Cost-benefit analysis of the Injury Prevention
Programme 1999-2003 and final project evaluation

Final Report

Prepared for the European Commission, DG SANCO

By:
S. Kedikoglou, E. Petridou, D. Trichopoulos
National and Karpodistrian University of Athens
Department of Epidemiology, Medical School
Center for Research and Prevention of Injuries (CE.RE.PRI)
Athens, Greece

Athens, March 2004
Cost-benefit analysis of the Injury Prevention Programme 1999-2003 and final project evaluation

Final Report

March 2004

Prepared for the European Commission, DG SANCO

By

S. Kedikoglou, E. Petridou, D. Trichopoulo
National and Kapodistrian University of Athens,
Department of Epidemiology, Medical School,
Center for Research and Prevention of Injuries (CE.RE.PRI)
75 Mikras Asias Street, Goudi, Athens, 11527, Greece
Email: epetrid@med.uoa.gr
Web: http://www.cc.uoa.gr/socmed/hygien/cerepri

<table>
<thead>
<tr>
<th>Title of the project:</th>
<th>Cost-benefit analysis of the Injury Prevention Programme 1999-2003 and final project evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference number:</td>
<td>SPC.2002225</td>
</tr>
<tr>
<td>Project leader:</td>
<td>Greece: Simos Kedikoglou, Eleni Petridou, Dimitrios Trichopoulos, Athena Kakavouli, Kostas Mavroidis & Stephanie Anast Department of Epidemiology, Athens University Medical School, CE.RE.PRI., Athens</td>
</tr>
<tr>
<td>Partners:</td>
<td>Austria: Dr. Robert Bauer Claudia Koermer Kuratotium für Schutz und Sicherheit, Institut "Sicher Leben" Ölzeltgasse 3A – 1031, Wien</td>
</tr>
<tr>
<td></td>
<td>Denmark: Dr. Birthe Frimodt-Moller L National Institute of Public Health, 25 Svanemoliejev 2100 Copenhagen</td>
</tr>
<tr>
<td></td>
<td>France: Marc Nectoux PSYTEL, 36, rue Irénée BlancF – 75020, Paris</td>
</tr>
<tr>
<td></td>
<td>France: Dr. Bertrand Thelot Institut De Veille Sanitaire, 12, rue du Val d’Osne, F-94415 Saint Maurice Cedex</td>
</tr>
</tbody>
</table>
Table Of Contents

EXECUTIVE SUMMARY 4
I. INTRODUCTION 8
II. OVERALL PROGRAMME ASSESSMENT 14
 II.1. FUNDING DISBURSEMENTS 15
 II.2. PARTICIPATING MEMBER STATES 22
 II.3. REPORTS 25
 II.4. PARTNERSHIPS 27
III. COST-EFFECTIVENESSE VALUATION 32
 III.1. ADMINISTRATIVE SECRETARIAT 33
 III.2. HLA DATA COLLECTION 36
 III.3. EPIDEMIOLOGICAL RESEARCH 41
IV. INTERNAL EVALUATION 45
 IV.1. INTRODUCTION 45
 IV.2. HLA DATA COLLECTION QUESTIONNAIRES 47
 IV.3. EPIDEMIOLOGICAL QUESTIONNAIRES 52
V. EXTERNAL EVALUATION 56
 V.1. INTRODUCTION 56
 V.2. THE AUDITING COMMITTEE 57
 V.3. EVALUATION PROCESS 58
 V.4. OVERALL ASSESSMENT 60
 V.5. INDIVIDUAL EVALUATOR REPORTS 65
VI. THE ELECTRONIC TOOLS 80
 VI.1. RESEARCH DATABASE 81
 VI.2. PROJECT MANAGEMENT TOOLS 84
VII. CONCLUSIONS & RECOMMENDATIONS 91
 VII.1. CONCLUSIONS 91
 VII.2. RECOMMENDATIONS 96
APPENDIX I QUESTIONNAIRES 99
APPENDIX II EVALUATION CRITERIA 106
APPENDIX III DISSEMINATION PLAN 109
APPENDIX IV PROJECT SUMMARIES 115
EXECUTIVE SUMMARY

This report provides an overall assessment of the Injury Prevention Programme (IPP) of the European Commission for the period 1999-2003. The main body of the report is divided in six parts: an overall assessment of the IPP during the study period, a cost-effectiveness evaluation for each of its three main components injury data collection, epidemiological projects and administration, an internal evaluation, an external assessment, a description of the electronic research database that was built in the context of this project, and a final section with the conclusion from this report and recommendations for the European Commission.

Injuries represent a major public health problem and the IPP Initiative has been the cornerstone of the European Commission action against this contemporary epidemic. During the study period, IPP has disbursed funds totalling more than €10m, out of which 56% was apportioned to data collection, 37% to the epidemiological programs and 7% to the project administration. This initiative has made the European Commission one of the most significant supporters of a relatively neglected but crucial field of public health. The main purpose of this report however is not to solely compare the IPP with other initiatives in injury prevention; had this been the purpose, IPP would get a high ranking given the comparative magnitude of its financial contributions.

The main purpose was to provide a detailed assessment of the overall progress achieved across the various components, of the trends recorded in these five years and of the concrete results and their added value for the field of injury prevention and the European citizen. It was felt that only such an assessment would provide a clearer picture of what was achieved in comparison to what it could have been achieved.
Further, such a comparison would highlight to the European Commission and the participants in the Programme the potential areas of improvements in similar future initiatives.

Under this relatively high standard, the IPP has produced important results for the injury prevention field. On the data collection side, the provision of matching funds has served two main purposes: at first, it has encouraged member states with no previous record in injury collection data to establish and maintain a national injury surveillance system. Further, it has created a unique opportunity for establishing an EU harmonized system providing high quality analytic information on the external cause (including consumer products) of injury, derived from the Emergency Medical Departments.

As a main outcome of the project, the Injury Surveillance System has been functional at least in eight member states (Austria, Denmark, France, Greece, Italy, Netherlands, Portugal, Sweden) that provide data on an annual basis using the same data collection methodology. A network of national data administrators has been created to ensure the homogeneity of data and the application of common coding systems, so that national data are checked and made readily available for uploading in the EUPHIN-HEIMS database for use by scientists and the European citizen. At the current stage of development, the data collection system cannot be used to derive complete information on the incidence of injuries in the EU-15. Moreover, continuity of data collection that is necessary for the assessment of time trends in the occurrence of injuries and for the evaluation of the effectiveness of EU-wide injury prevention programmes- has not been ensured for all 15 member states.
Even so, there is confidence that the expanded to all ages and all types of injuries EU "Injury Database" (IDB), which has substituted the former Home and Leisure Accident Surveillance System (EHLASS), can serve as a unique and sensitive sentinel system that provides detailed information on the external cause of injury for a large number of cases (a total of 5,340,027 injury cases have been reported) across the EU-15 region. To our best knowledge, this information cannot be derived from any other source or database in the EU and it is of superior quality compared to other injury prevention oriented databases in other parts of the world.

Regarding the epidemiological projects that have been funded in the course of this initiative, a wealth of information has been generated, regarding the European spectrum for several types of unintentional injuries such as sports, tourist, farm injuries and burns, as well as intentional injuries, namely domestic violence and suicide. The information provided from these projects allows the prioritisation of issues and the definition of specific areas for intervention, which can often be done optimally at the European level. In addition, it has offered the opportunity for the creation of European networks of public health practitioners and experts in specific fields of injury prevention (e.g. burns, sports or intimate partner violence) and has provided the venue for scientific meetings, exchange of information, and sharing of public health lessons.

A shortcoming of the IPP initiative during this first period has been the lack of tangible public health benefits that could substantially change the occurrence of injuries in Europe. The epidemiological projects have been funded for very short time periods that did not allow the implementation of intervention programs with evaluation components. Thus, most of the epidemiological projects focused on
identification and collection of data from different data sources as well as on exploitation of the Injury Surveillance System (ISS) data aiming to explore the magnitude and risk factors of the problem in specific areas of injury prevention. During this period the data were mostly contributed directly from the participating member states, because of the absence of a currently functioning EUPHIN-HEIMS.

It should be recognized that what is not measured, cannot be managed; in other words collection and provision of data is the necessary prerequisite for public health intervention. Thus, it will only be possible to measure the success of the IPP programme 1999-2003 *ex post*, by the extent to which the subsequent PHP Programme 2003-2007 will:

- ensure the sustainability of the IDB or its variants and the expansion to the 10 new member states,
- provide the means and procedures to put the collective experience into action,
- prioritise for funding interventions which entail strong elements of both the feasibility and the evaluation components in order to efficiently reduce the burden of injuries and
- disseminate the results achieved to the general public.

The first IPP provided the infrastructure for subsequent action and can be considered a success. It has been a necessary first step towards the right direction that should focus on the implementation of research results and evaluation of their benefits; only the next step will however determine whether the entire path leads to the benefit for the European citizen.
I. Introduction

The Injury Prevention Program has been established with the 372/99/EC/08-02-1999 decision of the European Parliament and the Council as part of the overall Public Health Programme. The Programme was a response of the European Union to the evolving health challenges, in accordance with the greater role envisaged for public health by the Amsterdam Treaty. Its main objectives were to gather high quality information on epidemiologic characteristics of public health problems and the effectiveness of prevention mechanisms, support an in-depth analysis of the data and lead to their effective presentation to policy makers.

The unintentional and intentional injuries present one of the major public health challenges. It can be anticipated that preventive measurements that would reduce their incidence would also reduce their adverse economic impact, especially given that many of them occur to younger individuals with significant productive years ahead of them. Hence, the economic benefit coupled with the low costs for some simple but frequently missing preventive measures can lead to favourable cost-benefit ratios.

The aim of the current project was then to provide insights for its overall evaluation in terms of economic efficiency, cost-effectiveness and the extent that it achieved its stated goals. In addition, since this was the first explicit evaluation of the IPP programme, the project tried to smooth the variability in the presentation of data across the various sub-contractors and also to propose a homogenised approach in the management of the projects and the presentation of their outcomes in the future using specifically developed IT tools.
The first part of this report deals then with the Programme in its entity and using the data available describes at first the priorities in the funds disbursements and how they changed over time. There have been two main destinations of the funds distributed through IPP: HLA data collection and epidemiological research, while a third smaller use of funds was the Programme’s administration and coordination. Over the life of the IPP, the importance of the HLA data collection has decreased in terms of funding and participation, while the field of public health intervention and epidemiological research has been the main focus of recent disbursements to member states and the reasons and implication of this trend are discussed in depth in the relevant chapter.

Within the same part, an analysis is also provided for the participation rates of member states to each one of the three components of the IPP and how it has evolved over time, both in terms of projects organised as well as in terms of grants received. It is stressed there that the ability of the IPP to function as the main avenue of information for the European researcher in this field is challenged by the delays recorded in the dissemination of information to the interested parties. Finally, this part examines the potential of the IPP Network to contribute to European integration by analysing the partnerships achieved over the life of the IPP. It is encouraging that after an initial decrease in the number of partnerships from 1999 to 2000, the Network has managed to increase substantially the number of partnerships in every subsequent year and they now include both current member states as well as incoming members.

The second part of this report examines the cost effectiveness of each one of the three IPP components: the administrative function, the HLA data collection process and the epidemiological research. The initial description of the relatively smaller administrative function serves as an archetype for describing a core feature of the IPP,
the duality in its goals for integration and economic efficiency and the inherent
tension between the two. There is little doubt that adding another goal to mere
economic efficiency is appropriate for a public EU program such as the IPP; however,
this duality brings with it the need for a complex set of managerial and coordinating
tools in order to ensure the maximum attainment of the goals set forth.

Using the context put forward in the administrative component serves as a good
introduction for the ensuing description of the other two components of the IPP: the
HLA data collection and the public health research. The latter is scientific in nature
and aims to knowledge production; in contrast, the former is managerial in nature and
aims to knowledge implementation. Hence, the cost of HLA data collection depends
on variables such as population and economies of scale can be documented.

It is then argued that such a process may fall outside of the core competencies of the
IPP Network and other organisational alternatives might be necessary. On the
contrary, funding for epidemiological research and public health prevention mostly
depends on the accumulated expertise of the participating members who can further
benefit from the opportunity for partnerships and for cross-border comparisons. It is
then concluded that from a cost-effectiveness perspective, the IPP Network is better
suited for this type of activities and the current trend to strengthen this component at
the expense of the HLA data collection is encouraging.

The third part of this report provides an internal evaluation of the overall program.
This part gives the podium to the project leaders themselves through their completion
of electronic questionnaires provided in Appendix I. These questionnaires gave to the
project leaders the opportunity to assess their own performance on achieving the goals
stated in their projects and also to evaluate their experience from participating in the
IPP and the funding and managerial implications of their participation. There has been a warming acceptance among project leaders of the opportunity to speak their mind and they reacted positively to the fact that an avenue for their own comments and feedback was provided, even if for some of them it was more than two years that their project had ended and the outcome was submitted to the Commission.

In total, it is evident from the internal evaluation that most project leaders were satisfied with the overall experience and found little difficulty in adhering to the administrative and managerial demands of the IPP. However, most project leaders were quite dissatisfied from the receptiveness of their work on behalf of the European Commission: in many cases, there was no feedback provided and no information on follow-up activities. In addition, project leaders requested higher visibility for their projects, possibly through the existence of an IPP wide dissemination plan.

The ensuing fourth part of this report dealt with the external component of the evaluation process. In this part a specifically devised auditing committee assessed all the epidemiological projects of the IPP that had already submitted the final material to the Commission. The evaluators were broadly engaged in the field of injury prevention but did not have specific engagement in the projects evaluated. The evaluators were given the report and all other pertinent project material as well as a detailed analysis of the project from the project leader herself that was required to answer to thorough assessment questionnaires. Unlike the previous ones for the internal evaluation, these questionnaires were exclusively fact-finding and aimed to assist the evaluators in providing an objective assessment of the project itself.

The external evaluation followed a structured process that included the composition of evaluation metrics in consensus meetings of the Auditing Committee; comprising
by necessity partners in this project. A complete list of criteria for the evaluation was developed and it is provided in the second Appendix of this report. The Auditing Committee then applied these metrics to all completed epidemiological projects and provided an assessment of the project itself as well as of the overall IPP initiative. Due to the inherent difficulties in summarising expert views, all evaluators were also offered the opportunity to submit an “individual evaluator’s review and their respective pieces of work are included in this final report.

The fifth part of the report described the electronic research database and the other IT tools built for the project. The IPP Network has multiple considerations such as knowledge generation and dissemination, European integration and economic efficiency. In order to combine these multiple goals and still achieve the highest economic efficiency possible, it is necessary to decouple the experience accumulated from the specific individuals and to “enshrine” it in member-independent databases that can be of use by any current or future member. The two pertinent initiatives of this project were the research database and the project management tools.

The research database contains all projects that have been funded since the inception of the Network with the purpose to give access to high quality scientific and economic data related to the projects funded. In addition, the project management tools aim to facilitate complex, cross-border projects to maintain task sequence and financial discipline. It is anticipated that such projects would be more frequent in a mature injury prevention programme within an enlarged EU.

The sixth and final part of this report contains the main conclusions of the analysis so far and the recommendation for the next steps – the reader that would prefer starting from that point and going backward to the supporting analysis of specific points is
then referred to page 91 of this report. In terms of the Appendices, the first one provides the questionnaires used for both the internal and the external evaluation for the perusal of the interested reader. The second Appendix provides a list of the evaluation metrics used in the external evaluation on behalf of the Auditing Committee. The metrics are provided for the information of the reader and their intrinsic potential to be used in the evaluation of other public health Programmes funded by the EU.

The third Appendix provides a first draft of a dissemination plan to make the outcomes available to the European citizen. This component is provided in the appendices as it was not a formal requirement of this project. However, it was felt that the collective experience and insights provided by the project leaders interviewed in the duration of the project could be used to provide a valuable first draft of the sought after dissemination plan. The plan responds to the overarching conclusion of the communication with all interested parties that the lack of visibility for the results achieved through the IPP was a significant obstacle that threatens to undermine the credibility and eventually the existence of the Programme itself. The plan summarises their input through the questionnaires and aims to spur discussion and to lead to a finalised and coherent dissemination plan that would meet the acceptance of the interested parties. Finally, Appendix IV provides a list of all epidemiological projects compiled within the framework of the project. The list includes all pertinent scientific and administrative information and can also be found in the research database available on the Internet at www.euroipn.org
II. Overall Programme Assessment

The Injury Prevention Programme has committed substantial resources to the prevention of injuries and the coordination of efforts within the European Union. As an EU initiative, it shared also the burden of bringing together scientists from all 15 member countries as well as the accession (and soon to be members) countries. In the five years since its inception in 1999, the IPP has awarded more than €10m and has funded a total of 79 projects in the field of injury prevention and data collection.

The basic premise of this report is that the IPP should be evaluated on the basis of the added value it has created in comparison to disbursing the funds through the national agencies and not exclusively on the level of funding available. Indeed, focusing exclusively on the level of funds disbursed—however important they are—ignores one of the most important aspects of the IPP, its potential to enhance EU integration, as mandated in the Amsterdam treaty for the Public Health Programmes.

The following pages provide then an assessment of the IPP initiative. The source for most of the background data are the Programme’s secretariats (NL, DK and A), the official web site of DG V,[1] the ISS database as well as personal communication with nearly all of the individual subcontractors. In the description of the current situation and the detection of relevant trends, particular attention has been given to separate the two main components of the IPP program: the HLA data collection, and the projects for epidemiological research, encompassing both the tools to improve data collection and the projects of descriptive epidemiology. The third smaller component consists of the projects for the administration of the Programme (coordinating secretariats).

II.1. Funding Disbursements

The IPP programme has provided a total of €10.6m in the form of grants to individual subcontractors. This sum is nearly equally divided for each year (see Table below):

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>€ 4,305,743</td>
<td>€ 4,626,550</td>
<td>€ 4,679,590</td>
<td>N/A</td>
<td>€ 13,611,883</td>
</tr>
<tr>
<td>Average</td>
<td>€ 215,287</td>
<td>€ 243,503</td>
<td>€ 246,294</td>
<td>N/A</td>
<td>€ 235,028</td>
</tr>
<tr>
<td>Median</td>
<td>€ 192,887</td>
<td>€ 209,161</td>
<td>€ 239,529</td>
<td>N/A</td>
<td>€ 212,933</td>
</tr>
<tr>
<td>Min</td>
<td>€ 56,248</td>
<td>€ 100,978</td>
<td>€ 106,623</td>
<td>N/A</td>
<td>€ 56,248</td>
</tr>
<tr>
<td>Max</td>
<td>€ 401,227</td>
<td>€ 451,381</td>
<td>€ 451,656</td>
<td>N/A</td>
<td>€ 451,656</td>
</tr>
<tr>
<td>Grants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>€ 2,795,500</td>
<td>€ 2,552,348</td>
<td>€ 2,662,789</td>
<td>€ 2,737,062</td>
<td>€ 10,747,699</td>
</tr>
<tr>
<td>Average</td>
<td>€ 139,775</td>
<td>€ 134,334</td>
<td>€ 140,147</td>
<td>€ 136,853</td>
<td>€ 137,777</td>
</tr>
<tr>
<td>Median</td>
<td>€ 89,844</td>
<td>€ 110,500</td>
<td>€ 119,263</td>
<td>€ 103,989</td>
<td>€ 105,477</td>
</tr>
<tr>
<td>Min</td>
<td>€ 38,771</td>
<td>€ 40,909</td>
<td>€ 74,634</td>
<td>€ 46,895</td>
<td>€ 38,771</td>
</tr>
<tr>
<td>Max</td>
<td>€ 359,172</td>
<td>€ 277,573</td>
<td>€ 312,007</td>
<td>€ 314,323</td>
<td>€ 359,172</td>
</tr>
<tr>
<td>Max/Min</td>
<td>9.3</td>
<td>6.8</td>
<td>4.2</td>
<td>6.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Countries Funded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1: Descriptive Financial Statistics of the IPP initiative

Table 1 makes evident that the funding level has remained relatively stable during the life of the project at close to €2.5-2.7m. This is also evident in the funding needs for the approved projects: the average grant has showed remarkable constancy at €130-140k while the more volatile median is close to €110k but varies from €90k to €120k. It is interesting that the ratio of the maximum to minimum grant has been particularly unstable, ranging from 4.2 in 2001 to 9.3 for the 1999 funding year (and for the overall Programme). Finally, it is encouraging that all 15 countries have participated at least once in the IPP initiative but this level has not been stable and it is falling in the recent years.
The following figures provide a graphic depiction of the above facts for both the budget of the projects and the level of grants awarded:

Figure 1: Descriptive Statistics for the Projects' Total Budgets

Figure 2: Trends in the Grants Awarded
Although very useful for descriptive purposes, the above aggregate data may mask interesting trends at the level of the individual project. To further explore this relationship, Table 2 translates them to specific information about the number of grants awarded for each one of the funding years of the IPP:

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Funded</td>
<td>20</td>
<td>100%</td>
<td>20</td>
<td>100%</td>
<td>19</td>
</tr>
<tr>
<td>Completed</td>
<td>20</td>
<td>100%</td>
<td>20</td>
<td>100%</td>
<td>17</td>
</tr>
<tr>
<td>Pending</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Overall Status of the Funded Projects

The above Table shows that the IPP has been remarkably consistent in terms of the number of projects funded that have remained between 19 and 20. Obviously, all of the projects from the previous years (1999 & 2000) and most of the projects in 2001 have been completed already and their results have been made available, while the 2002 projects are still pending at this moment. Some additional trends in the reports produced as well as a specific discussion for partnerships involved are given more detailed in subsequent chapters (see II.3 & II.4 below).

An even more insightful analysis occurs by categorizing the IPP in its constituent components. Indeed, the overall IPP Initiative is a mix of three components: there are projects related to Home and Leisure Accidents data collection, projects for epidemiological research and administrative projects that coordinate the IPP through the rotating secretariat. The epidemiological projects can be further subdivided into the core descriptive epidemiology projects and those projects aiming to improve data collection through the devise of pertinent tools and/or software.
Accordingly, the following figure provides the breakdown of the overall IPP budget for each specific objective:

![Figure 3: A Breakdown of the overall Budget by Objective](image)

It is evident that overall, data collection from the member states on Home and Leisure Accidents has been the most significant part of the IPP in this period, while the epidemiology research has claimed more than one third of the total budget. Further, the administrative costs account for 7.4% of the budget and help support the coordinating secretariat. To explore the shifting priorities of the project, the following table provides a breakdown of the number of projects granted by specific objective:

<table>
<thead>
<tr>
<th>Objective</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA Data Collection</td>
<td>11</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>Epidemiological Research</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>- Descriptive Epidemiology</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>- Data Collection Tools</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Administrative Projects</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 3: A Breakdown of the Projects Awarded by Objective
Table 3 shows that the number of data collection process has dropped precipitously in recent years by one third (see III.2 for extended discussion). At the same time, the number of epidemiological programs has increased to 9 in 2002, a substantial increase over the 6 in 2000. On average, the two categories appear to be “complementary” i.e., gains in one of the two bring decreases to the other one.

