élevée par exemple diabète, épilepsie
 – Consultation génétique pour les familles à risque élevé
 – Réduction de l'abus de drogues euphorisantes/alcool
 – Test pré-commercial de médicaments, pharmacovigilance et surveillance de technologie de santé
 – Réduction de l'exposition aux polluants environnementaux (préventif là où nécessaire) et vigilance environnementale

En conclusion :
 • L'épidémiologie permet de planifier et évaluer tous les niveaux de prévention
 • La prévention primaire des maladies rares est autant un problème d'égalité que la prévention secondaire et tertiaire
 • L'interruption de grossesse après diagnostic prénatal ne devrait pas être une alternative à la prévention primaire
 • Des mesures pour des populations entières peuvent parfois être nécessaires pour empêcher les maladies rares
 • Les réseaux européens de populations répertoriées, fournissent les moyens d'effectuer la recherche, la veille épidémiologiques (et servent) à la prévention

Prévention des maladies génétiques

Prof. Stanislas Lyonnet, Hôpital Necker, France.

<table>
<thead>
<tr>
<th>Gène</th>
<th>Maladie</th>
<th>Traitement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1-2</td>
<td>Cancer de sein</td>
<td>Mammectomie</td>
</tr>
<tr>
<td>RET</td>
<td>NEM</td>
<td>Thyroïdectomie</td>
</tr>
<tr>
<td>MHC1-L</td>
<td>Hémochromatose</td>
<td>Chélateurs du fer</td>
</tr>
</tbody>
</table>
On détecte plus aisément un risque génétique dans les familles à risque, c.-à-d. lorsqu’ils ont déjà été diagnostiqués et un suivi individualisé peut alors être créé. Pour les porteurs de gènes nuisibles comme ceux de la cécité ou la surdité - quoique aucun traitement n’existe -, la détection précoce aide à anticiper l’organisation années de la vie. Durant les années restantes, la cécité ou la surdité ne pourront véritablement être traitées, mais le patient pourra néanmoins aménager son existence avec l’aide de son médecin, bien avant de devenir invalide.

L’instruction / la pré rééducation par exemple peut être adaptée aux besoins de la personne. peut lui être d’un grand secours.

Prévoir ou calomnier ?

- Qui veut savoir ?
 - Etre informé sur l’utilité du dépistage ne conduit pas (obligatoirement) tous les patient et les personnes à risque à l’examen. Pour le Choréa de Huntington par exemple, 18% seulement des personnes en danger se soumettent au test après consultation.
 - Quel est l’impact social de la prévision ? Compagnies d’assurance et employeurs pourraient détourner le dépistage génétique de son but médical.

Dépistage génétique prénatal et préimplantatoire

Le schéma X : Le dépistage préimplantatoire n’a rien à faire avec le clonage. Il consiste à fertiliser in vitro, des parents à risque élevé pour créer un enfant malade. Une cellule est capturée (biopsie embryonnaire) et analysée.

9 Gènes modificateurs - gènes qui ont de petits effets quantitatifs au niveau de l'expression d'un autre gène

Au lieu de masquer les effets d'un autre gène, un gène peut modifier l'expression d'un deuxième gène. Chez les souris, la couleur de pelage est contrôlée par le gène B. L'allèle B conditionne la couleur noire du pelage et est dominant à l'allèle b qui produit un pelage brun. L'intensité de la couleur, noire ou brune est contrôlée par un autre gène, le gène D. A ce gène, l'allèle D dominant contrôle la pleine couleur tandis que l'allèle recessif conditionne une expression diluée ou fanée de couleur au gène B. Par conséquent, si l'on croise des souris BbDd, on assistera à / constatera la distribution phénotypique suivante :

- 9 B_D_ (noir)
- 3 B_dd (noir dilué)
- 3 bbD_ (brun)
- 1 bbdd (brun dilué)

Le gène D ne masque pas l'effet du gène B, plutôt il modifie son expression.

Phil McClean, Doctorat de l’Université de l'Etat du Colorado
(test d'ADN, test chromosomique), et si les gènes sont sains, l'embryon correspondant est donc implanté dans l'utérus. Jusqu'ici, 40 naissances sous ce moyen ont été enregistrées à l'hôpital de Necker.

