Soybean_MON87769

Organisation: www.lamna.se
Country: Sweden
Type: Scientific Institution

a. Assessment:

b. Food Safety Assessment:

Toxicology

Every independent study has shown that GMO crops causes organ damage, cancer, brain degeneration immunodeficiency problems, reproductive, and endocrine damage. We have no control over what proteins the GE crop produces and how the new gene interact with the whole genome!

Allergenicity

Will increase more and more with GMO crops

Nutritional assessment

The system with gmo crops is coupled with heavy usage of pesticides. Those chemicals among others glyfosate, decreases the nutrient content in crops. Are toxins nutrients? Of course no but if we farm gmo crops we end up with selftoxic producing crops plus the heavy use of pesticides which end up in crop and we call this food? No way its toxic waist!

Others

Theres no GMO crop on the market today that produces more yields than older strains!

3. Environmental risk assessment

The system with gmo crops is coupled with heavy usage of pesticides. It destroys ground
water and lakes and streams and farmland. Its been calculated that if the GMO genes spreads in the wild we could end up at the so called ecoside barrier when all the ecosystems collapse that humanity are dependent upon!

4. Conclusions and recommendations

Stop GMO crops NOW

Organisation: GeneWatch UK
Country: United Kingdom
Type: Non Profit Organisation

a. Assessment:
Comparative analysis (for compositional analysis and agronomic traits and GM phenotype)

Environment and gene-environment interactions (GxE) are known to have important effects on nutrient (including fatty acid) composition of soybeans (Whent M, Hao J, Slavin M, et al. Effect of Genotype, Environment, and Their Interaction on Chemical Composition and Antioxidant Properties of Low-Linolenic Soybeans Grown in Maryland. J Agric Food Chem. 2009;57(21):10163–10174) and such effects can vary at different developmental stages (Han Y, Xie D, Teng W, Zhang S, Chang W, Li W. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor Appl Genet. 2011;122(8):1481–1488). It is therefore essential that data is obtained from a wide variety of agronomic conditions, representative of expected growing conditions.

Data on agronomic and phenotypic characteristics of soybean MON 87769, its conventional counterpart and a set of non-GM commercial varieties were collected in field trials performed in the USA in 2006 and 2007. These field trials also supplied seed and forage material for compositional analysis of the various soybean materials. In both years, the field trial was carried out at five geographical sites representative of the soybean cultivation areas of the USA. It is questionable whether this data set is sufficient to establish variability of nutrient levels between different sites and growing conditions. More data should be requested from the applicant.

b. Food Safety Assessment:
Toxicology
Soybean MON 87769 contains a single insertion consisting of two intact expression cassettes (Pj.D6D and Nc.Fad3) coding for the fatty acid Δ6 desaturase from Primula juliae (primrose) (Pj.D6D) and the fatty acid Δ15 desaturase from Neurospora crassa (red bread mold, a filamentous fungus) (Nc.Fad3).

The newly expressed desaturases in soybean MON 87769 seeds result in an alteration of the fatty acid profile, leading to the appearance of four new fatty acids (stearidonic acid (SDA), also known as octadecatetraenoic acid; alpha-linolenic acid; and two trans-fatty acids, 9c,12c,15t trans-ALA (18:3) and 6c,9c,12c,15t trans-SDA (C18:4)) and a reduction in linoleic acid (LA).

SDA is a normal intermediate in the formation of the long chain omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid [(C20:5 (n-3)] (EPA) and docosahexaenoic acid [(C22:6 (n-3)] (DHA). However, in humans, the conversion of ALA to SDA is slow. Direct consumption of SDA avoids this step in the biosynthesis and the Opinion states that the rationale for developing the product is that this may result in a more efficient synthesis of the higher chain-length PUFAs (EPA and DPA).

There is limited evidence of this from a study conducted by Monsanto and Southern Illinois University in rats (Casey, J. M., Banz, W. J., Krul, E. S., Butteiger, D. N., Goldstein, D. A., & Davis, J. E. (2013). Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats. Lipids in Health and Disease, 12, 147. doi:10.1186/1476-511X-12-147). After 12 weeks, SDA oil from the GM soybean raised omega-3 index (EPA + DPA) slightly more than the flax diet, but less than the fish diet. No studies in humans appear to have been conducted.

