Transport and mobility play a fundamental role in the European Union (EU) by linking regions together. The EU’s transport policy endeavours to foster clean, safe and efficient travel throughout Europe, underpinning the right of citizens, goods and services to circulate freely within the single market.

The EU’s transport sector is considered essential for delivering the overarching goals of smart, sustainable and inclusive growth. It is hoped that the promotion of more efficient and interconnected transport networks will, among other benefits, lead to advanced mobility, carbon reductions, improved competitiveness and productivity gains. Policy initiatives within the transport domain touch on everyday lives: for example, the European Commission has proposed legislation relating to:

- the protection of passenger rights;
- security measures, such as a list of airlines banned from EU skies;
- road safety measures to reduce road fatalities and serious road accidents;
- funding to deliver a modern trans-European transport network (TEN-T) with multimodal transport solutions and traffic management systems to facilitate the mobility of goods and passengers across the EU;
- a range of policies designed to reduce greenhouse gas emissions from transport;
- sustainable urban mobility measures to improve individual’s quality of life;
• funding for research and innovation, for example, to encourage the development of cleaner and more energy-efficient vehicles.

Regional transport statistics are collected for a number of transport modes, covering a broad range of indicators, for example, transport infrastructure (the length of transport networks) or equipment rates (the number of vehicles per inhabitant). The other main area of transport statistics concerns flows of passenger and freight traffic between, within and through regions, with differences across regions often closely related to the level and structure of their economic activity, their number of inhabitants, or their geographical location in relation to key transport infrastructure (such as ports, airports, and road and rail networks).

This article focuses on regional statistics for road transport; note that information on other transport modes, such as air or maritime services, were covered in the previous edition and will feature again in the 2019 edition. The first half of the article provides a regional analysis for the number of passenger cars relative to the total number of inhabitants (the motorisation rate) and a similar analysis for public transport equipment (covering motor coaches, buses and trolley buses). This is followed by information on road fatalities, while the article closes with an analysis of road freight transport.

Trans-European Transport Network (TEN-T)

At the beginning of the 1990s, the EU agreed to set-up an infrastructure policy to support the development of efficient networks in the fields of transport, energy and telecommunications. A substantial policy review was launched in 2009 and this led to a new legislative framework that came into force in January 2014: Union guidelines for the development of the trans-European transport network (Regulation (EU) No 1315/2013).

Under the Connecting Europe Facility (CEF) for transport, EUR 22.4 billion are made available during the period 2014-2020 to co-fund trans-European transport network (TEN-T) projects. Through its investment plan for Europe, the EU seeks new and innovative ways to finance these infrastructure developments, with financing from public financial institutions, the private sector, or the European Fund for Strategic Investments (EFSI). The TEN-T programme consists of hundreds of projects: their ultimate purpose is to ensure the interconnectedness and interoperability of the EU’s transport network. At its core are nine multimodal transport corridors that are spread across Europe that are due to be completed by 2030.
To set the scene for the statistics that follow, it is perhaps useful to first underline the essential role that is played by road transport in both passenger and freight transport markets. Road freight transport is an important component of modern economic systems, providing services that connect producers, traders and consumers. In a similar vein, road passenger transport is also important, with many individuals and families — especially those living in suburban or more rural regions — becoming (highly) dependent on the use of a car.

In 2015, the modal split of inland passenger transport was dominated by passenger cars, which accounted for more than four fifths (83.1 %) of all passenger-kilometres within the EU-28; motor coaches, buses and trolley buses, and trains both accounted for single-digit shares, at 9.2 % and 7.7 % respectively. A comparison
between 2005 and 2015 reveals that there was little change in the modal split for inland passenger transport during the last decade, with an increase of 0.8 percentage points in the share of trains being largely offset by a decline in the use of motor coaches, buses and trolley buses (-0.6 points), while there was a slight reduction in the relative use of cars (-0.2 points).

