Bacillus thuringiensis toxin resistance mechanisms among Lepidoptera: progress on genomic approaches to uncover causal mutations in the European corn borer, Ostrinia nubilalis
Brad S Coates

Transgenic plants that express Bacillus thuringiensis (Bt) crystal (Cry) protein toxins (Bt crops) effectively control feeding by the European corn borer, Ostrinia nubilalis, although documented resistance evolution among a number of species in both the laboratory and field has heightened concerns about the durability of this technology. Research has provided major insights into the mutations that alter Bt toxin binding receptor structure and function within the midgut of Lepidoptera that directly impacts the efficacy of Bt toxins, and potentially leads to the evolution of resistance to Bt crops in the field. In this manuscript we provide an overview of available data on the identification of genes involved in high levels of resistance to Cry toxins, with emphasis on resistance described for O. nubilalis as the main target of Bt corn.

Address
USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, United States

Corresponding author: Coates, Brad S (brad.coates@ars.usda.gov)

Current Opinion in Insect Science 2016, 15:70–77
This review comes from a themed issue on Pests and resistance
Edited by Blair Siegfried and Juan Luis Jurat-Fuentes
For a complete overview see the Issue and the Editorial
Available online 16th April 2016
http://dx.doi.org/10.1016/j.cois.2016.04.003
2214-5745/Published by Elsevier Inc.

Introduction
Transgenic Bt crops were first commercialized in 1996 with the approval of Cry1Ab-expressing Bt maize hybrids for the control of the European corn borer, Ostrinia nubilalis [1], and were followed by additional transgenic maize hybrids that express both Cry1Ab and Cry1F toxins [2]. This introduction of Bt maize marked the start of a quintessential shift in the pest status of O. nubilalis in the United States, which prior to that time, was the most damaging maize pest in the United States [3]. Widespread adoption of Bt hybrids among producers [4,5] was credited for stark reductions in both the O. nubilalis population size and level of associated crop damage [6]. In addition, Bt maize also revolutionized how O. nubilalis and other pest insect populations are managed, in that insect resistance management (IRM) strategies became an essential component for technology stewardship aimed to delay the onset of functional resistance [7]. Current IRM tactics are based on the high-dose/refuge (HDR) strategy [8–10] that has three basic assumptions; firstly, resistance alleles within insect populations are rare and recessive, secondly, transgenic toxins are expressed at a dose sufficient to render heterozygotes functionally susceptible, and thirdly, refuges of non-Bt maize grown near or blended within Bt maize fields are capable of producing an excess of homozygous susceptible individuals that will mate at random with any rare homozygous resistant individuals. Cry1Ab susceptibility has been retained among O. nubilalis populations for nearly 20 years after the introduction of the Bt maize varieties in the United States, and may be a testament to the successful implementation of the HDR strategy [6,11,12]. Field damage by O. nubilalis has not been reported despite estimates of resistance allele frequencies exceeding modeling thresholds, which would otherwise suggest compromised durability [13]. These low observed Cry1F resistance allele frequencies may not be surprising considering effective population suppression provided by Cry1Ab [6] and the fitness costs associated with Cry1F resistance [14] (explanations of fitness costs in relation to Bt resistance found in [15–17]).

In contrast to O. nubilalis, functional resistance defined as the temporal reduction in susceptibility in an insect population after exposure to toxins under relevant field conditions [18,19], has been documented among species of Lepidoptera that feed on Bt maize. These include the African stem borer, Busseola fusca, resistant to Cry1Ab-expressing Bt maize in South Africa [19], and fall armyworm, Spodoptera frugiperda, with high levels of resistance toward Cry1F transgenic maize in Puerto Rico [20,21] and Brazil [22]. Additionally, among the cotton pest species, Pectinophora gossypiella show high tolerance to transgenic Cry1Ac cotton plants in the field [23] and Helicoverpa armigera and Helicoverpa zea show a decreased susceptibility to Cry1Ac over time [24–27]. Instances of field-evolved resistance might suggest that the biology of all lepidopteran pest insects may not fit within the basic tenants of the HDR strategy nor abide by parameters used to model product durability [28]. Recent reconfiguration of evolutionary models suggests that, even when exposed to high toxin doses, lack of random mating or
small increases in the dominance of resistance alleles can negatively affect success of the HDR strategy [29**]. Empirical evidence indeed demonstrates that field-evolved resistance traits are dominant or incompletely recessive in the case of *H. armigera* [26,30], *H. zea* [31], and *B. fusca* [32]. Furthermore, low-dose insecticidal exposures have been implicated in the rapid evolution of field resistance in a coleopteran maize pest, the western corn rootworm (*Diabrotica virgifera virgifera*) [33,34].