In addition, the administrative projects have remained stable at one per year (the 1999 administrative program extended in 2000, while 2002 includes the project that assessed the entire IPP and funded the report at hand). The fact that the administrative costs have not fallen over time is a negative aspect of the program, although both the low number of data points as well as the particularities of the integrative approach of the IPP may explain this fact (see III.1 below for analytical discussion of this matter).

The above data provide a trend of the shifts in priorities as far as the number of projects in concerned. If one were to examine the same trends regarding the funding of individual projects then the above trend is further exacerbated, as it is presented in the following Table:

<table>
<thead>
<tr>
<th>Objective</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA Data Collection</td>
<td>€ 1,245,635</td>
<td>€ 1,714,673</td>
<td>€ 1,713,879</td>
<td>€ 1,330,093</td>
<td>€ 6,004,280</td>
</tr>
<tr>
<td>Epidemiological Research</td>
<td>€ 1,190,693</td>
<td>€ 837,675</td>
<td>€ 745,490</td>
<td>€ 1,176,702</td>
<td>€ 3,950,580</td>
</tr>
<tr>
<td>- Descriptive Epidemiology</td>
<td>€ 666,893</td>
<td>€ 621,375</td>
<td>€ 517,694</td>
<td>€ 929,429</td>
<td>€ 2,735,391</td>
</tr>
<tr>
<td>- Data Collection Tools</td>
<td>€ 523,800</td>
<td>€ 216,300</td>
<td>€ 227,796</td>
<td>€ 247,273</td>
<td>€ 1,215,169</td>
</tr>
<tr>
<td>Administrative Projects</td>
<td>€ 359,172</td>
<td>€ 203,420</td>
<td>€ 230,267</td>
<td>€ 792,859</td>
<td>€ 1,725,739</td>
</tr>
<tr>
<td>Total</td>
<td>€ 2,795,500</td>
<td>€ 2,552,348</td>
<td>€ 2,662,789</td>
<td>€ 2,737,062</td>
<td>€ 10,747,699</td>
</tr>
</tbody>
</table>

Table 4: Distribution of the IPP Budget for each Objective

The same data have been used to provide a graphic depiction of the shifts in the priorities among the objectives over the life of the project. Note that the epidemiological research category is further subdivided in this graph to its
components, the descriptive epidemiology projects and the project for data collection tools and/or software:

![Figure 4: Trends in the Budget Priorities of the IPP](image)

The most significant change relates to the HLA data collection that maintained a share close to two thirds of the available budget in 2000 and 2001 but less than half at the first and last year of the project. It is also of interest that within the epidemiological research objective, descriptive epidemiology has increased in importance, and its share of funding has increased from 23% to 34%, while funding for data collection tools currently accounts for roughly 8-9% of the overall budget down from 19% in the first years of the IPP. This positive trend is compatible with a significant added value of these collection tools, which once developed and applied do not need incremental funding but may have lasting contributions in the data collection process.

In conclusion, the substantial funding disbursements of the IPP have totalled more than €10m in the life of the Initiative and have shifted over time to support more epidemiologic research rather than simple data collection. Undoubtedly this is a
positive trend, as the data collection should gradually be “industrialised” and delegated to agencies with a different expertise than the members of the research network. At the same time, this poses the requirement to the responsible agencies for a harmonised collection process, since this data provide the backbone for any meaningful research attempt in the field of injury prevention. Although the effectiveness of the data collection tools is assessed later in this report (see III.3 below) the higher initial funding that is accompanied by a gradual decrease is compatible with a notion of “investment” in these tools that has a lasting impact in the data collection process.
II.2. Participating Member States

The Public Health Programme has set an explicit goal to enhance European integration. Towards this end, the ability of the Programme to reach all of the member states of the European Union is crucial and the relative performance of the IPP has been quite satisfactory. The following figure provides an overview of the funding received by each member state over the life of the IPP Initiative:

To further explore the acceptance of the IPP among the member states it is important to distinguish between its main objectives, the HLA Data Collection and the Epidemiological Research. It is encouraging that all member states have submitted at least one proposal for Data Collection, although the overall level has not been consistent. At the same time the second objective, the epidemiological research has experienced much slower acceptance and the number of member states submitting proposals for this objective trails the number of HLA Data Collection proposals.
To shed further light in the above observations, the following Table provides an overview of the breakdown of each member state’s participation as defined by the number of projects funded for each IPP objective:

<table>
<thead>
<tr>
<th></th>
<th>HLA Data Collection</th>
<th>Epidemiological Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999</td>
<td>2000</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DK</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IRL</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UK</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 5: Participation of Each Member State at each IPP Objective

Table 5 reveals two worrisome trends in the participation of individual member states to the IPP Program. At first, seven member states (B, E, FN, IRL, L, P, S) have never participated in the epidemiological research projects. This means that the Programme has failed so far in its function to attract scientists in this field to undertake projects within the auspices of the network and achieve knowledge transfer. This negative phenomenon is mitigated to some extent by the steady increase in the number of member states participating in the research projects, from 4 in 2000 to 5 in 2001 and 6 in 2002, although the overall number remains low, especially since the Epidemiological Research function now accounts for nearly half of the overall budget.

2 The administrative function has been excluded from the Table due to its rotating pattern (see III.1)
The second negative phenomenon related to the trend in the participation to the HLA data collection. Although the existence of reliable and standardised data is paramount for the initiation of meaningful research in the injury prevention field (indeed in any field), the number of member states participating has decreased from 14 in 2000 to 9 in 2002. The suitability of the IPP Initiative for data collection rather than research projects is discussed later in this report (see III.2 below), but it should be noted that future research will be substantially hindered to the extent that the data collection is not undertaken in a homogenised and representative way across member states.

In conclusion, the IPP has provided grants at least once to every member state. There are two different but equally worrisome trends for each individual objective. As far as the HLA Data Collection is concerned, the level of participation has been quite high in the past, with all member states receiving a grant at least once and as many as 14 of them being funded simultaneously in 2000. However, there has been a substantial decrease, perhaps due to the increased demand on the part of the Commission for provision of representative samples that would allow the calculation of injury rates on all types of injuries. Current figure stands at less than two thirds of the total number of the EU-15. On the other hand, the Epidemiological Research function has met lower acceptance among the member states and only 8 member states have submitted a proposal at least once for this objective. Although the number of countries funded per year has increased, the current figure of 6 is undoubtedly low if substantial integration and knowledge transfer it to be achieved.
II.3. Reports

A total of 79 projects have been funded over the lifetime of the IPP initiative. Among them there are 45 projects that aimed to collect data on Home and Leisure Accidents, 30 projects of epidemiological research (19 projects of descriptive epidemiology and 11 projects that devised data collection tools), and 4 projects that related to the project administration. Reports of the projects are practically expected from the projects of epidemiological research – data collection projects have a data file as a final outcome, while administrative projects usually have a report but their main outcome is the coordination of the project. The following table summarizes the information on the status of the reports by project’s objective and year:

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th></th>
<th>2000</th>
<th></th>
<th>2001</th>
<th></th>
<th>2002</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Descriptive Epidemiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Funded</td>
<td>4</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>5</td>
<td>100%</td>
<td>6</td>
<td>0%</td>
<td>19</td>
</tr>
<tr>
<td>Projects Completed</td>
<td>4</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>5</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>10</td>
</tr>
<tr>
<td>Report Posted</td>
<td>4</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>4</td>
<td>80%</td>
<td>0</td>
<td>0%</td>
<td>6</td>
</tr>
<tr>
<td>Report Due</td>
<td>4</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>1</td>
<td>20%</td>
<td>0</td>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>Projects Pending</td>
<td>3</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>6</td>
<td>100%</td>
<td>4</td>
</tr>
<tr>
<td>Data Collection Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Funded</td>
<td>3</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>2</td>
<td>0%</td>
<td>11</td>
</tr>
<tr>
<td>Projects Completed</td>
<td>1</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>5</td>
</tr>
<tr>
<td>Report Posted</td>
<td>3</td>
<td>100%</td>
<td>4</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>Report Due</td>
<td>3</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>Projects Pending</td>
<td>2</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>2</td>
<td>100%</td>
<td>6</td>
<td>100%</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>100%</td>
<td>8</td>
<td>100%</td>
<td>7</td>
<td>100%</td>
<td>8</td>
<td>0%</td>
<td>30</td>
</tr>
<tr>
<td>Projects Completed</td>
<td>1</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>Report Posted</td>
<td>7</td>
<td>100%</td>
<td>8</td>
<td>100%</td>
<td>6</td>
<td>86%</td>
<td>0</td>
<td>0%</td>
<td>9</td>
</tr>
<tr>
<td>Report Due</td>
<td>7</td>
<td>100%</td>
<td>8</td>
<td>100%</td>
<td>1</td>
<td>14%</td>
<td>0</td>
<td>0%</td>
<td>6</td>
</tr>
<tr>
<td>Projects Pending</td>
<td>10</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>15</td>
<td>100%</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 6: Status of Epidemiological Projects Reports
At Table 6 shows, among the 19 projects of descriptive epidemiology, 7 were still pending at the time of this report. Nearly all of them were awarded in 2002 and their deadlines (including the 3 month extension for submitting a report) have not yet elapsed. A similar picture is true for the data collection tools projects: the two reports not yet posted are for projects awarded in 2002 and which are still pending.

The above considerations should be qualified to some extent, given that programs can and often do request prolongations. It is reasonable to assume that the final deadline for a project cannot be set 100% in advance, especially since the applicants have to specify the deadline before their application for funding is due. It is perhaps a minor point but it seems prudent that there should be a deadline for all projects participating in one funding year and perhaps a comprehensive publication of all their findings. In conjunction with the research database (see VI.1 on page 81) this step could further increase the cooperation among European scientists as the could be informed about relevant initiatives and are able to establish some form of communication with experts that already have worked in this field.

Finally, it could be argued that medical publications are a viable alternative to posting the research reports in the IPP website. However, publications are by their very nature retrospective and they exist regardless of the IPP initiative. The added value of the IPP above and beyond the current system is to become the central avenue of timely information on projects completed (and potentially on projects currently undertaken, see VI.2 below). Failure to do so substantially erodes the added value of a European coordinated program over the uncoordinated national agencies.
II.4. Partnerships

In terms of European integration, the added value of the IPP has been significant, although with some interesting patterns. As stated above, all 15 members have been granted at least one project over the life of the IPP. The following table provides a more detailed review of the number of partnerships for each individual funding year of the Programme:

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>100%</td>
<td>19</td>
<td>95%</td>
<td>42</td>
</tr>
<tr>
<td>EU</td>
<td>143</td>
<td>100%</td>
<td>18</td>
<td>95%</td>
<td>31</td>
</tr>
<tr>
<td>Non EU</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>5%</td>
<td>11</td>
</tr>
<tr>
<td>Average</td>
<td>7.2</td>
<td>1.0</td>
<td>2.2</td>
<td>4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>EU</td>
<td>7.2</td>
<td>0.9</td>
<td>1.6</td>
<td>4.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Non EU</td>
<td>0.0</td>
<td>0.1</td>
<td>0.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 7: Distribution of the Number of Partnerships for each Funding Year

In total, there have been 300 recorded partnerships, the vast majority of them (285 or 95%) among current EU members. However, as Table 7 makes evident, there is a substantial discrepancy in the number of partners in each year, ranging from a total of 143 partnerships in 1999 to 19 in 2000, 42 in 2001 and 96 in 2002. There is therefore a precipitous drop in the number of partners between 1999 and 2000, followed by a substantial increase (more than doubling) in the number of partnerships in each subsequent year. Given that the number of projects has remained constant, it should come as no surprise that the same trend holds for the average number of partners in each project. This figure has dropped from 7.1 in 1999 to 0.9 in 2000, 1.6 in 2001 and 4.8 in 2003. Figure 6 depicts graphically this dramatic drop in the number of partnerships for the overall Programme in the four funding years of the project’s life:
While Figure 7 shows depicts the same precipitous decrease in the average number of partnerships both from the member states and the accession countries for each individual project:
This significant drop may be related to the fact that in 2000 a requirement for submission of a letter from each partner proposed was added. It can be said that the number of partnerships in 1999 (the first year that the project was structured in this form) reflects more the “potential” partners in the overall Programme, while the partnerships in 2000 and 2001 reflect actual partners for each individual project awarded. This is further strengthened by the fact that most project that report more than 10 partners have been recorded in 1999, the first funding year of the project.

Indeed, the following figure depicts a distribution of the average number of partners per project in the four years of the life of the IPP:

![Distribution of the Number of Partnerships per Project by the Funding Year](image)

Further, it should be mentioned that the overall average number of partnerships is to some extent misleading given the variability in the types of projects of the IPP initiative. The HLA data collection projects usually take place within the boundaries of one country and leave little room for external collaboration. If one were to exclude
these type of projects, then the average number of partnerships for the epidemiological projects increases significantly, to 6.5 partners per project overall (8.63 in 1999, 4 in 2000 and 6.14 in 2001). In addition, a positive trend exists in recent years, with the number of EU partners more than doubling between 2000 and 2001 (from 19 to 42) and the number of non-EU partners jumping from 1 to 11 (see Figure 6 and Figure 7 above).

Table 8 provides detailed information on the participation of each member state in either of the two roles possible (project leader or partner) for each funding year.

<table>
<thead>
<tr>
<th></th>
<th>Project Leader</th>
<th>Partner</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999</td>
<td>2000</td>
<td>2001</td>
<td>2002</td>
<td>Total</td>
<td>1999</td>
<td>2000</td>
<td>2001</td>
<td>2002</td>
<td>Total</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>DK</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>EL</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>FIN</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>IRL</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>-</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>NL</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>UK</td>
<td>2</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>79</td>
<td>143</td>
<td>18</td>
<td>31</td>
<td>93</td>
<td>192</td>
</tr>
</tbody>
</table>

Table 8: Participation of each Member State in the IPP

It is evident that there is a substantial distribution in the number of projects lead by each individual country, varying from 1 (IRL) to 11 (A). On the positive side, the number of partnerships that each country entered varies less, from 8 (L) to 18 (NL).

3 The table excludes non-EU partnerships
As presented in Table 7 each country has entered an average of 7.15 partnerships in 1999, 0.9 in 2000, 1.6 in 2001 and 4.8 in 2002.

The variability in each role decreases if both roles are examined simultaneously for each funding year. Indeed, the ratio of project partnerships to project leaderships varies from 0.25 (A) to 3 (F) in 2000 and narrows even further to between 2 (multiple countries) and 4 (E) in 2002. It is also of interest that there is an overall correlation in the number of times a country has participated as a project leader and as a partner (correlation coefficient 0.82). This correlation is compatible with the fact that the most active project leaders were probably among the most active partners as well. This is a very encouraging fact, because it paves the way for the transfer of knowledge between those countries with an active injury prevention program and those members relatively less experienced in this field.

Interestingly, there is generally very little correlation between the number of partners and the budget (or grant) requested. In 1999 the relevant correlation coefficient between the number of partners and the grant awarded was 0.35, but this turned actually negative in 2000 (r= -0.13), further intensified in 2001 (r= -0.24) but reverse itself in 2002 (r= -0.15). If one were to exclude the HLA data collection projects that do not lend themselves to partnerships, the same low correlations persist. In the core epidemiological projects the correlation coefficient between the number of partners and the level of funding swings from r=0.5 in 1999 to r= -0.74 in 2000, r=0.3 in 2001 and r=0.5 in 2002. Although the number of projects in each individual year is small, and the above data do not allow for statistical significance, it is probably an area that should be looked upon in the subsequent years initiatives that will replace IPP.
III. Cost-effectiveness evaluation

There has been an increased emphasis lately in the assessment of cost and effectiveness for basic research. On the one hand, the costs of research are usually well described and detailed budgets are available. Although this does not address the concept of economic or opportunity costs, it does provide a good estimate of the accounting costs. However, the assessment of the effectiveness of research is difficult, since by definition its outcomes cannot be predicted in advance. In addition, a narrow effectiveness assessment of results risks underestimating the impact of negative results, whose effectiveness is that they preclude similar research in the future.

Despite the potential difficulties, a cost effectiveness assessment of research funded is paramount. At first, the magnitude of the IPP project, where roughly €3m are disbursed annually, makes it important to secure the correct handling of the European taxpayer’s money. In addition, the wide scope of the injury prevention field means that there are more opportunities and ideas than the available funding could ever support. Therefore a cost effectiveness assessment could support decision makers in setting priorities and allocating funds accordingly.

More than one it has been stated in this report that the specific project initiatives that were funded by the IPP network fall into three categories. In the first category belong projects that have collected data on Home and Leisure Accidents in the member states. The second category encompasses the epidemiological research programs while the third category includes the administrative costs of the project in the form of funding the rotating coordinating secretariat. This classification has guided the discussion in this chapter, which starts from the administration component first.
III.1. Administrative Secretariat

A more detailed description for the first and second categories that consume the bulk (93%) of the budget is provided in the following pages. However, it is useful to begin the discussion of the cost effectiveness by the third category, the coordinating secretariat. This is because the small number of projects awarded in this category allows it to exemplify important concerns that are prevalent in all three categories. Hence, the administration discussion can be used as a template for the subsequent evaluation of the other two bigger and more important components.

The following table provides then a list of all projects that have been included in this category:

<table>
<thead>
<tr>
<th></th>
<th>1999-2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant</td>
<td>€ 359,172</td>
<td>€ 203,420</td>
<td>€ 230,267</td>
<td>€ 792,859</td>
</tr>
<tr>
<td>% of total</td>
<td>6.8%</td>
<td>7.6%</td>
<td>8.4%</td>
<td>7.4%</td>
</tr>
</tbody>
</table>

Table 9: Grants for Administrative Costs of the IPP Initiative

Note that the table has included together the 1999 and 2000 funding years because the respective secretariat (NL) has covered this period. In addition, the 2002 8.4% administrative cost is to some extent misleading, since it includes the project “Cost-benefit Analysis of the Injury Prevention Programme 1999-2003 and final project evaluation” (the project that funded the composition of the report at hand) that evaluated not only the 2002 projects but also the entire IPP initiative; only a percentage of its cost should theoretically be allocated to 2002 and therefore the 8.4% overstates to some extent the administrative costs of this year.
It is then evident that the administrative cost cover around 7% of the Programme. One would expect that this cost would gradually decrease in every funding year as experience accumulates and tools that have developed from each secretariat can be passed on to the subsequent one. However, this does not seem to be the case; even if the 2002 costs are slightly overstated, the cost time trend is flat rather than declining.

At face value this is a shortcoming of the IPP initiative: administrative costs are a “deadweight” cost and are anticipated to decrease in favour of the main goals of the Programme. However, it becomes much less apparent whether this is a shortcoming if one takes into account that the secretariat is rotating. In other words, the Programme mandate that each year a new member undertakes the secretariat role and has to learn the process nearly from scratch. This means that rather than going down the experience curve over time, each secretariat has to climb the curve again in every funding year. This fact inevitably increases the “training and development” costs embedded in the overall administrative costs above.

Of course, the secretariat is rotating for a good reason: to enhance the transferability of knowledge, to increase the integration among the members of the network – and hence indirectly European integration – and to ensure that each member state has an opportunity to perform this crucial role. However, these venerable goals (“knowledge transferability”, “European integration”, “equity”) are fundamentally in clash with the goal of efficiency in the economic term – at least on the short run. Therefore, rather than aiming for the maximum effectiveness achievable with having the secretariat permanently in one member, the final outcome is a compromise of the above goals.

It should be noted that this report does not argue towards achieving the maximum efficiency and sacrificing each and every other goal. It is important though to make
the above compromise explicit and to quantify it, so that the effectiveness goal is not overly ignored. For instance, the fact that the administrative costs remain nearly flat at 7% means that each and every secretariat has achieved the same cost goals that represent the economic frontier for every new entrant. Similar quantitative goals should ensure budget discipline for every disparate goal of the program.

A second conclusion that follows from the above observation about the multiple goals relates to knowledge transferability. It is usually assumed that this is achieved through indirect and non-explicit means such as gradually accumulated experience, expertise and so on. Although this is true to some extent, the nature of a program that rotates the coordinating role means that, however important, such implicit tools are not adequate. It is then essential to build objective and user-independent tools that can be handled easily from one member state to the next when performing this role.

This specific objective is not limited to the administrative costs. The same can be said for more expensive goals, such as the data collection and the core research projects. As it is discussed below, the Programme has set some important priorities early on to achieve the goal of integration and has devoted substantial resources in harmonising and standardising data collection. It should be noted that the current project has tried to achieve this goal by developing a set of tools that could be of potential use in subsequent years as well and this issue is further discussed in the chapter of electronic tools below. In general, it is important not to forget these multiple and conflicting goals in the assessment of the overall effectiveness for each of the two remaining goals (HLA data collection and epidemiological projects) that follows immediately below but rather to recognize and quantify them to the extent possible.
III.2. HLA Data Collection

As it has been stated repeatedly in this report, the two objectives of the IPP initiative differ fundamentally along various dimensions. The Data Collection process, the backbone of the IPP Initiative until recently is a mix of scientific work and managerial challenge. Devising the questionnaire and ensuring its standardised form across member states is a scientific task that should be completed upfront. After this initial step though, the rest of the data collection objective is mostly a managerial task and relevant tools of the managerial literature should be used to assess its effectiveness.

Towards this goal, it should be noticed that there are two different dimensions that could be used to assess the data collection process. The first is the ability of the Programme to integrate and standardise the collection among the individual member states. This aims to achieve the integrative goal of the IPP, so that it provides an incremental value above and beyond what can be achieved by disbursing the funds through the national agencies. The second dimension is the data collection process itself in each member state and over the life of the project. This level aims to achieve operational effectiveness for the data collection projects across borders and over time.