This section examines equipment rates for passenger cars and for public road transport vehicles. The availability/use of these two different categories of vehicles might be expected, at least to some degree, to be inversely related, insofar as people living in regions characterised by a low number of public transport options may be more inclined to own their private vehicle, while people living in regions with efficient public transport systems may be less inclined to own a vehicle, especially when the regions where they live/work are characterised by congestion and/or difficulties to find a place to park.

Motorisation rates

Passenger cars are road motor vehicles, other than mopeds or motor cycles, intended for the carriage of passengers and designed to seat no more than nine persons (including the driver). This category includes vans designed and used primarily for the transport of passengers, as well as ambulances and motor homes. The number of passenger cars per inhabitant — also referred to as the motorisation rate — is calculated on the basis of the stock of vehicles as of 31 December and population figures as of 1 January of the following year.

There were approximately 258 million passenger cars circulating on the roads of the EU-28 in 2016, with the largest stocks of vehicles in Germany (45.8 million), Italy (37.9 million), France (32.1 million) and the United Kingdom (30.9 million). Relative to population size, there were, on average, 506 passenger cars per 1 000 inhabitants in the EU-28 in 2016; in other words, there was slightly more than one car for every two persons.

The motorisation rate in the Italian region of Valle d’Aosta/Vallee d’Aoste was 6.6 times as high as the rate in the Greek region of Peloponnisos

The distribution of motorisation rates across the 261 NUTS level 2 regions for which data are available was relatively balanced insofar as 124 regions had rates that were below the EU-28 average, 136 regions had rates that were above the average, and a sole region, Utrecht in the Netherlands, had a rate that was identical to the EU-28 average.

Regional motorisation rates in the EU ranged from a high of 1 173 passenger cars per 1 000 inhabitants in Valle d’Aosta/Vallée d’Aoste (north-western Italy) down to 178 passenger cars per 1 000 inhabitants in Peloponnisos (southern mainland Greece). As such, relative to population size, the availability of passenger cars in Valle d’Aosta/Vallee d’Aoste was 6.6 times greater than in Peloponnisos. While these statistics on motorisation rates can be linked to the economic fundamentals of each region, they may also reflect specific circumstances: for example, the highest equipment rates in Valle d’Aosta/Vallee d’Aoste may, at least in part, be attributed to lower taxation on new vehicle registrations. A closer analysis of the results reveals that alongside Valle d’Aosta/Vallee d’Aoste both the second and third highest motorisation rates in the EU were also recorded in northern Italy — Provincia Autonoma di Trento (925 passenger cars per 1 000 inhabitants) and Provincia Autonoma di Bolzano/Bozen (876) — while the only other region to record a rate above 800 passenger cars per 1 000 inhabitants was Flevoland in the Netherlands (836).

The darkest shade in Map 1 identifies all those regions where the motorisation rate was at least 650 passenger cars per 1 000 inhabitants in 2016. Aside from the four regions mentioned above, 10 more regions across the EU met this criterion: five additional Italian regions (Umbria, Molise, Piemonte, Toscana and Marche), Åland and Länsi-Suomi (both in Finland), Attiki (the Greek capital city region), Luxembourg (a single region at this level of detail) and Prov. Vlaams-Brabant (just to the north of the Belgian capital city region).

It is interesting to note that several island regions reported relatively high motorisation rates, including Åland (799, the highest rate in Finland), the Illas Balears (595, the highest rate in Spain), Corse (558, the second highest rate in France), Cyprus (595) and Malta (615), both of which are single regions at this level of detail. These relatively high figures may, at least in part, be explained by a lack of alternative modes of transport for inland passenger travel; for example, most of these islands had relatively underdeveloped rail infrastructures or no rail services at all. Equally, these islands are all tourist destinations and experience a high demand from non-residents for rental vehicles, the inclusion of which inflates this ratio which is calculated relative to the resident population.