Traduction de la figure I
Identification et mesure du problème
Intervention des évaluations potentielles
Mise en œuvre de la prévention primaire
Surveillance de la réussite du projet

Traduction de la figure II
Prévention des maladies génétiques

B- Prévenir la naissance d'un enfant affecté par un diagnostique prénatal / Pré gestationnel

Permettre aux parents d'avoir le choix d'un bébé en bonne santé
Fertilisation in vitro
Biopsie embryonnaire, 3ème jour
Test d'ADN ou test chromosomique
40 naissances

Clôture de la conférence

L’Europe en avant !

Dr. Ségolène Aymé

Mon premier message est simple : l"Europe, l'Europe et l'Europe", et je suis bien désolée d'être d'un Etat membre qui n'a rien compris il y a quelques semaines en rejetant le Traité constitutionnel. Pour les maladies rares, il est le seul niveau où nous pouvons réaliser quelque chose de significatif. Même si certains citoyens n'ont pas compris le message, nous voulons travailler dans la dimension européenne, voire, au niveau mondial. Ensuite, en tant que professionnels de santé, nous avons plusieurs messages pour la Commission :
- À la DG Santé et Protection du Consommateur : nous sommes très satisfaits du soutien et des initiatives dans le domaine de l'information et la surveillance, elles devraient continuer. Toutefois puisse-t-on trouver des solutions de financement véritablement durable (et à plus long terme), comme le sont la plupart des initiatives (des communautés de maladies rares) pour rassembler des données diffuser les informations et les résultats. Si le financement ne peut seulement être accordé pendant 2 à 3 années, il ne vaut peut-être pas la peine de démarrer le projet.
- À DG Recherche : dans les récentes années, peu d'investigations ont été soutenues (dans le domaine), mais dans le (cadre) du FP7, on s'attend à ce que de nouveaux projets de recherche sur les maladies rares soient financés. Nous devons préconiser dans l'ordre, en s'assurant qu'aucune réduction financière ne contraindra cette bonne volonté. Si le budget sur la recherche doit être diminué, nous espérons que ceci n'affectera pas les projets sur les maladies rares.
- Actuellement, les maladies rares entrent dans le champ de la génomique dans les programmes de recherche. Elle est une partie importante de la recherche mais ne répond pas à tous nos besoins. Comptent également la recherche en épidémiologie, les soins et les services de santé.
Si la communauté des maladies rares espère beaucoup, parfois l'ordre du jour des chercheurs ne correspond pas à celui des malades et familles. Les besoins immédiats de la communauté devraient être écoutés.
- Les efforts pour fournir des informations existent et sont bienvenus, mais ne s'adressent pas cependant à tout les publics. Professions paramédicales, malades et leurs représentants
exigent par exemple des informations adaptées, ainsi, la collaboration et l'association des diffuseurs d'informations répondent partiellement à cette question.

- Le besoin d'imagination : même les problèmes complexes ont toujours une solution. Si des altérations existent dès la naissance, des solutions peuvent néanmoins aider et améliorer la qualité de la vie. On peut multiplier les solutions.

- Messages du groupe de travail sur les maladies rares : la DG Santé et Protection du Consommateur a créé ce groupe de travail et nous nous félicitons tous de cette initiative. On a accordé le financement et un bulletin (d'informations) a été édité pour tous. C'est un lien pour vous tous, alors veuillez vous inscrire si vous ne l'avez pas déjà fait. L'URL où s'inscrire est : www.rdtf.org. Vous êtes invités à envoyer des informations à l'équipe du bulletin si vous souhaitez les diffuser à travers la communauté.

Une société où la rareté n'affecte pas les opportunités

Christel Nourissier, Eurordis

Aujourd'hui, nous avons une vision des maladies rares, celle d'un système européen de santé.

D'ici 10 ans, les gens atteints de maladies rares à travers l'UE pourront bénéficier des mêmes opportunités que leurs voisins européens.

