A “Toolbox” for the Reduction of Acrylamide in Fried Potato Crisps

Acrylamide
Acrylamide is a substance that is produced naturally in foods as a result of high-temperature cooking (e.g. baking, grilling, frying). Acrylamide can cause cancer in animals and experts believe it could cause cancer in humans. Although acrylamide has probably been part of our diet since man first started cooking, because of concerns over safety, world experts have recommended that we reduce the levels of acrylamide in foods.

Acrylamide has been found in a wide variety of cooked foods, including those prepared industrially, in catering and at home. It is found in staple foods such as bread and potatoes as well as in other everyday products such as crisps, biscuits and coffee.

The FoodDrinkEurope Acrylamide Toolbox
Following the discovery of acrylamide in food, the industry and other stakeholders, including regulators, took action to investigate how acrylamide is formed and possible methods that can be employed to reduce levels of acrylamide in foods using the ALARA principle. FoodDrinkEurope coordinated the efforts and pooled the results together to produce the Acrylamide Toolbox.

What does the Toolbox do?
• Details existing methods to reduce acrylamide in foods
• Allows users to assess and evaluate which reduction measures to use

ALARA
ALARA is an acronym for the concept “As Low As Reasonably Achievable”. This simply means that a Food Business Operator (FBO) should take appropriate measures to reduce the presence of a given contaminant in a final product to a minimum: taking account of the risk presented, but also taking account of other legitimate considerations, such as potential risks from other contaminants, organoleptic properties and quality of the final product, and the feasibility and effectiveness of controls.

To ensure continuing compliance with the ALARA concept the FBO should monitor the effectiveness of the implemented measures and should review them as necessary.

What can you do?
• Use this brochure to identify methods that you can use to reduce acrylamide levels
• Not all methods will apply to your manufacturing needs
• You will need to examine your production methods, recipes, product quality and national legislation in order to identify the most appropriate “tools”.

Acrylamide in potato crisps
This brochure is designed to help manufacturers of fried potato crisps. For more detailed advice contact the European Snacks Association (ESA) at esa@esa.org.uk

Read the full toolbox at: http://www.fooddrinkeurope.eu/publication/fooddrinkeurope-updates-industry-wide-toolbox-to-help-manufacturers-further/

Methods of formation
• Acrylamide is formed via the reaction of asparagine and reducing sugars (both naturally occurring in potatoes)
• Acrylamide is formed at temperatures higher than 120°C
• The amount of acrylamide formed depends on
 • Temperature of final cooking
 • Cooking time
 • Amounts of asparagine and reducing sugars in the potato
Methods of Reduction Fried Potato Products: Potato Crisps

The following “Tools” have been used successfully to reduce levels of acrylamide in Potato Crisps. Manufacturers are advised to select those “Tools” that are most suitable to their type of product, process methods and product quality specification.

<table>
<thead>
<tr>
<th>Raw Materials Selection</th>
<th>Recipe Design</th>
<th>Process Design</th>
<th>Finished Product Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Only use suitable (low sugar) potato varieties.</td>
<td>• Some pre-processed ingredients may already contain high levels of acrylamide which could impact upon levels in the final product.</td>
<td>• Optimised and strictly defined cooking conditions (management of oil / temperature / dwell time) to produce a product with a golden yellow colour.</td>
<td>• Off-line for colour.</td>
</tr>
<tr>
<td>• Store environment controlled for temperature (> 6° C) and humidity.</td>
<td>• Thicker cut crisps may result in increased acrylamide levels as they require higher thermal input to create the end product.</td>
<td>• In-line feedback of cooking dependent on moisture content.</td>
<td></td>
</tr>
<tr>
<td>• Sprouting suppressed in stored potatoes using CIPC.</td>
<td>• Use of some ingredients may, in addition to flavour, compensate for lighter coloured crisps by providing additional colour.</td>
<td>• In-line post fryer colour / defects rejection.</td>
<td></td>
</tr>
<tr>
<td>• In-coming potatoes checked at plant.</td>
<td></td>
<td>• Washing potato slices in warm / hot water to remove excess sugars.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adequate peeling: Reducing sugars can be higher in the peel layer of some varieties.</td>
<td></td>
</tr>
</tbody>
</table>