Metropolitan and capital city regions in western and northern Europe often had relatively low
At the lower end of the range, there were 24 regions in the EU where the motorisation rate was less than 350 passenger cars per 1 000 inhabitants in 2016 (these are shown in the lightest shade). They were principally located in Greece (eight regions), which may be contrasted with the relatively high motorisation rate for the Greek capital city region of Attiki, as well as in Romania (seven out of eight regions, the exception being the capital city region of Bucuresti - Ilfov) and Hungary (four regions). The other regions with a motorisation rate that was less than 350 passenger cars per 1 000 inhabitants included Východné Slovensko (eastern Slovakia), Latvia (a single region at this level of detail), the German capital city region of Berlin and two regions from the United Kingdom — South Yorkshire (a metropolitan region that includes the city of Sheffield) and London (a NUTS level 1 region).

Some of the highest motorisation rates in eastern and southern parts of the EU were recorded in capital city regions, whereas the opposite was quite often the case in western and northern parts of the EU. Aside from Berlin and London (mentioned above), each of the following western and northern capital city regions recorded motorisation rates that were considerably below the EU-28 average in 2016: Région de Bruxelles-Capitale / Brussels Hoofdstedelijk Gewest (Belgium), Hovedstaden (Denmark), Île de France (France), Noord-Holland (the Netherlands), Wien (Austria) and Stockholm (Sweden). A closer analysis reveals that these capital city regions had the lowest motorisation rates in each of these countries; this was also the case for Berlin in Germany, while London had the second lowest motorisation rate in the United Kingdom (as the rate in South Yorkshire was slightly lower). These low motorisation rates for capital city regions may be linked, among others, to congestion, having difficulty to find a place to park, a greater availability of public transport (such as bus, tram, trolleybus, and over- or underground rail networks), or concerns over sustainable development issues. This may lead households in some of the EU’s largest cities choosing to own just one car rather than multiple cars, or to have no car at all, and as a consequence to rely more or exclusively on public transport.

By contrast, the capital city regions of Praha (the Czech Republic), Attiki (Greece), Mazowieckie (Poland), Zahodna Slovenija (Slovenia) and Bratislavský kraj (Slovakia) recorded the highest motorisation rates in each of these eastern and southern EU Member States; furthermore, motorisation rates in each of these regions were systematically higher than the EU-28 average. The motorisation rate in the Spanish capital city region of Comunidad de Madrid was also above the EU-28 average, although higher motorisation rates were recorded by two other Spanish regions, Galicia and Illes Balears.
Motorisation rate, by NUTS 2 regions, 2016
(number of passenger cars per 1 000 inhabitants)

Map 1: Motorisation rate, by NUTS 2 regions, 2016 (number of passenger cars per 1 000 inhabitants)
Source: Eurostat (tran_r_vehst) and (demo_r_d2jan)
The first part of Figure 1 emphasises the generally high number of passenger cars in Italy (relative to population numbers), as half (10) of the 20 regions with the highest motorisation rates in the EU were Italian. The ranking also features four out of the five NUTS level 2 regions in Finland (the exception being the capital city region of Helsinki-Uusimaa, which had a motorisation rate just above the EU-28 average). The second part of Figure 1 provides information on the 20 regions with the lowest motorisation rates in the EU, these were principally in Greece, Hungary and Romania.

Figure 1: NUTS 2 regions with the highest and lowest motorisation rates, 2016

(number of passenger cars per 1 000 inhabitants)

Source: Eurostat (tran_r_vehst) and (demo_r_d2jan)

Remote and rural regions of the EU are generally characterised by low population density: with a relatively low number of potential passengers, it may not be financially viable to provide frequent and widespread public transport services. However, well-organised public transport services have the potential to stimulate economic growth and social inclusion through improving accessibility and mobility, which may be of particular importance to disadvantaged groups (such as the young, the elderly, those at risk of poverty, or the disabled). As a result, some governments and regional/local authorities choose to subsidise public transport services in remote areas, or alternatively to bundle minimum service provisions on such routes with the operation of more lucrative routes.

