HOW COULD THE EU'S METHODOLOGY FOR DEFINING CRITICAL RAW MATERIALS BE ENHANCED?

Defining “critical” raw materials for the EU

Three reasons why some materials may be considered critical:

- “first, they have a significant economic importance for key sectors,
- second, the EU is faced with high supply risks [...]
- and third, there is currently a lack of substitutes.”

Need to define metrics for each in order to determine criticality.

Three reasons why some materials may be considered critical:

- "first, they have a significant economic importance for key sectors,
- second, the EU is faced with high supply risks [...]
- and third, there is currently a lack of substitutes."

Need to define metrics for each in order to determine criticality.

Indicators from “Critical raw materials for the EU” (Ad-hoc working group on defining critical raw materials, 2010)
Critical raw materials (first EU exercise)

Data from “Critical raw materials for the EU” (Ad-hoc working group on defining critical raw materials, 2010)
EU methodology

What it does
- Provide transparent estimates for the relative ranking both in supply risk and economic importance
- Give relative ranking at one point in time (snapshot)
- Compare raw materials on the basis of their economic benefit to society
 - Considers all uses of a raw material
- Explicitly acknowledge contribution of secondary raw materials to supply
- Emphasizes the importance of substitution

What it doesn’t
- Provide a view into the future beyond the lifetime of the indicators used
- Consider the effect of market size (e.g. scale of problem and rate of change of indicators)
- Explicitly consider the interdependence between different metal markets (both on the supply and the demand side)

See also Buijs, Sievers and Tercero Espinoza: Limits to the critical raw materials approach, Waste and Resource Management 2012 (in press)
Some data limitations encountered during the 2010 EU exercise

- Production statistics differentiated by quality
 - Specially relevant for industrial minerals
- Life cycle data
 - Balancing environmental impacts in production with environmental benefits in use (e.g. platinum for catalytic converters)
 - Feasible to apply to raw materials with their myriad uses?
- Trade statistics
 - Detail, completeness and correctness of reported data
 - Relevant for import dependence and availability of secondary raw materials
- Recycling indicators
 - Quality of data and assumptions varies widely
 - Most complete current source: UNEP report (but heavy reliance on extrapolations and expert judgment)
Market size (tonnes, 2010) of EU CRM

Market size is a factor in:
- Magnitude of investment necessary to increase supply
- Rate of change of indicators, e.g.
 - Concentration of supply
 - Distribution of end uses
- Limitations to expanding supply of co- and by-products

Data from “Critical raw materials for the EU” (2010), World Mining Data (2012), USGS Mineral Commodity Summaries (2012)
Changing concentration of supply

Not considered in the quantitative methodology: Co- and by-products

Influence of technological change and market size: The example of electric vehicles

Modified after Tercero Espinoza (2011) / POLINARES Project results (http://www.polinares.eu/docs/events/polinares_events_tw2_minerals_supply_chain_bottlenecks.pdf)
Example: Cobalt

- EU completely dependent on imports (≈ 20% of world production)
- ≈ 2/3 of cobalt products produced in Europe are sold outside of Europe
- ≈ 20% of cobalt demand worldwide is for battery production (Li-ion for electronic devices)
 - but these are not produced in the EU!

Quantifying economic importance: Positioning Europe in global supply chains

Based on data from Eurometéaux for the report Critical Raw Materials for the EU (2010); see also Tercero Espinoza (2011) / POLINARES Project (http://www.polinares.eu/docs/events/polinares_events_tw2_minerals_supply_chain_bottlenecks.pdf)
Acknowledging the contribution and potential of recycling

Modeling raw material flows: Basis for recycling indicators & import dependence

Modeling work for the International Copper Association (publication in preparation by Glöser, Soulier and Tercero Espinoza)
Plurality of studies with
- Different foci and levels of analysis (countries, regions, companies)
- Different methodological emphases
- Different reliance on quantitative data vs. expert opinion
 - Different sets of indicators
- Different timeframes

Examples of indicators used:
- Apparent consumption (value, tonnage)
- Substitutability (availability, performance)
- Emerging uses (qualitative/quantitative) and competing technology demand
- Import dependence
- Static lifetime of reserves
- Country concentration of supply
- Political stability/Governance rating
- Environmental performance of producers
- Recycling rates
- Share of country in world demand
- …

My own personal assessment

- Considering its purpose (highlight current issues), the EU approach is generally adequate
- Nevertheless, there is a need to
 - Strengthen the data basis → increase confidence in results (accepting methodology)
 - Better flow modeling → recycling rates
 - More extensive survey of substitution options
 - More clearly define economic importance
 - Current approach generally overstates the impact of supply shortages
 - A supply chain approach may prove more appropriate, but it unfortunately difficult, data intensive and time consuming
- Enrich the list of options available for critical raw materials by
 - Considering prospective and qualitative aspects and their interactions (e.g. as done in Annex V of the 2010 report)
 - Must be done on a material by material basis, interconnecting where necessary
Trying to capture the dynamics of raw materials markets

Preliminary results from the project "Value from Waste" (part of the ERA-NET AERTOs)
Updating the EU list of critical raw materials

- Reassessment of old long list using the same methodology but with latest data
- Include qualitative assessment similar to previous report
- Expanding the long list
 - Metals and minerals: at least gold, hafnium, selenium, potash, phosphate rock and tin
 - Bio-based materials such as wood, cotton and natural rubber
- Differentiate individual PGMs and REEs where possible
- Analysis of production and trade flows for short-listed materials
- Ten-year supply and demand forecasts for short-listed materials
- Propose recommendations for further refinements to the methodology, e.g. regarding
 - Land use competition
 - By-products and their relation to base metals
- Project start Q4 2012
- Expected project duration: 1 year.

Call for tenders No 147/PP/ENT/CIP/12/F/S01C02 (DG ENTR)
HOW COULD THE EU'S METHODOLOGY FOR DEFINING CRITICAL RAW MATERIALS BE ENHANCED?

EU-US Expert Workshop on Mineral Raw Materials Flows & Data
Brussels, 12-13 September 2012

Dr. Luis A. TERCERO ESPINOZA
Coordinator of Business Unit Systemic Risks
Fraunhofer Institute for Systems and Innovation Research ISI
Competence Center Sustainability and Infrastructure Systems
Breslauer Str. 48, 76139 Karlsruhe, Germany
luis.tercero@isi.fraunhofer.de
Tel: +49 721 6809-401
Fax: +49 721 6809-135
www.isi.fraunhofer.de