ESVAC collection of antimicrobial sales data

EC workshop with EMA: Data collection on consumption of veterinary antimicrobials in Europe – achievements, challenges and way forward. Brussels, 26 April 2017

Kari Grave, Norwegian Veterinary Institute
Kristine Ignate and Jordi Torren Edo, EMA
Outline

ESVAC sales data
- ESVAC state of play
- Caveats of the ESVAC sales and denominator data

Objectives
- Examples of use of ESVAC sales data in the fight against AMR
 - Use at EU/EEA level
 - Use of sales data at national level
- Way forward
State of play

Before ESVAC – number of countries publishing data nationally

* Switzerland included

Six reports published; 7th report will be published in October 2017
Sales data for food-producing animals, including horses, represents

<table>
<thead>
<tr>
<th>Categories of veterinary antimicrobial agents included in the sales data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial agents for intestinal use</td>
</tr>
<tr>
<td>Antimicrobial agents for intrauterine use</td>
</tr>
<tr>
<td>Antimicrobial agents for systemic use</td>
</tr>
<tr>
<td>Antimicrobial agents for intramammary use</td>
</tr>
<tr>
<td>Antimicrobial agents for antiparasitic use¹</td>
</tr>
</tbody>
</table>

¹ Solely sulfonamides

NOTE: Dermatological preparations and preparations for eyes and ears not included. Documented to be < 0.4% of sales in tonnes

NOTE: Tablets collected but excluded prior to the analysis as used almost solely for pets
• Numbers sold collected for each veterinary medicinal product (VMP) presentation
 ➢ VMP presentation: Name, strength, form and pack size
 ➢ Number VMP presentation in ESVAC database for 2014: 9,300 (tablets excluded)

• Weight (tonnes) of active ingredient sold per VMP calculated for each VMP

Strength x pack size x number packages
Benefits and weaknesses of the sales data (numerator)

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively cheap to obtain</td>
<td>VMPs typically marketed/used for more than one animal species – sales data as such will usually not provide information on sales by animal species</td>
</tr>
<tr>
<td>Important for validation of by species data collected</td>
<td>Cannot correct for differences in dosing between antimicrobials, forms and species (use of DDDvet/DCDvet)</td>
</tr>
</tbody>
</table>
Normalising sales data for population at risk of being treated with antimicrobials

• Number of animals – slaughtered and livestock not applicable as denominator (adding numbers broilers, dairy cattle etc.)

• Therefore, as a proxy for the size of the food-producing animal population (including horses) a population correction unit (PCU) was established
Species included in the animal population data

<table>
<thead>
<tr>
<th>Species/categories</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number slaughtered: cattle, goats, pigs, sheep, poultry, rabbits and turkey</td>
<td>Eurostat</td>
</tr>
<tr>
<td>Number livestock: dairy cows, sheep, sows and horses</td>
<td>Eurostat</td>
</tr>
<tr>
<td>Biomass fish</td>
<td>Eurostat</td>
</tr>
<tr>
<td>Number imported/exported: cattle, pigs, goat, sheep and poultry for slaughter or fattening</td>
<td>TRACES</td>
</tr>
</tbody>
</table>

Note that due to the limited availability of data on living goats in Eurostat at the time of establishment of PCU, this category is not included in the PCU.
How the population correction unit (PCU) is calculated

<table>
<thead>
<tr>
<th>Categories</th>
<th>PCU (1000 tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number pigs slaughtered x standard estimated weight at treatment</td>
<td></td>
</tr>
<tr>
<td>Number sows x standard estimated weight at treatment</td>
<td></td>
</tr>
<tr>
<td>Number exported pigs (added)</td>
<td>(+)</td>
</tr>
<tr>
<td>• For slaughter x standard weight</td>
<td>(+)</td>
</tr>
<tr>
<td>• For fattening x standard weight</td>
<td></td>
</tr>
<tr>
<td>Number imported pigs (subtracted)</td>
<td>(-)</td>
</tr>
<tr>
<td>• For slaughter x standard weight</td>
<td>(-)</td>
</tr>
<tr>
<td>• For fattening x standard weight</td>
<td></td>
</tr>
</tbody>
</table>

