Choosing the Optimal Diagnostic Dose for Monitoring Insecticide Resistance

W. ROSS HALLIDAY1 AND KENNETH P. BURNHAM2,3

Stored-Product Insects Research and Development Laboratory, USDA-ARS, Savannah, Georgia 31403

ABSTRACT We developed a model to investigate the best conditions for conducting diagnostic dose tests to monitor insecticide resistance when dose-response lines of the susceptible and heterozygous strains overlap. In the model, χ² analysis and a one-tailed Z test were used to test the accuracy or power of the experiment. Seven independent factors (slope, resistance factor, frequency of resistance, inheritance of resistance, dose, number of susceptible strain insects, and number of test strain insects) contributed to a test's potential accuracy. With two exceptions—dose and sample size—the accuracy of the test will be higher as the numerical value of any factor increases. Under our conditions, accuracy decreased as dose approached 100% mortality of the susceptible strain. This relationship suggests that, in the absence of a discriminating dose that has been shown to distinguish genotypes, use of slightly lower doses that do not kill an extremely high proportion of susceptible insects may be preferable.

KEY WORDS Insects, resistance, diagnostic dose, statistical test power

The appearance of insecticide resistance in a population is usually detected with one or more of three techniques. The traditional approach uses complete dose-response tests with 4–5 doses that produce 10–90% mortality. Resistance is expressed in terms of the ratio of the LD₅₀ or LD₉₀ of the resistant strain to that of the susceptible strain. Alternatively, one dose is often used and the mortalities of the susceptible and test strains are compared. This approach is called the discriminating or diagnostic dose test. The term discriminating dose is properly used when enough genetic and toxicological evidence has accumulated that shows that a dose causes a different response between genotypes. Diagnostic dose is a less rigorous term and is used when one wants to monitor resistance but is less certain that the dose does separate genotypes. The third choice for detecting resistance is to use one of the small-scale biochemical assays or techniques from molecular biology that have been adapted to measure the frequency of specific resistance mechanisms in populations (Hemingway et al. 1986, Brown & Brogdon 1987). These elegant assays are currently of limited value in monitoring the initial development of resistance, because years of research are required for selection of homozygous resistant strains and assay optimization and validation.

An extensive body of literature about the statistical treatment of data for probit analysis of susceptible strains was reviewed by Finney (1971). Toxicities of different xenobiotics can be compared with probit regression. Investigations of the requirements for reliable estimation of dose-response regressions for insecticides have emphasized criteria for precise comparisons. Robertson et al. (1984), for example, investigated optimal sample size and dose selection necessary to produce precise lethal dose estimates in typical bioassays. Although the concept of discriminating doses has been used for many years (see Brown & Pal 1971), its statistical limitations have been investigated only recently.

The scientist who suspects that resistance is present must choose between estimation of complete dose-response lines or use of a single-dose test. Disadvantages of complete dose-response lines include being time-consuming and insensitive to slight changes in resistance gene frequencies, especially at the LD₉₀. Because of the wide fiducial limits at the LD₉₀ and higher, determining whether resistance exists based on differences at the LD₉₀ can be ambiguous or misleading. Roush & Miller (1986) described some of the advantages of the discriminating dose technique. The primary advantage is speed: Because fewer individuals must be tested, more populations can be tested. They divided diagnostic dose tests into two categories (perfect and nonperfect) depending on whether the dose killed all susceptible insects and no resistant ones (perfect) or killed both genotypes (nonperfect).

In many instances, perfect discriminating doses have provided useful data for genetic studies. Most notably, this has occurred when organophosphorus or cyclodiene insecticides have been used because...
resistance levels are generally high and inherited in a codominant to dominant manner. For most situations, some caution must be used before the technique is applied. Unfortunately, the genetics and toxicology of resistance are understood for few species. Therefore, the researcher does not know whether a discriminating dose exists. Extrapolation from work on other species is sometimes used as an indicator of the level of resistance, type of resistance and mode of inheritance which might be expected in a homozygous strain. Extrapolation between laboratory strains and field strains is tenuous because of natural variation in sensitivity between populations. Should a field population be less sensitive than a laboratory strain, lower mortality might occur at a supposed discriminating dose when in fact the survival would be due to natural variation in response within the field population. Based on these reasons alone, use of the diagnostic dose approach to monitor resistance might not be wise if that resistance is not well understood.