Apart from the limited evidence of efficacy in raising the omega-3 index, the entire rationale for the product appears to be based on the false assumption that long-chain omega-3 PUFAs are of benefit for health: this is not supported by current scientific evidence.

More recently, a meta-analysis by Rizos et al. (2012) concludes: “Overall, omega-3 PUFA supplementation was not associated with a lower risk of all-cause mortality, cardiac death, sudden death, myocardial infarction, or stroke based on relative and absolute measures of association”. (Rizos EC, Ntzani EE, Bika E, Kostapanos MS, & Elisaf MS. (2012). Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA, 308(10), 1024–1033. doi:10.1001/2012.jama.11374). And another by Kwak et al. (2012) states: “Our meta-analysis showed insufficient evidence of a secondary preventive effect of omega-3 fatty acid...
supplements against overall cardiovascular events among patients with a history of cardiovascular disease”.

The findings of lack of benefit are supported by randomized controlled trials reported by Fezeau et al.: “These results, as the lack of impact of our supplementation trial with DHA-EPA on CVD recurrence [18], do not support the recommendations of use of n-3 PUFA for the secondary prevention of CVD” (Fezeau, L. K., Laporte, F., Kesse-Guyot, E., Andreeva, V. A., Blacher, J., Hercberg, S., & Galan, P. (2014). Baseline Plasma Fatty Acids Profile and Incident Cardiovascular Events in the SU.FOL.OM3 Trial: The Evidence Revisited. PLoS ONE, 9(4). doi:10.1371/journal.pone.0092548).

Whilst lack of efficacy is not an issue for a risk assessment as such, it remains uncertain whether increasing omega-3 PUFAs, as the manufacturer intends, is in reality beneficial or harmful for health. For example, studies suggesting a link between omega-3 fatty acids and prostrate cancer have been ignored (Brasky TM, Darke AK, Song X, et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst. 2013;105(15):1132–1141; Brasky TM, Till C, White E, et al. Serum Phospholipid Fatty Acids and Prostate Cancer Risk: Results From the Prostate Cancer Prevention Trial. Am J Epidemiol. 2011;173(12):1429–1439; Chua ME, Sio MCD, Sorongon MC, Morales ML Jr. The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: A meta-analysis. Can Urol Assoc J. 2013;7(5-6):E333–343). This risk cannot be assessed with the limited data provided in the dossier.

Further, the actual changes in composition are much more complex and substantive than a simple increase in SDA. In both years of field trials the most notable changes were a reduction in linoleic acid from 52.4–56.0 % to 16.5–30.8 % and in oleic acid from 17.2–21.5 % to 12.7–19.8 % of total fatty acids. This reduction was accompanied by the appearance of the two metabolites SDA (16.8–33.9 %) and GLA (6.1–8.0 %). In addition, low amounts of two trans-fatty acids previously not found in measurable concentrations in soybean oil, 9c,12c,15t trans-ALA (18:3) at 0.15–0.48 % and 6c,9c,12c,15t trans-SDA (C18:4) at 0.06–0.26 %, were detected. Some other statistically significant alterations in composition were found in some or all batches (e.g. vitamin E, protein, phytase). The impacts of making these very significant changes in the human diet have not been assessed at all.