The assessment of the effectiveness of the Programme against the integration dimension is not particularly encouraging. The number of member states participating has fallen continuously since 2000 and it now stands at nine down from fourteen in 2000 and eleven in 2001 (see Table 5). It is questionable whether those member states that dropped out continue to collect data outside the scope of the program or whether they have abandoned the effort altogether. Although this difference is crucial for the injury prevention field in general, it is irrelevant for the IPP Network, which seems to have failed to achieve complete or even increasing participation of the member states.
The operational dimension can also be assessed as far as the relative ability of each individual member state to employ the funds productively is concerned. The search for data trends was not meaningful given the budget process of the Programme that allocated a specific grant to each country and maintained it usually stable over the life of the IPP. Therefore, the only meaningful comparison is among the individual member states; of course, this comparison is dependent on specific variables and most important on the population of each participating member state. It is inevitable that the collection of data in the UK with a population of 59.8m in 2001 is a more extensive and complex undertaking than the same task in a smaller country.

To assess the effectiveness of the IPP Network towards this goal the following table provides the relevant cost data:

![Figure 9: Grant comparisons per thousand Inhabitants across Member States](image-url)

<table>
<thead>
<tr>
<th>Country</th>
<th>Cost per 000:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>3.8 €</td>
</tr>
<tr>
<td>S</td>
<td>9.2 €</td>
</tr>
<tr>
<td>P</td>
<td>11.9 €</td>
</tr>
<tr>
<td>NL</td>
<td>9.0 €</td>
</tr>
<tr>
<td>IRL</td>
<td>10.7 €</td>
</tr>
<tr>
<td>I</td>
<td>1.9 €</td>
</tr>
<tr>
<td>FN</td>
<td>9.7 €</td>
</tr>
<tr>
<td>F</td>
<td>4.0 €</td>
</tr>
<tr>
<td>EL</td>
<td>7.7 €</td>
</tr>
<tr>
<td>E</td>
<td>4.3 €</td>
</tr>
<tr>
<td>DK</td>
<td>19.1 €</td>
</tr>
<tr>
<td>D</td>
<td>3.4 €</td>
</tr>
<tr>
<td>B</td>
<td>8.0 €</td>
</tr>
<tr>
<td>A</td>
<td>10.0 €</td>
</tr>
</tbody>
</table>

All population data are based on Eurostat, Yearbook 2002

Luxembourg with an average cost of €185 per thousand inhabitants was excluded from the list due to the obvious lack of economies of scale.
Figure 9 makes clear that the overall grant has varied quite substantially across the member states, ranging from €1.9 per thousand inhabitants in the case of I to €19.1 in the case of Denmark (and even more in the case of L, which was excluded from the chart). It should be noted that there is a strong negative tendency for lower costs as the population increases, and the relative correlation coefficient between the population of the country and the size of the grant is -0.78. There seems to be a strong "economies of scale" element incorporated in the allocation of EU funds and the determination of the maximum number of hospitals per member state that could be recruited for participation in the data collection process. This arrangement, however, was fixed when the EHLASS project was launched by another DG (Consumer Safety) and no attempt was made during the study period to intervene or exert any influence on the data collection system of each member state. Most of the member states that continue the ISS data collection process, have assigned this role to non-ministerial institutions dedicated to injury prevention. It is feared, however, that without the full support of the Commission the continuation of the system, even in the remaining states may be severely endangered. Moreover, discontinuation of the EU funding ceases the legal obligation for the member states to provide data to the Commission.

The above trend should have been expected given the very nature of the task and provides the economic justification for a completely different approach to the data collection process. By its very nature it is a managerial task that needs to be standardised and applied to the biggest scale possible to reap the resulting economies of scale. If the system is to be expanded to include the 10 new member states, whose population is lower than the current average, it is probable to further exacerbate the current situation and multiply the current inefficiencies of the process and these considerations should be taken into account.
These fundamental features make the data collection more suitable to a process that is organised and managed in the EU level and applied homogeneously to each member state, using a common methodology. Collaboration with individual member states is a prerequisite as the data collection system relies on health premises and confidentiality issues should be taken into account. This approach could lower the cost of organising the data collection for the new members and possibly reverse the current decreasing trend in the participation. Indeed, a common methodology and responsible coordinating agency applicable to all countries would mean that in the near future the ISS database would contain data from each member state, a crucial factor for better scientific comparisons across member states. Against this ideal theoretical managerial process, however, are the practicalities due to the diverse daily routines for detailed data collection in the demanding Emergency Hospital Departments, the established logistics and the personal data protection barriers set by the national health care system of each member state that have been already handled by the current ISS data providers. To lower administrative costs, there would be no need to create a new agency at the EU level. Instead, the established working party on Accidents and Injuries might examine the possibility to organise the data collection along the lines of the coordinating secretariat under the close supervision of the Commission. This process would first achieve some benefits because of economies of scale and also gradually lower costs as experience accumulates and each member state climbs the learning curve and ensure timely delivery of high quality injury morbidity data.

In conclusion, the effectiveness of the ISS data collection process has been moderate over the life of the project. On the positive side, all member states have participated at
least once and in the year 2000 nearly complete participation rate had been achieved\(^6\). On the negative side, the rate of participation has been constantly decreasing thereafter and now stands at less than two thirds. In addition, the current processes where national agencies, with minimal EU funding and no strong central managerial mechanism, undertake the data collection fail to exploit the substantial economies of scale available. It would be therefore advisable for the IPP Network to exploit different organisational alternatives to streamline the process, lower the costs and achieve consistency among the participating member states.

\(^6\) See also the presentation of the Austrian Secretariat in the Injury Working Party organized on December 2003 in Luxembourg.
III.3. Epidemiological Research

Unlike the HLA data collection process, the second component of the IPP, the epidemiological research resembles more to the traditional schemes of funding research schemes by public entities. Over its life, the Programme has devoted close to €4m for the funding of injury prevention related projects. Table 10 provides a distribution of the total grants awarded annually to each participating country for each one of the funding years:

<table>
<thead>
<tr>
<th></th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>305,200</td>
<td>159,649</td>
<td>105,378</td>
<td></td>
<td>570,227</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>274,015</td>
<td></td>
<td>122,319</td>
<td></td>
<td>396,334</td>
</tr>
<tr>
<td>DK</td>
<td>285,612</td>
<td>118,500</td>
<td></td>
<td></td>
<td>404,112</td>
</tr>
<tr>
<td>E</td>
<td>128,500</td>
<td>156,100</td>
<td>155,976</td>
<td>200,000</td>
<td>640,576</td>
</tr>
<tr>
<td>EL</td>
<td>153,000</td>
<td></td>
<td>216,000</td>
<td></td>
<td>369,000</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL</td>
<td>257,875</td>
<td>193,901</td>
<td>240,324</td>
<td></td>
<td>692,100</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>349,566</td>
<td></td>
<td>115,000</td>
<td></td>
<td>464,566</td>
</tr>
<tr>
<td>Total</td>
<td>1,190,693</td>
<td>837,675</td>
<td>745,490</td>
<td>1,176,702</td>
<td>3,950,560</td>
</tr>
</tbody>
</table>

Table 10: Grants for the Epidemiological Projects by Country and Funding Year

Funding for the epidemiological projects has not been constant over the study period. The number of countries involved has varied slightly in each year from four in 2000 to six in 2002. One of the most important explanatory variables for the number of countries participating is the level of funding available: the higher the funding, the more projects and the more members tend to get funded.
Although the available funding and the number of projects and states are correlated, it is difficult to establish the correct causal relationship: it could be plausibly argued that a decision to increase or decrease the funding for epidemiologic projects leads to an increase or a decrease in the number of projects selected. Conversely, it can be claimed that the quality of the epidemiological proposals submitted leads to an increased or decreased grants for this type of research in each funding year. However, any assumption is arbitrary, since the investigators who have performed this analysis, did not have access to any documents regarding the evaluation process.

In terms of the individual member states involved, it should be noted that the epidemiological research projects have not achieved to attract proposals from all member states. We do not know whether any applications were made but seven of them (B, E, FN, IRL, L, P, S) have not been granted funding for this type of research at all. On the other hand, the available funds have been fairly equally distributed to the remaining eight members, ranging from 8% in the case of I to 18% in the case of the NL, as in Figure 10:

![Figure 10: Distribution of the Epidemiologic Research Grants among Member States](image)

Figure 10: Distribution of the Epidemiologic Research Grants among Member States
It is also important to note that the variability in the number of countries funded has been further mitigated by the inverse variability in the average grant awarded. Indeed, the correlation between the number of projects awarded and the average grant for epidemiologic research is strongly negative with a coefficient of \(-0.9\). The following figure provides the details for the average grant in each individual member state:

![Average Grant](image)

Figure 11: Average Grant Awarded to each Member State for Epidemiologic Research

Therefore, the member states with the most grants awarded tend to receive the lowest amounts. It is again difficult to establish a cause and effect relationship and it seems plausible that the differences in funding may reflect indirectly the expertise accumulated in each individual member state, which in turn affects the quality of the proposals submitted. It may be also argued that the difference might be explained by an effort to maintain a perception of “equality”, providing member states with either more or large grants. The number of proposals granted is relatively small to allow for a definite conclusion, but it should be noted that the funding time trend for each member state is decreasing, so that on average, member states receive a relatively smaller grant in recent years in comparison to their own grants in the past.
In general, it can be argued that this type of projects rather than the laborious data collection are more suitable to the substantial expertise accumulated in the Injury Prevention Network and it is encouraging that the number of member states involved shows a continuous increase since 2000. If the current trend to fund more projects in epidemiologic research rather than in the HLA data collection field continues, the move towards higher involvement across member states should be anticipated to accelerate, given that the available funding is the most significant determinant of the number of projects awarded. If an equitable distribution of the funds is desired, this aspect of the IPP initiative as well the percent of the member state contribution needs to be proactively managed in the future, especially in the case of the new 10 member states.
IV. Internal Evaluation

IV.1. Introduction

Within the scope of the evaluation process an effort was undertaken to request data from all project leaders that received a grant from the Injury Prevention Programme. The purpose of this communication was threefold. At first, it was deemed necessary to precede the external evaluation process with an internal one, where the project leaders themselves would be given the chance to assess their work. The second goal was to collect data on the outreach of the projects and their effectiveness to shape injury prevention efforts. The third goal was to provide an avenue for inverse feedback, where the project leaders themselves would be given the opportunity to express their opinion for the overall Injury Prevention Programme and on some specific components of its application, approval and funding processes.

For the purpose of the internal evaluation electronic questionnaires was distributed to all project leaders in the HLA data collection and the Epidemiological projects of the IPP. Both questionnaires (provided in Appendix I) contained information in 3 fields:

- Administrative aspects of the projects (funding, partners participating etc.)
- Public health information on the methods used and the objectives sought
- Outcomes of the project and their distribution on a wider audience

The detailed questionnaire was sent to all project leaders funded by the project, and repeated attempts were made to increase their response rate.\(^\text{7}\) All project leaders were promised strict anonymity on their respective comments that they may provide in

\(^{7}\)The contribution of the European Commission and of Dr. Helmut Friza is greatly acknowledged here.
relation to the IPP project or the funding agency. This allowed them to honestly express their remarks without concern for consequences to subsequent applications.

It should be cautioned here that the results presented below represent the respondent only. It can be postulated here that the project leaders most interested in the injury prevention process in Europe and its success are the ones most eager to respond. Hence, the results presented below may represent a more favourable overview of the project and they may not be considered as totally representative of the overall project (response bias). The loss in representativity is the price paid in order to gain voluntary contribution and honest assessment of the project leaders. A stricter, more representative view of the project that is not subject to response bias is given in another part of this report (see chapter V below).

However, the importance of honest assessment and voluntary contribution should not be underestimated. At first, those project leaders participating are the ones most interested in the success of the overall initiatives and their comments and remarks are thus highly useful. Further, they provide an overview of the best use of the IPP resources that could be used as a model for the future that has been proven achievable. Finally, and perhaps most importantly, the mere quest for comments and remarks should improve the project leaders’ attitude and opinion about the Community funding process and might well bear fruit in other similar initiatives in the future. With this in mind, the data coming from the distribution of these voluntary questionnaires to all participating project leaders and the conclusions derived are presented below, separated for the HLA data collection and Epidemiological projects.
IV.2. HLA Data Collection Questionnaires

The HLA data collection questionnaires pertained to the projects funded by the European Commission for the establishment of an EU-wide network for the collection of data in these injuries. As it was analysed above (see III.2 above) in the four years of the program a total of 45 projects was funded that consumed slightly above €6m of resources, while all 15 countries were funded at least once.

As far as the objective description of their tasks is concerned, all project leaders confirmed that the main deliverable of the projects were the file with the injury data and the short technical report. They further confirmed that the collection of data is being done through interviews in Accident & Emergency departments at hospitals, while few countries rely additionally or exclusively on household surveys. These two tasks briefly described the objectives of the HLA data collection and no project leader mentioned additional or different tasks as part of his or her project.

The important issue of quality control was subsequently considered. This is obviously important in any data collection effort. However, this is of utmost important in the IPP initiative, as it aims to harmonise and coordinate previously disparate activities and ensure their adherence to common standard and norms. All project leaders confirmed then that they have used the same EHLASS coding manual, while two thirds of them make a training package available. In addition to these two tasks, most (86%) project leaders confirmed that they use a quality control system and this figure increases to 100% since 2000, while all projects (with the exception of the UK) transfer their data file to LOEGD for the ISS database. All these very important facts point out to the ability and success of the IPP initiative to harmonise, coordinate and ensure the quality of the data collected, at least for the sample of projects that participated.
The reporting requirements were considered next. This is a crucial issue for a project that centrally directs funds to researchers, as the latter always have to assess the usefulness of the funds with the administrative burden imposed. It seems then that this Commission program did not overburden the scientists and practitioners involved, as in most cases the project leaders mentioned fulfilling additional reporting requirements than the minimum imposed by the Commission.

More specifically, 55% of project leaders voluntarily submitted an interim report, while two thirds (68%) voluntarily submitted a final report. Both these tasks were beyond the minimum imposed by the Programme which can them be deemed as posing minimal administrative burden to the practitioners involved. Although beyond the scope of this report, the increasing participation in the EU call for proposals further underscores the fact that practitioners perceive the ratio of usefulness to administrative burden as reasonable as far as the IPP initiative is concerned and it seems that the additional reporting requirements of the new Public Health Programme – which include a mandatory interim and final report – should be deemed feasible.

As far as the avenues for reporting the data are concerned, aside from sending the data file for the ISS database, most (70%) project leaders have used the data for scientific purposes as well. It should be noted here that from a research perspective there is a wide spectrum in the impact of data use, as the frequency and outreach of publications mentioned varies: some project leaders mentioned a purely national use of the data in a very small (1-2) number of publications, while others gave references for more than hundred publications in very respectful, peer-reviewed journals.

The above discrepancy could be explained in two ways: either some projects were carried out more effectively than others, or some project leaders considered their work
as mostly of implementation rather than research. This issue is further explored in the external evaluation chapter (see V below) but it seems to be essential for the Commission to clarify to what extent it expects the grantees to use the data for the one or the other purpose and to set minimum expectations in the outreach of projects.

The use of the data was examined next. Nearly all (90%) project leaders reported using the data on the national level while in relatively fewer cases (45%) the data were used in the EU or international level. Of course this latter finding is subject to underreporting, as the project leaders considered only the cases where themselves were using the data for cross-border comparisons. However, the collection and publication of data may give rise uses of these data by third parties, cases that would go unnoticed by the original data collector. Even so, the fact that most project leaders consider the data as mainly useful for national purposes underscores the complementarity of the Commission’s effort to what is mainly a national issue.

Project leaders gave a wide variety of national uses for the data, including but not limited to national policymaking, national injury surveillance system, information campaigns and press releases as well as prevention campaigns for specific types of injuries (e.g., drowning, or sport injuries etc.) This wide spectrum of uses is of course welcomed. However it poses the inevitable question to what extent such intense national uses should be funded in the European level.

Finally, one should not omit to mention that the main complaints of the project leaders pertained to the lack of compatibility between the EHLASS coding system and the ICD-10. Further comments pertained to the need for a more explicit coding manual used in all countries as well as the need for a conversion program from past versions of the coding manual to the most up-to-date version (v. 2000).
In conclusion, the self-evaluation process of the HLA Data Collection projects yielded interesting results. At first, all projects sought the same objectives and had few difficulties in achieving them and transferring the data to the ISS database. All participants responding seemed to place an emphasis on the quality control process and have made substantial steps towards this effort, such as the use of training packages, coding manuals and specific quality control systems.

In addition, all project leaders could cope well with the reporting requirements and it seems that the administrative burden to effectiveness ratio is considered particularly favourable for this Programme and incidentally, this probably extents to the new reporting requirements of the new Public Health Programme. Project leaders made a coordinating effort towards making this data available to the scientific community, and numerous publications and reports were mentioned. This success however should not obscure the fact that there is still a discrepancy in the effectiveness or reaching out to the scientific community and to the extent that this is a priority, stricter criteria may be necessary to elevate some projects that currently seem to lag behind. An annual report presenting tabulated injury data according to a predetermined template as well basic demographics, the description of the data collection system as well as the uses of the EHLASS data during the preceding year, used to be a prerequisite in delivering the electronic file of injury data from each member state, when EHLASS was managed by the previous DG. It may be prudent that such a report is introduced again, as it provides a readily available mechanism to check of consistency in data collection mechanisms and information on the dissemination of the results.
Finally, the use of the data seems to take place mainly on the national level and hence the purpose and logic of a Community funding seem to come into question. It seems reasonable that a data collection effort that yields data used in 90% of the cases in the national level should be mainly funded in this level. However, the existing deficits in coordinating and harmonising the data collection process as well as the need to ensure adherence to the same criteria seems to render the possibility of a complementary European funding contingent upon the fulfilment of this criteria a viable alternative.
IV.3. Epidemiological Questionnaires

The questionnaires submitted to all project leaders that had participated in Epidemiological projects yielded equally interesting results. At first, it should be noted that this segment of projects has a much wider scope and applications. Indeed, if the HLA data collection is to some extent a managerial task as noted above (see III.2 above), the epidemiological projects constitute of core research and of tools’ development and hence have by definition much less homogeneity. It should also be stressed that their role has been expanding in the past and they accounted for 43% of the total funding in the last year of the project.

In general, these projects have a more intense contribution to European integration than the HLA data collection projects. It is for this reason that they have a higher number of partnerships recorded, with an average of slightly more than four partners in our sample and in most cases the partnership agreements crossed national borders. Their objectives span the entire spectrum of the injury prevention field, from core epidemiological research in new fields such as intentional injuries or intimate partner violence to the development of tools for enhancing data collection such as coding manuals and conversion programs.

The deliverable of most projects included the provision of a final report and in most cases an interim report was provided as well. Again, there has been no comment about excessive administrative or reporting requirements from the Commission’s side, a fact that matches well with the similar observation from the HLA data collection projects. In general, it seems that the recent increase in the reporting requirements within the new Public Health Project will be handled without major burden from the funded institutions or scientists that work in the field of injury prevention.
In terms of the use of data, most participating project leaders have mentioned scientific reporting as a principal use of the data collected; this is an expected use for a program that is funding at least partially core research in injury prevention. Again, the wide spectrum in the effectiveness in publishing the results is obvious, with some programs mentioning only presentations in national conferences while others presenting multiple publications in major peer-reviewed journals.

This point should not be misinterpreted as success or failure of individual projects: the objectives of the Injury Prevention Programme have always been diverse and if scientific publications are a reasonable expectation for core research projects, this may not be true for a project that aims to develop data collection tools. To the extent however that future public health programs will continue to fund research projects, it seems reasonable to take the quality and quantity of scientific publications into account in their evaluation, as a fairly objective method of assessing research work.

Perhaps the most revealing component of the self-evaluation proves have been the comments of project leaders offered for the Injury Prevention Programme. As noted above, project leaders have been promised strict anonymity, and hence their comments should be considered as fairly objective. There is then an interesting pattern that emerges from these comments: nearly all project leaders complained for the lack of evaluation and assessment of their work as well as for the lack of continuity in the Injury Prevention Programme.

As a representative comment, one project leader noted ‘when we delivered the final report to EU, it was a draft report because we thought there might have been a peer review process. We did not get exact information or confirmation of the final report”. Another one stressed the same point: “… there was no feedback to the project leader
about further use of the results and the importance of the results for strategies to reduce injuries”. Finally, a third one remarked: “We do not have any information on what happened with the results of our project”. Regarding the lack of continuity, it is best expressed in the frustration of a project leader mentioning that “Unexpectedly, no follow-up activities were taken by the EU, so all key contacts made during the project's lifecycle need to be re-established”.

These remarks confirm indeed that a major missing element from the Injury Prevention Programme is the evaluation and assessment of the individual pieces of work submitted. To some extent the project leaders perceive their work as successful if they make it through the application projects and receive funding and they complain for the lack of subsequent assessment and feedback process from the funding agency. It is of course understandable that the funding agency itself might not want to interfere into a purely scientific question of assessing research and providing feedback, a process of mainly scientific and less administrative nature.

However, the mere fact that the European Commission has emerged as a key agent in funding injury prevention research as well as the comments of the project leaders themselves point to the need for complementing the current structure with a mechanism for continuous evaluation and feedback. Such a mechanism could be consultative for research purposes but it could also be of administrative use, in that its conclusions and evaluation of completed work could be taken into account for future funding purposes on behalf of the European Commission. Further, this mechanism could be used to provide overall feedback and priorities in injury prevention research and implementation so that the current lack of continuity gives its place to an integrated, long-term perspective and priority setting.
Such a mechanism could be established within the context of the administrative secretariat, to better fulfil its role on the evaluation of individual projects. Senior, experienced members of the injury prevention community could be rotating members of such a scientific committee that would then provide interim and final feedback to the individual project leaders participating in this field. This would close the feedback loop and enable project leaders to understand methods of improving their scientific work and fit it better into a more coordinated injury prevention context. In addition, such a mechanism could provide continuity and longer-term priorities for injury prevention as well as a point of contact for scientists in tangential fields (e.g., mental health) that would like to examine the opportunities for cross-disciplinary research.

Of course, such a mechanism of outside renown experts in the field of injury prevention is by no means meant to bind the European Commission or decrease its decision latitude and hence its conclusions should have a consultative role. However, it would provide the administrative secretariat and the Commission itself with an educated opinion and increase its ability to take well-informed and consistent decisions in such public health matters where up to date scientific expertise is crucial. To the extent that such a committee would make sensible and reasonable decision, the respect that would gradually be built around it would also serve as an additional tool of reassuring scientists for the fairness and objectivity of its suggestions.

In conclusion, the internal evaluation has proven the wide spectrum in the objectives of the Injury Prevention Programme and their ability to increase European cooperation and integration. The main deficiency noted by the participating project leaders pertains to the lack of feedback and continuity on behalf of the funding agency, a gap that could potentially be fulfilled by an outside committee of experts.
V. External Evaluation

V.1. Introduction

As noted above, the internal evaluation component of this report was based on the assessment and information provided by the project leaders themselves. This approach benefits from their in-depth knowledge of the process and strengths and weaknesses of the IPP. It also provides an avenue where their feedback and input can shape the future arrangements of the IPP and make it friendlier to their needs. At the same time, a trade-off that exists in every evaluation process is that those with the best knowledge are those directly involved in the process that hinders their objectivity.