Dennehy et al. (1983) indicated the dangers of arbitrarily choosing a dose several times higher than the LD$_{50}$. For mites resistant to dicofol, use of such a dose resulted in an underestimate of resistance because a large proportion of the resistant mites also were killed by this dose. By lowering the dose and changing the test technique, they were better able to estimate the resistant population.

Roush & Miller (1986) briefly considered the subject of low versus high diagnostic doses. Their concern was that high doses inevitably have a higher estimation error. A lower dose would then be better based on its intrinsically improved accuracy. However, this effect is mitigated by the increased sample size.

Neither Dennehy et al. (1983) nor Roush & Miller (1986) addressed the central question of how to determine the correct dose with which to test a putatively resistant strain. In a perfect scenario, all doses that kill all susceptible insects exclusively are equivalent. Under the nonperfect scenario, choosing the dose is less straightforward because an accurate estimation of the susceptible strain's mortality at the discriminating dose is required.

In this paper, we describe an approach for improving the probability of detecting resistance based on finding the best diagnostic dose. This approach measures the statistical confidence, or power, we could have in detecting a difference in mortality of the susceptible and test strains that might be due to resistance. Statistically, the accuracy or power of the test is calculated at various conditions that can be changed. For testing two strains, large-sample statistical theory assures us that the most powerful tests are the χ^2 test for a two-tailed test, or the Z test for a one-tailed test (Lehmann 1959). The actual power of these optimal tests, as influenced by all relevant factors, is the subject of this paper.

The power of a statistical test can be defined in a number of ways. According to Mendenhall & Schaeffer (1973), power = $1 - \beta$, where β is the probability of accepting the null hypothesis (H_0: mortality of the susceptible strain = mortality of the test strain) when it is false. In this sense, power is the probability that the test will reject the null hypothesis and is really only of interest when H_0 is false. However, power is defined when the null hypothesis is true, in which case power equals the α level (where α is the probability of rejecting a true hypothesis). A much more valuable use of power occurs when H_0 is false. In this case, power is the probability of correctly accepting the alternative hypothesis (H_a: mortality of the susceptible strain < mortality of test strain), i.e., a difference in mortality exists between the two strains that might be due to resistance. To use the model we want it to predict conditions under which power will be maximized.

The Model

The model we used to calculate the power of diagnostic dose tests is based directly on the 2×2 contingency table in which the number of surviving and dead susceptible insects are compared with the numbers from the test strain with either the χ^2 test (df = 1) or the Z test. The probability of either of these tests is easily computed using SAS-PC Version 6.09 (SAS Institute 1987, 70). When H_0 is false, the χ^2 statistic follows a noncentral χ^2 distribution (df = 1) with a noncentrality parameter, λ. In SAS-PC, the noncentral χ^2 distribution is an interactive function, i.e., for any value of λ, SAS will calculate power.

To find λ, we calculated the expected number of dead and alive insects for the treatment and used these numbers in the formula for the χ^2 statistic. The validity of this procedure to compute χ^2 test power has been shown by Drost et al. (1989).

To compare the two-tailed χ^2 test statistic with the one-tailed Z test favored by Roush & Miller (1986), we note that $Z = -\log(1 - p)$ is the signed square root of the χ^2 test and H_0 is rejected if Z exceeds the critical value of 1.645 (for $\alpha = 0.05$). The probability distribution of the Z test is the normal distribution with mean $\sqrt{\lambda}$ and a standard deviation of 1. Thus, the power of the one-tailed Z test is the probability that such a random variable exceeds 1.645.

Mortality of the susceptible strain was based on the calculated logit regression, given the slope and the LD$_{50}$. We characterized the resistance by calculating logit regression lines for fully resistant and a putative resistant strain. In a perfect scenario, all doses that kill all susceptible insects exclusively are equivalent. Under the nonperfect scenario, the power of the test is the normal distribution with mean $\sqrt{\lambda}$ and a standard deviation of 1. Thus, the power of the one-tailed Z test is the probability that such a random variable exceeds 1.645.
Model
to calculate the power of testing directly on the \(2 \times 2\) table, the number of survivors in susceptible and resistant insects are compared with test strain with either the Z test. The power of either approach using SAS-PC Ver-1987, 70). When \(H_0\) is false, a noncentral \(X^2\) distribution parameter, \(\lambda\). In SASS distribution is an interactive slicer of \(\lambda\), SAS will calculate the expected number sets for the treatment and the formula for the \(x^2\) statistic procedure to compute \(x^2\) imposed by Drost et al. (1989). noted \(x^2\) test statistic with the \(1\) by Boush & Miller (1986), signed square root of the \(x^2\) df if \(Z\) exceeds the critical 0.05. The probability dis- is the normal distribution uncer deviation of 1. Thus, iled Z test is the probability ratio exceeds 1.645.