It could be argued that despite *a priori* acknowledgement that resistance phenotypes were likely to develop following widespread adoption of Bt crops and implementation of IRM plans aimed to circumvent or delay the onset of resistance, that the HDR strategy has been a mixed bag of success. Although field-evolved Bt resistance has been rare in terms of number of species [4], the impact has been great due to the effects on large scale agricultural production. The occurrence of resistance might suggest that our biological, ecological, or genetic data are insufficient for the design of long-term sustainable IRM plans [28,35**], or potentially to maintain the durability of certain crop protection technologies in the short-term [36]. In many cases, Bt technologies may have been compromised due to insufficient knowledge of the complex interactions among genetic, biological and ecological factors that affect the rate at which resistant phenotypes develop [37]. The remainder of this review will focus on the molecular genetic basis of Bt toxin resistance among Lepidoptera, and provides a brief summary of current knowledge and a synthesis of genomic complexities governing the control of certain resistance traits that may constitute future interests of the research community. The field of genomics may indeed provide data that could be helpful for developing more sustainable of IRM strategies.

Receptor-mediated resistance

Inroads have been made with regards to elucidating the molecular genetic mechanisms that confer Bt resistance to lepidopteran insects, which has stemmed from results of biochemical, genetic, reverse genetic, and genomic experiments. Note that due to space limitations Bt mode of action will not be presented, but readers are directed to several reviews on the topic [38–40]. Additionally, descriptions of many methods described herein are presented by [41].

Aminopeptidase N (APN) proteins were initially identified as candidate resistance genes due to *in vitro* ability to bind Cry1A toxins [42,43], and later implicated in the Bt mode of action following transcript knockdown by RNA interference (RNAs) [44–46]. APN’s function as a Cry1Ac receptor is dependent upon post-translational addition of N-acetylgalactosamine (GalNAc) [47,48], although GalNAc independent binding has also been demonstrated [49]. An ancestral tandem duplication generated up to eight APN orthologs within the lepidopteran lineage [50–52], which was confirmed in *O. nubilalis* by genetic linkage and physical mapping of orthologs onto genomic inserts of the OnB1 BAC library [53,54**]. Furthermore, Crava et al. [55] demonstrated that Cry1Ab specifically bound the product of the *O. nubilalis* *apn1* gene (Onapn1), whereas Cry1Fa toxin bound to Onapn3a and Onapn8 proteins. More importantly, resistance to Cry toxins was associated with reduced levels of the aminopeptidase N1 (apn1) transcript among *S. exigua* [56], *Diatraea saccharalis* [45], *Trichoplusia ni* [57**], and *O. nubilalis* [54**], and structural mutations in *H. armigera* *apn1* [58], which suggests involvement in Bt resistance evolution.

Alkaline phosphatases (ALPs) are hydrolytic enzymes that dephosphorylate a variety of molecules, and membrane-bound versions in the midgut of *Manduca sexta* and *Heliotis virescens* bind Cry1Ac toxins in a GalNAc-dependent fashion [59,60], which was similarly shown for the close relative to *O. nubilalis*, Asian corn borer, *O. furnacalis* [61]. Due to differences in temporal expression during larval development, *M. sexta* ALPs bind Cry1Ab prior to APNs [62], but ALP binding to Cry1Ab appears to be more crucial for toxicity in *M. sexta* compared to binding with Cry1Ac [63]. Furthermore, reduced expression of midgut ALP at the protein and mRNA levels are associated with increased resistance to Cry1 toxins among *H. armigera*, *H. virescens*, and *S. frugiperda* [64**,65**,66,67]. The importance of ALP binding in the Cry1Ac toxin mode of action was demonstrated by incubation with an ALP toxin-binding fragment prior to ingestion by Cry1Ac resistant *H. armigera*, which resulted in reversion to a susceptible phenotype [67].

Cadherin belongs to a group of cell adhesion proteins, and the *M. sexta* ortholog, BT-R1, was shown to bind Bt Cry1A toxins *in vitro* [68]. Cadherin from susceptible *O. nubilalis* similarly binds Cry1Ab, Cry1Ac and Cry1F toxins [69,70]. *In vivo* binding further demonstrated the functional role of cadherin in binding Cry1A toxins among *O. nubilalis* [71], *Bombyx mori* [72] and *H. virescens* [73]. Structural mutations described within the cadherin gene were initially associated with Cry1Ac resistance among a laboratory strain of *H. virescens* [74] and allelic variants associated with Cry1Ac resistance from field-derived *P. gossypiella* [75] and *H. armigera*. Despite these prior associations, correlations between the segregation of cadherin alleles derived from *O. nubilalis* Cry1Ab or Cry1F resistant parents and resistant progeny within F2 and backcross pedigree designs have not been correlated [35**,54**,76].

Lepidopteran ATP-binding cassette (ABC) proteins are membrane-bound transporters [77], and a premature stop codon mutation in the ABCC2 gene subfamily member C2 provided initial indication that it may function within the Cry1Ac resistance mechanism of *H. virescens* [78].
Analogous deletions and point mutations were subsequently linked to Cry1A toxin resistance among Plutella xylostella [79], Cry1Ab resistance in B. mori [80], and Cry1Ac and Cry1Ca tolerance among S. exigua [81]. A locus containing the abec2 gene was also implicated in an O. nubilalis Cry1F toxin resistance trait [35**, see further discussion below]. More recently, a truncation in the ABCA2 gene was genetically linked with Cry2A resistance in H. armigera and H. panchita [82*], and expression of an ABCG subfamily member is reduced among Cry1Ac resistant P. xylostella larvae [83]. These studies established ABC transporters as an important player in both Bt toxin mode of action as well as a point at which mutations can confer resistance [84,85], even though the ABC transporter role in Bt toxin binding has not yet been established. Taken into context, identification of multiple mutations among independent genes leading to Bt resistance might suggest that species of Lepidoptera can attain some degree of tolerance in laboratory or field conditions by virtue of different evolutionary paths [15,86,87]. It remains to be seen if implication of ABC transporters in resistance of a large number of Lepidoptera will prove to be a universal underlying causal factor.

Genetic control of receptor dysregulation

Resistant has evolved by means of reduced expression of Bt toxin receptors in the apn, alp and abec gene families (see above), and a number of instances demonstrate that transcriptional control assorts independently of binding receptor genes such that one might deduce it to be under epistatic control (Box 1). Specifically, studies have highlighted the likely role of trans-regulatory mechanisms in the constitutive downregulation of transcription from genetic loci encoding APN1 [57**], APN1 and 3 [54**], and ABCC2 and 3 as well as ALP [65**]. Initial indications that gene regulation can be a factor in the evolution of Bt resistance among Lepidoptera came from the linkage between an endogenous transcriptional repression of apn1 and upregulation of apn6 with the Cry1Ac resistant T. ni strain GLEN-Cry1Ac-BCS [69]. Importantly, and in contrast to prior studies that only documented reduced transcript levels [45,56], Tiewsiri et al. [57**] also demonstrated that the genetic control of Cry1Ac resistance segregated independent of the T. ni apn1 locus within backcross pedigrees. Analogously, a trait that results in the constitutive down-regulation of the Onapn1 transcript and confers Cry1Ab tolerance in the O. nubilalis Cry1ABR colony was mapped to two quantitative trait loci (QTL) with high-throughput single nucleotide polymorphism (SNP) markers [88], and confirmed that both QTL for Cry1Ab resistance segregated independently of apn loci [66,88]. These data suggest that QTL for Cry1Ab and Cry1Ac resistance may directly modulate the transcription at certain unlinked apn genes, which is hypothesized to occur through the control of a trans-regulatory mechanism. Although simple from a genetic standpoint, these studies profoundly affected the conceptual framework by

Box 1 Contributions of gene regulation in the evolution of Bt resistance

Structural mutations that cause gross alterations in the proteins encoded by Bt toxin receptors in the insect midgut, such as truncations and frameshifts, are relatively straightforward to discern in the context of potential changes in toxin-receptor interactions; especially in cases when known Bt toxin-binding domains are altered or eliminated from the mature proteins. Similarly, the downregulation of transcript levels are surmised to result in concomitant reductions in protein levels, which for example would decrease Bt receptor titers in the midgut and disrupt the normal toxin mode of action. In this latter case, the causal basis of transcriptional dysregulation can be manifested by way of either cis-acting or trans-acting mutations, which respectively involve changes in regulatory elements on the same DNA strand in proximity to the gene coding sequence and those that can act by means of a diffusible factor encoded at a different genetic locus (Figure 1).

Interestingly, in three instances wherein mutations in genes encoding trans-regulatory factors have been implicated in the Bt toxin resistance mechanisms that result from the downregulation of aminopeptidase N, alkaline phosphatase, and ABC transporter genes ([54**,57**,65**], these mutations have affected the quantitative expression of transcripts from two or more genes. In the case of T. ni [57**] and O. nubilalis [54**], trans-regulatory mutations affect transcription from related members of midgut-expressed aminopeptidase N gene family, which may have retained a degree of coordinated control due to probable duplication from an ancestral copy. For O. nubilalis a trans-regulatory mutation appears to result from the combined effect of two independent QTL which may coordinate the down-regulation of apn1 and apn3 transcripts, although it remains unknown if these two factors act independently on the two separate genes or contribute additively. It remains unclear if this O. nubilalis dysregulation of apn1 and apn3 results from an analogous trans-acting factor controlling apn1 expression in T. ni that was linked to the abec2 locus [79], but considering the dissimilarities between apn1 expression it is conceivable that the trans-acting factors in O. nubilalis could result from mutations at another points in the aminopeptidase N gene regulatory pathway.

In contrast, P. xylostella appears to have a single genome region (QTL) that has pleiotropic effects on the transcription of ABC transporter and alkaline phosphatase [65**]; that is, changes in mapk4 were shown to affect the expression of two seemingly unrelated genes. The connection between mapk4 and the regulatory pathways of Bt toxin resistance genes remains unknown but could involve indirect modulation of individual control switches for the two gene families or connection within a larger yet undescribed signal transduction cascade. Transcriptome-wide analyses of gene expression, such as the application of RNA-seq, hold the promise to help elucidate systemic changes in gene expression that are associated with these gene regulatory changes. Regardless, a small number of changes in gene regulatory cascades can result in a dramatic downstream effects. For instance, despite the introgression of an O. nubilalis Cry1F toxin resistance trait into a genetic background common to susceptible controls, several thousand transcripts showed significant quantitative changes between resistant and control larvae [99*]. This highlights the complications still presented for such genomic-wide studies, which may be inherent to the global changes invoked by mutations a few genes that regulate entire pathways. A greater understanding of the interconnectedness of gene regulatory pathways may be needed in order to fully appreciate the complex system-wide changes observed between resistant and susceptible phenotypes, and moreover to fully grasp the role gene–gene interactions may play in the evolution of Bt resistance among species of Lepidoptera.
which Bt resistance is thought to develop; mainly that resistance can develop by transcriptional disruption involving gene-regulatory networks (Box 1).

Interestingly, the *T. ni* QTL for Cry1Ac resistance that controls the down-regulation of *apn1* [57**] was mapped to the *abcc2* locus [79]. Although any connection between *abcc2* and the transcriptional control of *apn1* remains unknown, these results might suggest a convergence between involvement of the *abcc2* locus and trans-regulatory control of the *apn1*. Recent evidence from *P. xylostella* may shed light into this control mechanism. Specifically, Guo et al. [65**] reported linkage between control of *alp* transcription and inheritance of a QTL positioned within the same genomic region as *abcc1*, 2, and 3. Conservation of *abcc1*, 2, and 3 mutations among resistant and susceptible strains led these researchers to suspect other genes within this genome interval may be the causal factor for Cry1Ac resistance. Successful use of RNAi to knockdown transcripts for the proximal mitogen-activate protein kinase 4 gene (*mapk4*) resulted in both upregulation of *alp* as well as *abcc2* and 3, and conversely endogenous down-regulation of these same genes were associated with elevated *mapk4* expression among Cry1Ac resistant compared to susceptible *P. xylostella* larvae [65**]. These findings are significant in that a genetic factor at the *abcc2* locus (e.g. *mapk4*) was shown to control transcription of yet a different Bt toxin receptor, in this case *alp*. Even more importantly, these results implicate MAPK4 as a factor in trans-regulatory control of genes encoding known Bt toxin resistance genes. Supporting evidence may have come from results of ultra-high density genotyping-by-sequencing (GBS) marker-based QTL mapping that implicated a locus containing *abcc2* with segregation of an incompletely recessive *O. nubilalis* Cry1F resistance trait. Specifically, GBS markers adjacent to a marker for the *O. nubilalis* *abcc2* gene were more tightly associated with the QTL, which was interpreted to suggest that either another *abcc* gene or other linked genetic factor may be controlling Cry1F resistance in *O. nubilalis* [35**]. Recent whole transcriptome and RNA-seq-based gene expression analyses indicated significant reductions in *alp* and *apn* transcripts in the midgut of Cry1F resistant compared to susceptible *O. nubilalis*, but ABC transporter-encoding transcripts were not identified within this pool of differentially-expressed genes [89*]. It will be interesting to see if *mapk4* has any involvement in controlling *apn*
expression and concomitant Cry1Ac or Cry1Ab toxin resistance traits in *T. ni* or *O. nubilalis*. Such information will provide a means to unravel the genetic architecture that leads to *O. nubilalis* Cry1F resistance.

Conclusions

Field-evolved resistance to Bt toxins expressed by transgenic crop plants represents a threat to current insect pest management practices, as well as a challenge to sustainable production practices. Laboratory models have proven valuable for the investigation of traits conferring Bt toxin resistance among species of Lepidoptera, and progress of this research has been facilitated by advances in molecular genetic-level and genomic-level analyses [36]. Devising effective IRM plans will undoubtedly require additional investigations into the genomic architecture of resistance, as well as the myriad of complex biological and ecological interactions of the insect that modulate the function of this genetic architecture.

Acknowledgements

This work was a joint contribution from the United States Department of Agriculture (USDA), Agricultural Research Service (ARS) (CRS Project 3625-2-2000-017-00), and the Iowa Agriculture and Home Economics Experiment Station, Ames, IA (Project 3543). Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the for its use. USDA is an equal opportunity provider and employer.

References

Performed laboratory bioassays within a long-term field screening program aimed to monitor the frequency of Cry1F resistance alleles in *Ostania nubilalis* populations. This study demonstrated that allele frequencies are at levels that exceed minimum modeling thresholds that could suggest the durability of this Bt toxin would be compromised, but no field-resistance has been observed.

Authors revised standard modeling parameters to demonstrate that even mild departures from random mating and/or changes in dominance may lead to strictly recessive inheritance among resistance alleles can hasten the evolution of field resistance. Results are congruent with biological parameters that may have led to field-evolved resistance among Lepidoptera insects.

Identified a large number of single nucleotide polymorphisms (SNPs) using a genotyping by sequencing approach, and performed fine mapping in Ostrinia nubilalis. High SNP marker density, including one within the abcc2 gene, identified the genome region containing the abcc2 gene as being linked to the QTL for Cry1F resistance, and identified markers more closely linked to the QTL compared to abcc2, suggesting that other loci may be the causal genetic factor.

43. Knight PJ, Knowles BH, Ellar DJ: The receptor for Bacillus thuringiensis Cry1A(c) delta-endotoxin in the brush border membrane is aminopeptidase N. Mol Microbiol 1994, 11:429-436.

53. Coates BS, Sumerford DV, Hellmich RL, Lewis LC: Repetitive genomic elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research. Genome 2009, 52:57-67.

Using high-throughput single nucleotide polymorphism markers and gene expression analyses, this study showed that Cry1Ab resistance is attributed to a gene regulatory mutation. The trans-regulatory factors are positioned at two independently segregating QTL (one major and one minor) that control the expression of aminopeptidase N 1 in Ostrinia nubilalis larvae.

55. Crava CM, Bel Y, Jakubowska AK, Ferré J, Escriche B. Midigumaminopeptidase N isoforms from Ostrinia nubilalis activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochem Mol Biol 2013, 43:924-935.

In contrast to prior studies that implicated ABCC2 as a factor that determines Cry1A resistance in Lepidoptera, this study represents the first that linked an ABC transporter in the subfamily A to a different class of Bt toxins, Cry2Ab. Results suggest that other ABC transporter gene families may be involved in a broad range of Bt resistance mechanisms.

A genomics approach was used to analyze the entire midgut transcriptome of *Ostrinia nubilalis*. Results showed that gene expression did not change among Cry1F resistant exposed to Cry1F toxin compared to those on control diet, indicating that cellular damage due to pore formation likely does not occur. Additionally, the study established that Cry1F resistant larvae have constitutive reductions in alkaline phosphatase and aminopeptidase N transcript levels.