ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. **NAME OF THE MEDICINAL PRODUCT**

Wilzin 25 mg hard capsules

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each hard capsule contains 25 mg of zinc (corresponding to 83.92 mg of zinc acetate dihydrate).

For excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Hard capsule.
Size 1 hard capsule with aqua blue opaque cap and body, imprinted "93-376".

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

Treatment of Wilson’s disease.

4.2 **Posology and method of administration**

Wilzin treatment should be initiated under the supervision of a physician experienced in the treatment of Wilson’s disease (see section 4.4). Wilzin is a life-long therapy.

There is no difference in dosage between symptomatic and presymptomatic patients.

Wilzin is available in hard capsules of 25 mg or 50 mg.

- **Adults:**
 The usual dosage is 50 mg 3 times daily with a maximum dose of 50 mg 5 times daily.
- **Children and adolescents:**
 Data are very limited in children under 6 years but since the disease is fully penetrant, prophylactic treatment should be considered as early as possible. The recommended dosage is as follows:
 - from 1 to 6 years: 25 mg twice daily
 - from 6 to 16 years if bodyweight under 57 kg: 25 mg three times daily
 - from 16 years or if bodyweight above 57 kg: 50 mg three times daily.
- **Pregnant women:**
 A dosage of 25 mg 3 times daily is usually effective but the dosage should be adjusted to copper levels (see section 4.4 and section 4.6).

In all cases, dosage should be adjusted according to therapeutic monitoring (see section 4.4.).

Wilzin must be taken on an empty stomach, at least 1 hour before or 2-3 hours after meals. In case of gastric intolerance, often occurring with the morning dose, this dose may be delayed to mid-morning, between breakfast and lunch. It is also possible to take Wilzin with a little protein, such as meat (see section 4.5).

In children who are unable to swallow capsules, these should be opened and their content suspended in a little water (possibly sugar or syrup flavoured water).
When switching a patient on chelating treatment to Wilzin for maintenance therapy, the chelating treatment should be maintained and co-administered for 2 to 3 weeks since this is the time it takes for the zinc treatment to induce maximum metallothionein induction and full blockade of copper absorption. The administration of the chelating treatment and Wilzin should be separated by at least 1 hour.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients.

4.4 Special warnings and special precautions for use

Zinc acetate dihydrate is not recommended for the initial therapy of symptomatic patients because of its slow onset of action. Symptomatic patients must be initially treated with a chelating agent; once copper levels are below toxic thresholds and patients are clinically stable, maintenance treatment with Wilzin can be considered. Nevertheless, while awaiting zinc induced duodenal metallothionein production and consequential effective inhibition of copper absorption, zinc acetate dihydrate could be administered initially in symptomatic patients in combination with a chelating agent.

Although rare, clinical deterioration may occur at the beginning of the treatment, as has also been reported with chelating agents. Whether this is related to mobilisation of copper stores or to natural history of the disease remains unclear. A change of therapy is recommended in this situation.

Caution should be exercised when switching patients with portal hypertension from a chelating agent to Wilzin, when such patients are doing well and the treatment is tolerated. Two patients of a series of 16 died from hepatic decompensation and advanced portal hypertension after being changed from penicillamine to zinc therapy.

Therapeutic monitoring

The aim of the treatment is to maintain the plasma free copper (also known as non-ceruloplasmin plasma copper) below 250 microgram/l (normal: 100-150 microgram/l) and the urinary copper excretion below 125 microgram/24 h (normal: < 50 microgram/24 h). The non-ceruloplasmin plasma copper is calculated by subtracting the ceruloplasmin-bound copper from the total plasma copper, given that each milligram of ceruloplasmin contains 3 micrograms of copper. The urinary excretion of copper is an accurate reflection of body loading with excess copper only when patients are not on chelation therapy. Urinary copper levels are usually increased with chelation therapy such as penicillamine or trientine. The level of hepatic copper cannot be used to manage therapy since it does not differentiate between potentially toxic free copper and metallothionein-bound copper. In treated patients, assays of urinary and/or plasma zinc may be a useful measure of treatment compliance. Values of urinary zinc above 2 mg/24 h and of plasma zinc above 1250 microgram/l generally indicate adequate compliance.

Like with all anti-copper agents overtreatment carries the risk of copper deficiency, which is especially harmful for children and pregnant women since copper is required for proper growth and mental development. In these patient groups, urinary copper levels should be kept a little above the upper limit of normal or in the high normal range (i.e. 40 – 50 microgram/24 h). Laboratory follow-up including haematological surveillance and lipoproteins determination should also be performed in order to detect early manifestations of copper deficiency, such as anaemia and/or leukopenia resulting from bone marrow depression, and decrease in HDL cholesterol and HDL/total cholesterol ratio.