Hence, in order to provide the most comprehensive evaluation possible, this project took a dual approach and complemented the internal evaluation with an external one, performed by an Auditing Committee. The Committee was staffed by persons that have been active in the Injury Prevention Network but usually in supervisory, administrative or other less direct roles than those of the individual project leaders. This choice aimed to provide members with a profound knowledge of field of injury prevention in Europe and of its strengths and limitations. Constraints posed by our contract did not make it possible to invite non-EU member states experts.

This chapter presents then the external evaluation by the members of the Committee with an emphasis not only on results but also on the processes and structures. This latter emphasis aims to potentially assist the European Commission in its increasing efforts to evaluate public health programs, given both the relatively innovative aspect of evaluating public health interventions and the increased involvement of the European Union in the field of public health, as envisioned in the Amsterdam Treaty.
V.2. The Auditing Committee

As mandated by the project’s contract, the evaluation process started with the formation of the Auditing Committee. The purpose of this Committee was to provide both the criteria and structures for the evaluation process and chose the process that should be evaluated further.

The members of the Committee, stipulated in the contract where:

- Eleni Petridou, University of Athens, Greece
- Robert Bauer, Austrian Institute for Home and Leisure Safety, Sicherleben
- Birthe Frimodt Moller, Danish National Institute of Public Health
- Marc Nectoux, PSYTEL
- Betrand Thelot, French Institut de Veille Sanitaire

The Committee convened twice, once in Vienna in February 18, 2003 and once in Athens, in July 1st, 2003. In addition, the Committee had frequent communication and exchange of documents via electronic means. In the 1st meeting, the Committee agreed on the process and general criteria of the evaluation procedure. On its 2nd meeting, it refined the evaluation criteria and agreed to place an emphasis on the epidemiological projects, given their diversity and multitude of potential results. This was in contrast with the HLA data collection projects, which have as sole final outcome a data file with the recorded injuries submitted to the Commission.
V.3. Evaluation Process

The evaluation process considered first the attributes of the programs that should be evaluated. There is an obvious trade-off between exhaustiveness and comparability in setting these criteria: the more attributes of the project are being evaluated, the less comparable across programs the evaluation becomes. The final decision focused then on the most significant attributes of each program in congruence with the Commission’s goals. It was then decided to assess the administrative aspects of the program, the public health potential and the specific results achieved.

The first of these attributes, the administrative assessment might seem “mundane” and of lower importance in comparison to the other two. However the Committee took a different approach: it considered success in these attributes as a *sina que non* criterion for a Programme that used public funds and aims to achieve its public health goals within the greater context of European integration. Towards this goal, aspects such as the timely delivery of end results, the training of staff and the extent of cross border cooperation in each individual program were scrutinized.

The second component of the evaluation process looked more closely on the potential impact of each project on public health in general and injury prevention in particular. To assess this potential, the evaluation focused on the extent that the current IPP resources were leveraged and on the measurability and budgetary feasibility of the objectives. The assessment also evaluated the types of interventions, such as large-scale implementation projects, pilot studies, data collection initiatives, or efforts to improve and enrich current infrastructure and the types and origin of the data used, *i.e.*, whether they represented new data, not available elsewhere or whether they had already been collected from other initiatives, outside the scope of this specific project.
In accordance with a practical and results-oriented evaluation, the third component evaluated was the specific outcomes of the project. After evaluating first the scientific soundness and the feasibility of the process that made these results available, the assessment look on the strength of recommendations that came out of the project and on the exact types of results. These might include databases, training packages, new scientific methodologies, pilot studies or information campaigns. Finally, the assessment had a close scrutiny of the results achieved and evaluated the scientific publications in peer-reviewed journals and any other type of presentation in conferences, the mass media or in other printed or electronic references.

The complete list of the above attributes is provided in Appendix II in page 109 of this report. In total they aimed to provide a comprehensive evaluation of the projects from an administrative, scientific and public health perspective and to give emphasis to both the results achieved and the methods chosen for their dissemination. Given that the attributes are collectively extensive, few if any projects could possibly claim a maximum impact in all of them and individual products might have been able to perform better in some attributes. For example, a technical project to enrich current infrastructure would perform better on the use and improvement of IPP resources than a purely scientific project; the latter though could perform better on the dissemination of results that are of interest to a wider, non technical audience.

One issue that merits further discussion are the individual “points” awarded in each criterion. The underlying logic was compatible with an emphasis on results and awarded twice as many points on results as on administrative issues and public health potential. Within each category, the points reflected both the importance of each issue for injury prevention, and the difficulty to achieve it within the individual project.
V.4. Overall Assessment

The overall assessment of the Epidemiological projects of the Injury Prevention Programme led to some major, high-level conclusions as well as to some observations for each individual Programme, presented in the following section. The first major conclusion is that the Injury Prevention Programme has achieved the goal of strengthening European Integration in this field. This issue has already been explored elsewhere in this report from an overall perspective based on the number of partnerships (see II.4 on page 27). It is very encouraging that this quantitative assessment is supported by evidence provided in the evaluation process that these partnerships were strong and that in most cases partners have carried out major components of the individual projects that resonate well with a program organised and funded by the European Commission.

The next important conclusion is that most projects have submitted the outcomes of their work on a timely basis and complied with the requirements and deadlines presented to them. This important conclusion complements the observation made elsewhere in this report (see IV.3 on page 52) that the project leaders themselves found no significant administrative burden in complying with the Commissions’ administrative requests. Hence, it seems that the administration of the Injury Prevention Programme has succeeded in not overburdening the public health subcontractors with excessive administrative requirements. However, this conclusion should be somehow qualified, given that the assessment considered the deadlines of the project including prolongations, if any, granted by the Commission. Although not all projects requested or were granted a prolongation, to some extent the adequate compliance recorded may be due to liberal granting of prolongations whenever asked.
A more mixed picture emerges when the focus shifts on the success of the projects to employ specialised personnel and also develop staff, junior or senior. It should be first noted that in the most cases, the personnel used is highly trained, with the majority having advanced degrees not only in medicine or public health but also in multiple related fields, such as economics, psychology, sociology etc. This positive trend means that the human capital used in the IPP is of significant value and that the Programme is an attractive indirect employer of highly skilled personnel.

At the same time, one of the lowest scores of this report was awarded to the attribute assessing whether the IPP has helped train staff, junior or senior. Few project leaders conceded that this happened and offered very few concrete examples, mainly on technical and statistical abilities. This trend might be due to recall bias, e.g., that staff is indeed trained but project leaders fail to recall it when asked. Given however the poor examples mentioned by those project leaders that considered the Programme helpful in training staff, it seems that the IPP has fallen short in this attribute.

It should be of course mentioned that the training of staff has never been an explicit goal of the IPP. However, the Programme practically acts as the major funding agency in the field of injury prevention and subcontractors include nearly all major organisations active in injury prevention across Europe. Hence, the Programme has to assume an indirect role in training new staff, for the future of injury prevention depends on the availability of well-trained personnel. The methods to achieve this fall outside the scope of this report, but it can be speculated that they depend principally on rectifying a major shortcoming of the first phase of the Programme, namely the lack of continuum in the funding process that deprives the project leader from the long-term perspective required to ensure recruiting and training of staff.
The assessment of the public health potential revealed a bimodal distribution in the individual projects. There are some projects that mainly aimed to provide enrichments or improvements of the technical infrastructure of data collection. (e.g., codifications, manuals etc.) Most of these projects followed the same evaluation pattern that included concrete, measurable results, limited use of existing IPP resources, enrichment of infrastructure and only partial use of existing data. In other words, these projects achieved really well an intermediate goal in injury prevention.

There is little doubt that these projects provide the necessary infrastructure work and make the future data collection smooth and possible. At the same time, these projects will not move the injury prevention field forward by themselves, nor will they provide tangible results to the European citizen. On the aggregate, these projects are then compatible with the initial phase of the Injury Prevention Programme, where the building of tools and processes and their making available to all parties involved in the field are of crucial importance. In accordance with this view, the portion of these projects in the annual budget has shrunk over the years (see also Figure 4 on page 20).

The other mode of the distribution is populated by projects that have the opposite pattern: they target a vast area of injury prevention, often largely unexplored so far and they provide the initial epidemiology work necessary to first explore a specific field (e.g., suicide, intentional injuries, sport injuries etc). The main pattern in the evaluation of these projects is their tendency to score well in the importance of the scientific objectives and on their efforts to leverage existing IPP resources and to occasionally complement them with additional data collection on the specific issue at hand. However, they usually achieve lower scores on the feasibility and occasionally on the measurability of their objectives, given the budget constraints of the project.
These projects are the core of injury prevention and their funding has the potential to achieve concrete results for the European citizen. However, in order to provide these results, they have to increase their performance in ensuring the feasibility and measurability of their sought outcomes, and the dissemination and outreach of their results. Projects that provide an initial exploratory view at the epidemiology of a specific sub-segment of injury prevention may be well placed for the initial phase of the IPP, where the magnitude and indeed the very existence of projects has to be measured and verified epidemiologically. However, once this important step has been taken, it is imperative that the subsequent projects ensure the yield of tangible results that are felt beyond the level of the scientific community to the European citizen.

Turning exactly to the assessment of the results, the evaluation made clear that most projects have achieved results that fall short of the reasonable expectations of the European citizen. Those projects mainly focusing on data collection tools have indeed delivered these tools and it seems that the goal of a standardized, uniform and representative data collection has been nearly achieved. However, this goal is only of indirect importance for injury prevention: data are a prerequisite, but certainly not a substitute for action that should emerge out of a European public health project.

In this field, most projects have fallen short of expectations: the end results mentioned are the reports submitted to the Commission, publications in medical journals and presentation in scientific conferences with a mixed picture in the success of attaining these results. Of course, there were wide differences among programs: for example, publications were the attribute with the widest variability: some projects submitted an extensive list of publications in prestigious medical journals and announcements in international conferences, while others have only contacted a restricted audience.
Comparing these projects among themselves though risks missing a wider point: many projects are successful in delivering the results promised. The major collective shortcoming of these projects though is that the results promised are not necessarily meaningful to the European citizen. Few concrete examples such as prevention or information campaigns, concrete policy proposals for policymakers, training packages for public health professionals or large-scale or at least pilot studies of public health interventions have been devised. The end result is a multitude of collected data that may be academically important but of little use by themselves to the end consumer.

There are multiple explanations for the above failure. At first, a project in its first phase, such as the IPP, is reasonable to devote resources in building the infrastructure and in exploring the field to set priorities, rather than prematurely acting on a potentially erroneous set of priorities. Further, one precondition for large-scale, European wide projects is the existence of solid partnerships that have been tried in smaller scale projects. Both the quantitative and the qualitative aspects of the partnerships achieved through the IPP show that these partnerships are indeed true and can provide the bedrock for subsequent larger scale projects. A third precondition is the existence of high quality staff, which seems to have been available in the first phase of the IPP, although steps for its further development are necessary.

However, a final but very important precondition for such projects is the financial underwriting of the interventions sought. Indeed, it should be no surprise that few large-scale project have been achieved, when the average project had a budget of 140.000 € and an average contribution of slightly above 100.000€. There are few if any interventions that are so cost-effective that a grant of this magnitude could make a difference in a Europe-wide context and give rise to a sustainable intervention.
V.5. Individual evaluator reports

The assessment offered above has taken into account the input of all members of the auditing committee that completed an evaluator’s review for each individual project. However, by its very nature, the process of synthesizing may dilute the perspectives and views of an individual member. In order then for these individual perspectives to find their way in the final document and to achieve the widest possible contribution and input, a decision was made to include individual reviews within the final report.

More specifically, each member of the auditing committee was offered the choice to compose a short review to express her or his own assessment for the overall process. Every effort was taken to ensure that all members of the committee could participate in this process so that no individual views are excluded for any reason. Since the injury prevention community in Europe is relatively small, an offer was made to allow the evaluators to express their views anonymously, so that their assessment is independent. This is in accordance with the process followed in assessing a peer’s efforts, for example in all major peer-reviewed medical journals. Further, all members were told that their report will be inserted “as is” in the final report, without any interferences or changes that could alter, however minimally, their views.

All members of the committee agreed to make use of the option offered to them and all elected to have an eponymous report. It should be stressed again that the reports submitted were above and beyond the assessment of the individual programs contributed by the members and pertained mostly to the evaluation process and the overall future of the injury prevention program. Each one of these reports is then given in the following pages.
1) Birthe Frimodt Moller

“The evaluation included sixteen projects, funded during the period 1999-2001, and described by the questionnaires, which have been filled in by project leaders of the respective projects, as well as the final reports concerning each project. The questionnaire was developed as part of the Greek evaluation project. Furthermore, the task included applying a scoring system, which also was developed as part of the Greek evaluation project. This selection of projects displays topics of relevance to the annual work plans of the IPP. Not surprisingly, about one third of the projects dealt with issues related to development and improvement of the Injury Surveillance System (ISS) database, thus supporting one of the major objectives of the IPP (cf. the Decision paper). These projects concern harmonisation of the data submitted by Member States, development of tools and methodologies to exploit the data, studies of comparability and representativity of data, and tools to improve the data quality.

Other projects dealt with the feature of injuries that was also given priority in the IPP, i.e. intentional injuries. Two projects were concerned with the epidemiology of injuries related to violence and suicide. In view of the scarcity of data that can be exploited at Community level in order to develop prevention strategies targeted at these types of injury events, it is hardly surprising that only few projects might be undertaken on these issues. Furthermore, projects demonstrated the attempt to create awareness of specific types of injuries, e.g. sports and burn injury, and assess the feasibility of collecting data on these injuries. The development of policy issues was represented by other projects, including topics such as extending data collection to more European states, developing mechanisms to assess costs of injuries, or creating a balanced scorecard on prevention of child injury. In conclusion, the choice of subjects
for IPP projects was largely in support of developing injury control and safety promotion at Community level, although some projects included aspects, which were only marginally relevant to the main objectives of the IPP.

The process of evaluating these projects is recognised as an internal evaluation, since partners of the evaluation project are themselves involved in the undertaking of projects – as also expected by the guidelines laid down for making project proposals. Therefore, the evaluation holds the potential for built-in bias. Employing the scoring system, which results in allocating a score to each project according to pre-determined characteristics, might alleviate this bias. However, the use of the scoring system itself depends on subjective interpretation of the statements (which result in a score), and therefore the exercise of employing the system also raises the question of bias.

The scoring system was developed by the contract holder and discussed with partners, but unfortunately, no guidelines were issued that might operationalise the statements or criteria given for the various parts of the scoring system. As an example, one criterion included for ‘Public Health Assessment’ was “Leverage of existing IPP resources”. This divided scores according to whether the project in question made ‘extensive use of IPP resources’ or ‘limited use of IPP resources, e.g. only for benchmark’. The application of these scores needs a mutual agreement on what is meant by these statements, e.g. a common norm, to which the evaluator can relate.

Another example of the difficulty in applying the scoring system in the process of evaluating the given projects, is the use of value-laden statements. When using such statements in for example questionnaires, the scoring would relate to whether or not the respondent agrees with the contents of the statement. In the case of the scoring system applied to this evaluation, the disagreement with the value-laden statement
could not be expressed. However, this may reveal my misunderstanding of the use of the system – and again, this demonstrates the lack of guidelines for interpretation of the criteria. One example is ‘Process assessment’ under the topic ‘Results evaluation’. The scoring is divided between the process being ‘scientifically sound’ and ‘achieving the stated objectives’ and ‘being well described in the final report’. The last item: ‘Criterion non applicable’ might have been intended for expressing disagreement with the former statements, but this is not clear.

By contrast to this difficulty in the process of evaluating the projects, the topic on ‘recommendations’ does in fact include the possibility to score an answer directly related to whether or not the evaluator is in agreement with the statements. Under the item ‘Strength of the recommendation, if any’ it is possible to apply scores to the following answers: Recommendations immediately applicable for action, recommendations for further research, or ‘No useful recommendations were offered’. The latter is albeit a value-laden statement, but on the other hand allows for a precise scoring.

The process of applying scores was further hampered by the use of ‘and/or’. This evaluator may have used the system differently from others, because it was difficult to score the “answers”, which apparently were listed according to some sort of ranking. An example is the item ‘Specific results achieved’ under the topic ‘Results evaluation’: The statements are listed as ‘A database with public access was created’ and ‘a training package was created’ and ‘a new methodology was devised’ and ‘a pilot study was undertaken’ and etc. This implies that the scores will accumulate to a certain value according to the completion of the list. However, this evaluator has applied scores to the individual types of results achieved without considering the
seeming ranking of such results. Again, this might also be in agreement with the intention of the scoring system, but was not explained in any guidelines.

The difficulties in applying the scoring system was one negative aspect of the process, however, the exercise by itself was interesting and educational, since it also entailed the insight into the final reports of the projects. The reports demonstrate the huge amount of work undertaken by project leaders and their partners. Several of the projects are first phases of more work to be done, if it is possible to obtain financial support of future proposals.

At this stage, where the short life span of the IPP has come to an end, it seems rational to propagate the final reports and their results among the members of the future Injury Prevention Working Party. So far, the recognition of final reports needs to be strengthened, and the discussion of the results needs to be encouraged. Several reports invite experts within the field to discuss the pros and cons of methodologies applied or suggested. Tools have been developed, which need to be tested on the Injury Database (IDB), and then refined or modified accordingly, etc.

The financial resources invested in the IPP projects might be better justified, if the results of the projects are used for further development of the expertise within the field of injury control and safety promotion. The dissemination of the results of the IPP projects has not been wide, so far, but the time constraints of the IPP could be one explanation. Therefore, the challenge of the Injury Prevention Working Party is to pick up on the available information and build the future work in a systematic manner. This challenge is in the hands of the experts rather than in the hands of the European Commission, since the injury experts can inspire the setting of priorities in future work plans.”
2) Marc Nectoux & Betrand Thelot

The evaluation of the European projects conducted between 1999 and 2003 in the field of injury prevention as proposed by the Greek team is based on a questionnaire to be filled out by various European evaluators.

The questionnaire is comprised of three groups of questions:

- Five questions in the “Administrative Assessment” group
- Four questions in the “Public Health Assessment” group
- Six questions in the “Results Evaluation” group

The evaluator must, for the 16 projects to be evaluated, give a score for each of the 15 questions. The questions contain various criteria to which points are assigned; the evaluator attributes points to the project if it meets the criteria. The more points a project accumulates the better it is considered to be. When a question is not applicable to the evaluation of a project, the maximum number of points it is possible to obtain is recalculated accordingly.

Various aspect of this evaluation can be critiqued:

1 – The objectives underpinning the questions vary. For example, the first question pertains to the number of partners in the project. According to this question, a project is considered “better” if it has more partners and if it had at least one partner from the European Union accession countries. This is therefore a political objective. In other cases the objective is the scientific quality of the project, for example in question 14 in which a project is better scored if it resulted in a publication in a peer reviewed journal. In other cases the objective is administrative, as in question 4; a project is
better scored if the report was submitted by the Commission’s deadline. There are also public health objectives (for example question 8), and in some cases the objective is indeterminable or arbitrary: for example in question 12, the projects are scored according to whether or not recommendations are offered upon completion of the project. It is not clear why a project ought to be considered “better” if it offers recommendations as opposed to one that does not.

2 – The confusion about the objectives is accentuated by the scoring system in two ways. First, the fact that the answers are assigned values will lead “naturally” to adding up the obtained scores and comparing the total of one project to another. However, it has not at all been demonstrated that this mode of operation is permissible, that the scores are additive, especially considering the fact that they correspond to different objectives. In order to make the scores additive, the reliability would have to be tested and the equivalents among the questions dealing with various objectives would have to be defined. Furthermore, the scoring scales have not been discussed or validated. For example, why would a project with more than 7 partners be scored the double (8) of a project that has 1 to 4 partners (4)?

3 – The evaluators have available to them the synthesizing documents filled out by the project leaders who answered about 20 questions on their project and the project’s final reports. The former information is declarative and there is no plan to verify its exactitude.

In sum, the errors in approaching this evaluation, the lack of scientific validation of the used method, the mixing of various objectives make this evaluation subjective but pragmatic. It will therefore have to be used with caution given its great limitations.
Achievements, added value and remaining challenges of the Injury Prevention Programme (IPP); A retrospective and outlook from the current IPP secretariat (proposed for the IPP/2002 project “COST-BENEFIT ANALYSIS OF THE INJURY PREVENTION PROGRAMME 1999-2003 AND FINAL PROJECT EVALUATION”

EU-programmes related to injury

The Injury Prevention Programme (IPP) of the European Commission (EC) follows the European Home and Leisure Surveillance System (EHLASS). EHLASS was designed more than ten years ago by the EC to support Member States to collect data about Home and Leisure Accidents. The system was established with focus on product-related accidents in view of consumer safety interests in the Internal Market. The Injury Prevention Programme was created in 1999 to increase the European added value; and Injury Prevention activities will continue under the New Public Health Programme (2003-2008). These continued activities of the EC acknowledge the importance of Injury Prevention in Europe: “the positive impact on cost reduction, years of life gain and last, but not least, reduction of the burden on European Citizens can be expected to be relatively high” (europa.eu.int/comm/health, 2003).