- Des médecins ou pédiatres bien formés capables de détecter un état rare immédiatement,
- Des laboratoires diagnostiques capables d'échanger les échantillons de sang, tissus, ADN et résultats à travers l'UE,
- des radiologistes capables de communiquer les images médicales de tout centre de soin à un centre spécialisé,
- Des diagnostics précis seront effectués dès que possible grâce à la télémédecine,
- Au besoin, enfants et familles traverseront les frontières pour se rendre en centres de référances,
- La paperasserie sera simplifiée pour obtenir une compensation financière, le soin etc…
- Les aspects financiers seront traités avec l'aide des travailleurs sociaux,
- Des familles gagneront le soutien d'un groupe de malades local et se rencontreront entre elles

Le rêve peut aller encore plus loin :

- Un soutien sera nécessaire, immédiatement après le diagnostic, pendant les situations critiques, et jusqu'à la fin de la vie
- Les professionnels santé utiliseront des directives de traitement et de soin pour le soin médical et paramédical
- Les unités d'urgence exploiteront les informations actualisées des sites Web médicaux, des lignes téléphoniques,
- Des informations et formation adéquates seront dispensées à l'école, au lieu de travail ou à domicile.

L'Europe peut certainement nous aider à transformer notre rêve en réalité / à réaliser notre rêve
• Elle peut croiser la santé publique aux programmes de recherche pour continuer des actions
• Pour collecter des informations épidémiologiques (elle peut nous permettre d’aménager des groupes de travail sur la morbidité, la mortalité et des groupes spécifiques aux maladies rares)
• Nous pouvons obtenir son soutien pour relier le réseau des centres européens de référence à leurs homologues régionaux et nationaux.
• L’Europe peut préciser les directives pour définir les meilleures pratiques de soin, pour intégrer les enfants à l’école, et les adultes au lieu de travail
• Elle peut contribuer à nous dresser la cartographie des ressources existantes : hôpitaux, soin de relève, colonies de vacances, identification des besoins urgents avec les associations de malades
• Elle peut aider les interventions thérapeutiques et les médecines innovatrices à se sentir dans un environnement européen fort.

Non seulement tous ces efforts bénéficieront aux maladies rares, mais retentiront comme catalyseur pour d’autres domaines.
• Réseaux européens des banques biologiques, enregistrements de malades et centres pour la recherche clinique
• Maladies rares comme modèles pour les maladies plus communes
• Recherche pluridisciplinaire pour améliorer la vie des personnes partageant celle des maladies rares
• Méthodes innovatrices pour les essais cliniques, les médicaments innovants
• Participation de groupes de malades forts, actifs et bien soutenus

Notre rôle continu: Donner une voix aux malades et à leur famille
• Au niveau national : renforcement des groupes et alliances nationales,
• Au niveau européen : représentation de la communauté des maladies rares par EURORDIS et autres,
• Notre communauté des maladies rares se réunira à nouveau pour examiner les réalisations et envisager des plans pour l’avenir lors de la prochaine conférence européenne sur les maladies rares/ le même sujet, à Lisbonne, au Portugal, en octobre 2007.

Notre stratégie :
• Intégrer les réseaux de malades dans la recherche, le diagnostic, et les structures de traitement.
• Mieux exploiter nos connaissances actuelles, du soin médical et paramédical, des schémas d’éducation et de réadaptation
• Publier et promouvoir (les directives des) les meilleures pratiques, quand elles existent
• Faire participer les malades à toutes les étapes: protocoles d'essais cliniques, communication de ses effets et diffusion des résultats de la recherche (en général).

Quel chemin prendre ?
• Favoriser les plans nationaux pour les maladies rares,
• Soutenir les centres d’information avec plus de financement public,
• Former et éduquer les professionnels santé, les volontaires et le personnel dans les groupes de malades,
• Créer et soutenir les centres nationaux ou régionaux de référence pour les maladies rares, rendre abordables les soins, aux dispositifs, les équipements médicaux et paramédicaux,
• Améliorer l’accès aux médicaments orphelins déjà lancés sur le marché, persévérer constamment dans le développement d’autres médicaments orphelins et pédiatriques,
• Mieux compenser les incapacités/ déficiences : ressources humaines et aides techniques
• Rendre les groupes de malades de maladies rares plus forts, pour mieux les informer et les instruire.

Le mot de la Commission européenne

John F. Ryan, chef d'unité d'information de santé, Direction de la santé publique et de l'évaluation des risques, DG Santé et Protection du Consommateur, CE

La Commission voudrait remercier le comité d'organisation de cette conférence, Eurordis, toutes les personnes impliquées le gouvernement du Luxembourg - en particulier le ministre de la santé M. Mars di Bartolomeo. Je pense que ce colloque a été un événement européen très réussi.