In case of gastric intolerance, often occurring with the morning dose, this dose may be delayed to mid-morning, between breakfast and lunch. It is also possible to take Wilzin with a little protein, such as meat (see section 4.5).
4.5 Interaction with other medicinal products and other forms of interaction

Other anti-copper agents
Pharmacodynamic studies were conducted in Wilson’s disease patients on the combination of Wilzin (50 mg three times daily) with ascorbic acid (1 g once daily), penicillamine (250 mg four times daily), and trientine (250 mg four times daily). They showed no significant overall effect on copper balance although mild interaction of zinc with chelators (penicillamine and trientine) could be detected with decreased faecal but increased urinary copper excretion as compared with zinc alone. This is probably due to some extent of complexion of zinc by the chelator, thus reducing the effect of both active substances.

When switching a patient on chelating treatment to Wilzin for maintenance therapy, the chelating treatment should be maintained and co-administered for 2 to 3 weeks since this is the time it takes for the zinc treatment to induce maximum metallothionein induction and full blockade of copper absorption. The administration of the chelating treatment and Wilzin should be separated by at least 1 hour.

Other medicinal products
The absorption of zinc may be reduced by iron and calcium supplements, tetracyclines and phosphorus-containing compounds, while zinc may reduce the absorption of iron, tetracyclines, fluoroquinolones.

Food
Studies of the co-administration of zinc with food performed in healthy volunteers showed that the absorption of zinc was significantly delayed by many foods (including bread, hard boiled eggs, coffee and milk). Substances in food, especially phytates and fibres, bind zinc and prevent it from entering the intestinal cells. However, protein appears to interfere the least.

4.6 Pregnancy and lactation

Pregnancy:
Data on a limited number of exposed pregnancies in patients with Wilson’s disease give no indication of harmful effects of zinc on embryo/foetus and mother. Five miscarriages and 2 birth defects (microcephaly and correctable heart defect) were reported in 42 pregnancies.

Animal studies conducted with different zinc salts do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development (see section 5.3).

It is extremely important that pregnant Wilson’s disease patients continue their therapy during pregnancy. Which treatment should be used, zinc or chelating agent should be decided by the physician. Dose adjustments to guarantee that the foetus will not become copper deficient must be done and close monitoring of the patient is mandatory (see section 4.4).

Lactation:
Zinc is excreted in human breast milk and zinc-induced copper deficiency in the breast-fed baby may occur. Therefore, breast-feeding should be avoided during Wilzin therapy.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed.

4.8 Undesirable effects

Clinical experience of more than 1 000 patient-years with zinc (more than 500 with zinc acetate dihydrate) as well as post-marketing surveillance with zinc acetate dihydrate of more than
1000 patient-years showed that the most common undesirable effect is gastric irritation. This is usually worst with the first morning dose and disappears after the first days of treatment. Delaying the first dose to mid-morning or taking the dose with a little protein may usually relieve the symptoms.

Reported adverse reactions are listed below, by system organ class and by frequency. Frequencies are defined as: very common (> 1/10), common (>1/100, <1/10) and uncommon (>1/1,000, <1/100):

Blood and lymphatic system disorders	uncommon: sideroblastic anaemia; leukopenia
Gastrointestinal disorders	common: gastric irritation
Laboratory investigations	common: blood amylase, lipase and alkaline phosphatase increased

Anaemia may be micro-, normo- or macrocytic and is often associated with leukopenia. Bone marrow examination usually reveals characteristic "ringed sideroblasts" (i.e. developing red blood cells containing iron-engorged paranuclear mitochondria). They may be early manifestations of copper deficiency and may recover rapidly following reduction of zinc dosage. However, they must be distinguished from haemolytic anaemia which commonly occurs where there is elevated serum free copper in uncontrolled Wilson’s disease.

Elevations of serum alkaline phosphatase, amylase and lipase may occur after a few weeks of treatment, with levels usually returning to high normal within the first one or two years of treatment.

4.9 Overdose

Three cases of acute oral overdosage with zinc salts (sulphate or gluconate) have been reported in the literature. Death occurred in a 35 year-old woman on the fifth day after ingestion of 6 g of zinc (40 times the proposed therapeutic dose) and was attributed to renal failure and haemorrhagic pancreatitis with hyperglycaemic coma. The same dose did not produce any symptoms except for vomiting in an adolescent who was treated by whole-bowel irrigation. Another adolescent who ingested 4 g of zinc had serum zinc level of about 50 mg/l 5 hours later and only experienced severe nausea, vomiting and dizziness.

Treatment of overdose should be with gastric lavage or induced emesis as quickly as possible to remove unabsorbed zinc. Heavy metal chelation therapy should be considered if plasma zinc levels are markedly elevated (> 10 mg/l).

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: various alimentary tract and metabolism product, ATC code: A16AX05.

Wilson's disease (hepatolenticular degeneration) is an autosomal recessive metabolic defect in hepatic excretion of copper in the bile. Copper accumulation in the liver leads to hepatocellular injury and eventual cirrhosis. When the liver capacity of storing copper is exceeded copper is released into the blood and is taken up in extra hepatic sites, such as the brain, resulting in motor disorders and psychiatric manifestations. Patients may present clinically with predominantly hepatic, neurologic, or psychiatric symptoms.