Achievements by objectives of the Injury Prevention Programme (IPP)

As during the EHLASS-period – with it’s focus on the monitoring of potentially hazardous consumer products - different collection methods, different classifications and databases were used, the IPP was focussed on the harmonisation of the data collection in the Member States, in order to account for the increased demands on
data representativeness under the public health domain. Judging from the projects’ objectives the main achievements of the IPP in this respect are

- The provision of an operational common database (ISS – Injury Surveillance System within EUPHIN – European Public Health Information Network)
- The provision of minimum requirements for ISS coding and injury rate calculation (V.2000 Coding Manual, catchment area population structure)
- The provision of Quality Assurance tools (Manual, Software and Training Session) and specific ISS data-mining tools
- A harmonised household survey tool-kit to complement the hospital based ISS in terms of data representativeness
- A “rapid response” add-on tool that enables the ISS to detect emerging injury threats more quickly
- And most importantly, the IPP data collection funding by the EC has spurred the establishment and consolidation of ISS-compliant injury registration in a number of Member States (e.g. Austria, Denmark, France, Greece, Italy, Netherlands, Portugal, Spain, Sweden)

Also future issues of the ISS have been already tackled within the IPP:

- An internationally compatible hospital-based classification scheme for all injuries (ISS Coding Manual) was developed
- A modular Minimum Data Set is available for injury monitoring in various health care settings (MDS-I)
• A reporting format for a comprehensive view of injuries in the EU based on multiple data sources has been demonstrated

• A number of Candidate States have been prepared for the participation in the ISS

Based on the ISS data and additional information a series of epidemiological projects were funded to gain new insights and added value to current injury prevention issues:

• Social determinants of injuries, especially child injuries

• Costs of injuries in Europe

• Safety of products and services, the injury risk for tourists in the EU

• The epidemiology of special areas of unintentional injuries (Sports injuries, Farm Injuries)

• The epidemiology of violence in Europe (partner violence, suicide)

All funded projects were regularly reported to the IPP Network and the IPP secretariat: This has helped to

• Raise political awareness for injury prevention in the Member States

• Form a group of European injury prevention experts and experienced project leaders

• Establish a network of national ISS data administrators

• Facilitate the promotion of results (IPP Newsletter, Internet platform, research database, sports experts newsgroup)
EU added value of the Injury Prevention Programme

In 2003, with most of the IPP projects being finished, a number of injury related public health issues can be addressed at EU level as a result of individual and collective project achievements:

- The Injury Database (DG SANCO IDB/ISS) is available and accessible to National Data Administrators (NDA) and core users to a sufficient degree of functionality; in order for the EC to deal with all requests about home and leisure accidents in the EU.

- A pool of experts in injury monitoring and injury prevention was formed through the IPP projects and the IPP Network that continues to assist the EC in dealing with any injury related requests.

- The scope of injuries in the EU can be reported on international level – as a unique and comprehensive view of injuries. The sectional distribution of injuries in the EU can be reported to other DGs (units for road traffic accident, occupational injuries, mental health), giving DG SANCO a lead role in the EC injury monitoring.

- A set of standard tools is available at the DG SANCO website for a harmonised injury monitoring on Member State level that can be utilised for the expansion of the IDB to the New Member States.

- A number of reports and even meta-databases are available at the DG SANCO website and future Health Portal that provide specific insights into major themes of injury monitoring (see previous chapter).
• In its total, the Injury Database (that contains a unique set of injury data that is indispensable for epidemiological analysis and priority setting in injury prevention on both national and EU-level) and the IPP project results (presented and accessible at the DG SANCO website and future Health Portal) may be considered the kernel of an injury information system for the EU.

Remaining challenges

Officially, the IPP ended with the adoption of the New Public Health Programme in 2002. However, the last projects under the IPP will be accomplished in 2003 and 2004. As a consequence of the rather short effective duration of the IPP most projects that aimed at the improvement of injury monitoring were pilot projects – leaving the actual implementation and maintenance as a challenge for the New Public Health Programme, and many of the epidemiological projects didn’t comprise the full number of Member States – resulting in a limited representativeness of results. Therefore, the future challenges in this respect are:

• Striving for full implementation projects in injury monitoring in close co-operation with “a secretariat” and also in close co-operation with DG SANCO, EUPHIN HIEMS and the IDB help desk.

• Striving for complete EU Member State representation in all projects (resulting in less but bigger projects).

Rightly listed above as an achievement, also the Injury Database still suffers from considerable ailments that are still waiting for a cure:
Main problem will be to keep data collection going in the Member States without EU funding. As there is no legal obligation either, at least no explicit one, for the Member States to collect injury data for the IDB, continued examples of utility and utilisation of the IDB are the only arguments for IDB lobbying at national and EU level.

As far as the technical and data quality problems of the IDB programs are concerned it has already been mentioned that an IDB Quality Management initiative – based on both IPP projects and EUPHIN HIEMS support – has only begun at the end of the IPP, and will have to be implemented through the Public Health Programme.

This (implementation through the Public Health Programme) is also true for the provision of population data for the IBD (not possible yet) and the extension of the IDB domain from home and leisure accidents data to data on all injuries.

Actually, hardly any injury prevention projects - with a focus on action and best practice dissemination - were on the agenda of the IPP. Partly, this was due to a former paradigm of the EU public health policy, that only the Member States are in charge of health promotion and campaigning. Partly, this was due to a developmental plan of EU public health policy that an information and knowledge infrastructure should be developed first, before EC engagement in actual prevention would take place. Therefore, another challenge that remains after the IPP is:

Linking the IDB and the injury monitoring projects (strand I of the Public Health Programme) with the development of injury indicators in the ECHI framework and the design of injury action plans in the health promotion strand.

Diffusion of IPP news and project results was accomplished by the IPP secretariat by traditional means of communication, such as the IPP Newsletters (hardcopy and
electronic). Even though these products were highly appreciated by the IPP Network and Committee members, a low degree of reception and digestion of the respective information could be experienced even within the network (as judged by certain requests and comments). Thus, remaining challenges in information and communication are:

- Increasing the efforts of active information of the injury prevention community within and outside of the network.

- Increasing the efforts of active marketing of the project and database results to the potential users in the public and private sector.

- Increasing the efforts of active marketing of the project and database results to the potential users in the public and private sector.

- Increasing the efforts to link the project and database results to the health policy agenda and policy events (i.e. conferences) at national and EU level.

Key words for meeting these goals are professional PR and promotion of results, which should be prominently foreseen already in the project design.

Conclusion and Outlook

A short time scale, a selection of rather small and diverse projects (and thus a small average number of project partners), limited support of project leaders from their Member States (at least in some case of data collection) and sub-optimal integration of projects in related DG SANCO domains (like the injury monitoring program and EUPHIN HIEMS, or the health promotion program) might be quoted as causes for the quite long list of open issues after the IPP.
Despite these hindering causes an impressive list of achievements of the IPP can be given - the mayor achievement being the continuation of Injury Prevention within the Public Health Programme - that indicates a high level of commitment of all programme proponents: DG SANCO Services, IPP Member State Committee Members, IPP Network Members, Project Leaders and Partners. The implementation structure of the Public Health Programme (Programme Committee, Network of Competent Authorities, Working Parties, Network of Working Party Leaders and Health Forum) may be a safeguard to meet all these challenges, however, it is not a guarantee. The implicit contradiction of policy making by programmes - asking for one’s agenda to be executed 100% by “random” for only 80%, 60% or less of reimbursements, will always produce a compromise in the end.

As with the financial support of the EHLASS data collection in the Member States that was stopped after several years, funding of Injury Monitoring and Injury Prevention initiatives by the EC has to be considered seed money for the creation of sustainable structures and networks. The reduction of project support by the Public Health Programme from 80% to 60% of total costs is a clear hints in that direction.

For Injury Prevention in Europe to become a business that would operate on a continuous basis – not depending on single funding schemes only (like the EU Public Health Programme) - the development of an independent network would probably be a good solution. This “European Injury Prevention Network” would be both a big player on its own and an important partner of the EC, and DG SANCO in particular. As both bodies would have a European agenda a fruitful and positively competitive co-operation would be likely.
VI. The electronic tools

One of the identified goals of the project was to build electronic tools to enhance communication among the project leaders and an electronic database to store the outcomes of the work from the first IPP. This chapter describes these IT tools in more detail and includes the relevant electronic references. As noted earlier (see III.1 above) the integrative goal of the IPP has mandated some approaches that may be less efficient from a purely economic point of view such as the rotating pattern of the individual secretariats. Therefore, those participating in the European injury prevention have to manage proactively the process using tools\(^8\) and initiatives that facilitate the transfer of knowledge across the individual members involved.

The electronic infrastructure can provide the main such tools to increase knowledge accumulation and transferability. The first obstacle that this project met was the lack of project specific data on the individual projects funded. Some of the initial raw data came from the European Commission web site.\(^9\) It soon became obvious however that this source of data was (rightly) intended to disseminate information on a specific project rather than to assist in the overall evaluation of the program.

To respond to this need, researchers at the University of Athens created a customised database that incorporated the data on the European Commission Website and from the individual project leader in a differently organised way that facilitated meaningful assessment and comparisons. The same database was then used for the retrospective evaluation as well as for the development of project management tools in order to facilitate better coordination of the IPP in the future.

VI.1. Research Database

The retrospective database is hosted at the University of Athens, Department of Epidemiology and can be accessed at the web address http://www.euroipn.org. From a technical perspective, the database is a Postgresql running on a red-hat Linux operating system servicing secure Internet based requests leveraging the native SSL database support. Future applications can access the database through its ODBC, JDBC, C, C++, PHP, Perl, TCL, ECPG, Python, and Ruby native interfaces and proper exploitation of its procedural languages. Low level tuning to optimise complex queries response times is achieved by rebuilding specific procedures and MVCC can accommodate high volumes of data.

Although some of the infrastructure for the database has been temporarily hosted elsewhere, the proposed database server configuration will be based on an Intel Xeon CPU system with 1.5 GB RAM and raid 5 implementation on three 36 GB ULTRA SCSI hard drives providing a strong initial capacity with unlimited expansion possibilities using similar hardware and the proper clustering software. In the following paragraphs a short description of the database is provided together with the specific attributes contained and the potential for future use for both evaluation as well as knowledge dissemination.

The database contains features of all the IPP projects that have been funded in the period 1999-2003. Appendix IV provides the entire list of the previous projects so as to facilitate the reader of this report and it can serve to verify the conclusion drawn in the specific assessment chapters above. In addition, logging on the web address provided, one can access each individual project and gather valuable information about it that can be used in subsequent proposals of for other scientific purposes.
More specifically, the information provided for each project includes:

- The title of the project
- The title and the contact info of the project leader
- The number of partners involved
- The funding year submitted
- The starting date and the duration of the project
- The status (pending or completed) of each project
- The total cost of the project and the EU grant
- The objectives of the project
- Any documents submitted to the EU

In addition, the database provides the opportunity to view all projects at once sorted along various important variables and easily obtain a printout. For instance Appendix IV provides them sorted by country and funding year. Other possible classifications are by the total costs of the projects, by their status (completed or not), by the starting date or the organisation, while many other conceivable classifications are feasible too.

Further, the database incorporates features of “artificial intelligence”. For example, the status of the project is automatically updated depending on the day of access, using the proposed duration to calculate the expected “completion date.” In accordance to the IPP guidelines the database allows three months for the submission of the final report and after that date shows the note “report due since…”
Moreover, the database has two additional useful features. At first, it allows for the search of all projects by keywords related to their objectives or results. This enables all scientists in this field to locate specific projects that have performed work on areas of interest and to communicate directly with the project leader. The results of the project and the contact info of the project leader could be used towards this goal. This feature is expected to enhance the collaboration among scientists in the injury prevention field and to provide further opportunities of intra-EU collaboration.

The second important component of the database is its ability to provide the user with all published reports and results of the projects, which can then be downloaded. This enables scientists who would like an in-depth search on one or more specific issues to access the final outcomes of the funded work and to scrutinize both the methods followed and the results achieved. It is expected that this feature would make the database a useful tool for those practitioners that would like detailed information on the work done in one or more fields of injury prevention and would reduce the duplication observed in the scientific and public health work undertaken.

In conclusion, the research database is expected to be a valuable tool for evaluating the IPP and will also be of use to those practitioners in this field, regardless of their location. The database can be seamlessly integrated with the prospective management tools that are described directly below. It is also expected that subsequent secretariats will undertake the maintenance and update of the database so that it can become a major avenue of information for injury prevention efforts in the EU.
VI.2. Project Management Tools

The research database can facilitate integration by providing one single avenue for scientific information about injury prevention research in the EU. However, by its very nature it is retrospective, in other words it contains information after the project has been completed. This leaves missing a significant component of integration and knowledge transfer: the real time sharing of information about the ongoing progress of a specific project and the sequence of its steps.

However, this information is critical for fostering partnerships among the participating member states. With the trend towards increased funding for more complex research projects the need emerges to share real time information on the specific projects. This is important for the overall coordination of the project and the initiation of time critical or time dependent steps (steps that should only be initiated after another step has been completed). Hence, the lack of such a tool represents an obstacle for the correct management of a complicated project and potentially a barrier for further integration in the field of injury prevention research.

The second part of the initiative related to the requirement to develop a tool to:

- Ensure the communication and the connections between the IPP projects approved

- Inform project leaders on administrative and financial requirements related to approved projects and the allocated grants

- Exchange of information between the IPP Network, the various project leaders, the Commission and other relevant parties on progress of projects and issues pertaining the implementation and evaluation of IPP projects
To fulfil this requirements a customized, Internet based project management tool has been developed and it is temporarily hosted at the web-address www.epi.net.gr/leaders. The program is based on the same technical characteristics as the retrospective database and allows the continuous update of progress information related to current IPP projects.

More specifically, there are two levels of access to the database. The first is at the project leader level and allows for inserting data in the database on a timely basis. The project leader could log on to the relevant web-address at the time a project is granted and insert the basic details of the project: its name and the main project tasks. All data inserts follow the exact same format that was already submitted to the European Commission and would correspond to the actual contract signed. The project leader would then log in on monthly basis pertinent information for each task of the project that would include the costs and the completion percentage, as in the following figure:

<table>
<thead>
<tr>
<th>Task ID</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project ID</td>
<td>61</td>
</tr>
<tr>
<td>Task Name</td>
<td></td>
</tr>
<tr>
<td>Task Duration</td>
<td></td>
</tr>
<tr>
<td>Scheduled Starting Date:</td>
<td>DD-MM-YYYY</td>
</tr>
<tr>
<td>Planned Cost</td>
<td></td>
</tr>
<tr>
<td>Actual Starting Date</td>
<td>DD-MM-YYYY</td>
</tr>
<tr>
<td>Actual Duration of Task</td>
<td></td>
</tr>
<tr>
<td>% of Task Complete</td>
<td></td>
</tr>
<tr>
<td>Actual Cost so far</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: Main Screen for Entering Basic Project Information
It is self evident that since the tool is web-based it allows the insertion of data from anywhere and more than one task leaders in different countries can insert data and access the information simultaneously. Each project would then have a summary page that would compile the information of the specific tasks and would allow the quick and efficient monitoring of the progress for each individual task and the variances between the planned and the actual performance so far. The summary page for one specific project would look like the following figure:

<table>
<thead>
<tr>
<th>Task name</th>
<th>Scheduled</th>
<th>Actual</th>
<th>Percent Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review the scientific literature for injuries in the services sector</td>
<td>01-03-2002</td>
<td>01-03-2002</td>
<td>100%</td>
</tr>
<tr>
<td>Selection of specific service domains for the focus of data analysis in collaboration with other organizations active in this field</td>
<td>01-04-2002</td>
<td>01-04-2002</td>
<td>100%</td>
</tr>
<tr>
<td>Identification and classification of the sources for data collection on injuries in each domain selected</td>
<td>01-06-2002</td>
<td>01-10-2002</td>
<td>100%</td>
</tr>
<tr>
<td>Evaluation of necessary revisions on existing data sources and assessment of the potential of new data sources to yield high quality data</td>
<td>01-08-2002</td>
<td>01-11-2002</td>
<td>100%</td>
</tr>
<tr>
<td>Development of the necessary revisions (e.g., questionnaire)</td>
<td>01-10-2002</td>
<td>01-12-2002</td>
<td>100%</td>
</tr>
<tr>
<td>Drafting and implementation of required revisions</td>
<td>01-12-2002</td>
<td>01-02-2003</td>
<td>20%</td>
</tr>
<tr>
<td>Assessment of data quality and suggestions to increase data quality and improve comparability among the participating countries</td>
<td>01-02-2003</td>
<td>€ -</td>
<td>0%</td>
</tr>
<tr>
<td>Conduct of feasibility study on the methodology of permanently using the sources located and the potential to build a derivative rapid response mechanism</td>
<td>01-05-2003</td>
<td>€ -</td>
<td>0%</td>
</tr>
<tr>
<td>Composition of the final report summarizing the findings, proposing specific policy initiatives, and describing the possible follow-up of the project instead of new tasks</td>
<td>01-08-2003</td>
<td>€ -</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure 13: Summary Project Screen (SAMPLE)

In addition, each project leader would have his/her own personal page that would summarize information about the time and cost of all projects that he/she is involved as well as other pertinent details in a functional and intuitive graphic environment. Each of these attributes is automatically revised when the actual details are inserted and the relevant progress is recalculated. For example, the following two figures provide an overview of the costs and progress of the individual progress whose task appear in Figure 13 above and would be
continuously updated with the data of each individual task as inserted in the main screen above (see Figure 12):

Figure 14: Overall Progress Report for an Individual Project (SAMPLE)

Figure 15: Fund Consumption for an Individual Project (SAMPLE)
It is important to note that the only responsibility of the project leader or the task leader is to complete and update monthly the information on the main screen (see Figure 12). The project management tool would then undertake the pertinent calculation and graphic representation of the situation presented above. Hence, the IT tool would allow the researchers to increase their effectiveness in the project management and concentrate their efforts on researching their topic issue and executing rather than dealing with administrative details.

The second level of access is reserved for the secretariat and/or the funding agency and is accessed though a different password. At this level information on all projects is provided. For example the following figure would correspond to the main screen on the secretariat/funding agency level:
At the same time, aggregate information of the overall progress of all projects awarded and the rate of fund consumption would be available as follows:

Figure 17: Aggregate Information on Fund Consumption for all IPP Projects (SAMPLE)

Figure 18: Aggregate Information on the Overall Progress of IPP Projects (SAMPLE)

In effect the coordinating or the funding agency can then monitor the performance of each project and see in a graphic environment details about the duration, the funding
and the progress of each project. The program allows for drilling down to the task level, where specific information on the timetable, the cost and the progress is provided as it was submitted by the project leaders.

Both the storage and the access of the database information can be done at any time and from any location, since it is based on a web-protocol. In addition, subsequent projects may enhance its reporting effectiveness by sending an email containing all pertinent information to the designated agencies on a monthly basis. Specific features of this email may include a detailed comparison among the projects or higher-level information, customised to the needs of each particular recipient.

In conclusion, this brief overview of the IT infrastructure used for this report makes clear that there are simple tools that can significantly enhance the productivity, the knowledge sharing and finally the integration of the IPP Network. These tools are all the more important if the IPP Network is to achieve its potential to deliver significant added value in European integration over and above the alternative mechanism of disbursing the funds through the national agencies.
VII. Conclusions & Recommendations

VII.1. Conclusions

It should be first acknowledged that through the Injury Prevention Programme, the European Union has been catapulted to a major supporter of the injury prevention field, providing substantial funding disbursements totalling more than €10m. During the life of the Programme, the main emphasis has shifted away from simple data collection and more towards public health intervention in participating member states. In terms of participation, the IPP has managed to get every member state involved at least once. As far as the HLA Data Collection is concerned, the level of participation has been quite high in the past, with all member states receiving a grant at least once and as many as 14 of them being funded simultaneously in 2000; however, this figure has decreased since then due to the diminishing importance of this activity. The participation in the other critical component, public health intervention and research, has been lower only 8 member states have submitted a proposal at least once. The respective figure of 6 for 2002 is low, if substantial integration and knowledge transfer it to be achieved. Of interest is also that there is very little correlation between the number of partners and the magnitude of the grant awarded and this holds true for both the HLA data collection and the public health intervention projects.

The general and administrative costs of the Programme have been kept at 7%, a figure relatively low for such a large-scale program. It is important to note that the rotating administration creates both challenges and opportunities. On the one hand it allows more institutions to acquire exposure to the EU level and to gain managerial expertise. At the same time, it creates the challenges for knowledge transferability, which is
usually assumed as achieved through indirect and non-explicit means (e.g., gradually accumulated experience, expertise etc.). It is difficult to assess the effectiveness of such implicit tools, but it seems prudent to complement them with objective and user-independent administrative tools, preferably in an electronic form.

A first attempt to building such tools has been undertaken within the context of the current project. The electronic research database build (available on line at www.euroipn.org) and the IT communication tools provided can help bridge the inevitable gaps from continuously rotating the administrative centre of the programme and from having a variable number of participants across current and incoming member states. Electronic tools can help build a participant-independent accumulated knowledge base for the field of injury prevention in Europe and help communicate and potentially mobilise further scientific and public resources.

In terms of the focus of the Programme, there has been a shifting emphasis on public health intervention and research and away from funding data collection. This IPP has funded the tools necessary for homogenised data collection, which are largely in place now, and it has also provided a 4-year initial financing in data collection. The cost-benefit assessment of this endeavour confirms that the data collection lends itself well to economies of scale and scope, and that the data collected are mostly used in the national level. Hence, it is concluded that data collection is a managerial task better funded through different, non grant-based mechanisms and the decision to exclude it from the next Public Health Programme seems prudent. However, this decision poses the challenge of acquiring EU-wide homogenised data and not a patchwork of incompatible national databases. Therefore, a small complementary financing in exchange of adherence to the coding schemes already devised may be required.
The second component, epidemiological research and public health intervention was gradually elevated as a priority of the IPP 1999-2003. The cost-benefit assessment confirms that such projects lend themselves better to a grant-based scheme and to intermittent, complementary financing. However, the most important challenge of the first IPP was to steer these projects away from pure research and closer to public health intervention. Indeed, the evaluation of their results confirms that these projects have to a large extent been successful in achieving self-defined goals that were mostly pertinent to initial exploratory epidemiology of various fields in injury prevention.

It should be acknowledged that scientific research is the natural first step as good quality data are paramount in designing a public health intervention. However, the first IPP has not adequately crossed the gap between research and public health intervention to achieve meaningful injury reduction. Large scale, multi-geographical projects focused on achieving reduction rather than measurement of the prevalence of injuries are then urgently required and the new Public Health Programme will enable the EU to take action in an integrated way across public health priorities.

The self-evaluation survey undertaken in the context of this project yielded interesting additional conclusions. All HLA projects sought the same objective of data collection and experienced few difficulties in achieving them and transferring the data to the ISS database. Participants in both components placed an emphasis on the quality control process and made substantial steps towards this goal, using training packages, coding manuals and internal quality control systems. In addition, all project leaders coped well with the reporting requirements and the administrative burden to effectiveness ratio seems particularly favourable, as evidenced by the increased number of funding
application. Project leaders reported coordinated efforts to make the collected data available to the scientific community, and numerous publications were mentioned.

The main deficiency noted by the participants pertains to the lack of feedback and continuity on behalf of the funding agency. The lack of mechanisms to closely monitor the success of the individual projects and the corollary lack of scientific feedback and guidance to the project leaders has emerged as an additional priority for future injury prevention Programmes. It could be argued that this observation transcends most public health programmes organised by the European Commission and potential solutions are provided in the recommendations section, directly below.