The term public transport road passenger vehicle is used to cover minibuses, mini-coaches, buses, motor coaches and trolleybuses used to convey more than nine passengers by road. Latest estimates suggest that in 2016 there were almost 900 thousand public road transport passenger vehicles (motor coaches, buses and trolleybuses) circulating on the roads of the EU-28. The largest stocks of vehicles were in the United Kingdom (162 thousand), Poland (113 thousand) and France (100 thousand).

The equipment rate for public road transport passenger vehicles is calculated in the same manner as for passenger cars; it is based on the stock of vehicles as of 31 December and population figures as of 1 January of the following year. The statistics presented in Map 2 on equipment rates for public road transport passenger vehicles mirror, to some extent, those for passenger cars (as shown in Map 1); insofar as in regions where car
ownership is relatively low one might expect a higher demand for public transport services. Note however that the data presented only concern road transport services and are therefore also influenced, to some degree, by the availability of alternative means of public transport, principally the provision of rail and metro services, the supply of which is often widespread in many of the EU’s larger cities, as well as ferry services.

Malta — which does not have a rail system — recorded the highest equipment rate for public road transport passenger vehicles

Map 2 presents equipment rates for public road transport passenger vehicles by NUTS level 2 region: in 2016, the average rate for the EU-28 was 1.8 vehicles per 1 000 inhabitants. A closer analysis by region suggests there was a relatively even distribution, insofar as regional equipment rates were lower than the EU-28 average in 136 out of the 261 regions for which data are available. Some of the lowest rates were recorded in parts of Germany, Austria and the Netherlands, where equipment rates often fell to below an average of 1.0 vehicle per 1 000 inhabitants (as shown by the lightest shade in the map). The seven lowest equipment rates for public road transport passenger vehicles were all located in the Netherlands, with the bottom 10 regions completed by two largely urban German regions — Berlin and Bremen — and the Spanish region of Ciudad Autonoma de Ceuta.

By contrast, the darkest shade in the map shows the 20 EU regions with the highest equipment rates for public road transport passenger vehicles, where the equipment rate was at least 3.25 vehicles per 1 000 inhabitants in 2016. The highest rate was recorded in Malta (a single region at this level of detail), where there were, on average, 4.4 vehicles per 1 000 inhabitants; this densely populated holiday destination is famous for its diverse and often customised buses. The second highest rate (4.2 vehicles per 1 000 inhabitants) was recorded in the Romanian capital city region, Bucuresti - Ilfov, the only other region in the EU to have a rate above 4.0. However, these two regions with the highest equipment rates were somewhat atypical, insofar as most of the regions with relatively high equipment rates were either rural or peripheral regions, as was the case for the next five regions that followed in the ranking of equipment rates, namely: Highlands and Islands (the United Kingdom; 3.9 vehicles per 1 000 inhabitants), Swietokrzyskie (Poland; 3.8), Yugoiztochen (Bulgaria; also 3.8), Molise (Italy; 3.7) and Estonia (a single region at this level of detail; also 3.7).
Map 2: Equipment rate for public transport vehicles, by NUTS 2 regions, 2016 (number of motor coaches, buses and trolleybuses per 1 000 inhabitants)

Source: Eurostat (tran_r_vehst), (road_eqs_busveh) and (demo_r_d2jan)

Source: Eurostat (online data codes: tran_r_vehst, road_eqs_busveh and demo_r_d2jan)
Road accidents

The incidence of road accidents can be linked to a wide range of different factors, including: the propensity to own a vehicle (the motorisation rate), the type of motor vehicle (car, motor cycle or moped), the characteristics of the vehicle stock (such as average age and engine power), the number of kilometres driven, the average speed, population density, the extent and quality of the road infrastructure, climatic and geographic conditions, national regulations that apply to vehicles and drivers, or driver conduct, for example, inadequate training/experience, a lack of concentration, dangerous driving, speeding, or driving under the influence of alcohol or drugs. The EU works closely with authorities in the EU Member States on road safety. It seeks to build on national initiatives, addressing all factors that play a role in crashes (infrastructure, vehicle safety, driver behaviour, emergency response), while setting targets — such as Vision Zero — to eliminate deaths and serious injuries on European roads by 2050.

