Prof. Vito FOA' – University of Milan Chairman of the Scientific Committee on Occupational Exposure Limits - SCOEL Quantitative risk assessment could be defined as a method suitable to give a quantitative characterization of risks across a range of doses The preferred approaches are dose-response models that characterize risk as a probability over a range of environmental exposure levels

These risk probabilities allow estimates of the risk reduction under different decision options. They provide the risk information needed for benefitcost analyses of different decision options.

Diagramatic representation of the use of mathematical models to fit observed data and extrapolation to low dose

List of models used for carcinogen risk assessment

Category	Model	Underlying Biology
Stochastic or mechanistic, and/or linearised	One-hit Multi-hit Multi-stage Linearised multi-stage	Single "hit" or several random hits can initiate the irreversible process leading to cancer
Tolerance distribution	Weibull Logit Probit (Mantel-Bryan)	A population contains a distribution of individuals of different susceptibility
Time-to-tumour	Log-normal distribution Weibull distribution Hartley-Sielken Armitage-Doll Multi-stage (adapted)	Presence or absence of a tumour in an animal by a fixed time
Biologically motivated	Moolgavkar-Venzon- Knudson	Based on knowledge of tissue growth and cell kinetics

Benchmark Dose (BMD)

Mathematical model fitted to the experimental data within the observable range to estimate a dose corresponding to a defined level of effect, to arrive at a level of acceptable exposure to the hazard.

Construction of estimated BMD (at BMR = 0.10) by inverting the estimated extra risk function R_E

Excess of leukaemia cases (min/max) for 1000 exposed people for 40 years

Maximum

	Exposure per year (ppm)						
	0.1	0.2	0.5	1	2	5	10
Excess of leukaemia cases	6						
Minimum	0	0	0	0	0	0	2.21
Maximum	7.13	7.13	7.13	7.13	8.37	17.01	17.37

This paper was produced for a meeting organized by Health & Consumer Protection DG and represents the views of its author on the subject. These views have not been adopted or in any way approved by the Commission and should not be relied upon as a statement of the Commission's or Health & Consumer Protection DG's views. The European Commission does not guarantee the accuracy of the data included in this paper, nor does it accept responsibility for any use made thereof.