The external evaluation of the Injury Prevention Programme by the Auditing Committee reached the conclusion that most projects managed to achieve satisfactory performance and delivered most of the results promised. A well-verged infrastructure has been developed and strong partnerships have been forged. The project reports showed scientific adequacy and coherence in the attainment of the proposed goals. Confirming the broader view already expressed in the aggregate form, the evaluation of the individual projects concluded that first phase of the IPP 1999-2003 did not fulfil the expectation of providing concrete results to the European citizen. Indeed, most of the projects completed provided either primary data or a secondary scientific interpretation of primary epidemiological data and seldom specified practical and measurable public health interventions as their declared goal.

Although no public health intervention can be taken in a scientific vacuum, the lack of action leaves the project vulnerable to criticisms about its outreach. To some extent then the IPP 1999-2003 can be seen as an important precondition for a subsequent project with wide outreach, providing the initial epidemiological data, building the
human networks and the electronic infrastructure. It is now important to employ on these resources furnished by the first Injury Prevention Programme, an issue explored in the specific recommendations, directly below.

As a summary conclusion though, it should be said that the first IPP provided substantial infrastructure but only its subsequent would justify the allocated funding and allow the Commission to retrospectively declare this project a success. To the extent then that the Commission has provided a significant leap forward for the field of injury prevention, it is only appropriate that it undertakes the lead in providing organisation and guidance and in ensuring the work made available with its funding adheres to its priorities for public health. Specific and practical steps to achieve such a leading role in public health are provided in the recommendations directly below.
VII.2. Recommendations

The recommendations provided take into account the changing framework through the initiation of the new Public Health Programme 2003-2007 that will integrate the previously independent programs. A shift to larger scale projects requires change in some fundamental attributes of the program so far: an approach that may have worked well in small-scale, mainly research project risks leaving gaps in large scale, multi-site public health interventions. The latter create higher demands for coordination across not only different locations but also across diverse public health disciplines.

The magnitude of the funding committed has made the European Commission a major player in the field of injury prevention in Europe. It is then recommended that the Commission provide a clear vision for the direction of injury prevention in Europe, the specific and measurable goals to be achieved the next 5 years and then draft a master plan for their attainment. It should also ensure that a coherent structure exists to translate the Commission’s policy priorities into tangible action.

It is then important that a structure exists to ensure monitoring of the ongoing projects and dissemination of results and also to act as a common source for requests of information and cooperation. This structure could come either through more hands-on management on behalf of the Commission or through the external set-up of a committee of experts that would provide guidance to the project leaders and information on the milestones achieved to the funding agency. Either of these forms should respond to the declared need of project leaders for closer monitoring and feedback on the scientific and public health work delivered to the Commission.
Further, care should be taken so that the transformation of the PHP does not leave behind the new Member States. Indeed they should be given the facts, tools and resources to implement the existing body of knowledge. It is debatable whether a uniform approach is preferred to a handling on a case-by-case basis that differentiates according to the level and sophistication of existing infrastructure. It is certain though that the new member states should be given a point of reference for questions and feedback on their efforts, so that problems can be detected and resolved quickly.

An additional recommendation, potentially applicable to most of the public health initiatives pertains to the financing mechanisms. A declared goal of the public health programmes, enshrined in the mandates given to the Commission by the European Parliament is to provide complementary financing that would mobilise complementary national resources. This choice coupled with the move towards larger scale projects means that the average budget of an individual project would be in the million of Euros with a corresponding co-financing of some hundred thousand Euros.

This choice could strain those member states with the least national financing for public health, which should often be precisely the primary targets for action in the EU level. By definition then, funds are channelled to those Members States with the strongest national infrastructure, potentially compromising the explicit goal to achieve European integration in the field of public health. Given the importance of the funding arrangements as well as the difficulty to initiate quick changes, it is recommended that the new PHP evaluate midway the arrangements initially chosen and examine the probability to vary considerable the required co-financing depending on the member state involved. Such interim evaluation and potential corrective steps could help ensure that the funding mechanism instigates rather than hinders change.
Finally, the European Commission should undertake a role commensurate to its significance in the funding process. Even though injuries are the fourth leading cause of mortality and disability in Europe, the field has received little attention and funding before the onset of the IPP. This Programme and the resources it made available had a transformational impact on injury prevention and allowed for larger-scale projects and a unified, European approach that could eventually benefit the European citizen.

Together with moving more towards public health intervention, it is then necessary for the Commission to disseminate the results already achieved. In writing this report, the authors were continuously impressed by the quality and the commitment of those people dedicated to injury prevention and of their acceptance that the European Commission’s funding has indeed made possible dramatic improvements in the field of injury prevention. However, this work rarely reaches a wider audience outside of injury prevention experts and public health practitioners. To some extent this was due to the scientific nature of the project, but to a great extent they also reveal the little importance that has been given to disseminating the progress made through the Programme to reach the individual citizen of the European Union.

As a final recommendation, it is then stressed that the Commission adopt a far-reaching dissemination plan to make this work both known and accessible to the European citizen. To highlight the importance of this issue, the authors wish to end this report with a first draft of such a plan provided in Appendix III that draws on the experience accumulated while compiling the evaluation report. Even though subsequent modifications and changes will be inevitable, its provision is intended to spur discussion and stress the overarching conclusion of this report: unless the work carried out becomes known, its importance for the EU citizen will be insignificant.
Appendix I Questionnaires

Internal Evaluation – HLA

The evaluation questionnaire for the HLA data collection systems was:

1. Please provide the name of the principal investigator
2. Is the project complete?
3. If yes, when exactly was it complete
4. Duration including any extension time
5. Number of partners in the project
6. Number of active partners in the project
7. Please describe briefly the deliverables of the project
8. Data Collection is based on
9. Number of valid casualties {injuries} during the year
10. Is the data collection on all age, all types of injuries?
11. If existing, since when
12. EHLASS coding manual used for data delivery
13. Please provide your comments, if any, on the use of EHLASS coding manual
14. Is a training package available
15. Please provide here your comments, if any, on the availability of a training package

16. Is there a data quality control system available

17. Please provide here your comments, if any, on the data quality control system

18. Have the data been transferred to LOEGD

19. Please provide here your comments, if any, on the data transfer to LOEGD

20. Is the extrapolation of data on the national level feasible?

21. Please provide your comments, if any, on the ability to extrapolate the data on the national level

22. Was an interim report produced?

23. If yes, when was it submitted to DG SANCO

24. Please provide here your comments, if any, on the interim report submission

25. Was a final report produced?

26. If yes, when was it submitted to DG SANCO

27. Please provide here your comments, if any, on the final report submission

28. If a final report was produced, has it been uploaded to CIRCA?

29. If yes, when exactly?

30. Please provide here your comments, if any, on the CIRCA uploading process
31. Has an optional descriptive report been sent to the Commission?
 The report describes the demographics, the data collection systems and results as well as routine tabulations.

32. Are the data used on the national or the international level?

33. Please provide here your comments, if any, on the use of data.

34. Have there been publications in peer-reviewed journals based on the data of the project?

35. If yes, please provide references.

36. Have there been scientific reports based on the data from the project?

37. If yes, please provide references.

38. Have the data been used for any other purpose?

39. If yes, please elaborate.

40. What are your general comments, if any, on the process of grant awarding?

41. What are your general comments, if any, on the process of grant supervision?

42. What other general comments do you have?
Internal Evaluation – Epidemiological

The internal evaluation questionnaire for the epidemiological projects was:

1. Please provide the name of the principal investigator?

2. Is the project complete?

3. If yes, when exactly was it completed?

4. Duration including any extension time

5. Number of partners in this project

6. Number of active partners in the project who have performed one or more of the deliverables

7. Please, describe briefly the deliverables of the project

8. Was an interim report produced?

9. If yes, when was it submitted to DG SANCO?

10. Please provide here your comments, if any, on the interim report submission.

11. Was a final report produced?

12. If yes, when was it submitted to DG SANCO?

13. Please provide here your comments, if any, on the final report submission?

14. If a final report was produced, has it been uploaded to CIRCA?
15. Have there been submissions in peer-reviewed journal based on the data of the project?

16. If yes, please provide references

17. Have there been publications in peer-reviewed journal based on the data of the project?

18. Have there been scientific reports based on this project?

19. If yes, please provide the relevant references

20. What other general comments do you have?

21. What are your general comments, if any, on the process of grant supervision?

22. What other general comments do you have?
External Evaluation

The external evaluation questionnaire for the epidemiological projects was:

1. When was the actual starting date of the project?

2. When was the actual ending date of the project?
 If project still ongoing, please insert estimated date

3. When was/is the deadline for the project, including prolongations, if any?

4. When was the final report submitted to the Commission?
 If project still ongoing, please insert estimated date

5. Names and countries of project partners
 Please name all partners and all countries (EU and non EU) that participated in the project

6. Please describe briefly the objectives of the project
 Bullet points are preferred

7. Have any of the above objectives been carried out by partner(s) or was their role purely consultative?
 If yes, please describe which partners undertook (entirely or partially) which objective

8. Please describe briefly the credentials of the staff used to carry out the above objectives
 Please do not list purely supportive or administrative staff

9. Did the project help to develop staff (junior or senior)?
 If yes, please elaborate briefly on the skills obtained

10. Please describe briefly the results of the project
 Bullet points are preferred
11. Have the results of the project been presented in scientific publications?
 If yes, please provide references (if more than 10, please mention the 10 most important)

12. Have the results of the project been presented elsewhere?
 Please mention national or international conferences, mass media (e.g. newspapers, radio or television with name of media and month if possible), other printed references (e.g. books)
Appendix II Evaluation Criteria

Administrative Assessment

<table>
<thead>
<tr>
<th>Number of partners involved</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than seven partners</td>
<td>10</td>
</tr>
<tr>
<td>orFive to six partners</td>
<td>8</td>
</tr>
<tr>
<td>orOne to four partners</td>
<td>4</td>
</tr>
<tr>
<td>andAt least one of these partners was from the accession countries</td>
<td>5</td>
</tr>
<tr>
<td>orCriterion non applicable (please comment)</td>
<td>-1**</td>
</tr>
</tbody>
</table>

Strength of collaboration

Partners have undertaken major tasks stated in the project's objectives	15
*or*Partners have undertaken other tasks of lower importance	10
*or*Partners had a consultative role	5
*or*Criterion non applicable (please comment)	-1

Timely execution

Program finished on or before deadline	10
*or*Program finished one to three month after deadline	5
*or*Program finished more than three months after deadline	0
*or*Criterion non applicable (please comment)	-1

Timely reporting

Report submitted on or before deadline (incl. prolongation)	10
*or*Report submitted one to three month after deadline (incl. prolongation)	5
*or*Criterion non applicable (please comment)	-1

Staffing capacity

Use of specialised staff experienced in each objective	15
*and*Development of senior staff during the project	5
*and*Development of junior staff during the project	5
*or*Criterion non applicable (please comment)	-1

A score of “–1” excludes the criterion from further assessment and reduces the total potential score accordingly.
<table>
<thead>
<tr>
<th>Public Health Assessment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leverage of existing IPP resources</td>
<td>10</td>
</tr>
<tr>
<td>Extensive use of IPP resources</td>
<td></td>
</tr>
<tr>
<td>and Projects that enriched of current infrastructure</td>
<td>10</td>
</tr>
<tr>
<td>or Limited use of IPP resources (e.g., only for benchmark)</td>
<td>5</td>
</tr>
<tr>
<td>or Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public health objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The scientific objectives are measurable</td>
<td>10</td>
</tr>
<tr>
<td>and The scientific objectives are within the reach of the budget constraints</td>
<td>5</td>
</tr>
<tr>
<td>and The scientific objectives are consistent with the IPP Workplan</td>
<td>5</td>
</tr>
<tr>
<td>or Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods followed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of prevention programs</td>
<td>20</td>
</tr>
<tr>
<td>or Pilot studies to achieve public health objectives</td>
<td>15</td>
</tr>
<tr>
<td>or Collection of primary data, not available elsewhere</td>
<td>10</td>
</tr>
<tr>
<td>or Development of data collection infrastructure (coding manuals etc)</td>
<td>5</td>
</tr>
<tr>
<td>or Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data collected</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data were collected from more than four countries</td>
<td>10</td>
</tr>
<tr>
<td>or Data were collected from two to four countries</td>
<td>8</td>
</tr>
<tr>
<td>or Data were collected from one country only</td>
<td>6</td>
</tr>
<tr>
<td>and Existing data from more than four countries were used</td>
<td>5</td>
</tr>
<tr>
<td>or Existing data from two to four countries were used</td>
<td>3</td>
</tr>
<tr>
<td>or Existing data from one country were used</td>
<td>1</td>
</tr>
<tr>
<td>or Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>
Results Evaluation

<table>
<thead>
<tr>
<th>Process assessment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process of the project is scientifically sound</td>
<td>10</td>
</tr>
<tr>
<td>The process of the project can achieve the stated objectives</td>
<td>10</td>
</tr>
<tr>
<td>The process of the project is well described in the final report</td>
<td>10</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adherence to the project objectives</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>The project objectives have been fully achieved</td>
<td>20</td>
</tr>
<tr>
<td>The project objectives have been partially achieved</td>
<td>10</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strength of the recommendations, if any</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical and immediately applicable recommendation for action</td>
<td>20</td>
</tr>
<tr>
<td>Specific recommendations for further research</td>
<td>10</td>
</tr>
<tr>
<td>No useful recommendations were offered</td>
<td>0</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific results achieved</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A database with public access was created</td>
<td>8</td>
</tr>
<tr>
<td>A training package was created</td>
<td>8</td>
</tr>
<tr>
<td>A new methodology was devised</td>
<td>8</td>
</tr>
<tr>
<td>A pilot study was undertaken</td>
<td>8</td>
</tr>
<tr>
<td>An information campaign was undertaken</td>
<td>8</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Publications in peer reviewed journals</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two or more publications</td>
<td>20</td>
</tr>
<tr>
<td>One publication</td>
<td>15</td>
</tr>
<tr>
<td>No publication occurred</td>
<td>0</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other presentations of the scientific work undertaken</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation in international conferences</td>
<td>10</td>
</tr>
<tr>
<td>Presentation in national conferences</td>
<td>5</td>
</tr>
<tr>
<td>References in mass media</td>
<td>10</td>
</tr>
<tr>
<td>Printed references (e.g., book chapters etc)</td>
<td>5</td>
</tr>
<tr>
<td>Criterion non applicable (please comment)</td>
<td>-1</td>
</tr>
</tbody>
</table>

Total (if all applicable) | 300
Appendix III Dissemination Plan

Overall Strategy

Given that one of the deficiencies of the first Injury Prevention Programme was its inability to create awareness of the results achieved, it is proposed that a comprehensive dissemination plan is developed from the onset of the new PHP. It would be ideal to eventually fold this plan into the Commission overall public health plan that includes other major disease. Such a strategy would ensure the visibility of the Commission in the field of public health, one of its core areas of activities according to the Amsterdam Treaty. The three major aspects of the plan should be:

- **Integration**: there should be one overarching plan that encompasses all initiatives in all geographic areas. This would multiply the outreach of initiatives and avoid duplication of effort. The integration could be better achieved if the plan is structured according to major topics rather than geographies.

- **Targeting the European Citizen**: the information and the dissemination should target the end consumer, providing simple prevention measures in lay language and opportunities for involvement. Even though specific sub-segments of the dissemination plan would address the needs of academic researchers and educators, these should represent stepping-stones in reaching the end consumer.

- **Flexibility**: not all dissemination methods work well in all contexts, especially within the multicultural European environment. The dissemination plan should then allow for flexibility in reaching the consumer using tools that are known to be effective. There is an inherent trade-off between flexibility and integration and this should be acknowledged and managed at the highest level possible.
Implementation

The dissemination plan should include the specific tools employed to achieve these goals. The table in the next page provides an overview of the mediums that could potentially be employed, as well as their advantages and disadvantages. In view of them, the proposed implementation of the dissemination plan is the following:

1) **Internet as the general platform**

The inherent advantages of cost and outreach enable the Internet to undertake a central role in the dissemination strategy. It should provide the default medium of outreach, unless strong arguments against its use in specific domains exist. The strategy would be realised with a comprehensive website that would target three different audiences: general public, public health practitioners/educators and academic researchers. The general public component of the website would provide informational material geared towards very specific audiences (e.g., pregnant women, young athletes, bicycle riders etc.) and would contain the electronic format of leaflets etc. It would also contain contact information for further inquires in each individual country and a list with events that may be of interest to the general public.

The two other specialised parts of the website would contain information geared towards public health practitioners and academic researchers. It would act as an important source for educational material ready for download; this would multiply the outreach of projects already completed that have difficulties reaching their specialised audience. It would also eventually provide access to the ISS, in a form depending on the rules for confidentiality. Finally, it will contain a list of events that would be of interest to this specialised audiences and contact information.
Two issues with the use of the Internet should be mentioned and managed. The first is the language used in the website. It is proposed that English is the basic language, but that translations of specific sites in other working languages of the EU follow at a later stage. It is especially important though that educational material is provided in more than one language. Hence, it is proposed that educational material posted in the website through project funded by grants from the Commission could be in both English and the native language of the grantee and of the project’s partners.

The second issue is the age discrimination that the choice of Internet would entail. Indeed, access to the Internet is more prevalent among people of younger age and the use of this medium may represent a barrier for elderly people. It should be of course noted that heavy usage of Internet is prevalent exactly among groups that are of high risk for injuries (e.g., children, adolescents etc.). However, this inherent deficiency of this medium should be further addressed with complementary channels of dissemination, as described directly below.

2) Complementary mediums for the general public

The implementation plan should include the use of more traditional media such as the television, newspapers, and the radio. The use of television should be infrequent and only in situations where a short message is delivered and a specific audience (e.g., seniors, pregnant women) can be targeted in the context of specific emissions. When these criteria are met, the television can offer a low cost, high outreach medium to complement other channels in information campaigns.

The use of newspapers should differ from country to country, since their outreach varies geographically. In general, newspapers could be used as a complementary medium through press conferences for information campaigns or for an in-depth
coverage of one priority issue (e.g., drawing). Finally, radio provides a medium to transmit a specific message to a more engaged audience. Given its low cost, its potential outreach, and its ability for comprehensive coverage of one issue, it is proposed that radio consists of the medium of choice among the traditional ones.

It should be also noted that a different method to convey the message of injury prevention to the press is through an interactive database available through the website. Anecdotal evidence from the US suggests that the heaviest users of the database after academic researchers are the journalists, when looking for data for a specific article. This avenue has the potential to increase the awareness for the importance of injuries, especially given the fact that their magnitude as a public health problem goes unappreciated.

3) Complementary mediums for specialised audiences

In order to reach the specialised audiences, a combination of information media should be used. At first, heavy usage of traditional, low cost media that correspond to established patterns should be made. This is especially so for academic journals that can shape the long-term debate in the injury prevention field, influence both practitioners and researchers and, if peer-reviewed, add prestige to the conclusions of research funded through the Commission’s initiatives. Given that their impact is easy to track, and their cost low, they should be the medium of choice to reach academic researchers and the Commission should request specific data from the recipients of its research grants regarding the quantity and quality of their publications.

The IPP Newsletter provides an avenue for bringing together the injury prevention community in Europe and its use should be encouraged, provided that it can be produced at a reasonable cost. Its outreach should be expanded in the new Member
States and priority should be given to insert topics of their own interest, even if this brings about some duplication for already well-established practitioners. The Newsletter may also provide an update of new developments in the field and enhance the communication among the injury prevention partners.

The use of conferences should be examined thoroughly. On the positive side, conferences offer an interactive medium for debate among interested parties. On the negative side though, they can be an expensive method to reach an audience accessible through other, more cost-effective means (e.g., Newsletter). Hence the use of conferences as a medium for dissemination is proposed to be restricted to only the ones that can reach a wider audience (e.g., public health conferences, consumer safety agencies conferences), so that the biggest outreach and impact is achieved in using a relatively expensive medium.

Finally, leaflets should be used as a complementary medium for reference materials in specific information campaigns. An effort should be made to make these leaflets available over the Internet, so that their outreach can cross borders. For this goal, it is proposed that the design of leaflets clearly separates images from text, so that the latter can be easily changed when the leaflet is used across borders.

Similar to the general public, not only the complement but also the integration of media should be sought. For this goal, it is essential that the Internet provides a constantly update site with downloadable educational material. This would allow presentations made in conferences or information provided in leaflets to refer to the website for the provision of materials and contact information to all interesting parties. Such a strategy would exploit synergies among the various media for an increased outreach of the injury prevention message.
<table>
<thead>
<tr>
<th>Medium</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Suggested Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>• Increasingly accessible to EU citizens
• Customised material (downloads)
• Can communicate detailed messages
• May employ multimedia context
• Can be constantly updated
• Low cost</td>
<td>• Excludes those without access, especially seniors
• Key messages may be lost unless adequately highlighted
• May impose linguistic barriers</td>
<td>• Heavy usage
• Integrated website provides overall platform
• Educational material available for downloads (e.g., for courses)
• Meetings and agenda</td>
</tr>
<tr>
<td>Newspapers (e.g., press-conferences, advertisements)</td>
<td>• Accessible to many EU citizens
• Permit detailed description
• Cost varies</td>
<td>• No interactive communication
• Only highly educated audience reached</td>
<td>• Occasional usage
• Press conferences for specific events</td>
</tr>
<tr>
<td>Television (e.g., information emissions)</td>
<td>• Has high outreach to many households
• Low cost if constrained only in programming (i.e., no ads)</td>
<td>• Message is short
• Fast turnover of messages
• Lower prestige of messages</td>
<td>• Occasional usage
• Short messages to wide audiences (e.g., seat belts in pregnancy etc)</td>
</tr>
<tr>
<td>Radio</td>
<td>• Ability to deliver complex messages
• Low Cost</td>
<td>• Restricted audiences
• Low interactivity</td>
<td>• Frequent usage
• To present specific initiatives</td>
</tr>
<tr>
<td>Publications in medical journals (peer-reviewed)</td>
<td>• Can reach a very specialised audience
• Conclusions and recommendations carry additional prestige
• Low cost</td>
<td>• No interactive communication
• Publications entail significant delays
• Only specialised audience reached</td>
<td>• Occasional usage
• To present research findings
• To indirectly promote infrastructure built (ISS)</td>
</tr>
<tr>
<td>Conferences</td>
<td>• Can reach a specialised audience (researchers, educators)
• Permit interactive dialog</td>
<td>• Only specialised audience reached
• High cost method when better alternative exist (e.g., newsletter)</td>
<td>• Intermittent usage
• Presentations in wider conferences (e.g., public health)</td>
</tr>
<tr>
<td>Printed Materials (leaflets)</td>
<td>• May act as a reference point
• Lower cost delivery of one message</td>
<td>• Action required to access message
• No interactive messages</td>
<td>• Occasional use
• Supplement in info campaigns</td>
</tr>
<tr>
<td>Newsletter</td>
<td>• Recurring publications enhance message
• Potentially lower cost</td>
<td>• Only specialised audience reached
• Little interactivity</td>
<td>• Frequent use
• In lieu of expensive conference</td>
</tr>
</tbody>
</table>
Appendix IV Project Summaries
EUROPEAN REVIEW OF SUICIDE AND VIOLENCE EPIDEMIOLOGY (EUROSAVE)

Organisation:
PEACH UNIT, UNIVERSITY OF GLASGOW
Dr DAVID STONE
Royal Hospital for Sick Children UK-G3 8SJ GLASGOW ROYAUME-UNI
tel. +44.141.201.93.62 +44.141.201.93.62, fax. +44.141.201.93.62
Partners: B, DK, EL, F, FIN, I, IRL, NL, P, S

Funding year: 1999
Started on: 01-12-1999
Planned duration: 37 months
Project completed

Total cost: 390,228 €
EU grant: 349,566 €

Objectives:
The EUROSAVE Project will focus on injuries that are generating increasing concern throughout the EU - those due to suicide, parasuicide, assault, homicide and other violent causes.
The project will pool expertise in epidemiology and injury research from across the European Union (EU) and some EFTA countries with the overall aim of strengthening and supporting the community epidemiological network for monitoring suicide and violence.
The specific objectives of the EUROSAVE project are to:
1. Review the current state of knowledge about injuries due to suicide and violence, their causes and prevention.
2. Identify and evaluate the quality of existing European data on intentional injuries.
3. Examine and describe current epidemiological trends and determinants of intentional injuries in the EU, with special reference to geographical (inter-country) differences and time trends.
4. Seek to explain geographical and secular variation in terms of methodological, socio-economic, environmental and behavioural factors (including alcohol and drug use).
5. Make recommendations for a) the improvement of statistical information on suicides and violence in the EU and b) reducing rates of suicide and violence in the EU.
6. Promote information exchange on the nature, uses and limitations of European data on intentional injuries for setting priorities and designing prevention strategies.