Soybeans were harvested from two of the five sites in the USA in 200624 in order to perform compositional analyses on processed fractions, including defatted and toasted meal; refined, bleached and deodorised oil; protein isolate; and crude lecithin, derived from MON 87769, A3525 and eight conventional reference soybean varieties. Comparing the defatted and toasted meal produced from soybean MON 87769 with similar meals from the conventional counterpart showed changes in the fatty acid profile that mirrored the differences seen with the whole soybean (i.e. reduced LA and oleic acid and the appearance of SDA and GLA). Statistically significant changes in the concentration of six other constituents were also found. When the compositional data on processed oils from both types of soybean were compared (Table 1), statistically increased levels of palmitic acid, stearic acid, trans-ALA and vitamin E were observed, whereas the level of lignoceric acid was reduced. The level of LA was extensively reduced (from 54.8–55.9 % in the conventional counterpart to 20.7–30.9 % of the fatty acids in soybean MON 87769). In addition to these changes, three of the new fatty acids identified in the whole seed were also seen in the refined oil from MON 87769 (SDA, GLA and trans-SDA, constituting 16.9–28.4 %, 6.2–7.2 % and 0.17–0.39 % of the total
fatty acids respectively). Small quantities of trans-ALA were present in all types of refined, bleached and deodorised soybean oil, suggesting that small quantities of this trans-fatty acid may be produced during processing of the oil. Owing to the lack of commercially available standards for 9c,12t,15c, 9t,12c,15t and 9t,12c,15c C18:3 trans-fatty acids, these could not be individually quantified. The crude lecithin derived from soybean MON 87769 contained SDA, GLA and trans-SDA, which are usually not detected in lecithin from conventional soybeans. In lecithin, the level of linoleic acid (C18:2) was reduced from 57.3–58.7 % of total fatty acids in soybean A3525 to 22.1–34.3 % of total fatty acids in soybean MON 87769.

No analysis has been provided of the fatty acid of the final products for which the applicant is seeking approval (e.g. salad dressings and margarines, or products fried in the oil).

Based on the results of short-term studies in rats, the Opinion concludes that feeding stuffs derived from defatted soybean MON 87769 are as safe and nutritious as those derived from other non-GM soybean varieties. However, this completely ignores the expected metabolic effects such as raising omega-3 PUFAs, which have not been assessed at all.

The opinion cites intervention studies on humans with various amounts of SDA ethyl esters and/or SDA-containing plant derived oils, and with SDA-enriched soybean oil for between 14 and 84 days and at doses ranging from 0.05 to 4.2 g SDA/day, stating no adverse effects were reported. But such studies are wholly inadequate to assess long-term effects such as cancer risk.

Similarly, several studies cited in which human diets were supplemented with GLA at doses from 1 to 5 g/day for periods of one to six months shed little light on the overall, long-term safety of the product for approval.

As the Opinion acknowledges, no specific studies have looked at the effects of consuming trans-SDA.

No data has been provided for food safety in children.

No evidence has been provided to give confidence that there are no long-term adverse effects in humans.

The toxicology assessment concentrates on the newly expressed proteins Primula juliae Δ6 desaturase (PjΔ6D) and Neurospora crassa Δ15 desaturase (NcΔ15D) and on the four fatty acids stearidonic acid (C18:4; SDA), γ-linolenic acid (C18:3; GLA), 9c,12c,15t trans-ALA (C18:3) and 6c,9c,12c,15t trans-SDA (C18:4) produced in seeds of soybean MON 87769 normally not present at detectable levels in non-GM soybean seeds.

Although requested, the applicant was unable to provide 28-day repeated dose studies on the newly expressed proteins, owing to technical difficulties in obtaining purified proteins in an amount suitable for toxicological studies. EFSA concludes that “that there are no reasons to suppose that these specific desaturases would introduce safety concerns”. But this ignores the vast literature on fatty acids which shows complex and possible unintended effects (such as possible increased risk of cancer). These effects cannot be studied without large-scale human trials. The evidence provided is therefore totally inadequate to assess the risks of making these substantive changes to the human diet.
Allergenicity

One portion of the query protein aligned with a sequence of nine consecutive serine residues in Triticum aestivum serine carboxypeptidase. Allergenicity should therefore have been further investigated. The reported study size (16 individuals clinically documented to be allergic to soybean and six non-allergic individuals) is inadequate.

Nutritional assessment

Nutritional and food safety assessment are linked (see comments above). Individuals will vary considerably in their dietary intakes and the impacts of altering fatty acid profiles are poorly understood. The assessment focuses on SDA as the most significant modification in MON 87769 soybean oil, and on the consequences of the reduction in the level of the essential fatty acid linoleic acid, but there are many complex nutritional changes in the soybean that are ignored. The applicant estimates SDA intake but cannot complete the analysis even for this single change because there is no dietary reference value for SDA and limited evidence in the literature of its impacts on health. Impacts of altering levels of DHA and EPA are also poorly understood (see above). Estimates of conversion rates are in any case highly speculative.