The active moiety in zinc acetate dihydrate is zinc cation, which blocks the intestinal absorption of copper from the diet and the reabsorption of endogenously secreted copper. Zinc induces the production of metallothionein in the enterocyte, a protein that binds copper thereby preventing its transfer into the blood. The bound copper is then eliminated in the stool following desquamation of the intestinal cells.
Pharmacodynamic investigations of copper metabolism in patients with Wilson’s disease included determinations of net copper balance and radiolabelled copper uptake. A daily regimen of 150 mg of Wilzin in three administrations was shown to be effective in significantly reducing copper absorption and inducing a negative copper balance.

5.2 Pharmacokinetic properties

Since the mechanism of action of zinc is an effect on copper uptake at the level of the intestinal cell, pharmacokinetic evaluations based on blood levels of zinc do not provide useful information on zinc bioavailability at the site of action.

Zinc is absorbed in the small intestine and its absorption kinetics suggest a tendency to saturation at increasing doses. Fractional zinc absorption is negatively correlated with zinc intake. It ranges from 30 to 60% with usual dietary intake (7-15 mg/d) and decreases to 7% with pharmacological doses of 100 mg/d.

In the blood, about 80% of absorbed zinc is distributed to erythrocytes, with most of the remainder being bound to albumin and other plasma proteins. The liver is the main storage for zinc and hepatic zinc levels are increased during maintenance therapy with zinc.

The plasma elimination half-life of zinc in healthy subjects is around 1 hour after a dose of 45 mg. The elimination of zinc results primarily from faecal excretion with relatively little from urine and sweat. The faecal excretion is in the greatest part due to the passage of unabsorbed zinc but it is also due to endogenous intestinal secretion.

5.3 Preclinical safety data

Preclinical studies have been conducted with zinc acetate and with other zinc salts. Pharmacological and toxicological data available showed large similarities between zinc salts and among animal species. The oral LD50 is approximately 300 mg zinc/kg body weight (about 100 to 150 times the human therapeutic dose). Repeat-dose toxicity studies have established that the NOEL (No Observed Effect Level) is about 95 mg zinc/kg body weight (about 48 times the human therapeutic dose). The weight of evidence, from in vitro and in vivo tests, suggests that zinc has no clinically relevant genotoxic activity. Reproduction toxicology studies performed with different zinc salts showed no clinically relevant evidence of embryotoxicity, foetotoxicity or teratogenicity. No conventional carcinogenicity study has been conducted with zinc acetate dihydrate.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Capsule content:
maize starch
magnesium stearate
Capsule shell:
gelatin
titanium dioxide (E171)
brilliant blue FCF (E133)
Printing ink:
black iron oxide (E172)
shellac
6.2 Incompatibilities

Not applicable

6.3 Shelf life

2 years

6.4 Special precautions for storage

Do not store above 25°C.

6.5 Nature and contents of container

White HDPE bottle which is equipped with a polypropylene and HDPE child-resistant closure and contains a filler (cotton coil). Each bottle contains 250 capsules.

6.6 Instructions for use and handling

No special requirements

7. MARKETING AUTHORIZATION HOLDER

Orphan Europe SARL
Immeuble “Le Guillaumet”
F-92046 Paris-La-Défense - France

8. MARKETING AUTHORIZATION NUMBER(S)

9. DATE OF FIRST AUTHORIZATION/RENEWAL OF THE AUTHORIZATION

10. DATE OF REVISION OF THE TEXT
1. NAME OF THE MEDICINAL PRODUCT

Wilzin 50 mg hard capsules

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each hard capsule contains 50 mg of zinc (corresponding to 167.84 mg of zinc acetate dihydrate).

For excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Hard capsule.
Size 1 hard capsule with orange opaque cap and body, imprinted "93-377".

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Treatment of Wilson’s disease.

4.2 Posology and method of administration

Wilzin treatment should be initiated under the supervision of a physician experienced in the treatment of Wilson’s disease (see section 4.4). Wilzin is a life-long therapy.

There is no difference in dosage between symptomatic and presymptomatic patients. Wilzin is available in hard capsules of 25 mg or 50 mg.

- **Adults:**
 The usual dosage is 50 mg 3 times daily with a maximum dose of 50 mg 5 times daily.

- **Children and adolescents:**
 Data are very limited in children under 6 years but since the disease is fully penetrant, prophylactic treatment should be considered as early as possible. The recommended dosage is as follows:
 - from 1 to 6 years: 25 mg twice daily
 - from 6 to 16 years if bodyweight under 57 kg: 25 mg three times daily
 - from 16 years or if bodyweight above 57 kg: 50 mg three times daily.

- **Pregnant women:**
 A dosage of 25 mg 3 times daily is usually effective but the dosage should be adjusted to copper levels (see section 4.4 and section 4.6).