SPORTS INJURIES IN THE EU COUNTRIES IN VIEW OF THE 2004 OLYMPICS: HARVESTING THE INFORMATION FROM EXISTING DATABASES

Organisation:
UNIVERSITY OF ATHENS MEDICAL SCHOOL Dept. Hygiene and Epidemiology
Prof. ELENI PETRIDOU
75, M. Asias Street EL-115 27 ATHENS GREECE
tel. +30 210 777-3840 +30 210 777-3840, fax. +30 210 932-4300
Partners: A,D,F,I,NL

Funding year: 1999
Started on: 01-12-1999
Planned duration: 18 months
Project completed

Total cost: 95,652 €
EU grant: 70,000 €

Objectives:
1. To explore the ability of the former EHLASS to capture sports injuries, analyse currently available data which are isolated or underutilised at national level and point out deficiencies or inadequencies.
2. To ascertain the burden of sports injuries in EU Member States by type of injury, using complementary sources of information and ad hoc approaches
3. To determine person-time of exposure by type of sports activity and to estimate exposure specific risks in order to propose policy making prevention strategies to reduce the incidence of those injuries
4. To identify situations and conditions - by sport activity - conductive to increased risk taking, including performance enhancing substances (i.e. doping)
5. To promote the exchange of information about the use of sports injuries data.
6. To develop an agreed upon methodological prototype which will facilitate the effort for the collection of representative, comparable and high quality information data sets, as well as the uniform and comprehensive analysis of sports injuries.
PREPARATION OF THE EUROPEAN UNION CANDIDATE COUNTRIES FOR CONTRIBUTION INTO THE EUROPEAN DATABASE ON HOME AND LEISURE INJURIES, A FEASIBILITY STUDY

Organisation:
HELLENIC SOCIETY FOR SOCIAL PEDIATRICS AND HEALTH PROMOTION
Dr. YANNIS SKALKIDIS
75 M. Asias Str. EL-115 27 ATHENS GRECE
tel. +30/1.7773840 +30 1 777 38 40, fax. +30/1.7773840
Partners: NL, UK

Funding year: 1999
Started on: 01-12-1999
Planned duration: 15 months
Project completed

Total cost: 85,000 €
EU grant: 58,500 €

Objectives:
1. To review the important strengths and weaknesses of the home and leisure injuries (HLI) databases in the EU member states, in view of expanding this system to the EU candidate countries.
2. To identify resources that may serve similar or parallel objectives in those countries.
3. To examine how the currently running systems in EU candidate countries should be modified or expanded to meet the criteria for joining the existing EU network on home and leisure injuries database of the EU candidate member states.
4. To present to competent officials in the EU candidates countries the accomplishments and the potential of the existing EU HLI system.
5. To assure the collaboration of governments, NGOs and academics for the establishment of a proper registration system on home and leisure injuries in each EU candidate state.
6. To pilot-test the feasibility of establishment of a monitoring system of HLI in four of the EU candidate states (Czech Republic, Cyprus, Hungary and Poland), which are joining this project.
7. To estimate crucial attributes of the system in the candidate states, notably, their completeness, validity and representativeness.

CO-ORDINATION OF THE COLLECTION OF INFORMATION AND DATA AND IMPROVEMENT OF THE QUALITY AND REPRESENTATIVENESS OF THE DATA

Organisation:
NATIONAL INSTITUTE OF PUBLIC HEALTH
Dr BIRTHE FRIMODT-MOLLER
Address: Svanemollevej 25 DK-2100 COPENHAGEN DANEMARK
tel. +45 3 920-7777 +45 3 920-7777, fax. +45 3 920-8010
Partners: A,B,DK,E,EL,F,FIN,I,IRL,L,NL,P,S,UK

Funding year: 1999
Started on: 01-12-1999
Planned duration: 18 months
Project completed

Total cost: 333,214 €
EU grant: 285,612 €

Objectives:
The project aims to finalise and update the EHLASS coding manual and develop a translation programme for old EHLASS data into the new format. Further, the project aims at improving the quality and representativeness of the data by the development of a European Injury Model. This task includes
- Define less severe and severe injuries with a view to putting greater emphasis on quality data for severe injuries
- Map and quantify representativity problems
- Setting up a model for calculation of incidence rates for injuries in the entire EU
- Publish incidence rates for injuries in the entire EU and all Member States
- Finally, the project aims to collect information on completed and on-going research projects based on EHLASS data and include the information in a systematic manner in a research database with a view to co-ordinate research efforts in this field.
The database will benefit all participants and others with a particular interest in injury prevention. The scope of the database will be extended to include other types of injury research at a later stage. This task also includes establishment of a systematic listing of names of people and institutions with an interest in injury research in the European Union and webpage. The outcomes of the inventory of injury related research includes criteria for quality assurance.

Documents submitted: Executive Summary, Final Report, Annexe I, Annexe II.

Organisation:
INSTITUTE OF PUBLIC HEALTH NORTH RHINE- WESTPHALIA (LOEG)
Dr DORIS BARDEHLE
WESTERFELDSTRASSE 35-37 D-33611 BIELEFELD ALLEMAGNE
tel. +49.521.80.07.0 +49.521.80.07.216, fax. +49.521.80.07.200
Partners: A, B, DK, E, EL, F, FIN, I, IRL, L, NL, P, S, UK

Funding year: 1999
Started on: 01-10-1999
Planned duration: 15 months
Project completed

Total cost: 123,840 €
EU grant: 86,688 €

Objectives:
Under the EUPHIN HIEMS Project the Institute of Public Health (loegd) transformed EHLASS data for the years between 1986 and 1996 (subcontr. 501026), stored the data in the database, produced a Data Dictionary for each participating country and validated the data with the help of Factory Acceptance Tests (FAT)
Data are available for 15 of meanwhile 18 countries included in the project. In addition, the data of some countries for the years 1997 and 1998 are in the meantime available and data for the year 1999 are to be expected.
It is the aim of this project to complete this database with respect to the continuation of the database for the years 1997 to 1999 as to the completion of the DataDictionaries. This extended database will deliver validated data from Europe and thus allow interesting analyses and interpretations of the same.
HOME AND LEISURE ACCIDENTS - MICRO AND MACRO ANALYSIS OF DATA (HLA MIAMA)

Organisation:
INSTITUTE OF PUBLIC HEALTH NORTH RHINE-WESTPHALIA (LOEG)
Mrs. DORIS BARDEHELE
WESTERFELDSTRASSE 35-37 D-33611 BIELEFELD ALLEMAGNE
tel. +49.521.80.07.0 +49 521 80 07 216, fax. +49.521.80.07.200
Partners: A, B, DK, E, EL, F, FIN, I, IRL, L, NL, P, S, UK

Funding year: 1999
Started on: 01-12-1999
Planned duration: 12 months
Project completed

Total cost: 215,318 €
EU grant: 187,327 €

Objectives:
The former EHLASS system allowed to collect several millions of data of Home and Leisure Accidents (HLA) in the Members States.
But, we noticed (see Psytel's study for the Commission "Evaluation of the EHLASS system" that the potential of information contained in these databases is widely underexploited.
- We want to carry out a study on data already acquired and available to value the information contained in these bases. We shall distinguish two points of view:
 - A "macro-accidentologic" point of view : it aims to establish a global vision of the HLA phenomenon and to follow the development of the aggregated data from the basis built as part of the HIEMS constituent of the IDA EUPHIN project. We have to take into account that in some states data are not statistically representative and that methods and practices of coding may fluctuate from one state to another.
 Therefore, it is essential that mutualities and differences be recorded as to their quantity and furthermore, that conclusions be formulated as to the validity of the European data.
 - A "micro-accidentologic" point of view : it aims to provide precise answers to concrete questions. Then we have to consider non aggregated EHLASS data bases as reservoirs of data from which it is necessary to extract relevant information.
The subjects of this search can be numerous. We propose in the present study:
- to review the practices of coding concerning product codes in different Member States
- to develop and implement a fine and systematic methodology for searching defective products.
Objectives:
The programme 'Injury prevention' develops a network which allows a better coverage and a better data recording on Home and Leisure Accidents (HLA) from the former EHLASS system.

To complete this action, we suggest to construct some number of specific data mining tools to analyse data and to help in the decision process. We noticed indeed (see our study for the Commission 'Evaluation of the EHLASS system') that the potential of information contained in these data bases is widely underexploited.

At the moment the statistical tools used are essentially simple countings and cross-tabulations among different variables.

It is necessary that the national teams in charge of the new information system use more sophisticated tools which allow to better highlight contained in their base. That is why we suggest building various data mining tools allowing to help in the elaboration of adapted and directly operational measures. It would be a question, for example, of building:

- a Synthetic Score of Relative Dangerosity (SSRD process) to hierarchise the products dangerosity,
- an Automated Warning System (AWS process) to indicate abrupt evolutions in data,
- a Severity Mark (SM process) relative to the accident itself to follow for example the evolution of the average gravity of the HLA, ...

We shall establish a consensus with the group of the European teams on the choice and the conception of these tools.

MISE EN PLACE D'UN SYSTEME DE RECUEIL DE DONNEES AUPRES DES CENTRES DE GRANDS BRULES D'EUROPE

Organisation:
THE EUROPEAN BURNS ASSOCIATION
Dr JACQUES LATARJET
Chaussée de Vleurgat, 221 B-1050 BRUXELLES BELGIQUE
tel. +32 2 649-6589 +33 6 608 61622, fax. +32 2 644-0402
Partners: D, DK, E, EL, F, I, NL, P, S, UK

Funding year: 1999
Started on: 01-11-1999
Planned duration: 48 months
Project completed

Total cost: 98,820 €
EU grant: 60,000 €

Objectives:
Final Objective:
To put in place a system of data collection from the major burn centers in order to improve the knowledge and the prevention of burns.
Intermediary objective:
To define the necessary preconditions for the implementation of a data collection system in all European countries in order to obtain optimal representativeness of data collected, guarantee their quality, and enable the interchange of information with other collection systems in particular the ones recording Homes and Leisure Accidents.

Documents submitted:
Executive Summary, Final Report, Annexe III, Annexe I, Annexe II.
SPORTS INJURIES IN THE EU COUNTRIES IN VIEW OF THE 2004 OLYMPICS: HARVESTING THE INFORMATION FROM EXISTING DATABASES (PHASE II)

Organisation:
CENTER FOR RESEARCH AND PREVENTION OF INJURIES AMONG THE YOUNG (CEREPR) - DEPT. OF HYGIENE AND EPIDEMIOLOGY - ATHENS UNIVERSITY MEDICAL SCHOOL
Dr ELENI PETRIDOU
75 M. ASIAS STR., GOUDI EL-115 27 - ATHENS GRECE
tel. +301.77.73.840, fax. +301.77.73.840
Partners: A,D,F,I,NL,IL

Funding year: 2000
Started on: 09-01-2000
Planned duration: 18 months
Project completed

Total cost: 223,000 €
EU grant: 156,100 €

Objectives:
1. To fully exploit the usability of the former EHLASS, as explored and analysed during the first phase of the project 'Sports injuries in the EU countries, in view of the 2004 Olympics: harvesting the information from existing databases' VS/1999/5311 (99CVF3-319), aiming to capture sports injuries, analyse currently available data which are isolated or underutilised at national level and point out deficiencies or inadequacies.
2. To determine person-time of exposure by type of sports activity and to estimate exposure specific risks in order to propose policy making prevention strategies to reduce the incidence of those injuries.
3. To identify situations and conditions - by sport activity - conducive to increased risk taking, including performance enhancing substances (i.e. doping).
4. To develop an agreed upon methodological prototype which will facilitate the effort for the collection of representative, comparable and high quality information data sets, as well as the uniform and comprehensive analysis of sports injuries.

PREVENTIVE PRODUCT SAFETY ANALYSIS - HINTS ON RISK MINIMISATION IN PRODUCT DESIGN BY EXPLORATIVE HLA DATA ANALYSIS

Organisation:
KURATORIUM FÜR SCHUTZ UND SICHERHEIT (AUSTRIAN BOARD FOR SAFETY AND PREVENTION) / INSTITUTE 'SICHER LEBEN'
Mag. GERT ADLER
Ölzeltgasse 3 A-1030 - VIENNA AUTRICHE
tel. +43.1.717.70 +43.1.715.66.44-318, fax. +43.1.717.70-9
Partners: DK, EL, F, FIN, NL, S

Funding year: 2000
Started on: 01-09-2000
Planned duration: 15 months
Project completed

Total cost: 127,700 €
EU grant: 88,900 €

Objectives:
As a heritage of the former EHLASS-System also in the new home and leisure accident (HLA) data collection within the Injury Prevention Programme (IPP) up to four product related variables are recorded.
In fact, the former EHLASS and current HLA data owe most of their special features to these product related variables.
The general objective of this project is to evaluate and review the potential of these data as a means of improving product safety.
In particular, we propose to establish a product-involvement-factor (PIF) that accounts for the actual contribution of the product to the accident and/or the injury.
Product related accidents will be classified into 'causality categories' (e.g. technical defect, general design or ergonomic deficiency, lack of customer information, inappropriate use or miss-use).
The PIF will be the result of the analysis of the causal relationship of products with both the accident and injury in selected HLA data records. The analysis will consist of hierarchy and correlation analysis of product variables as well as free text analysis.
Further, the safety potential of 'dangerous' products identified and classified by the PIF is to be judged by expert opinion for a few relevant case studies (e.g. household and do-it-yourself appliances, child related products, sports gear).
The objective of these case studies is to review the general feasibility of drawing conclusions for a safer product design from the current HLA and former EHLASS data, regarding technical, ergonomic, product information and foreseeable usage aspects.
DEVELOPMENT, TESTING AND DIFFUSION OF A COMMON SOFTWARE FOR QUALITY CONTROL OF HOME AND LEISURE ACCIDENT (HLA) DATA

Organisation:
KURATORIUM FÜR SCHUTZ UND SICHERHEIT (AUSTRIAN BOARD FOR SAFETY AND PREVENTION) / INSTITUTE 'SICHER LEBEN'
Dr ROBERT BAUER
Ölzeltgasse 3 A-1030 - VIENNA AUTRICHE
tel. +43.1.717.70 +43.1.715.66.44-317, fax. +43.1.717.70-9
Partners: DK, EL, F, NL

Funding year: 2000
Started on: 01-09-2000
Planned duration: 18 months
Project completed

Total cost: 172,600 €
EU grant: 120,820 €

Objectives:
For the moment, each Member State (MS) applies its own validation policy for the coding of Home and Leisure Accident (HLA) data collected within the 'Injury Prevention Programme' (IPP).
It follows that the level of controls is rather different from one MS to another, which in turn reduces the global quality of the common European HLA database.
Further, MS controls are mainly monovariate controls of correspondence to codes.
Thus, we propose to develop and implement a common software for data quality control on Home and Leisure Accident (HLA) within the programme 'Injury Prevention'. We suggest to distinguish two axes to assess the quality of the data already coded:
- An axis 'conformity to coding system', with regard to the version V2000 of the coding system or earlier version transformed to V2000. We shall add to it controls of inter-variable coherence and logical controls.
- An axis 'information wealth' that takes into account the informative character of the record. Indeed, a record can have totally conform variables but with a very weak informative character, as for example, an observation with a majority of variables coded as 'unknown' and an empty free text field (description of the accident).
Thus, each record sent to the European database can be tested against these two criteria and be assigned with a quality indicator (QI). This indicator allows for the selection of observations that have a sufficient degree of conformity, coherence and information. Further, this indicator can be used as a measure of overall quality of a specific data set or file. This instrument can strengthen the credibility of the system and enhance interpretation of results. A 'quality statement' (diagnosis of errors) will be edited for every file so that the national teams can take measures to improve the quality of the data collection.
Documents submitted: Manual, Activity Report, V2000-format, HLA-QC.
COLLECTION OF DATA ON INTENTIONAL INJURIES (ININS)

Organisation:
NATIONAL INSTITUTE OF PUBLIC HEALTH
Dr KARIN HELWEG-LARSEN
Svanemollevæj 25 DK-2100 - COPENHAGEN DANEMARK
tel. +45 39 207777 +45 39 207776 - 305, fax. +45 39 273095.
Partners: NL, UK

Funding year: 2000
Started on: 01-10-2000
Planned duration: 15 months
Project completed

Total cost: 169,252 €
EU grant: 118,500 €

Objectives:
The Community action programme on injury prevention focuses on data collection
and research within the field of injuries. The broad field of injuries is further
sub categorised into Home and Leisure Accidents and Other Injuries.
While the field of Home and Leisure Accidents has benefited from a rather substantial
data collection in the EU countries, the field of Other Injuries suffers from a lack of
reliable and regularly collected data.
This project prepares the way for a systematic and regular collection of reliable data
on intentional injuries.
The project aims to improve the knowledge of the incidence of violence which is an
important part of intentional injuries in the EU. At present no comparable and
representative data exist on violence against men, women and children, and data on
violence has not been implemented in the national health surveys, even though
violence is considered a major risk factor of ill health.
The project will suggest an improved data collection and thereby promote specific
intervention strategies against violence in the EU. Much experience about such data
collection has been gathered in the National Institute of Public Health in Denmark and
in the Nordic Research Network on Violence, headed by the project leader. Thus, the
project is based on professional experience and skills.
Furthermore, the project leader and the participants have participated in research on
European level that has involved a number of research institutes and national
statistics.
At present the European Union's programme on injury covers data collection for home
and leisure injuries only. Data collection structures in this field have been established
under the name of EHLASS.
The project will test models for supplementary data collection of non intentional
injury by implementing in a continuous and systematic way suitable classification of
violence, e.g. the NOMESCO Classification's Reason for Contact Codes (that also
defines violence) in the existing data collection structure of EHLASS.
The information on intentional injury (violence) will be collected in such a way that it
allows integration under the health monitoring system, HIEMS.
1999 was approved as the European Year on Violence against Women by the
was established in 1998 with financial support from the European Union.
The Action Centre has reported serious lack in data on violence, and urges for
comparable data from the member states. The Centre approves the aims of the present
project, as it is in line with the objectives of the Centre.
The project complies very well with the IPP (372/1999/EC) work programme for
2000 section 4.3, first bullet, point 1. and 2.
A SURVEILLANCE BASED ASSESSMENT OF MEDICAL COSTS OF INJURY IN EUROPE (PHASE 1)

Organisation:
CONSUMER SAFETY INSTITUTE
A, D, DK, E, EL, I, IRL, S, UK, NO
Rijswijkstraat 2 NL-1059 GK - AMSTERDAM PAYS-BAS
tel. +31.20.511.45.11 +31.20.511.45.57, fax. +31.20.669.28.31
Partners: Mrs. SAAKJE MULDER

Funding year: 2000
Started on: 01-09-2000
Planned duration: 12 months
Project completed

Total cost: 368,393 €
EU grant: 257,875 €

Objectives:
The aim of the overall project is to enhance the effective use of current European (EHLASS) and national injury surveillance systems for policy decision making, by adding monitoring information on the medical costs of injury in the European Union. Its specific objectives are:
(1) To collect, analyse and harmonize data on injury incidence and related health care consumption and costs
(2) To estimate the medical costs of injury, and of home and leisure accidents (HLA) in particular, in each participating country using a uniform methodology
(3) To explore the possibilities for the assessment of international differences in the medical costs of injury in relation to the underlying variation in demography, epidemiology and health service organization between countries
(4) To explore methods to extrapolate the results on costs of injury to all Member States of the EC.
This proposal is limited to objective 1.
The project relates to all 3 priority areas in the Working Programme 2000. This proposal (objective 1) improves the dissemination and exploitation of information on injuries and the analysis of existing injury data. It is the first step in identifying the cost of injury.
SCOPE AND PATTERNS OF TOURIST ACCIDENTS IN THE EUROPEAN UNION

Organisation:
KURATORIUM FUR SCHUTZ UND SICHERHEIT (AUSTRIAN BOARD FOR SAFETY AND PREVENTION) - INSTITUTE SICHER LEBEN
Dr ROBERT BAUER robert.bauer@sicherleben.at
Ölzeltgasse 3 A -1031 - Wien
tel. +43 1 715 66 44.317 , fax. +43 1 715 66 44 30
Partners: D,NL,EL,P,FN

Funding year: 2001
Started on: 01-09-2001
Planned duration: 18 months
Project completed

Total cost: 121,450 €
EU grant: 85,015 €

Objectives:
More than 200 million tourists are travelling within the EU each year and many of them engage in recreational activities and sports during their winter and summer holidays abroad. Not all of these activities are hazard free. However, little is known about their accompanying risks of accidents and injuries. This results in negligence of safety promotion programmes for tourists.