No data for children has been provided. No data has been provided for different age groups, needed to assess risk to specific subgroups of consumers. Some such information (including intakes for toddlers, children, teenagers, adults and the elderly, before and after the substitution of foods containing the GM soybean oil) was provided in the EFSA’s statement complimenting its scientific opinion for Pioneer’s GM soybean 305423. The lack of any such data here raises questions about consistency and the need for a level playing field. The applicant should be required to supply this information as it is essential to underpin any nutritional assessment.

EFSA Guidance and Codex Guidelines require population subgroups to be considered in the nutritional assessment. As well as categories by age, this should include other subgroups whose nutrient requirements may be different from the general population. Again, this work has been totally omitted. It is impossible to completely fill this gap in these short comments, however there are a number of monogenic disorders, for example in the category of Fatty Acid Metabolism Disorders (MCAD, LCAD and SCAD deficiencies) in which medium-chain triglycerides (MCTs) can’t be broken down and linoleic acid deficiency may occur (Acosta PB: http://www.fodsupport.org/pdf/Nutrition_and_Fatty_Oxidation_Defects.pdf) and others, such as Waldmann’s disease, which require MCT supplementation (Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet Journal of Rare Diseases. 2008;3(1):S. doi:10.1186/1750-1172-3-5). Patients with Refsum’s Disease are advised to eat soya products based on the level of phytanic acid they contain (http://www.refsumdisease.org/patients/dietwhichfoods.shtml) and patients with propionic academia are also unable to process certain lipids.
The implications of altering fatty acid profiles in soybean oil should have been considered for such groups.

The EFSA GMO Panel concludes that the estimated decrease in the LA intake of adults is not of safety concern, despite the lack of an estimate for young children or for potentially vulnerable population subgroups. Linoleic acid contributes to the maintenance of normal blood cholesterol levels so it is surprising that no further data was required. Some studies suggest beneficial effects from high intake of linolenic acid (which is reduced in soybean MON87769) (e.g. Djoussé L, Hunt SC, Arnett DK, Province MA, Eckfeldt JH, Ellison RC. Dietary linolenic acid is inversely associated with plasma triacylglycerol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr. 2003;78(6):1098–1102). Why was the nutritional impact of this change not properly considered?

The Opinion relies heavily on the fact that EFSA (2010b) has set an adequate intake (AI) level of 250 mg EPA + DHA/day for adults, based on considerations of cardiovascular health. This is inadequate for a number of reasons including: (i) the report is out of date and more recent studies must be included (e.g. as cited above); (ii) it does not consider population subgroups who may be particularly affected by changes in the fatty acid profile of their food; (iii) it requires an extrapolation, based on limited data, of the impacts of the product on EPA+DHA and ignores other nutritional changes (iii) it is not applicable to GMO foods which require a safety assessment under Regulation (EC) No. 1829/2003. This requires a scientific evaluation of the highest possible standard (conducted by EFSA) followed by a risk management decision by the Community.

No systematic review has been provided of the nutritional evidence from the literature.

GeneWatch UK considers the lack of any proper nutritional assessment to be a serious omission. Combined with the lack of adequate labelling (see below) it means that in practice, consumers will have no idea about the nutrient content of the foods they are consuming. Potentially serious safety issues could be missed and there is no clear mechanism for recall of products if (as is common in the nutrition literature) new studies identify unexpected adverse effects or confirm adverse effects that are currently uncertain, some of which may impact the health of specific subpopulations.

Others

The Opinion states (page 6): “The EFSA GMO Panel notes that the quantitative dietary estimates described here would have to be revisited if the oil produced by soybean MON 87769 were to be extensively used in food products not considered in this assessment, for example as dietary supplements or to modify animal feed products”.

However, it is difficult to understand how the product can be approved for use on the EU market unless all its potential uses on the market are considered.

The scope defined by the applicant (page 5): “includes all food and feed products containing, consisting or produced from soybean MON 87769 including products from inbreds and hybrids obtained by conventional breeding of this soybean product. The application also
covers the import and industrial processing of soybean MON 87769 for all potential uses as any other soybean” [emphasis added].

It is therefore difficult to understand why the safety assessment does not cover all possible markets within the scope.