Total PCU pigs per country X in year Y

2 Because young animals are typically treated more frequently than other age classes

3 Counted in numbers of animals slaughtered for importing country
Strengths and weaknesses of the PCU model

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonized across ESVAC participating countries</td>
<td>• Missing categories - e.g. living goat and suckling cows</td>
</tr>
<tr>
<td>• Same animal (major) species/categories included</td>
<td>• Clear criteria for which species/categories to be included missing</td>
</tr>
<tr>
<td>• Same data collection methodology (Eurostat and TRACES)</td>
<td>• Do not directly represent the country animal production</td>
</tr>
<tr>
<td>• Weights used to calculate PCU standardized</td>
<td>• Documentation for the weights used is poor</td>
</tr>
<tr>
<td>Stable across years</td>
<td>• All animal species/production categories included weighted the same – e.g. intensively versus extensively reared</td>
</tr>
<tr>
<td>• Reliable data to use for analysis</td>
<td></td>
</tr>
<tr>
<td>Data sources public (Eurostat and TRACES)</td>
<td>• Analysis can be re-done at any time (update of historical data)</td>
</tr>
<tr>
<td>• Analysis can be re-done at any time (update of historical data)</td>
<td>• Any changes in Eurostat and/or Traces have to be followed-up (e.g. broilers → chicken from 2008)</td>
</tr>
</tbody>
</table>

NOTE: Discussions on revision of PCU are currently taking place
Main indicator to report sales of veterinary antimicrobials

- mg active ingredient normalised by the population correction unit (mg/PCU)

\[
\text{Amount sold in tonnes} \times 10^9 \\
\text{PCU in kg}
\]

- Main outputs mg/PCU:
 - Total sales by year and country
 - Sales by antimicrobial class/sub-class by year and country
 - Sales by pharmaceutical form/administration route by year and country
The objectives

• Given in terms of reference from EC (03.03. 2009):

In appendix to TOR:
Background document EMEA/507682/2008 (15.10.2008):
“Considerations on monitoring on antibacterial drug usage in animals in the EU and EEA”*

Geneva, December, 2003
FAO/OIE/WHO: Purposes of surveillance of non-human antimicrobial usage and resistance*

- Documentation of the situation
- Identification of trends
- Linkage of antimicrobial usage and antimicrobial resistance
- Basis for risk assessment
- Basis for interventions
- Evaluation of effectiveness of measures implemented
- Basis for focused and targeted research

Are the sales data suitable for all these purposes?

*http://www.oie.int/doc/ged/D454.PDF
Figure 21. Spatial distribution of overall sales of antimicrobials for food-producing animals, in mg/PCU, for 29 countries, for 2014.
Figure 8. Sales for food-producing species (including horses), in mg/PCU, of the various veterinary antimicrobial classes, for 29 European countries, in 2014

Gives a rough picture of the sales and sales patterns
Comparison across countries?

Observed difference between the countries on reported sales (mg/PCU) and on sales patterns should be interpreted with great care due to:

- Variations between countries in the composition of the animal population
- Variations between countries in production systems
- Variations of dosing for the various antimicrobial agents, forms and species
- Variations between countries in “type” of products marketed (and in prices)

May be categorized as high, medium and low users as in the EMA/CVMP/CHMP advice on colistin.
Identification of changes across years by country (trends)

- Preferably, comparison should cover at least 3 years
- To be considered in each case
- Animal population (PCU) stable or not?
- Changes in sales patterns - e.g. from low dose to high dose or vice versa?
- Change of data collection methodology?
- Are the data complete for all years?
Basis for evaluation of effectiveness of management measures implemented (including following targets)

- At EU/EEA level
- At national level

Always quantify before measures taken

Implementation of management measures

Measure impact of measure
• Discovery of mcr-1, a horizontal transferable resistance gene in bacteria of food animal origin (Liu et al., 2015)

• The EC requested EMA to update the previous advice on the impact of and need for colistin use for human and animal health

• The advice should provide risk management options
EMA/CVMP/CHMP advice - targets on colistin sales

1. Executive summary

- For the current "high and moderate consumers" the target and desirable levels are set at **5 mg/PCU** and **1 or below 1 mg/PCU**

- The above targets for reduction in sales of colistin should be achieved in a period of **three to four years**.

- ESVAC sales data supported the development of the Agency’s advice on colistin, including setting targets

- These data important for the future assessment of impact of national risk mitigation measures to reduce sales of colistin for animal use
Figure 4. Sales of colistin in mg/PCU for use in animals in 2013 (ESVAC data), including the 5 and 1 mg/PCU levels*

*No sales reported in Finland, Iceland and Norway.
JIACRA I: Analysis of possible relationships between the sales of antimicrobial agents humans and food-producing animals and the occurrence of antimicrobial resistance in humans and food-producing animals.

JIACRA II: Will also address co-resistance and information on fully-sensitive bacteria.

To be published: by summer 2017
JIACRA II

- The EC has mandated ECDC, EFSA and EMA to establish a list of harmonised outcome indicators suitable for monitoring and detecting reductions of relevant magnitude in the levels of key drug-resistant microorganisms in humans, food-producing animals and food derived thereof, and in antimicrobial consumption in humans and food-producing animals.