In all cases, dosage should be adjusted according to therapeutic monitoring (see section 4.4.).

Wilzin must be taken on an empty stomach, at least 1 hour before or 2-3 hours after meals. In case of gastric intolerance, often occurring with the morning dose, this dose may be delayed to mid-morning, between breakfast and lunch. It is also possible to take Wilzin with a little protein, such as meat (see section 4.5).

In children who are unable to swallow capsules, these should be opened and their content suspended in a little water (possibly sugar or syrup flavoured water).
When switching a patient on chelating treatment to Wilzin for maintenance therapy, the chelating treatment should be maintained and co-administered for 2 to 3 weeks since this is the time it takes for the zinc treatment to induce maximum metallothionein induction and full blockade of copper absorption. The administration of the chelating treatment and Wilzin should be separated by at least 1 hour.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients.

4.4 Special warnings and special precautions for use

Zinc acetate dihydrate is not recommended for the initial therapy of symptomatic patients because of its slow onset of action. Symptomatic patients must be initially treated with a chelating agent; once copper levels are below toxic thresholds and patients are clinically stable, maintenance treatment with Wilzin can be considered. Nevertheless, while awaiting zinc induced duodenal metallothionein production and consequential effective inhibition of copper absorption, zinc acetate dehydrate could be administered initially in symptomatic patients in combination with a chelating agent.

Although rare, clinical deterioration may occur at the beginning of the treatment, as has also been reported with chelating agents. Whether this is related to mobilisation of copper stores or to natural history of the disease remains unclear. A change of therapy is recommended in this situation.

Caution should be exercised when switching patients with portal hypertension from a chelating agent to Wilzin, when such patients are doing well and the treatment is tolerated. Two patients of a series of 16 died from hepatic decompensation and advanced portal hypertension after being changed from penicillamine to zinc therapy.

Therapeutic monitoring

The aim of the treatment is to maintain the plasma free copper (also known as non-ceruloplasmin plasma copper) below 250 microgram/l (normal: 100-150 microgram/l) and the urinary copper excretion below 125 microgram/24 h (normal: < 50 microgram/24 h). The non-ceruloplasmin plasma copper is calculated by subtracting the ceruloplasmin-bound copper from the total plasma copper, given that each milligram of ceruloplasmin contains 3 micrograms of copper. The urinary excretion of copper is an accurate reflection of body loading with excess copper only when patients are not on chelation therapy. Urinary copper levels are usually increased with chelation therapy such as penicillamine or trientine.

The level of hepatic copper cannot be used to manage therapy since it does not differentiate between potentially toxic free copper and metallothionein bound copper. In treated patients, assays of urinary and/or plasma zinc may be a useful measure of treatment compliance. Values of urinary zinc above 2 mg/24 h and of plasma zinc above 1250 microgram/l generally indicate adequate compliance.

Like with all anti-copper agents overtreatment carries the risk of copper deficiency, which is especially harmful for children and pregnant women since copper is required for proper growth and mental development. In these patient groups, urinary copper levels should be kept a little above the upper limit of normal or in the high normal range (i.e. 40 – 50 microgram/24 h). Laboratory follow-up including haematological surveillance and lipoproteins determination should also be performed in order to detect early manifestations of copper deficiency, such as anaemia and/or leukopenia resulting from bone marrow depression, and decrease in HDL cholesterol and HDL/total cholesterol ratio.

In case of gastric intolerance, often occurring with the morning dose, this dose may be delayed to mid-morning, between breakfast and lunch. It is also possible to take Wilzin with a little protein, such as meat (see section 4.5).
The capsule shell includes sunset yellow FCF (E110) which may cause allergic reactions.

4.5 Interaction with other medicinal products and other forms of interaction

Other anti-copper agents
Pharmacodynamic studies were conducted in Wilson’s disease patients on the combination of Wilzin (50 mg three times daily) with ascorbic acid (1 g once daily), penicillamine (250 mg four times daily), and trientine (250 mg four times daily). They showed no significant overall effect on copper balance although mild interaction of zinc with chelators (penicillamine and trientine) could be detected with decreased faecal but increased urinary copper excretion as compared with zinc alone. This is probably due to some extent of complexion of zinc by the chelator, thus reducing the effect of both active substances.

When switching a patient on chelating treatment to Wilzin for maintenance therapy, the chelating treatment should be maintained and co-administered for 2 to 3 weeks since this is the time it takes for the zinc treatment to induce maximum metallothionein induction and full blockade of copper absorption. The administration of the chelating treatment and Wilzin should be separated by at least 1 hour.

Other medicinal products
The absorption of zinc may be reduced by iron and calcium supplements, tetracyclines and phosphorus-containing compounds, while zinc may reduce the absorption of iron, tetracyclines, fluoroquinolones.

Food
Studies of the co-administration of zinc with food performed in healthy volunteers showed that the absorption of zinc was significantly delayed by many foods (including bread, hard boiled eggs, coffee and milk). Substances in food, especially phytates and fibres, bind zinc and prevent it from entering the intestinal cells. However, protein appears to interfere the least.