Based on the data provided, the EFSA GMO Panel concludes that feeding of full-fat soybean MON 87769 or inclusion of the oil derived from MON 87769 could alter the lipid content of animal tissues. However, the Panel did not consider the nutritional impact by consuming products of animal origin derived from animals fed whole fat MON 87769 or its oil on consumers. This approach is not compatible with the stated scope of the application.

Nutrient (and anti-nutrient) composition should be required for meat, milk and eggs from animals fed on soybean MON87769, since such uses can be anticipated. The addition of GM soybean oil or seeds to animal feed is an active topic of research, with the aim of altering milk fat composition (Bernal-Santos G, O’Donnell AM, Vicini JL, Hartnell GF, Bauman DE. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J Dairy Sci. 2010;93(1):32–37. doi:10.3168/jds.2009-2711) as has already been attempted using supplements (e.g. Glasser F, Ferlay A, Chilliard Y. Oilseed lipid supplements and fatty acid composition of cow milk: a meta-analysis. J Dairy Sci. 2008;91(12):4687–4703). Since potential food and feed applications have not been restricted, this application should fall within the scope of the assessment. Further, it is likely that a similar approach could be applied to meat and eggs where diet is known to affect fat composition (e.g. Berthelot V, Bas P, Schmidely P. Utilization of extruded linseed to modify fatty composition of intensively-reared lamb meat: effect of associated cereals (wheat vs. corn) and linoleic acid content of the diet. Meat Sci. 2010;84(1):114–124.; Oliveira DM, Ladeira MM, Chizzotti ML, et al. Fatty acid profile and qualitative characteristics of meat from zebu steers fed with different oilseeds. J Anim Sci. 2011;89(8):2546–2555). Additional data should be requested from the application to cover these scenarios, to underpin a revised nutritional assessment.

Similarly, the possible use of the oil in supplements needs to be part of the assessment.

4. Conclusions and recommendations

The risk assessment is incomplete and inadequate to support approval of the product.

5. Others

6. Labelling proposal
The applicant proposed that food and feed products within the scope of the application should be labelled as —genetically modified soybean containing SDA omega-3 oil or—contains genetically modified soybean containing SDA omega-3 oil.

This is factually incorrect since there is no omega-3 oil produced by the soybean. The label should describe the altered composition in full, including all the new fatty acids (stearidonic acid (SDA), also known as octadecatetraenoic acid; alpha-linolenic acid; and two trans-fatty acids, 9c,12c,15t trans-ALA (18:3) and 6c,9c,12c,15t trans-SDA (C18:4)) and the reduction in linoleic acid (LA). It is particularly important that consumers are warned about low linoleic acid, given the potentially adverse effects of this nutritional change.

It is essential that consumers and medical professionals are provided with more information on the label (i.e. a list of all fatty acids and other nutrients that are significantly increased or decreased) and the means to find more detailed information should this become necessary (i.e. the Unique Identifier). This is essential because: 1. New information may become available in future about unexpected harms associated with the particular method of genetic modification or molecular characterisation (e.g. stability of a particular construct or off-target effects) which is only traceable via the Unique Identifier. 2. New information may become available regarding specific harms associated with specific types of fatty acid which may lead to (some or all) consumers wishing to avoid some altered oil products but not others and/or retailers/manufacturers to withdraw some products. This can only be done if the fatty acid profile of each product is known and its source is traceable. 3. Small subgroups of consumers (e.g. suffering from a particular metabolic disorder) may find health problems are caused by some fatty acid profiles but not others. They may therefore wish (or need) to avoid specific fatty acids or groups of fatty acids, or to ensure they are consuming adequate levels of others (such as LA).

Any of these situations may necessitate withdrawal of products and/or consumer information to be issued regarding specific products (allowing specific subgroups of persons to avoid them). This can only be done if the fatty acid profile and its source is known to the consumer (and in some cases can be discussed with a medical professional) via information on its label.

Regulation (EC) 1829/2003 Preamble (22) states: “In addition, the labelling should give information about any characteristic or property which renders a food or feed different from its conventional counterpart with respect to composition, nutritional value or nutritional effects, intended use of the food or feed and health implications for certain sections of the population, as well as any characteristic or property which gives rise to ethical or religious concerns”.

The proposed labelling does not conform to these requirements. A new proposal is therefore needed.

