
Nomura Research Institute

Nat Sakimura(@_nat_en)

OpenID Connect as a KYC Token 

distribution protocol

• OpenID® is a registered trademark of the OpenID Foundation. 
• *Unless otherwise noted, all the photos and vector images are licensed by GraphicStocks. 

2018-09-28

Foundation

Research FellowChairman of the board



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

2

OAuth is the API protection mechanism of the choice now

It protects valuable resource 

(called Protected Resource) 

from unauthorized access using 

“access tokens”. 

RFC6749 + RFC6750 defines the base spec. 



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

3

OAuth Client

Authorization

Server

2. checkout 3. Create Authz Req

(client_id + scope)

4. Give me Authorization! 

(client_id + scope + state)
6. sure

8. Crate `code` that 

is bound to 

client_id

✓

1. checkout



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

4

OAuth Client

Authorization

Server

5. Are you sure? 

?
✓✘



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

5

OAuth Client

Authorization

Server

?
✓✘

7. sure 



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

6

OAuth Client

Authorization

Server

9. Here is the Authorization! 
(code + state)

10. Check state

11.Send 
code + 

client_id + 

client_secret

12. Authenticate the client, 
check code is still valid and 

is bound to the client_id



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

7

OAuth Client

Authorization

Server

18. Checkout Success! 

13. access_token

token_type

refresh_token

17. Business Logic

Resource

Server

14. GET Resource

access_token

15. Check Access

16. Return

resource



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

8

OpenID Connect is the identity layer on top of OAuth. 

 It defines 
 ID Token (Signed JSON Web Token with identity claims)

 Protocols to request specific claims/attributes at a specific assurance level

 Higher security mechanism

 Identity = set of attributes related to an entity (e.g., person, 
corporation, thing, process)

JWT = JSON Web Token. RFC7519. The standard Token Format. 



JWT has three variants: JWS, JWE, JWS+JWE. 

JWS:= JSON Web Signature. JWT that is signed by the issuer’s 
key. 



JWS is useful to store information as a signed token. 

E.g., Estonian Police. 



OIDC = OAuth + JWS+E(Identity)



8

(source) https://youtu.be/Kb56GzQ2pSk



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

9

It is the protocol of choice for federated authentication
and identity federation

As of April 2018, 92% of Azure Active Directory 

authentication happens over OpenID Connect. 

It is supported by mobile carriers (Mobile 

Connect)

It is supported by many governments. 

UK OpenBanking’s security profile is based on 

OpenID Financial-grade API Security Profile. 

Many vendors and open source products support 

it

List of certified implementations

https://openid.net/certification/

9

https://openid.net/certification/


© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

10

Requesting specific claim set or claims in OpenID Connect

Method 1

Define a standardized OAuth scope, e.g. “kyc_token”

Method 2

Ask for specific claims using claims parameter

You can request a specific assurance level by 

using authentication context class reference. 

Use “acr” claim. 

Levels can be defined by a trust framework and 

should be registered to IANA acr registry. 

10

{

"userinfo":

{

"given_name": {"essential": true},

"nickname": null,

"email": {"essential": true},

"email_verified": {"essential": true},

"picture": null,

“kyc_token”: header.payload.signature

},

"id_token":

{

"auth_time": {"essential": true},

"acr": {"values": ["urn:mace:incommon:iap:silver"] }

}

}



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

11

There are 4 ways to return the claims

ID Token

Of the form: Header.Claims.Signature. 

Each component is base64url encoded (ASCII 

Armored). 

Simple Claims 

All the claims are provided by the IdP

Aggregated Claims

Some claims are collected from the claims 

provider, esp. as a token. 

Distributed Claims

URL and relevant access tokens are returned to 

the client. 

The client then can use them to retrieve claims 

from the claims provider directly. 

11

Data 

Source

Data 

Source

IdP
Relying

Party

Signed Claims (JWT)

Data 

Source

Data 

Source

Data 

Source

IdP
Relying

Party

Permission

Claims

Distributed Claims

Aggregated Claims



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

12

If you are worried about user’s account being taken away by the IdP or the 
“calling home” privacy problem, then you can use “Self-Issued OP”

In the self-issued OP, the IdP lives on your phone. 

User identifier is the hash of the generated signing key. 

It can have any number of signing key to avoid correlation. 

Since it lives on the “localhost”, DNS name is not needed. 

Just the hash of the public key will do. 

By having the Self-issued OP provide the aggregated claims, the claim providers 

will become unable to find where they were provided. 

12



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

1313

Social Logins
Self Issued Provider

Tap on it. 



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

1414



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

1515



© 2017 by Nat Sakimura. CC-BY-SA. 

Copyright © 2016 Nat Sakimura. All Rights Reserved.

1616