4.6 Pregnancy and lactation

Pregnancy:
Data on a limited number of exposed pregnancies in patients with Wilson’s disease give no indication of harmful effects of zinc on embryo/foetus and mother. Five miscarriages and 2 birth defects (microcephaly and correctable heart defect) were reported in 42 pregnancies.

Animal studies conducted with different zinc salts do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development (see section 5.3).

It is extremely important that pregnant Wilson’s disease patients continue their therapy during pregnancy. Which treatment should be used, zinc or chelating agent should be decided by the physician. Dose adjustments to guarantee that the foetus will not become copper deficient must be done and close monitoring of the patient is mandatory (see section 4.4).

Lactation:
Zinc is excreted in human breast milk and zinc-induced copper deficiency in the breast-fed baby may occur. Therefore, breast-feeding should be avoided during Wilzin therapy.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed.
4.8 Undesirable effects

Clinical experience of more than 1,000 patient-years with zinc (more than 500 with zinc acetate dihydrate) as well as post-marketing surveillance with zinc acetate dihydrate of more than 1,000 patient-years showed that the most common undesirable effect is gastric irritation. This is usually worst with the first morning dose and disappears after the first days of treatment. Delaying the first dose to mid-morning or taking the dose with a little protein may usually relieve the symptoms.

Reported adverse reactions are listed below, by system organ class and by frequency. Frequencies are defined as: very common (>1/10), common (>1/100, <1/10) and uncommon (>1/1,000, <1/100):

<table>
<thead>
<tr>
<th>Blood and lymphatic system disorders</th>
<th>uncommon: sideroblastic anaemia; leukopenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal disorders</td>
<td>common: gastric irritation</td>
</tr>
<tr>
<td>Laboratory investigations</td>
<td>common: blood amylase, lipase and alkaline phosphatase increased</td>
</tr>
</tbody>
</table>

Anaemia may be micro-, normo- or macrocytic and is often associated with leukopenia. Bone marrow examination usually reveals characteristic "ringed sideroblasts" (i.e. developing red blood cells containing iron-engorged paranuclear mitochondria). They may be early manifestations of copper deficiency and may recover rapidly following reduction of zinc dosage. However, they must be distinguished from haemolytic anaemia which commonly occurs where there is elevated serum free copper in uncontrolled Wilson’s disease.

Elevations of serum alkaline phosphatase, amylase and lipase may occur after a few weeks of treatment, with levels usually returning to high normal within the first one or two years of treatment.

4.9 Overdose

Three cases of acute oral overdosage with zinc salts (sulphate or gluconate) have been reported in the literature. Death occurred in a 35 year-old woman on the fifth day after ingestion of 6 g of zinc (40 times the proposed therapeutic dose) and was attributed to renal failure and haemorrhagic pancreatitis with hyperglycaemic coma. The same dose did not produce any symptoms except for vomiting in an adolescent who was treated by whole-bowel irrigation. Another adolescent who ingested 4 g of zinc had serum zinc level of about 50 mg/l 5 hours later and only experienced severe nausea, vomiting and dizziness.

Treatment of overdose should be with gastric lavage or induced emesis as quickly as possible to remove unabsorbed zinc. Heavy metal chelation therapy should be considered if plasma zinc levels are markedly elevated (>10 mg/l).

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: various alimentary tract and metabolism product, ATC code: A16AX05.

Wilson's disease (hepatolenticular degeneration) is an autosomal recessive metabolic defect in hepatic excretion of copper in the bile. Copper accumulation in the liver leads to hepatocellular injury and eventual cirrhosis. When the liver capacity of storing copper is exceeded copper is released into the blood and is taken up in extra hepatic sites, such as the brain, resulting in motor disorders and psychiatric manifestations. Patients may present clinically with predominantly hepatic, neurologic, or psychiatric symptoms.
The active moiety in zinc acetate dihydrate is zinc cation, which blocks the intestinal absorption of copper from the diet and the reabsorption of endogenously secreted copper. Zinc induces the production of metallothionein in the enterocyte, a protein that binds copper thereby preventing its transfer into the blood. The bound copper is then eliminated in the stool following desquamation of the intestinal cells.

Pharmacodynamic investigations of copper metabolism in patients with Wilson’s disease included determinations of net copper balance and radiolabelled copper uptake. A daily regimen of 150 mg of Wilzin in three administrations was shown to be effective in significantly reducing copper absorption and inducing a negative copper balance.

5.2 Pharmacokinetic properties

Since the mechanism of action of zinc is an effect on copper uptake at the level of the intestinal cell, pharmacokinetic evaluations based on blood levels of zinc do not provide useful information on zinc bioavailability at the site of action.

Zinc is absorbed in the small intestine and its absorption kinetics suggest a tendency to saturation at increasing doses. Fractional zinc absorption is negatively correlated with zinc intake. It ranges from 30 to 60% with usual dietary intake (7-15 mg/d) and decreases to 7% with pharmacological doses of 100 mg/d.