Although not currently provided for in the legislation, labelling of meat, milk and dairy products from animals fed on soybean MON87769 as feed is also necessary, because the use the potential use of whole soybeans or soybean oil as dietary supplements can significantly alter the fatty acid profile of these products.
a. Assessment:
Molecular characterisation

New open reading frames were detected in the plants which can give rise to RNA that is translated into proteins or might be involved in gene regulation without producing proteins (RNAi). However, the open reading frames were not assessed in regard to non-coding RNA (miRNA, RNAi). RNAi mechanisms are relevant for risk assessment and might play a bigger role in unintended changes in the oil content and changes in metabolism of the plants observed (see below). miRNA might be transmitted to the consumer and there is dispute over whether it might interact with gene regulation in mammalian cells (see for example Zhang et al., 2011; Lukasik & Zielenkiewicz, 2014).

There was also no assessment of the expression of the constructs in the plants under conditions that could represent the true range of environmental conditions, or under conditions of stress such as that caused by ongoing climate change. This is amazing since existing data already show a high variability in the SDA content of the soybeans.

Further, there is no detailed description of the extent to which the native genes derived from its donors were technically changed and re-synthesised before being inserted into the soybeans.

Ultimately, a lot more data would have been needed for a sufficiently robust risk assessment. These data should have included information on the effects of the additional DNA on the plants genome, transcriptome, proteome and metabolome, and also taken a broad range of defined environmental stress conditions into account.

Further clarification is needed regarding an obvious mistake in the opinion. EFSA states that: „These bioinformatic analyses did not reveal the interruption of any known endogenous gene in the MON 88701 flanking regions.“ EFSA has confused soybean MON87769 here with soybean 88701.

Comparative analysis (for compositional analysis and agronomic traits and GM phenotype)

According to the application, soybean MON 87769 differs from its conventional counterpart only in its fatty acid profile. This statement is not based on scientific findings. In fact, it cannot be denied, that - beyond the intended changes - the soybeans are not equivalent to the soybeans used as a comparator.

Various significant findings in the compositional analysis and agronomic performance were observed. The statistical analysis revealed increased protein and reduced carbohydrate content in seeds. These changes also concern the content of isoflavins, phytoestrogens and phytic acid which are relevant for risks to human health. For example, in one year, the content of soy-typical phytoestrogens (daidzein, genistein and glycitein) was lower in the GM variant and anti-nutrient (phytic acid) was increased in soybean MON 87769. New trans-fatty acids were also identified which are undesirable because of potential negative effects on health. Agronomic parameters such as lower yield were also observed.

The findings indicate unintended and undesirable changes in the metabolism of the soybeans and should have been a starting point for a much more detailed investigation into underlying mechanisms. However, instead of being subjected to a detailed consideration they were rejected and deemed irrelevant for food safety assessment.

In addition, an outdated statistical method (99% tolerance level) was applied. EFSA dropped this method from the applicable guidance in 2011, due to its low statistical power. EFSA defended this decision by saying that the Monsanto application was filed before 2011: “The EFSA GMO Panel took into account the established tolerance intervals by the applicant for the comparative risk assessment when statistical significant differences between soybean MON 87769 and its conventional counterpart were observed. However, the latest EFSA guidance (2011) is referring to a different approach based on equivalence testing. This was not foreseen in the applicable EFSA guidance (2006) when application EFSA-GMO-UK-2009-76 was submitted.”

EU regulation 1829/2003 requires testing according to the highest scientific standards – so it is inexcusable to knowingly use statistical methods that are insufficient.

The conclusion must be that these differences should have been investigated in more detail, taking into account a broad range of defined environmental stress conditions. The assessment as performed by EFSA has to be rejected.

b. Food Safety Assessment:
Toxicology

Monsanto seems to suggest that the usage of its soybean will be limited: “In order to derive commercial value from this product, the MON 87769 soybean crop will be grown and processed in an identity preserved manner in the northern US soybean growing regions and MON 87769 soybeans will be processed in dedicated oil processing facilities that will also be
operated in an identity preserved manner and oil will be sold to food processors for food formulation.”