- These indicators would assist MSs to assess the progress made in the implementation of their action plans against AMR.

- JIACRA II will provide information that will contribute to the rationale for the selection of appropriate indicators.
Final reports of fact-finding missions carried in order to gather information on the prudent use of antimicrobials in animals

For all the missions ESVAC sales data used as reference data.
Why variations in sales between the 29 countries

• Differences in the composition of the animal population, in the production systems in the various countries, variations in dosing used for the various antimicrobial agents and forms and prices.

• This can only partly explain the differences in the sales observed between the 29 countries, so other factors must also be considered.

Fact finding missions looking among others for explanations
Evaluation of measures - Denmark

40% drop VMPs from 1994 to 1995

Target was achieved
France*: Target - 25 % reduction of antimicrobial usage in 5 years from 2011

After 4 years:
- Tonnage - 28.4 %
- mg/kg body weight - 27.2 %
- ALEA - 20.1 %
- ADDkg/biomass - 29.7 %

After 2 years:
- Cephalosporins - 21.3%
- Fluoroquinolones - 22.3%

*Provided by Gérard Moulin
Targets set by Dutch government: reduction of sales veterinary antimicrobials with 2009 as reference year:

- 20% by 2011
- 50% by 2012
- 70% by 2015

From 2009 – 2015 sales reduced by 58.4%
Evaluation national targets - Norway

Targets set by Norwegian food animal industry: Sales to be reduced by 25% in 5 years with 1995 as reference year.

Main actions

Therapeutic guidelines published and communicated on conferences regionally.

- After 2 years (1997) 24% reduction
- After 5 years (2000) 40% reduction
- Relatively stable since then (varying between 36% and 43% lower)
Governmental action plan AMR:
Reduction of consumption of antimicrobials for terrestrial food producing animals by 10% by 2020 with 2013 as a reference year

- Therapeutic guidelines, awareness raising etc. not sufficient as tool for further reduction in Norway
- Antibiotic stewardship by use of on-farm level data (VetReg data) to identify high users suggested to be the way forward
Estimation of sales for dogs and cats – example Norway

Estimated sales cats and dogs
Tablets, oral paste, oral solution and inj. VMP presentations approved for cats and/or dogs (only) included

Governmental action plan AMR:
Reduction of consumption of antimicrobials for companion animals by 30% by 2020 with 2013 as a reference year
Prescription for dogs Norway - antibacterial human medicinal products (HMP) and veterinary medicinal products (VMP) 2004-2008*

The increasing numbers of VMP presentations for dogs and cats since 2008 - likely decrease in prescription of HMPs

Proportion prescriptions of HMPs dogs

1987**: 87 %
2004: 37%
2008: 27%

Antibacterial VMP presentations approved for dogs (and cats) only

2004: 27
2008: 29
2015: 49

Estimation of sales for dogs and cats – example Norway cont.

• Use of antimicrobial HMP assumed to be low as number of VMP presentations is assumed to cover the therapeutic needs

• Other injections (than cefovecin) used - assumed to be low*

Preliminary conclusion: For Norway, sales data assumed to be suitable to evaluate targets and effectiveness of prudent use guidelines for companion animals (dogs and cats)

*ESVAC 6th report: “Data from Denmark and France for 2011 showed that approximately 0.1 % and 1.2 %, respectively, of the injectable antimicrobial VMPs sold were used for dogs and cats (E. Jacobsen and G. Moulin, unpublished data)".
Summary

Both at EU/EEA level and nationally the sales data can be used for

- Documentation of the overall situation
- Identification of overall trends
- Linkage of antimicrobial sales and antimicrobial resistance (ecological analysis)
- As a basis for risk profiling
- To identify areas for interventions and evaluate effect of these
- For research

Estimation of sales data e.g. for some species (dogs and cats) and indications (dry cow treatment) suggested to be explored nationally
Developments/way forward - sales data

- Maintain collection overall sales data
 - Sales data are needed in order to be able to
 - Present an overall global picture (as species data will not cover all sales/use)
 - For future validation (cross checking) of species data
 - Continue to work together with the MSs in order to maintain and improve the validity of the data
- Refine PCU
 - Animal categories to be amended
 - Consider revision of animal weight at treatment used to calculate PCU
Acknowledgement

Providers of data and comments to the final ESVAC 2014 report

European Medicines Agency staff members

Kristine Ignate, Kari Grave, Jordi Torren Edo, Arno Muller, Joana Fonseca, and David Mackay are gratefully acknowledged for the preparation of the report.
Thank you for your attention!

Norwegian Veterinary Institute