J'ai voulu tout particulièrement nous féliciter de la performance culturelle - excellente démonstration, très professionnelle et inspiratrice.

Je voudrais aussi remercier les autres sponsors, qui nous ont aidés à préparer cette conférence ainsi que le programme de santé publique de l'UE.

Pendant 2 jours nous avons pris connaissance de ce qui se passe vraiment dans de multiples secteurs des maladies rares. Les participants ont très utilement évalué les problèmes.

L'étude d'Eurordis sur les retards diagnostiques, nous a permis de jaurer des délais parfois considérables avant que les maladies rares ne soient détectées et traitées, le cas échéant.

Nous nous sommes également penchés sur les initiatives pour optimiser les soins, et cette question souleva débats. Les plans nationaux ont été comparés, l'accès transfrontalier au soin, a soulevé la question des besoins et le rôle des centres de référence pour les maladies rares.

Amener la recherche à améliorer la qualité de vie, mieux coordonner la recherche - éviter la fragmentation - agrandir les réseaux, et la contribution européenne dans notre programme de recherche, tous ces points ont été exposés. Je peux d'ores et déjà confirmer que les maladies rares seront portées au prochain programme de la Commission 2007/2013 et seront traitées comme elles le doivent. La Commission fera également avancer les conclusions de l'atelier sur la recherche du 13 avril.

Les problèmes rencontrés vis-à-vis du recueil et de la gestion des données ont également évoqués. Comment et pourquoi devez-vous améliorer le codage et la classification - un défi non seulement pour l'Union Européenne, mais aussi pour d'autres pays et pour les organisations internationales tels que l'OMS.

Enfin je dois mentionner la déclaration importante du Dr. Ségolène Aymé - Présidente de notre groupe de travail sur les maladies rares au sein de DG Sanco. Son rôle nous est fondamental et nous espérons inclure ses recommandations dans notre prochain plan de travail.

Au nom des services de la santé publique de la Commission, mes collègues et moi-même avons été très intéressés par les présentations d'un remarquable niveau pendant ces deux derniers jours.

Cette conférence nous a indiqué dans quelle direction nous devons aller. Elle a défini des priorités dans des projets réalisables, et pour notre nouveau programme pour 2007-2013. Parmi les présentations qui ont été faites, beaucoup ont montré combien nous pouvons accroître notre rôle européen communautaire en soutenant le travail des professionnels de santé : dans l'amélioration de la formation, le partage des informations, les allocations de ressources et le soutien concret aux malades et aux soignants.

Vous avez pu avoir vu dehors sur notre stand d'information certains rapports des projets réalisés financés par la Commission, nous sommes très heureux de faire reconnaître nos efforts. Nous souhaitons également que le futur portail de santé de l'UE que nous espérons lancer cette année marquera une autre étape dans cette direction.
J'ai le vif espoir que les recommandations faites pendant cette conférence seront appliquées dans les prochaines années. Que le futur livre blanc sur les maladies rares que vous espérez éditer à l'issue de cette conférence, rassemble ces idées et renforce la coopération européenne. Nous nous engageons également à faire avancer le travail dans le groupe que nous avons créé l'année dernière.

La Commission est finalement convaincue que ce n'est pas un événement unique. Nous sommes très heureux de vous entendre évoquer la prochaine conférence européenne à Lisbonne en 2007. Nous souhaitons avec intérêt, rencontrer tout le monde et vous apporter encore alors notre soutien.