However, Monsanto`s application is not restricted to specific purposes but covers all usage in food and feed. In this context, Monsanto has not only filed patents for cakes, oil and margarine, but also for usage of the soybeans in animal feed. For example, Monsanto has filed patent applications on pork (WO2009/073397) as well as on products from cattle, poultry and fish fed with the soybeans. These patents reveal that the company has a vast range of commercial interests that might become relevant once the soybeans are allowed on the market.

EFSA, on the other hand, only assessed very specific uses in some food products and deliberately omitted animal feed usage and changes in the composition of the animal products from animals fed with the soybeans. By doing so, EFSA failed to assess data available from feeding studies with pigs, cattle and fish which could be used to assess the effects of the soybeans on mammalian health in more detail (see WO 2010/107422, WO 2010/027788, WO 2009/097403, WO 2009/102558 and several publications). It is evident that EFSA is aware of these huge gaps in its risk assessment: “The EFSA GMO Panel notes that the quantitative dietary estimates described here would have to be revisited if the oil produced by soybean MON 87769 were to be extensively used in food products not considered in this assessment, for example as dietary supplements or to modify animal feed products.”

Instead of requesting further investigation or at least taking note of existing data, EFSA accepted a 90 day animal feeding study with rats using only defatted soybeans in low quantities. No feeding study with the full-fat soybean was provided, while some feeding were performed with the oil on pregnant rats. The maximum duration of any study was around 120 days, which is much too short to assess potential effects on health. As EFSA in its answer to Member States notes: “Both hypothetical beneficial effects of a higher n-3 fatty acid intake and hypothetical adverse effects of a potentially somewhat higher intake of trans fatty acids are expected to take many years to evolve and are prone to be influenced by numerous confounders, which means that even a well-controlled long-term intervention study of a sufficient number of subjects is unlikely to provide a clear answer.”

Furthermore, despite a request from EFSA, no toxicity study with the isolated proteins as produced in the plants was provided. In the opinion it says: “The Panel requested 28-day toxicity studies on the newly expressed proteins to confirm their safety in the absence of a history of consumption of these specific proteins. However, according to the applicant, it was not possible to generate sufficient protein preparations of suitable quality.”

There was a short term consumption study in humans, but the SDA used in the study was not derived from the soybeans and had a different structure and composition. Therefore this study does not have much value for the risk assessment of the genetically engineered soybeans in regard to composition, metabolites and interactions. For example, some new trans-fatty acids were observed in the soybeans that should have been taken into account (but were not assessed by EFSA at all). Such experiments should have been conducted over a much longer period of time and specific attention should have been given to susceptible individuals such as infants since the oil from the soybeans MON87769 might be used in baby milk products. As a expert from the Member States notes: „these fatty acids and their
elongation products interact with each other, possibly influencing eicosanoid metabolism and levels of the different eicosanoids which are physiologically very active, there is a remote possibility that in some circumstances or some individuals the use of MON 87769 derived products may have negative effects. It is suggested that some clinical experiments are done in human volunteers using SDA oil (e.g. determination of hemostatic factors).”

Consequently, the toxicity testing is not conclusive and leaves too many uncertainties.

Allergenicity

Testing of susceptible individuals for allergenic risk was only done on a very small number of samples so that no conclusions can be drawn. EFSA did admit this deficiency. In addition, methods such as the pepsin test used to assess the allergenic potential of the proteins are known to be unreliable.

Neither does the EFSA approach take potential adjuvant / synergistic effects into account. No non-IGE-mediated immune reactions were taken into account, although these effects have to be considered relevant (Mills et al., 2013).

EFSA should have been pointing out that the existing data are simply not sufficient to derive sufficient evidence. For example, EFSA (2010) requests detailed investigations into allergenic risks for infants and individuals with impaired digestive functions. “The specific risk of potential allergenicity of GM products in infants as well as individuals with impaired digestive functions (e.g. elderly people, or individuals on antacid medications) should be considered, taking into account the different digestive physiology and sensitivity towards allergens in this subpopulation.”

However, these specific risks were completely left aside during EFSA’s risk assessment. Ignoring the high level of uncertainties, EFSA is concluding: “The EFSA GMO Panel considers that there is no evidence that the genetic modification might significantly change the overall allergenicity of soybean MON 87769 when compared with that of its conventional counterpart.”

