Schmallenberg virus
Technical and scientific studies, EC implementing decision 27 June 2012

Wim H.M. van der Poel, Norbert Stockhofs, Armin Elbers (CVI); Martin Beer, Bernd Hoffmann (FLI); Stepan Zientara, Emmanuel Breard, Claire Ponsart (ANSES/UNCEIA); Falko Steinbach (AHVLA); Brigitte Cay, Nick de Regge (VAR-CODA)

April 2014
Schmallenberg virus Technical and scientific studies

Presentation outline

- **Pathogenesis**
 - Susceptible species
 - Organ distribution / pathology

- **Epidemiology**
 - Origin and spread
 - Characterization of the virus
 - Vectors

- **Diagnosis**
 - Detection in semen and embryos
 - Development and harmonisation of tests

- **Conclusion / Future perspectives**
Schmallenberg virus

Pathogenesis

- **Susceptible species**
 - Ruminants, mainly cattle and sheep
 - Other susceptible species: goat, deer species, moufflons, wild boar, camelids, mice, other.
 - Horses and pigs not susceptible.
 - Antibodies detected in many species

- **Organ distribution**
 - Multiple organs, blood and lymphoid tissues
 - Fetal membranes and placentomes

- **Pathology**
 - Infrequent Arthrogryposis Hydro-encephalopathy
Schmallenberg virus

Epidemiology

- **Origin and spread**
 - Origin /source still unknown
 - Spread throughout Europe and beyond
 - Seroprevalences decreasing in Europe 2012

- **Characterization of the virus**
 - Orthobunyavirus phylogeneticly related to Douglas and Sathuperi simbu viruses
 - Variabel region M-segment
 - Virulent cattle blood isolates
 - Atypical avirulent sheep brain isolates
Schmallenberg virus
Epidemiology (ctd)

- Vectors
 - Retrospective studies
 - Detections in various culicoides species
 \((C.\text{obsoletus, C.sensu stricto, C.scoticus, C.chiropterus, C.dewulfi})\)
 - High prevalences in 2011 (> 1%)
 - Prospective studies
 - SBV positives in 2012
 - Decreased prevalences (≤ 0.1%)
Schmallenberg virus
Diagnosis

- Detection in semen

<table>
<thead>
<tr>
<th>Country test lab</th>
<th>Tested</th>
<th>SBV RNA positives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>seropositive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>producing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batches %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>seropositive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>producing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulls %</td>
</tr>
<tr>
<td>Germany</td>
<td>740</td>
<td>94</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>France</td>
<td>940</td>
<td>160</td>
</tr>
<tr>
<td>Total</td>
<td>1735</td>
<td>262</td>
</tr>
</tbody>
</table>

- Development / harmonisation of tests
 - RT-PCR and Serologic tests established and harmonised
Schmallenberg virus Technical and scientific studies
Conclusion/ Future perspectives

- > 40 scientific publications, > 35 researchers
- Schmallenberg virus origin, characterization and source tracing
- Potential re-occurrence of SBV in Europe
- Contamination of semen
- Surveillance of emerging viruses and vectors
- Vector competence for Orthobunyaviruses