Merci mesdames et messieurs, merci monsieur le Ministre
Intervenants

- Mr Terkel Andersen, Président du Conseil d’Eurordis. terkel.andersen@newmail.dk
- Dr. Ségolène Aymé, Directrice d'Orphanet France et numéro 1 du groupe de travail sur les maladies rares. ayme@orpha.net
- Mr Mars di Bartolomeo, Ministre de la santé du Luxembourg. Ministere-Sante@ms.etat.lu
- Annet van Betuw, Présidente du réseau européen du chromosome 11q, Pays-Bas. avbetuw@wxs.nl
- Prof. Odile Boespflug-Tanguy, Association européenne contre les leucodystrophies et Département de chirurgie pour enfants, au Centre Hospitalier de Clermont-Ferrand, France. odile.boespflug@inserm.u-clermont1.fr
- Dr. Serge Braun, Directeur de la recherche et du développement thérapeutique, Association Française contre les Myopathies AFM, France. sbraun@afm.genethon.fr
- Dr. Milan Cabrnoch, Membre du Parlement Européen, République Tchèque. cabrnoch@cabrnoch.cz
- Melanie Carr, Préautorisation des médecines pour l’utilisation par les humains, Conseil scientifique et des médicaments orphelins, EMEA. melanie.carr@emea.eu.int
- Prof. Helen Dolk, Faculté de la vie et des sciences de la santé, Université de l'Ulster, Eurocat et assistante du numéro 1 du groupe de travail sur les maladies rares. H.Dolk@ulster.ac.uk
- Catarina Edfjall, Groupe de travail Suisse sur les médicaments orphelins, Actelion. catarina.edfjall@actelion.com
- Prof. Anders Fasth, Prof. d’Immunologie Pédiatrique, L'Hôtel d’enfants de la reine Silvia, Membre du groupe de travail suédois sur les maladies rares. anders.fasth@pediat.gu.se
- Dr. Ilse Feenstra, MD, directrice (d’un centre) Européen de bases de données, registre d’associations de cytogénéticiens européens sur les anomalies chromosomiques déséquilibrées ou rares ECARUCA, Pays-Bas. i.feenstra@antrg.umcn.nl
- Dr. Judith Fischer, Centre national pour le Génotypage, Inserm U429, France. judith.fischer@cng.fr
- Dr. Alexandra Fourcade, Responsable de la politique pour le plan d’action national pour les maladies rares, Ministère de la Santé, France. alexandra.fourcade@sante.gouv.fr
- Liz Gondoin Goedert, Présidente de l’Association pour les Maladies Neuromusculaires du Luxembourg, Luxembourg. alanasbl@pt.lu
- Lesley Greene, Enfants vivant avec des troubles métaboliques héréditaires, CLIMB, Royaume-Uni et ancien dirigeant du projet PARDIII, Eurordis. Lesley@climb.org.uk
- Torben Gronnebaeck, Président de Rare Disorders Denmark, Danemark, tog@newmail.dk
- Prof. Anthony Holland, Maître de conférence, Département de psychiatrie, Université de Cambridge, Royaume-Uni. aih1008@cam.ac.uk
- François Houyëz, Responsable de la Politique de Santé d’Eurordis. francois.houyze@eurordis.org
- Dr. Edmund Jessop, Département de la Santé, bureau des statistiques nationales, Royaume-Uni et Membre du groupe de travail sur les maladies rares. edmund.jessop@doh.gsi.gov.uk
- Prof. Helena Kääriäinen, Professeur, Département de génétique médicale, Hôpital Universitaire de Turku, Finlande. helena.kaariamiinen@utu.fi
- Dr. Veronica Karcagí, Chef du Département de Diagnostique et Génétique Moléculaire, Centre national hongrois "Fodor Jozsef" pour la santé publique et le réseau EuroBioBank (un réseau de banques). karcagiv@okk.antsz.hu
- Dr. Yllka Kodra, Centre national pour les maladies rares, Istituto Superiore di Sanità, Italie. nephird@iss.it
- Dr. Madelon Kroneman, Chercheur, Institut Néerlandais pour la Recherche des Services de Santé (NIVEL), Pays-Bas. mkrneman@nivel.nl
- Marianna Lambrou, Présidente de l’Association Grecque pour la Sclérose Tubéreuse. tsahellas@ath.forthnet.gr
- Yann Le Cam, Directeur général d’Eurordis. Yann.lecam@eurordis.org
- Prof. Peter Littlejohns, Directeur soins et santé publique, Institut national britannique pour la santé et l’excellence clinique (NICE), Royaume-Uni. Peter. Littlejohns@nice.org.uk