In the blood, about 80% of absorbed zinc is distributed to erythrocytes, with most of the remainder being bound to albumin and other plasma proteins. The liver is the main storage for zinc and hepatic zinc levels are increased during maintenance therapy with zinc.

The plasma elimination half-life of zinc in healthy subjects is around 1 hour after a dose of 45 mg. The elimination of zinc results primarily from faecal excretion with relatively little from urine and sweat. The faecal excretion is in the greatest part due to the passage of unabsorbed zinc but it is also due to endogenous intestinal secretion.

5.3 Preclinical safety data

Preclinical studies have been conducted with zinc acetate and with other zinc salts. Pharmacological and toxicological data available showed large similarities between zinc salts and among animal species.

The oral LD50 is approximately 300 mg zinc/kg body weight (about 100 to 150 times the human therapeutic dose). Repeat-dose toxicity studies have established that the NOEL (No Observed Effect Level) is about 95 mg zinc/kg body weight (about 48 times the human therapeutic dose). The weight of evidence, from in vitro and in vivo tests, suggests that zinc has no clinically relevant genotoxic activity.

Reproduction toxicology studies performed with different zinc salts showed no clinically relevant evidence of embryotoxicity, foetotoxicity or teratogenicity.

No conventional carcinogenicity study has been conducted with zinc acetate dihydrate.
6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Capsule content:
- maize starch
- magnesium stearate
Capsule shell:
- gelatin
- titanium dioxide (E171)
- sunset yellow FCF (E110)
Printing ink:
- black iron oxide (E172)
- shellac

6.2 Incompatibilities

Not applicable

6.3 Shelf life

2 years

6.4 Special precautions for storage

Do not store above 25°C.

6.5 Nature and contents of container

White HDPE bottle which is equipped with a polypropylene and HDPE child-resistant closure and contains a filler (cotton coil). Each bottle contains 250 capsules.

6.6 Instructions for use and handling

No special requirements

7. MARKETING AUTHORISATION HOLDER

Orphan Europe SARL
Immeuble “Le Guillaumet”
F-92046 Paris-La-Défense - France

8. MARKETING AUTHORISATION NUMBER(S)

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

10. DATE OF REVISION OF THE TEXT
ANNEX II

A. MANUFACTURING AUTHORISATION HOLDER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OF THE MARKETING AUTHORISATION
A MANUFACTURING AUTHORISATION HOLDER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Orphan Europe SARL
Immeuble "Le Guillaumet"
F-92046 Paris La Défense
France

B CONDITIONS OF THE MARKETING AUTHORISATION

• CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE IMPOSED ON THE MARKETING AUTHORISATION HOLDER

Medicinal product subject to restricted medical prescription (See Annex I: Summary of Product Characteristics, 4.2)

• OTHER CONDITIONS

The holder of this marketing authorisation must inform the European Commission about the marketing plans for the medicinal product authorised by this decision.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND ON THE IMMEDIATE PACKAGING

OUTER CARTON BOX AND BOTTLE LABEL (Wilzin 25 mg hard capsules)

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
</table>
| Wilzin 25 mg hard capsules
Zinc acetate dihydrate |

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each hard capsule contains 25 mg of zinc (corresponding to 83.92 mg of zinc acetate dihydrate)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 hard capsules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
</table>
| Read the package leaflet before use.
Oral use |

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE REACH AND SIGHT OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the reach and sight of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not store above 25°C</td>
</tr>
</tbody>
</table>

| 10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF |
11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Orphan Europe SARL
Immeuble “Le Guillaumet”
F-92046 Paris La Défense - France

12. MARKETING AUTHORISATION NUMBER(S)

EU/0/00/000/000

13. MANUFACTURER’S BATCH NUMBER

Batch

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription

15. INSTRUCTIONS ON USE
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND ON THE IMMEDIATE PACKAGING

OUTER CARTON BOX AND BOTTLE LABEL (Wilzin 50 mg hard capsules)

1. NAME OF THE MEDICINAL PRODUCT

Wilzin 50 mg hard capsules
Zinc acetate dihydrate

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each hard capsule contains 50 mg of zinc (corresponding to 167.84 mg of zinc acetate dihydrate)

3. LIST OF EXCIPIENTS

Wilzin 50 mg hard capsules
Includes E110. See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

250 hard capsules

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE REACH AND SIGHT OF CHILDREN

Keep out of the reach and sight of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

Do not store above 25°C
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPLICABLE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Orphan Europe SARL
Immeuble “Le Guillaumet”
F-92046 Paris La Défense - France

12. MARKETING AUTHORISATION NUMBER(S)

EU/0/00/000/000

13. MANUFACTURER’S BATCH NUMBER

Batch

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription

15. INSTRUCTIONS ON USE
B. PACKAGE LEAFLET
Read all of this leaflet carefully before you start taking this medicine.
- Keep this leaflet. You may need to read it again.
- If you have further questions, please ask your doctor or your pharmacist.
- This medicine has been prescribed for you personally and you should not pass it on to others. It may harm them, even if their symptoms are the same as yours.