In Austria for example, the number of skiing accidents in tourists exceeds the number of skiing accidents in the resident population by a factor of three. Similar discrepancies are expected in other European destinations for winter tourism and - although in different activities - in summer tourism as well.

Although certain EU countries have records about incidences of tourist accidents based on the additional classification of nationality in their HLA data collection system (e.g. Greece and Netherlands), no comprehensive view of the scope of tourist accidents in the European Union is available. As the treatment of injuries of tourists often is split between the destination and the residence country, little is known about the consequences of tourist accidents as well.

Therefore we propose to analyse this problem within the IPP WP 2001 by means of a status quo inventory and analysis of relevant data and reports (social insurance data, health statistics, results from other EU-projects on trans-border services; e.g. in road safety) and supplementary survey (questionnaire) within the national HLA data collection systems (pilot for selected countries).

Documents submitted:
MISE EN PLACE D'UN SYSTÈME DE RECUEIL DE DONNÉES

Organisation:
THE EUROPEAN BURNS ASSOCIATION
Dr JACQUES LATARJET
Chaussée de Vleurgat, 221 B-1050 - BRUXELLES
tel. +32.2.649.65.89, fax. +32.2.644.04.02
Partners: AU, DE, NTH, BG, EL, PG, DK, IR, ES, FN, IT, SW, FR, UK, BU, CZ

Funding year: 2001
Started on: 01-09-2001
Planned duration: 12 months
Project completed

Total cost: 162,350 €
EU grant: 113,645 €

Objectives:
Final Objective:
To put in place a system of data collection from the major burn centers in order to improve the knowledge and the prevention of burns.

Intermediary objective:
To define the necessary preconditions for the implementation of a data collection system in all European countries in order to obtain optimal representativeness of data collected, guarantee their quality, and enable the interchange of information with other collection systems, in particular the ones recording Homes and Leisure Accidents.

Operational Objectives:
- To evaluate the capacity of centers that are ready to collect and transmit data.
- To evaluate the capacity of national coordinators to collect the data from all these centers.
- To evaluate the necessary preconditions in the centers that are not yet "ready" so that they become.
- To evaluate the validity and the pertinence of a questionnaire and the quality and suitability of the data yielded for burns prevention.

Documents submitted: Executive Summary, Final Report
DATA TRANSFORMATION FOR EUPHIN INJURY - INJURY HOME AND LEISURE ACCIDENTS (IHLA) DATABASE FOR THE YEARS 2000 AND 2001 (TRANSINJURY)

Organisation:
LANDESINSTITUT FÜR DEN ÖFFENTLICHEN GESUNDHEITSDIENST (LÖGD) (INSTITUTE OF PUBLIC HEALTH NORTH RHINE-WESTPHALIA)
Dr. GERHARD MURZA
WESTERFELDSTRASSE 35-37 D-33611 - BIELEFELD
tel. +49.521.80.07.258, fax. +49.521.80.07.296
Partners: Iceland, Norway, Cyprus, Czech Republic, Poland, Hungary

Funding year: 2001
Started on: 01-05-2001
Planned duration: 20 months
Project completed

Total cost: 174,742 €
EU grant: 122,319 €

Objectives:
Under the EUPHIN HIEMS Project, the Institute of Public Health (LOEGD) during the years 1997-2000 transformed EHLASS data for the years between 1986 and 1996 (subcontr. 501026), stored the data in the EUPHIN HIEMS database and produced a Data Dictionary for each participating country.
With the help of the follow-up project “Transformation of EHLASS Data for 1997-1999 and for latecomers for 1986-1996” (contract VS/1999/5294-DE) it was possible to transform and upload data from latecomers and to transform the entire home and leisure accident data for 16 countries for the year 1998 and for 11 countries for the year 1999.
Data from the UK and Finland for the year under report 1999 are still outstanding.
Up to now the infrastructure for the upload of data from the participating countries to the IHLA database has not been established.
It is the aim of this project to transform the data for the years 2000 and 2001 and to upload it into the IHLA database and to complete the IHLA database with the historical EHLASS data stored in loegd, as far as data protection rules allow this.
The extension of the IHLA database by accident data from the candidate countries from Eastern Europe will be supported by this project through data collection, evaluation and procession.
One objective is to make progress with the decentralisation of data collection.
Therefore in this project a code checking software will be developed, which can simply be used by the participating countries for their data quality checks before data upload.
Documents submitted:
DEVELOPMENT OF A BALANCED SCORECARD OF NATIONAL KEY INDICATORS ON CHILDHOOD INJURIES AND RELATED PREVENTION MEASURES

Organisation:
EUROPEAN CONSUMER SAFETY ASSOCIATION
JOANNE VINCENTEN J.vincenten@consafe.nl
Rijswijkstraat 2 P.O. box 75169 NL-1070 - AD AMSTERDAM
tel. 31 20 511 45 29 , fax. 31 20 511 45 10
Partners: A,EL,UK

Funding year: 2001
Started on: 01-06-2001
Planned duration: 15 months
Project completed

Total cost: 126,320 €
EU grant: 88,424 €

Objectives:
To create a balanced scorecard of key indicators of child injury and related prevention activities for children in the EU to:
- measure and guide current performance and to target future performances.
- create a measurement tool to show the similarities and differences between EU countries.
- analyse the scorecard information to determine any association of injury mortality or morbidity rates to policies, behaviors, environments within and amongst countries.
- create an information and incentive document to motivate countries to make safer conditions to reduce child injury mortality and morbidity.
- help to identify models of safe country practices for children.
IMPLEMENTATION OF MINIMUM DATA SETS ON INJURIES IN THE EUROPEAN UNION

Organisation:
CONSUMER SAFETY INSTITUTE
Ms SAAKJE MULDER s.mulder@consafe.nl
Rijswijkstraat 2 PO Box 75169 NL-1070 AD - AMSTERDAM
tel. +31.20.511.45.57 , fax. +31.20.669.28.31
Partners: A,D,EL,DK,UK,Norway

Funding year: 2001
Started on: 01-10-2001
Planned duration: 15 months
Project completed

Total cost: 150,682 €
EU grant: 105,477 €

Objectives:
The objective is to co-ordinate the implementation and promotion of Minimum Data Sets on Injuries (MDS-Is) in settings which monitor injuries throughout the European Union and its applicant countries. The project aims at three levels of implementation of MDS-Is:
1. As a reporting format: enabling the comparison and exchange of data between settings equipped with detailed, injury monitoring systems. The main target groups will be injuries resulting in death, hospital admission or Emergency Department attendance.
2. As a tool for improving the informative value of existing injury monitoring systems. The main target groups will be injuries resulting in death and those resulting in hospital admission.
3. As a registration system: providing settings with limited resources or with no experience in injury monitoring with a tool for collecting injury data. The main target group will be injuries resulting in Emergency Department attendance and other, small-scale health care attendance.
This objective is in accordance with the Injury Prevention Programme, Working Program 2001, which calls for high quality information, that is comparable and can be effectively analysed.
Documents submitted: Background Report, Executive Summary.
DEVELOPMENT OF A SCREENING TOOL FOR THE IDENTIFICATION OF INTIMATE PARTNER VIOLENCE

Organisation:
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS
Dr ELENI PETRIDOU
6 Ch Lada Str EL-10561 - ATHENS
tel. +30 210 746-2187 , fax. +30 210 777-3840
Partners: DK,FN,I,S,F

Funding year: 2001
Started on: 01-10-2001
Planned duration: 18 months
Project completed

Total cost: 222,823 €
EU grant: 155,976 €

Objectives:
- To critically review published references concerning frequency, underlying causes and health consequences of intimate partner violence.
- To assess strengths and weaknesses of the existing tools and respective research methodologies in use in EU countries in capturing the magnitude of the problem separately in men.
- To develop a short questionnaire to be applied for a six-months period to patients visiting the Emergency Departments of the selected hospitals in the countries participating in this project. This questionnaire will aim to identify physical injuries due to intimate partner violence in a way that works effectively according to cultural issues in the collaborative countries.
- To compare the percentage of intimate violence victims identified through this methodology with that derived from the standard notations made by the former EHLASS in the Emergency Departments of the same health setting during the proceedings six-months; this process aims to assess effectiveness of the protocol as well as strenghts and weaknesses in identifying possible underestimation of the problem.
- To contrast the results of this pilot effort against findings from protocols administrated in other social settings or in better-organized and fully computerized health care systems

SOCIAL ATTITUDES TOWARDS HOME AND LEISURE RISKS IN THE EU

Organisation:
KURATORIUM FÜR SCHUTZ UND SICHERHEIT (NSTITUT 'SICHER LEBEN')
Mag GERALD FURIAN Gerald.furian@sicherleben.at
Ölzeltgasse 3 A-1030 - WIEN
tel. +43.1.715.66.44.319 , fax. +43.1.715.66.44.30
Partners: NL, DK

Funding year: 2001
Started on: 01-10-2001
Planned duration: 18 months
Project completed

Total cost: 106,623 €
EU grant: 74,634 €

Objectives:
In the European Union 20 million home and leisure accidents annually result in medical treatment with costs about 3,9 billion Euro.
Yet injury control strategies in the union are patchwork. Effective safety promotion requires knowledge about the awareness, attitudes and behaviour of consumers, in order to set priorities and follow up behavioural changes.
Until now, little is known about the acceptance and implementation of prevention measures in the European countries. Unlike in the field of road accidents (SARTRE), there is no comparative study to measure knowledge, attitudes and behaviour towards appliance of safety measures regarding home and leisure accidents.
This is a reason to develop a research project which covers this topic and leads to a comprehensive database to understand the underlying social and cultural factors of knowledge, attitudes and behaviours of consumers. This information will be key in order to improve current safety policies.
The project is based on gathering of quantitative data which involves a representative questionnaire survey. Based on the experiences with the survey "Risk Monitor", that has been conducted by the Institute for Home and Leisure Safety in Austria in the years 1992, 1994, 1998 and 2000, the main purpose of the current project is widening of this survey throughout the Europeancommunity. This will enable EU safety advocates to identify best practices in intervention and to use the results for planning effective preventive countermeasures.
Furthermore, the project is open to complementary surveys and topics that could be integrated. The added value of a union-wide project lies in the comparability of national measurements of attitude and practice, which enables competition towards safety as well as international co-operation.
Documents submitted: Executive Summary, Final report.
EUROMOTIVE – EUROPEAN MONITOR OF TRANSNATIONAL VIOLENCE EPIDEMIOLOGY

Organisation:
University of Glasgow
Ms Elizabeth Gray
University of Glasgow GB - Glasgow g38sj
tel. +44 141 3302940, fax. +44 141 3302747
Partners: B, F, FN, EL, IRL, I, S

Funding year: 2002
Started on: 01-01-2002
Planned duration: 36 months
Project pending

Total cost: 129,172 €
EU grant: 90,420 €

Objectives:
The project will address both unintentional and intentional injuries in the European Union. The project will pool expertise in epidemiology and injury research from across the EU by providing a regular system of disseminating through injury information via technical reports, newsletters and a website. Data will be disseminated through both numerical form and through textual commentary of current trends in injury throughout the EU. The specific objectives of the project are to:
Collect and collated up-to-date European mortality data
Examine and describe current epidemiological trends and determinants of both unintentional and intentional injuries (including violence) with special reference to geographical (inter-country) differences and time trends. Seek to explain geographical and secular variation in injury mortality between countries Promote information exchange on the uses of the data in unintentional and intentional injuries and provide a consistent version of standardized rates for reference systems.

Documents submitted:
CODING MANUAL FOR EMERGENCY DEPARTMENT BASED SURVEILLANCE ON INJURIES

Organisation:
Consumer Safety Institute (Stichting Konsument en Veiligheid)
Dr. Saakje Mulder
Rijswijstraat 2 NL - 1059GK Amsterdam
tel. +31 20 5114557, fax. +31 20 6692831
Partners: NL

Funding year: 2002
Started on: 01-01-2002
Planned duration: 7 months
Project completed

Total cost: 66,992 €
EU grant: 46,895 €

Objectives:
To develop a coding manual for a surveillance system on injuries that can be used at emergency departments throughout the European Union based on the International Classification of External Causes of Injuries (ICECI).

The integration of V2000 codification in ICECI (WHO injury classification) is very important for future WHO injury classification.

Documents submitted:
THE MAGNITUDE AND SPECTRUM OF FARM INJURIES IN THE EUROPEAN UNION COUNTRIES

Organisation:
Center for Research and Prevention of Injuries among the Young
Dr. Eleni Petridou
6 Ch. Lada st GR -10561 Athens
tel. +30 210 7462105, fax. +30 210 7773840
Partners: A, DK, F, NL, P, S, UK

Funding year: 2002
Started on: 15-01-2002
Planned duration: 30 months
Project pending

Total cost: 145,000 €
EU grant: 100,000 €

Objectives:
To develop indicators for facilitating the development of public health policies for prevention of farm in the European Union countries. Specific aims are: To examine at EU level the policy areas relevant to safety issues related to farm injuries. To ascertain the current status of such policies with a view to the feasibility of including information on farm injuries (and subsequently occupational injuries to the EUPHIN) To exploit established data sources for collecting data on farm injuries and to assess the overall efficacy and possible missteps in managing the process. To compare the quality of the data sources among the participating countries an to sugest methods to increase comparability of the data. To closely collaborate with EUROSTAT. Data on work related farm injuries could be provided by this source. Comparison of coding systems., as well as improvement of the existing HLA coding system in order to capture properly this type of injury will be undertaken. The coring systems V20000 ad ICE will be utilized and cross validation will be undertaken. To assess the adequacy, comparability, reliability and validity of existing coding systems with regard to farm injuries. The ultimate goals of the program in this direction are: To ascertain the burden on farm injuries in EU member states and to identify major risk factors and population groups at risk. To formulate a memorandum of commonly accepted practices of the prevention of farm injuries among the most vulnerable population groups.

Documents submitted:
AN INITIATIVE FOR THE COLLECTION OF DATA REGARDING INJURIES IN THE CONSUMER SERVICES SECTOR

Organisation:
Center for Research and Prevention of Injuries among the Young
Dr. Eleni Petridou
6 Ch. Lada St
tel. +30 210 7462187, fax. +30 210 7773840
Partners: A, D, NL, P, S

Funding year: 2002
Started on: 01-12-2001
Planned duration: 20 months
Project completed

Total cost: 144,500 €
EU grant: 100,000 €

Objectives:
The consumer services sector is relatively neglected among the injury prevention programs and few initiatives have focused mainly or exclusively on it. This is in stark contrast to its overall importance in the European economies, which have practically been transformed to “services economies” in the last thirty years. This project aims to respond to this deficit by exploring the potential for a mechanism of retrieving good quality data on safety issues in the consumer services sector. To achieve this aim, it will first consider expansion and revision of existing initiatives on data collection and assess the need for innovative approaches. Then, a feasibility study will be conducted to assess the potential of establishing a permanent initiative of data collection and explore its possible use as a basis for a rapid response mechanism for action to counter sources of injuries in the consumer services sector.

Documents submitted:
EPIDEMIOLOGICAL SURVEILLANCE AND INCIDENCE OF DOMESTIC AND FREE TIME RISK

Organisation:
Azienda ULSS 20 Verona
Dr Valerio Alberti
Via Valverde n 42 IT - 37122 Verona
tel. +39 45 9075510, fax. +39 45 8075640
Partners: FN, D, IRL, NL, S

Funding year: 2002
Started on: 01-04-2002
Planned duration: 24 months
Project pending

Total cost: 528,571 €
EU grant: 300,000 €

Objectives:
The National Health plan 1998-2000 individualized the reduction of domestic accidents as a priority considering them avoidable, especially when children and elderly people (the main risk categories) are concerned. In Italy 8,500 deadly accidents take place in the houses, 63000 people die on the streets ant 1300 while working. The mortality rate for domestic and work accidents is 22.8/100000 male inhabitants ans 24.8/100000 female inhabitants Every years 4000000 domestic accidents take place in Italy (ISPESL, Labors Institute Research). These data are economically and socially relevant as afar as public health is concerned. Nevertheless there is no action at the moment allowing a systematic and organic data collecting for individuating the main risk factors and the environmental and social causes. In this respect a consolidated experience is the monitoring of the domestic poisoning from carbonic monoxide done in the province of Verona since 1994. This monitoring causes a reduction of mortality for poisoning an represents a model or vigilance that when adapted can be extended to the wholeness of accidents.

Documents submitted:
A SURVEILLANCE BASED ASSESSMENT OF MEDICAL COSTS OF INJURY IN EUROPE (PHASE 2)

Organisation:
Consumer Safety Institute & Erasmus University School of Public Health
Dr. Saakje Mulder
Rijkswijkstraat 2 NL - 1059 GK Amsterdam
tel. +31 20 5114557, fax. +31 20 6692831
Partners: A, D, DK, E, EL, IRL, I, NL, S, UK

Funding year: 2002
Started on: 01-03-2002
Planned duration: 24 months
Project pending

Total cost: 276,327 €
EU grant: 193,429 €

Objectives:
The aim of the overall project is to enhance the effective use of current European (EHLASS) and national injury surveillance systems for policy decision-making, by adding monitoring information on the medical costs of injury in the European Union. Its specific objectives are To collect, analyze and harmonize data on injury and of home and leisure accidents (HLA) in particular, in each participating country using a uniform methodology To explore the possibilities for the assessment of international differences in the medical costs of injury in relation to the underlying variation in demography, epidemiology and health service organization between countries and To explore methods to extrapolate the results on costs f injury to all members states of the EC. This proposal is limited to objective 2 and builds further on the established results of phase 1 (1/1/2001-31/12/2001) that was limited to objective 1. The project relates to all 3 priority areas in the working programme 2000. this proposal (objective 2) improves the dissemination and exploitation of information in injuries and the analysis of existing injury data. It is the first step in identifying and estimating the medical costs of injury in the European Union.

Documents submitted:
COMMON QUALITY AND CODING STANDARDS FOR DATA COLLECTION

Organisation:
Kuratorium fuer Schutz and Sicherheit - Institut "Sicherleben"
Dr Robert Bauer
Oezeltgasse 3 AT - 1030 Vienna
tel. +43 1 715 6644317, fax. +43 1 715 6644317
Partners: D, DK, EL, F

Funding year: 2002
Started on: 01-03-2002
Planned duration: 15 months
Project completed

Total cost: 153,573 €
EU grant: 105,378 €

Objectives:
• The IPP is already supporting initiatives to improve the quality of HLA data collection in terms of representativity (population incidences by catchment areas) and coding conformity (V2000 as common coding manual). In addition to the common IPP Coding Manual a common Quality Management Manual (QM-Manual) for HLA data collection is being developed (IPP/2000/1070).
• However, no common control procedure for actively supporting and maintaining requirements in the Member States has been implemented so far.
• We therefore propose a pilot project for the Development of a Training Session for the Member States on Common Quality and Coding Standards for HLA Data Collection.
• Provision and training for the Coding Manual and the QM-Manual would improve the consistency of data collection methodology and coding practice between Member States. Training in these measures would improve the quality of the European databases within EUPHIN HIEMS and EUPHIN INJURY.
• The implementation of the Quality Control Manual would assist the Member States in complying with the new DG-SANCO requirements and greatly enhance the quality of the HLA data.
• As a future aspect it would also enable DG-SANCO to partly decentralise the quality controls prior to aggregation and final acceptance. The national teams require training for this task to be performed effectively. Training is necessary to facilitate standardisation of HLA quality controls and coding practices.

Documents submitted
ESTABLISHMENT OF A PROTOTYPE SURVEY ABOUT HTE HOME AND LEISURE ACCIDENTS COMPLEMENTARY TO THE HOSPITAL STATISTICS

Organisation:
Insitute de Veille Sanitaire
Dr. Bertrand Thelot
12 rue du Val d' Osne
tel. +33 1 41796875, fax. +33 1 41796811
Partners: A, D, EL, P

Funding year: 2002
Started on: 01-03-2002
Planned duration: 16 months
Project completed

Total cost: 156,882 €
EU grant: 109,500 €

Objectives:
This project takes place in the development of the development of the European Community's public health strategy, more precisely under Strand I (Improving Health Information) of the new Injury Prevention Programme (IPP). Now the official data collection system for Member States is a data collection in hospital’s emergency department. But we know that this methodology has some weaknesses: representativity, limited information, on after effects, social context etc. These weaknesses could be knocked out by information obtained through additional representative surveys conducted punctually on households and crossed eith the hospital’s information system. These two collection modes appear to us being broadly complementary. We propose to construct a survey prototype with a common kernel of questions, compatible and complementary with the new coding system V2000. This provides first methodological help to the Member States for collecting data at the hospital level. The wish is to set up a representative survey which could allow to cross tabulate the data registered in the new collection system in the two collection systems and thus emulate their advantages. This is to propose a guide for a better methodology for data collection and improving health information. We shall establish a consensus with the Member States partners on the method. We will first analyze and compare the methods and questionnaires of surveys used in the past in the EHLASS context (Germany, Luxembourg, Spain) and in other contexts (for instance in France: surveys on injuries managed by other national structures: CNAM, CREDES, INSEE).
Documents submitted:
PILOT STUDY FOR THE ESTABLISHMENT OF A RAPID RESPONSE MECHANISM IN THE INJURY PREVENTION FIELD

Organisation:
Institute de Veille Sanitaire
Dr Bertrand Thelot
12, Rue du Val D’Osne FR - 94415 Saint Maurice CEDEX
tel. +33 1 41796875, fax. +33 1 41796811
Partners: A, B, DK, P, S

Funding year: 2002
Started on: **01-04-2002**
Planned duration: **18 months**
Project completed

Total cost: **173,800 €**
EU grant: **121,000 €**

Objectives:
This project takes place under the injury prevention program within the Strand 2 “Establishing a rapid response mechanism” This response mechanism concerns not only the potential risk products (RAPEX is already an existing system) but more widely the risk situations”. A risk situation is a combination of several variables such as: activity, place, product (ex: new use of child’s scooters on pavement). The knowledge of these risk situations is provide in part by the analysis of the home and leisure accident information system (former EHLASS system and we have gathered experience on this subject or several years. For the moment there is no rapid response mechanism producing risk situation results. This response mechanism will not generate official notifications but will be able to rapidly produce alert information from an epidemiological and a preventive point of view at both national and European levels. The first goal of the study is to collect information about the existing networks and potential partners and to analyze the wishes and the need in this domain A pilot tools will then be built, using a website which will include: an address book, a forum of questions, a data base or risk situation a list of preventive actions engaged ad working collaborative space etc. The application will include in the future competent national authorities, association of consumers and normalization structures. It will be able to contribute to the achievement of a high level of health and safety protection of the consumers.
Documents submitted: