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OAuth is the API protection mechanism of the choice now

It protects valuable resource 

(called Protected Resource) 

from unauthorized access using 

“access tokens”. 

RFC6749 + RFC6750 defines the base spec. 
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OAuth Client

Authorization

Server

2. checkout 3. Create Authz Req

(client_id + scope)

4. Give me Authorization! 

(client_id + scope + state)
6. sure

8. Crate `code` that 

is bound to 

client_id

✓

1. checkout
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OAuth Client

Authorization

Server

5. Are you sure? 

?
✓✘
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OAuth Client

Authorization

Server

?
✓✘

7. sure 
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OAuth Client

Authorization

Server

9. Here is the Authorization! 
(code + state)

10. Check state

11.Send 
code + 

client_id + 

client_secret

12. Authenticate the client, 
check code is still valid and 

is bound to the client_id
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OAuth Client

Authorization

Server

18. Checkout Success! 

13. access_token

token_type

refresh_token

17. Business Logic

Resource

Server

14. GET Resource

access_token

15. Check Access

16. Return

resource
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OpenID Connect is the identity layer on top of OAuth. 

 It defines 
 ID Token (Signed JSON Web Token with identity claims)

 Protocols to request specific claims/attributes at a specific assurance level

 Higher security mechanism

 Identity = set of attributes related to an entity (e.g., person, 
corporation, thing, process)

JWT = JSON Web Token. RFC7519. The standard Token Format. 



JWT has three variants: JWS, JWE, JWS+JWE. 

JWS:= JSON Web Signature. JWT that is signed by the issuer’s 
key. 



JWS is useful to store information as a signed token. 

E.g., Estonian Police. 



OIDC = OAuth + JWS+E(Identity)


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(source) https://youtu.be/Kb56GzQ2pSk
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It is the protocol of choice for federated authentication
and identity federation

As of April 2018, 92% of Azure Active Directory 

authentication happens over OpenID Connect. 

It is supported by mobile carriers (Mobile 

Connect)

It is supported by many governments. 

UK OpenBanking’s security profile is based on 

OpenID Financial-grade API Security Profile. 

Many vendors and open source products support 

it

List of certified implementations

https://openid.net/certification/
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https://openid.net/certification/
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Requesting specific claim set or claims in OpenID Connect

Method 1

Define a standardized OAuth scope, e.g. “kyc_token”

Method 2

Ask for specific claims using claims parameter

You can request a specific assurance level by 

using authentication context class reference. 

Use “acr” claim. 

Levels can be defined by a trust framework and 

should be registered to IANA acr registry. 
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{

"userinfo":

{

"given_name": {"essential": true},

"nickname": null,

"email": {"essential": true},

"email_verified": {"essential": true},

"picture": null,

“kyc_token”: header.payload.signature

},

"id_token":

{

"auth_time": {"essential": true},

"acr": {"values": ["urn:mace:incommon:iap:silver"] }

}

}
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There are 4 ways to return the claims

ID Token

Of the form: Header.Claims.Signature. 

Each component is base64url encoded (ASCII 

Armored). 

Simple Claims 

All the claims are provided by the IdP

Aggregated Claims

Some claims are collected from the claims 

provider, esp. as a token. 

Distributed Claims

URL and relevant access tokens are returned to 

the client. 

The client then can use them to retrieve claims 

from the claims provider directly. 
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If you are worried about user’s account being taken away by the IdP or the 
“calling home” privacy problem, then you can use “Self-Issued OP”

In the self-issued OP, the IdP lives on your phone. 

User identifier is the hash of the generated signing key. 

It can have any number of signing key to avoid correlation. 

Since it lives on the “localhost”, DNS name is not needed. 

Just the hash of the public key will do. 

By having the Self-issued OP provide the aggregated claims, the claim providers 

will become unable to find where they were provided. 
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Social Logins
Self Issued Provider

Tap on it. 
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