- Thomas Löngren, Directeur, EMEA. Thomas. Lonngren@emea.eu.int
- Prof. Stanislas Lyonnet, Département de Génétique, Hôpital Necker pour les enfants malades, Paris, France. lyonnet@necker.fr
• Sarah McFee, Directrice du Département de la qualité de vie, Association Française de la Fibrose Cystique. smcfee@vaincrelamuco.org
• Prof. Henri Metz, Membre de COMP/EMEA, Luxembourg. metzhr@pt.lu
• Dr. Bruce Morland, Président du Groupe des Nouveaux Agents de l’UKCCSG et Consultant en Oncologie Pédiatrique, Hôpital des enfants de Birmingham, Royaume-Uni. bruce.morland@bhamchildrens.wmids.nhs.uk
• Britta Nilsson, Directrice de l’Information, Frambu, Norvège Britta.Nilsson@frambu.no
• Christel Nourissier, Secrétaire Général d’Eurordis, France et Membre du groupe de travail sur les maladies rares, pwf.nourissier@wanadoo.fr
• Prof. Dr. Piet van Nuffel, Secrétaire/ Secrétariat juridique Européen, Cour de Justice des Communautés Européennes, Luxembourg, piet.van_nuffel@curia.eu.int
• Prof. Christian Ohmann, Centre de Coordination pour les études Cliniques (KKS), Allemagne, et Réseau Européen de l’Infrastructure de Recherche Clinique, ECRIN. christian.ohmann@uni-duesseldorf.de
• Anders Olauson, Président du Centre National Suédois pour les Maladies Rares d’Agrenska. anders.olauson@agrenska.se
• Prof. José Luis Oliveira, Instituto de Engenharia Electrónica e Telemática de Aveiro, Portugal et InfoGenMed. jlo@det.ua.pt
• Prof. Manuel Palacin, Professeur et Dr. en biochimie et biologie moléculaire, Université de Barcelone, Espagne. mpalacin@pcb.ub.es
• Dr. Manel Posada, Instituto de Salud Carlos III, Institut de recherche sur les maladies rares, Espagne et membre du groupe de travail sur les maladies rares. mposada@isciii.es
• Severine Rastoul, Service Info sur les Maladies Rares, France. srastoul@maladiesrares.org
• Prof. Hans Helger Ropers, Institut Max Planck pour la génétique moléculaire, Allemagne. ropers@molgen.mpg.de
• Dr Elettra Ronchi, Coordinatrice Santé et Activités de Biotechnologie, OCDE. Eleltra.Ronchi@oecd.org
• Prof. Jörg Schmidtke, Medizinische Hochschule Hannover, Allemagne. jlschmidtke@mh-hannover.de
• Prof. Dr. Jörg Schmidtke, Medizinische Hochschule Hannover, Allemagne. schmidtke.joerg@mh-hannover.de
• Prof. Pascal Schneider, Professeur Associé, Département de biochimie, Université de Lausanne, Suisse. pascal.schneider@unil.ch
• Dr. Tsveta Schyns, Coordinateur du réseau européen pour la recherche sur l’hémiplégie alternante dans l’enfance, Autriche. tl.ps@gmx.net
• Dr. Eva Stelianova-Foucher, Groupe d’Épidémiologie Descriptive (DEP), Agence Internationale pour la recherche sur le Cancer (IARC) et Membre du groupe de travail sur les maladies rares. stelianova@iarc.fr
• Dr. Jose Luis Valverde Lopez, Facultad de Farmacia, Université de Granada, Espagne.
• Dr. Alan Vanvossel, Chef d’Unité, Maladies importantes, DG Recherche de la Commission Européenne. alan.vanvossel@cec.eu.int
• Prof. Joan Lluis Vives Corron, ENERCA, Espagne, et Membre du groupe de travail sur les maladies rares. jlvives@clinic.ub.es
• Dr. Annick Vogels, Centre Hospitalier Universitaire de Leuven, Belgique.
Annick.Vogels@uz.kuleuven.ac.be
• Dr. Yolande Wagener, Ministère de la santé, Luxembourg et Membre du groupe de travail sur les maladies rares. yolande.wagener@ms.etat.lu
• Elisabeth Wallenius, Diagnoser, Suède .Association suédoise pour les maladies rares elisabeth.wallenius@nykoping.nu
• Dr. Cornelia Zeidler, Consultante clinique, Registre International des Neutropénies Chroniques Sévères, Allemagne et Membre du groupe de travail sur les maladies rares. zeidler.cornelia@mh-hannover.de
Les maladies rares mentionnées dans ce rapport

A
Achondroplasie
Alpha 1 antitrypsine
Syndrome d'Alport
Hémiplégie alterne
Maladie d'Alzheimer
Sclérose latérale amyotrophique
Atésie anale
Syndrome d'Angelman
Aniridie
Déficit en apolipoprotéine E
Ataxie
Autisme

B
Syndrome de Barth
Myopathie de Bethlem
Atrésie biliaire
Syndrome de Bloom
Cancer du sein

C
Maladie de Canavan
Cancers rares
Cardiomyopathie
Troubles congénitaux CDG1b de glycosylation
Syndrome de Chanarin-Dorfman
Maladie de Charcot-Marie-Tooth
Chondrodysplasie
Cancer du côlon
Carcinome du côlon
Hyperplasie génitosurrénal congénital
Hypothyroïdisme congénital
Dystrophies musculaires congénitales
Déficit en connexine 26
Maladie de Crohn
Neutropénie cyclique
Mucoviscidose
Cystinurie

D
Syndrome de Digoege
Syndrome de Dravet
Dystrophie musculaire de Duchenne
Dysmélie

E
Syndrome d'Ehlers-Danlos
Dystrophie musculaire d'Emery Dreifuss
Epidermolyse bulleuse simple

F
Maladie de Fabry
Leyde facteur V
Dysautonomie Familial
Anémie de Fanconi
Maladie Mortelle d'Angioedematous
Syndrome de Feigenbaum Bergeron Richardson
Syndrome du X fragile
Ataxie de Friedreich

G
Galactosémie
Maladie de Gaucher
Naevus congénital géant
Glycogénose
Glycogénose de type 1b

H
Hémochromatoses
Hémophilie
Maladie de Hartnup
Hémochromatoses
Oedème angioneurotique héréditaire
Maladie de Huntington
Maladie de Hurler
Hydrocéphalie
Hyperammoniémie
Hypercholestérolémie

I
Ichthyose
Syndrome néphrotique idiopathique
Hyperprolinémie et aminoacidurie dicarboxylique
Incontinentia Pigmenti
Amyotrophie spinale infantile

J
Syndrome de Jacobsen

K
Sarcome de Kaposi
Syndrome de Kearns-Sayer
Syndrome de Kohlschutter Tonz
Syndrome de Kostmann

L
Histiocytose cellulaire de Langerhans
Déficit en récepteurs de lipoprotéine basse densité
Leucodystrophie
Déficit de membre
Intolérance de protéine lysinurique
Maladies de stockage lysosomiales

M
Syndrome de Marfan
Néoplasies endocrines multiples
Déficit en méthylène tétrahydrofolate
Mucopolidose IV
Dystrophie myotonique

N
Maladie de Neiman-Pick
Néphronophtise
Neurofibromatose
Diabète de type 2

O
Syndrome d'Ondine
Déficit en carbamyltransférase d'ornithine
Ostéogenèse imparfaite

P
Maladie de Pelizaeus-Merzbacher
Phénylcétonurie
Plexus parotidien
Maladie kystique des reins
Maladie de Pompe
Syndrome de Prader Willi
Prédisposition au cancer colorectal
Prédisposition à la thrombose
Déficit en protéine C
Mutation de prothrombine

Q
Syndrome de délétion du chromosome 22q11

R
Rétinoblastome
Syndrome de Rett

S
Neutropénie chronique grave
Syndrome de Shokeir
SHOX
Syndrome de Shwachman-Diamond
Syndrome de Smith Magenis
Syndrome de Smith-Lemli-Opitz
Syndrome de Sotos
Paraparésie spastique
Amyotrophie spinale
Ataxies spinocérébelleuses

T
Maladie de Tay Sachs
Cancer de la thyroïde
Déficit en methytransferas de Thiopurine TPMT Exon 7/10 de
Sclérose tubéreuse
Syndrome de Turner

U
Syndrome d'Usher
Syndrome d'Usher de type 1
V
Déficit en lipoprotéine très haute densité

W
Granulomatose de Wegener
Syndrome de Williams
Maladie de Wilson
Maladie de Whipple

X
Dysplasie ectodermique hypo-hidrotique liée au chromosome X
Déficit mental lié au chromosome X