Nutritional assessment

It is astonishing that the claims made by Monsanto on the benefits to health have not been
assessed by EFSA at all. Monsanto expressly states that the claims regarding benefits to health are included in the application. Clearly as such they should have been assessed by EFSA: “Recommendations to increase consumption of long chain omega-3 polyunsaturated fatty acids have been made by a number of world-wide government and public health agencies and scientific organisations. Although the benefits of omega-3 fatty acid consumption are widely recognised, typical Western diets contain very little fish, and the dietary intake of omega-3 fatty acids is generally quite low relative to recommended intake. An alternative approach to increase omega-3 fatty acid intake is to provide a wider range of foods that are enriched in omega-3 fatty acids so that people can choose foods that suit their usual dietary habits. The oil derived from MON 87769 (SDA soybean oil) contains increased levels of SDA (approximately 20-30%) and GLA (~7%) and can serve as an alternate sustainable source of omega-3 fatty acid and help meet the need for increased dietary intake of long chain omega-3 fatty acids.”

For many years Omega-3 fatty acids such as those found in fish oil and other sources were reported to have a positive effect on health. However, more recent epidemiological meta-studies were unable to prove that these products had any beneficial effect on health. (see for example Rizos, E.C, Ntzani E.E., 2014).

But EFSA did not even mention potential effects on health. There was no review of existing literature or discussion of potential negative effects on health from a higher intake of Omega 3 fatty acids (see for example Chua et al., 2013, see also www.nhs.uk/news/2013/07July/Pages/fish-oil-supplements-linked-to-prostate-cancer.aspx).

Long term epidemiological studies would be necessary to gain more reliable data. But as the existing discussion on existing epidemiological studies show, it might be hard to achieve the necessary clarity. EFSA is also aware of the problem and states that (as quoted above): “Both hypothetical beneficial effects of a higher n-3 fatty acid intake and hypothetical adverse effects of a potentially somewhat higher intake of trans fatty acids are expected to take many years to evolve and are prone to be influenced by numerous confounders, which means that even a well-controlled long-term intervention study of a sufficient number of subjects is unlikely to provide a clear answer.”

So why did EFSA not ask for a lot more data to at least lower the level of uncertainties and close some of the most evident gaps in its risk assessment? Why did EFSA not deal with long term effects on health at all? It looks like the opinion of EFSA is driven by a profound bias in favor of the applicant. In consequence, crucial data and investigations were not requested, fundamental uncertainties were not given enough emphasis.

In this context also a statement made by EFSA in response to comments from experts of Member States has to be discussed in detail: “The Panel agrees in principle to the concept that MON 87769 soybean oil could or should replace other vegetable oils, including conventional soybean oil, added to processed foods. The Panel agrees to the MS statement that MON 87769 soybean oil is needed to achieve an optimal dietary fatty acid pattern because this is possible with a combination of foods with appropriate fatty acid patterns.”

This statement that reads like an advertisement for the commercial interests of Monsanto (and might even be used by the company in future) should be a reason for Member States and the EU Commission to urgently ask for clarification. At the moment it can not be excluded that the meaning of this sentence was confused by typing errors. If so, it has to be
corrected. If not, this statement definitely should be a reason for major revision in the composition of the experts of the GMO panel. In any case it is evident that EFSA’s risk assessment as applied in genetically engineered plants lacks an adequate approach to deal with more subtle long term effects on health. This EFSA opinion indicates that standards required under the Novel Food regulation or standards applied by EFSA in relation to benefits to health can be avoided if the relevant product is filed under GMO regulation.

Others

As a legal dossier compiled by Professor Ludwig Kraemer shows, EU regulations require the monitoring of effects on health at the stage of consumption. This is especially relevant in this case, because possible negative effects on health are only likely to be detected in long-term observations. Directive 2001/18 and Regulation 1829/2003 both require that potential adverse effects on human health from genetically modified plants are monitored during the use and consumption stage. Certainly, in this case, the EFSA opinion that monitoring the effects on health is unnecessary contradicts current EU regulations.

4. Conclusions and recommendations

The risk assessment is inconclusive, is likely to be driven by fundamental bias and in any case does not answer the decisive questions arising from potential health claims for this product. Market authorisation for import and usage in food and feed cannot be given.