In this leaflet:
1. What Wilzin is and what it is used for
2. Before you take Wilzin
3. How to take Wilzin
4. Possible side effects
5. Storing Wilzin
6. Further information

Wilzin is prescribed for the treatment of Wilson’s disease, which is a rare inherited defect in copper excretion. Dietary copper, which cannot be properly eliminated, accumulates first in the liver, then in other organs such as the eyes and the brain. This potentially leads to liver damage and neurological disorders.

Wilson’s disease will persist during the entire lifetime of the patient and therefore the need for this treatment is life-long.

Wilzin 25 mg hard capsules
Wilzin 50 mg hard capsules
zinc acetate dihydrate

- The active substance is zinc acetate dihydrate. Each hard capsule contains 25 mg of zinc (corresponding to 83.92 mg of zinc acetate dihydrate) or 50 mg of zinc (corresponding to 167.84 mg of zinc acetate dihydrate).
- The other ingredients are maize starch and magnesium stearate. The capsule shells contain gelatin, titanium dioxide (E171) and either brilliant blue FCF (E133) for Wilzin 25 mg or sunset yellow FCF (E110) for Wilzin 50 mg. The printing ink contains black iron oxide (E172) and shellac.

Marketing Authorisation Holder and Manufacturer:
Orphan Europe SARL
Immeuble “Le Guillaumet”
F-92046 Paris La Défense - France

1. WHAT WILZIN IS AND WHAT IT IS USED FOR

Wilzin 25 mg is an aqua blue hard capsule imprinted "93-376". Wilzin 50 mg is a orange opaque hard capsule imprinted “93-377”.
It is available in packs of 250 hard capsules in a polyethylene bottle closed by a polypropylene and polyethylene child-resistant closure. The bottle also contains a cotton filler.

Wilzin is prescribed for the treatment of Wilson’s disease, which is a rare inherited defect in copper excretion. Dietary copper, which cannot be properly eliminated, accumulates first in the liver, then in other organs such as the eyes and the brain. This potentially leads to liver damage and neurological disorders.

Wilzin blocks the absorption of copper from the intestine thereby preventing its transfer into the blood and its further accumulation in the body. Unabsorbed copper is then eliminated in the stool.

Wilson’s disease will persist during the entire lifetime of the patient and therefore the need for this treatment is life-long.
2. BEFORE YOU TAKE WILZIN

Do not take Wilzin:
If you are hypersensitive (allergic) to zinc or any of the other ingredients of Wilzin.

Take special care with Wilzin:
Wilzin is usually not recommended for initial therapy of patients with signs and symptoms of Wilson’s disease because of its slow onset of action.

If you are currently treated with another anti-copper agent, for example, penicillamine, your doctor may add Wilzin before stopping the initial treatment.

As with other anti-copper agents such as penicillamine, your symptoms may get worse after starting the treatment. In this case, you must inform your doctor.

In order to follow up your condition and treatment your doctor will check your blood and urine on a regular basis. This is to ensure that you receive sufficient treatment. Monitoring may detect evidence of insufficient treatment (copper excess) or excessive treatment (copper deficiency), both of which can be harmful, particularly to growing children and pregnant women.

Taking Wilzin with food and drink:
Wilzin should be taken on an empty stomach, separated from mealtimes. Dietary fibres and some dairy products, in particular, delay the absorption of zinc salts. Some patients experience stomach upset after the morning dose. Please discuss the matter with your Wilson’s disease physician if this affects you. This side effect may be reduced by postponing the first dose of the day until mid-morning (between breakfast and the midday meal). It may also be minimised by taking the first dose of Wilzin with a small amount of protein-containing food, such as meat (but not milk).

Pregnancy
Please consult your doctor if you plan to become pregnant. It is very important to continue anti-copper therapy during pregnancy.

If you become pregnant during therapy with Wilzin, your doctor will decide which treatment and which dose is best in your situation.

Breast-feeding
Breast-feeding should be avoided if you are on Wilzin therapy. Please discuss with your physician.

Driving and using machines:
No studies of the effects on the ability to drive and use machines have been performed.

Important information about some of the ingredients of Wilzin
Wilzin 50 mg hard capsules include sunset yellow FCF (E110) which may cause allergic reactions.

Taking other medicines:
Please inform your doctor or pharmacist if you are taking or have recently taken any other medicines, even those not prescribed. Please consult your doctor before taking any other medicines which may reduce the effectiveness of Wilzin, such as iron, calcium supplements, tetracyclines (antibiotics) or phosphorus. Conversely, the effectiveness of some medicines, such as iron, tetracyclines, fluoroquinolones (antibiotics), may be reduced by Wilzin.
3. HOW TO TAKE WILZIN

Wilzin treatment should be initiated and monitored by a physician experienced in the treatment of Wilson’s disease.