Susceptible strain was based on reion, given the slope and the resistance by calcula- on lines for fully resistant susceptible strain, Next, the if the resistance was estab- lished regression line between susceptible and resistant lines. Fir-synthesized in which a re-

Hardy-Weinberg equilibrium test strain at various concentration mortal- ity in the susceptible strain both strains was calculated 99.9% mortality of the sus-

cceptible strain. Survival of the two populations was compared statistically as described above. This procedure was repeated as each parameter of interest was changed sequentially.

A convenient way to visualize the dose is to view it in terms of toxic equivalents required to kill a certain proportion of the susceptible population. For computational simplicity, we assumed that slopes for the regression lines are equal. For ease of presenting the results, we classified variables affecting the power into three groups (operational, toxicological, and genetic) following the scheme of Georghiou & Taylor (1977), who listed similar factors that influence the rate of resistance development. Parameters that we considered are listed and defined in List 1 according to whether they are toxicological, genetic, or operational. According to Georghiou & Taylor (1977), only operational factors can be manipulated to make resistance develop faster or slower. Likewise, in our analysis only operational factors can be changed by researchers to increase the test's power. These factors are the number of susceptible insects tested \((n_s)\), the number of test strain insects tested \((n_t)\), and the dose \(d\) [mortality of the susceptible strain]. The genetic factors are frequency of the resistance gene \((p)\) and dominance of the resistance \((\gamma)\). Toxicological factors are resistance factor \((\Delta, \delta)\) and slope of the dose–response line. In one sense, genetic and toxicological factors are inherent to the insect and insecticide and cannot be changed. However, the magnitude of these factors certainly varies within insecticide classes and might offer some chance for manipulation. We examined the contribution of toxicological and genetic factors to determine if some situations were more likely to produce tests of high power.

Results
Our calculations are presented in two ways. As mentioned earlier, mortality in the test strains was determined relative to the mortality in the susceptible strain. In this manner, power could be directly related to dose. The second method was to plot maximal power \((\text{MaxPower})\) as a dependent variable. MaxPower is the highest power found for a specified set of conditions over the range of doses producing 0–99.5% mortality of the susceptible strain. MaxPower provides useful comparisons of the effects of multiple variables. As shown in Fig. 1, MaxPower for a slope of 3.3 was 0.35. We refer to the optimal dose that produces MaxPower as \(d_{\text{opt}}\). As will be shown later, \(d_{\text{opt}}\) varies depending on the magnitude of the parameters. The results are based on selected parameter values chosen to illustrate each relationship.

Comparison of \(x^2\) and One-Tailed Z Tests. Of obvious interest is the effect of the statistical test used. In earlier versions of our program, we used a \(x^2\) test to generate power because our interest was in \(d_{\text{opt}}\) more than the value of power. In an earlier draft of this manuscript, two anonymous reviewers indicated that a one-tailed Z test would be better because the \(x^2\) test is two tailed. When monitoring populations for resistance, we are not interested in significance of results in which the mortality of the test strain is greater than that of the susceptible strain. In our opinion, use of a one-tailed Z test is preferable.

In this series of calculations, each parameter was set and the power calculated over a range of concentrations from 0 to 99.5% mortality of the susceptible strain; maximum power was recorded. Six series were done to see whether relationships observed were consistent. As shown in Table 1, the maximum power depends on the test statistic. As expected MaxPower was higher in all cases when the Z test statistic was used. However, the effect was small, especially at very high powers. The dose producing MaxPower, \(d_{\text{opt}}\), remained constant for the two test statistics (a result that statistical theory can show will always be true).

Effect of Toxicological Factors. The first toxicological factor that we examined was slope, the...
We investigated the effect of slope on power by examining changes over the entire range of doses at a given slope (Fig. 1). The conditions for this test were \(n = 200; n_r = n_s = 100; \Delta = 1.0; P = 0.05; \) and \(\gamma = 0.90. \) Slopes ranged from 2.5 to 5.5. Slope had a distinct effect on power (Fig. 1). Three important trends in this figure are apparent. First, the test’s power increased with higher slopes. For example, at the dose producing 95% mortality of the susceptible strain, power is 0.66 for a slope of 5.5 and 0.20 for a slope of 2.5.

The second important trend was the consistent decrease in the power between the optimal dose and 100% mortality in the susceptible strain. This decrease was primarily due to the fact that fewer susceptible individuals survived the dose. Consequently, the statistical power of the test was reduced. This decrease in power suggests that the accepted procedure of establishing a discriminating dose of twice or four times the \(\text{LD}_{50} \) or \(\text{LD}_{90} \) will actually sometimes cause the wrong conclusion to be made whether resistance exists in the test population. The third trend is that as slope increases, so does the optimal dose. In these calculations, the optimal dose ranged from 89.0 for a slope of 2.5 to 98.1 for a slope of 5.5. This means that the optimal dose for conducting diagnostic dose tests depends upon the variables unique to that system.

The parameter \(\Delta \) is directly related to the resistance factor (the ratio of the \(\text{LD}_{50} \) of the fully resistant strain to the \(\text{LD}_{50} \) of the susceptible strain). In our model, all values were transformed so that \(\Delta = 1.0 \) would actually correspond with a resistance factor of 10.0 when the \(\text{LD}_{50} \) ’s were based on the logarithm of dose. Delta had a large effect on power (Fig. 2). The conditions of this test were \(P = 0.01; n = 2,000; n_r = n_s = 1000; \gamma = 0.9; \) and slope = 3.0. At low \(\Delta \) power remained low. Under the conditions of this test, an apparent threshold existed above which the power increased dramatically. This occurred when \(\Delta \) increased from 1 to 2 (Fig. 2). Power decreased as dose approached 100% susceptible mortality in the same manner as was seen in Fig. 1 except where resistance equaled 10,000 (\(\Delta = 4.0. \))

Effect of Genetic Factors on Power. We define \(p \) as the frequency of the resistance gene in the test population. All parameters were held constant as before and the frequency of the resistance gene in the test population was then incrementally changed. The initial parameters for Fig. 3A were the slope = 3.00; \(n = 200; n_r = n_s = 100; \Delta = 2.0; \gamma = 0.5. \) Hardy–Weinberg equilibrium was assumed. We also ran a number of tests and analyses to confirm whether the optimal dose was reached, after which power decreased as the dose approached 100% susceptible mortality.
a slope of 5.5. This means for conducting diagnostic tests on the variables unique to directly related to the resistance of the LD_{50} of the fully D_{50} of the susceptible strain. es were transformed so that values of the elect were held existed above which the resistance existed. Under the conditions of this analytically. This occurred when the resistance gene was then incrementally in Fig. 1 except when parameters already mentioned on Power. We defined f the resistance gene in the rameters for Fig. 3A were the frequency of the resistance gene increases seems intuitively obvious, the frequency of resistant individuals in a population, the number of survivors
from the test population will increase concomitantly. The larger the sample size, the better the statistical accuracy will be. Decreased accuracy can be explained by fewer susceptible survivors being available for calculating the χ^2 value.

The second genetic component we investigated was dominance. For simplicity of calculations, we used a factor called γ instead of the traditional degree of dominance (D) of Stone (1968). Instead of ranging from -1 to 1 like D, γ ranges from 0 to 1. A value of 0 indicates complete recessiveness of the trait, whereas 0.5 and 1.0 indicate intermediate and complete dominance, respectively. D and γ are linearly related as shown in equation 1:

$$\frac{D + 1}{2} = \gamma$$

The degree of dominance of resistance influences accuracy of diagnostic dose tests in much the same manner as the parameters previously examined (Fig. 4). The conditions of this test were $P = 0.05$; $n = 2,000$; $n_1 = n_2 = 1,000$; slope = 3.0; and $\Delta = 1.0$. The conditions for Fig. 4B were the same as Fig. 4A except that $n = 200$, $n_1 = 110$, and $n_2 = 90$. At values of γ that indicate resistance is recessive, power is much lower than had the resistance been dominant. Fig. 4A indicates that, at d_{max}, power increases from 0.84 to 0.87 as γ changes from 0.10 to 0.50 to 1.0. Fig. 4B shows the relationship between MaxPower, γ, and P. This figure reiterates earlier results that showed increasing the gene frequency results in a higher power. It also demonstrates the advantage of having a dominant trait. To obtain a value of power of 0.9 (a reasonable level of accuracy in a test), the recessive trait in this example must be present at about three times the frequency of a dominant one (Fig. 4B).

Effect of Operational Factors on Power. Sample size is one of the most important considerations in designing any experiment. In diagnostic dose tests, sample size depends on the number of susceptible insects (n_s) and the number of insects from the test strain (n_t). We examined the relationship between sample size and power when n_s and n_t were equal, and the effect of changing the ratio of susceptible to resistant insects. Results of calculations in which $n = n_s + n_t$ varied from 200 to 2,000 and n_s and n_t were equal are shown in Fig. 5A. Other parameters were set at $P = 0.05$, $\Delta = 1.0$, $\gamma = 0.9$, and slope = 3.0. Trials run with differing sample sizes produced results analogous to those seen earlier, i.e., power peaked at d_{max} and was higher for increasing sample sizes (Fig. 5A). Under these conditions, MaxPower increased from approximately 0.293 when only 200 individuals were tested to approximately 0.966 for 2,000 individuals. This result seems intuitively obvious. As sample size increases, so does the statistical accuracy of the test. The optimal dose was unaffected by changing the sample size.

Roush & Miller (1986) suggested that testing a large number of susceptible insects would provide a better estimate of the true dose being used. They raised the question of whether changing the ratio of susceptible to resistant insects might also affect power. As shown in Fig. 5B, an optimal ratio exists but it becomes important only as power becomes relatively large. In the calculations when $P = 0.01$, power changed very little over a large range of ratios. When $P = 0.05$, power decreased relatively uniformly. Slight departures from the 1:1 ratio did not drastically decrease power. When many more insects of either type were tested, power was lower than it would have been had roughly equal numbers been tested. The highest power occurred when $n_s/(n_s + n_t) = 0.55$. The magnitude of the difference in power between a 1:1 and a 11:9 ratio was very small (0.791 versus 0.795 for $P = 0.05$). The asymmetry suggests that, to have a test with the...
on the number of susceptible number of insects from the test ing the relationship between when \(n_s \) and \(n_t \) were equal, rang the ratio of susceptible results of calculations in which from 200 to 2,000 and \(n_s \) and \(n_t \) in Fig. 5A. Other param- \(\alpha = 0.05, \Delta = 1.0, \gamma = 0.9, \) and \(b \) in differing sample sizes similar to those seen earlier, \(t_{\alpha/2} \) and was higher for n= \(n_s \) (Fig. 5A). Under these con­ Increased from approximately 0 individuals were tested to for 2,000 individuals. This result obvious. As sample size unaffected the test. s unaffected by changing the 86) suggested that testing a susceptible insects would provide he true dose being used. This is whether changing the ratio tinants might also affect \(n_s \), an optimal ratio exists, rirant only as power becomes e calculations when \(P = 0.01, \) little over a large range of 5, power decreased relatively satures from the 1:1 ratio did use power. When many more were tested, power was lower seen had roughly equal num­highest power occurred when The magnitude of the differ­en a 1:1 and a 1:9 ratio was rsus 0.765 for \(P = 0.05 \). The that, to have a test with the maximum power, researchers should test slightly more insects from the susceptible strain than insects from the test population.

Examples from Published Data

This kind of analysis requires dose—response data for susceptible, fully resistant, and heterozygous strains. Knowing the resistance factor, slope, and dominance, the researcher can then alter the re­main­ing variables to determine the optimum dose, the frequency of the resistance gene necessary in the population to be detectable, and the number of insects that must be tested. The results of this kind of analysis have been presented in Table 2. Published values of the level of resistance, slope of the dose—response line, and dominance (\(\gamma \)) were used as starting points. Power was calculated for three resistance gene frequencies (0.01, 0.05, and 0.10) based on testing either 100 or 1,000 susceptible and test insects. The resulting maximum power and dose are listed.

As described earlier, optimal dose and total sample were unrelated since the dose at which maximum power occurs remains constant despite changes in total sample size. Data from the work on Bacillus thuringiensis (Berliner) resistance in Indianmeal moth, Plodia interpunctella (Hübner), by McGaughey & Beeman (1988) suggest that use of diagnostic dose tests for monitoring resistance will not be very effective until the resistance gene reaches fairly high levels. Table 2 illustrates this point. Maximum power will reach the 0.95 power level when \(n_s = 2,000 \) and the resistance gene frequency is between 0.05 and 0.10. The best dose to use kills 95.0% of the susceptible strain. The situation would be even bleaker for monitoring resistance to pyrethrins in Sitophilus granarius (L.).

Table 2. Published values for slope, resistance level, and dominance for three insect—insecticide systems and the calculated values of power of diagnostic dose tests run with either 200 or 2,000 total insects at three gene frequencies

<table>
<thead>
<tr>
<th>Species</th>
<th>Insecticide</th>
<th>Slope</th>
<th>Resistance</th>
<th>Dominance</th>
<th>(P)</th>
<th>MaxPower when (n = 200)</th>
<th>MaxPower when (n = 200)</th>
<th>% Mortality at (d_{opt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. interpunctella</td>
<td>B. thuringiensis</td>
<td>2.5</td>
<td>87.1</td>
<td>0.370</td>
<td>0.01</td>
<td>0.067 0.116</td>
<td>85.0 85.5</td>
<td></td>
</tr>
<tr>
<td>S. granarius</td>
<td>Pyrethrins</td>
<td>4.2</td>
<td>16.7</td>
<td>0.184</td>
<td>0.05</td>
<td>0.170 0.707</td>
<td>85.0 81.5</td>
<td></td>
</tr>
<tr>
<td>C. quinquefasciatus</td>
<td>Bifenthrin</td>
<td>4.2</td>
<td>18.6</td>
<td>0.675</td>
<td>0.05</td>
<td>0.230 0.994</td>
<td>85.0 81.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.230 0.994</td>
<td>85.0 81.5</td>
<td></td>
</tr>
</tbody>
</table>

\(* \) References are Plodia interpunctella, McGaughey & Beeman (1988); Sitophilus granarius, Prickett (1980); Culex quinquefasciatus, Halliday & Georghiou (1985).

\(^{b} \) Based on \(n_s/(n_s + n_t) = 0.55. \)
This resistance is characterized by low dominance and low resistance level (Prickett 1980) and is thought to be due to a single gene, probably a mixed function oxidase. Even under the best conditions of $P = 0.1$ and a sample size of 2,000, the most power would be 0.49. Should one intend to monitor resistance to bifenthrin, a pyrethroid, in *Culex quinquefasciatus* Say, the southern house mosquito, the chances of detecting resistance are much higher. Resistance in this species is monofactorial as shown in both genetic crosses and metabolism experiments (Halliday 1983). In this situation, characterized by a fairly high slope, an intermediately dominant trait, and a low resistance level, power attains high levels (>0.95) when the gene frequency is between 0.01 and 0.05. If it is known that the gene frequency in the population is very high, (i.e., $>10\%$), the range of doses that will produce power of 0.999 is large (from 60.0 to 99.5%).

Conclusions

Diagnostic dose tests for monitoring resistance must be used with caution. Our results have shown relationships between various factors and how they influence the power of a diagnostic dose to correctly determine whether resistance exists in a population. Our model, which was designed to calculate the optimal dose to use in such experiments, revealed seven factors that interacted to influence the power. These could be conveniently classified as toxicological, genetic, or operational. As each factor changed, so did power but to varying degrees. The optimal dose increased as slope, resistance level, and dominance increased. The optimal dose decreased as resistance frequency increased and was unaffected by changes in sample size.

What does this analysis mean for those currently using or thinking of using diagnostic doses? It does not mean that all diagnostic dose experiments will produce incorrect results. Should such a test produce a significant difference in mortality between a susceptible and field strain, then this work is extraneous. There is a trend to conduct diagnostic dose tests in which the dose is chosen rather arbitrarily by multiplying the LD_{50} or LD_{95} by a factor of two or three (Suckling et al. 1987, Subramanyam et al. 1989). Clearly this strategy will result in the failure to detect resistance under some circumstances.

Application of this analysis in cases where resistance is not indicated would be interesting. An after-the-fact analysis of the test conditions might reveal whether the chances of detecting resistance had been high. If so, the original conclusion of there being no resistance in the field population would be strengthened. The true value of this kind of analysis probably resides in its ability to predict, at least the best dose to use in such assays and how likely the test is to reveal differences if they exist. The results presented here stress the need to find improved systems to monitor resistance in its early stages. Such systems might be derived from dose-response procedures, such as the use of two or three doses that kill between 50 and 95% of the susceptible strain or from improvements in molecular biology technology in developing probes for resistance.

Acknowledgment

We thank David G. Heckel, Dept. of Biological Sciences, Clemson University, Clemson, S.C., for helpful comments and suggestions about earlier drafts of this manuscript.

References Cited

Vol. 83, no. 4

monitor resistance in its early
light be derived from dose-
such as the use of two or three
n 50 and 95% of the suscep-
tments in molecular
veloping probes for resis-

swedgment

Weckel, Dept. of Biological Sci-
Clemson, S.C., for helpful
us about earlier drafts of this

ences Cited

1. 1971. Insecticide resistance in Health Organization, Geneva, :

Brogdon. 1987. Improved ide resistance through conven-
techniques. Annu. Rev. Ento-
matt & T. E. Leigh. 1983. lip and residual bioassay com-

Kallenberg, D. S. Moore & J. Power approximations to mul-
Am. Stat. Assoc. 84: 130-144.

The interrelationship between 1-resistance in the southern house nquefasciatus Say. Ph.D. disser-
California, Riverside.

P. Georghiou. 1985. Cross-
ance relationships of pyrethroids cted strain of Culex quinquefasciicidae). J. Econ. Entomol. 78:

ith, K. G. I. Jayawardena & P. . Field and laboratory detection cholinesterase resistance genes phosphate and carbamate resis-
(Diptera: Culicidae). Bull. Ento-

. Testing statistical hypotheses.

R. W. Beeman. 1988. Resis-
ringiensis in colonies of Indi-
mond moth (Lepidoptera: Pyral-
o. 81: 28-33.

L. Schaefer. 1973. Mathe-
d applications. Duxbury, North

The cross-resistance spectrum of 1(L.) (Coleoptera: Curculionidae) rethrin resistance. J. Stored-Prod.

C. Smith, N. E. Savin & R. J. fects of dose selection and sample

size on the precision of lethal dose estimates in dose-
grams. J. Econ. Entomol. 79: 298-298.

Stone, B. F. 1968. A formula for determining the degree of dominance of cases of monofactorial inher-

flour beetle (Coleoptera: Tenebrionidae) and saw-
toothed grain beetle (Coleoptera: Curculionidae) infest-
ing barley stored on farms in Minnesota. J. Econ. Entomol. 82: 989-995.

Suckling, D. M., D. J. Rogers, P. W. Shaw, C. H. Wear-
toring azinphosmethyl resistance in the light brown apple moth (Lepidoptera: Tortricidae) in New Zea-
land. J. Econ. Entomol. 80: 733-738.

Received for publication 18 April 1989; accepted 3 November 1989.
Thank you for your recent purchase with Infotrieve. Please contact us with the Infotrieve Order ID if you have questions or comments. Email: customerservice@infotrieve.com
Phone: 800-422-4633; 203-423-2175 (toll)

ORDER INFORMATION SUMMARY:
Infotrieve Order ID: 3521984 / Cart ID: 1948933
Copies: 1
Ordered By: Josh
Ordered By Email: josh.monken@monsanto.com
Order Time: 7/24/2013 3:38 PM
Bill Ref:
Cost Center: slb76552
Customer Order Number:
Urgency: Normal
Total Fee: $0.00
Genre: Article
Type: Doc Del (Journal Article)

ARTICLE INFORMATION:
Title: choosing the optimal diagnostic dose for monitoring insecticide resistance
Authors: halliday burnham
Pub Name: Journal of economic entomology
Std Num: 00220493
Volume: 83
Issue:
Pages: 1151-1159
Supplement:
Pub Date: 1990

The contents of the attached document are copyrighted works. You have secured permission to use this document for the following purpose: Permission to use 1 copy in US for the following use: "Internal General Business Use". You have not secured permission through Infotrieve, Inc. for any other purpose but may have other rights pursuant to other arrangements you may have with the copyright owner or an authorized licensing body. To the extent that a publisher or other appropriate rights-holder has placed additional terms and conditions on your use of this document, such terms and conditions are specified herein under “Copyright Terms”. If you need to secure additional permission with respect to this content, please purchase the appropriate permission via the Mobile Library.