Always take Wilzin exactly as your doctor has instructed you. You should check with your doctor or pharmacist if you are unsure. For the different dosage regimens Wilzin is available in hard capsules of 25 mg or 50 mg.

- **For adults:**
 The usual dosage is 1 hard capsule of Wilzin 50 mg (or 2 hard capsules of Wilzin 25 mg) three times daily with a maximum dose of 1 hard capsule of Wilzin 50 mg (or 2 hard capsules of Wilzin 25 mg) five times daily.

- **For children and adolescents:**
 The usual dosage is:
 - from 1 to 6 years: 1 hard capsule of Wilzin 25 mg twice daily
 - from 6 to 16 years if bodyweight under 57 kg: 1 hard capsule of Wilzin 25 mg three times daily
 - from 16 years or if bodyweight above 57 kg: 2 hard capsules of Wilzin 25 mg or 1 hard capsule of Wilzin 50 mg three times daily.

Always take Wilzin on an empty stomach, at least one hour before or 2-3 hours after meals. If the morning dose is not well tolerated (see section 4) it is possible to delay it to mid-morning, between breakfast and lunch. It is also possible to take Wilzin with a little protein, such as meat.

If you have been prescribed Wilzin with another anti-copper agent, such as penicillamine, keep an interval of at least 1 hour between the two medicines.

To administer Wilzin to children who are unable to swallow capsules, open the capsule and mix the powder with a little water (possibly flavoured with sugar or syrup).

If you take more Wilzin than you should:
If you take more Wilzin than prescribed, you may experience nausea, vomiting and dizziness. In this case you must ask your physician for advice.

If you forget to take Wilzin:
Do not take a double dose to make up for forgotten individual doses.

4. POSSIBLE SIDE EFFECTS

Like all medicines, Wilzin can have side effects. You may not have any of them, but tell your doctor as soon as possible if any of the following side effects bothers you or continues:

Common effects (1 to 10 of every 100 patients have these):
- After Wilzin intake, gastric irritation may occur, especially at the beginning of treatment.
- Changes in blood tests have been reported, including an increase in some liver and pancreatic enzymes.

Uncommon effects (less than 1 of every 100 patients have these):
A decrease in blood red and white cells may occur.

If you notice any side effects not mentioned in this leaflet, please inform your doctor or pharmacist.
5. **STORING WILZIN**

Keep out of the reach and sight of children.
Do not store above 25°C.
Do not use after the expiry date stated on the bottle and the carton.

6. **FURTHER INFORMATION**

For any information about this medicinal product, please contact the local representative of the Marketing Authorisation Holder.

Belgique/België/Belgien
Orphan Europe SARL
Immeuble “Le Guillaumet”
F - 92046 Paris La Défense
France/Frankrijk/Frankreich
Tél/Tel: +33 1 47 73 64 58

Česká republika
Orphan Europe GmbH
Max-Planck Str. 6
D - 63128 Dietzenbach
Německo
Tel.: +49 (0)6074 812160

Danmark
Swedish Orphan A/S
Wilders Plads 5
DK - 1403 København K
Tlf: +45 32 96 68 69

Deutschland
Orphan Europe GmbH
Max-Planck Str. 6
D - 63128 Dietzenbach
Tel.: +49 (0)6074 812160

Ελλάδα
Orphan Europe SARL
Immeuble “Le Guillaumet”
F - 92046 Paris La Défense
Γαλλία
Τηλ.: +33 1 47 73 64 58

España
Orphan Europe, S.L.
Gran via de les Cortes Catalanes, 649
Despacho nº1
E – 08010 Barcelona
Tel.: +34 93 244 09 30

Luxembourg/Luxemburg
Orphan Europe SARL
Immeuble “Le Guillaumet”
F - 92046 Paris La Défense
France/Frankreich
Tél.: +33 1 47 73 64 58

Magyarország
Orphan Europe GmbH
Max-Planck Str. 6
D - 63128 Dietzenbach
Németország
Tel.: +49 (0)6074 812160

Malta
Orphan Europe SARL
Immeuble “Le Guillaumet”
F - 92046 Paris La Défense
France
Tel.: +33 1 47 73 64 58

Nederland
Orphan Europe SARL
Immeuble “Le Guillaumet”
F - 92046 Paris La Défense
Netherlands
Tel.: +33 1 47 73 64 58

Norge
Swedish Orphan AS
Trollåsveien 6
N – 1414 Trollåsen
Tlf.: +47 66 82 34 00

Österreich
Orphan Europe GmbH
Max-Planck Str. 6
D - 63128 Dietzenbach
Deutschland
Tel.: +49 6074 812160

Polska
Orphan Europe GmbH
Max-Planck Str. 6
D - 63128 Dietzenbach
Niemcy
Tel.: +49 (0)6074 812160
This leaflet was last approved on {date}