Road safety is a major societal issue: in 2016, more than 25 thousand people died on EU-28 roads, while no fewer than 1.45 million were injured. When expressed relative to population size, there were, on average, 50 road fatalities in the EU-28 per million inhabitants.

Regional statistics for road accidents should be interpreted with care as the data presented may involve vehicles which are in transit through a region or non-residents staying in a region on holiday. As such, and other things being equal, regions that have transit corridors or regions with high numbers of tourists may well experience a higher incidence of injuries and fatalities. Among the 267 NUTS level 2 regions for which data are available, the incidence of road fatalities was somewhat skewed, as there were 118 regions with ratios below the EU-28 average, compared with 148 regions that had ratios above the average; one region, Lorraine in eastern France, had a rate that was identical to the EU-28 average. This skewed nature reflects, at least to some degree, a lower incidence of road fatalities in metropolitan regions (where average speeds are generally much lower), in contrast to higher rates in the more numerous rural regions.

By moving just over a thousand kilometres from the Austrian capital of Wien to the Bulgarian region of Severozapaden, the risk of dying in a road traffic accident was 15 times as high in the destination region than in the starting region.

There were 21 regions across the EU where the number of road fatalities was at least 100 deaths per million inhabitants in 2016. Regions with the highest incidence rates for road fatalities were concentrated in eastern and southern parts of the EU, with five regions in Greece and four regions from each of Bulgaria, Poland and Romania. Relatively high ratios were also recorded in two regions of southern Belgium — Prov. Luxembourg and Prov. Namur — the French island region of Corse, and the rural Portuguese region of Alentejo.

The highest incidence rate for road fatalities in the EU — across NUTS level 2 regions — was recorded in the Bulgarian region of Severozapaden (note this region also had the lowest level of economic activity per inhabitant in the EU), where there were 153 fatalities per million inhabitants in 2016. It was followed by Alentejo (142 fatalities per million inhabitants) and Prov. Luxembourg (138). The Greek region of Notio Aigaio (134) and another Bulgarian region, Severen tsentralen (132), were the only other regions in the EU to record incidence rates that were higher than 125 deaths per million inhabitants in 2016.

In 2016, the lowest incidence rate for road fatalities was recorded in the Austrian capital city region of Wien (10 deaths per million inhabitants). Including Wien, there were 31 regions across the EU where the incidence of road fatalities was less than half the EU-28 average, in other words, below 25 deaths per million inhabitants (as shown by the lightest shade in the map). Among these, there were 13 regions where the number of road fatalities was less than 20 per million inhabitants, the vast majority of which were urban areas, including: the capital city regions of Belgium, Germany, Spain, Austria, Sweden and the United Kingdom (NUTS level 1) and the metropolitan regions of Bremen and Hamburg (both Germany), Merseyside and Greater Manchester (both in the United Kingdom), Zuid-Holland (which includes the cities of the Hague and Rotterdam), and two atypical regions — Ciudad Autónoma de Melilla (Spain) and Cornwall and Isles of Scilly (the south-west of the United Kingdom).

This section closes with a short complementary analysis for road transport injuries. In 2016, the highest overall numbers of road transport accidents resulting in injuries — among NUTS level 2 regions — were recorded in the densely-populated regions of Lombardia (Italy; 45.4 thousand injuries), Cataluña (Spain; 36.0 thousand), Lazio (the capital city region of Italy; 27.8 thousand), Oberbayern (Germany; 25.4 thousand) and Emilia-Romagna (Italy; 23.6 thousand).
Relative to their number of inhabitants, the highest incidence rates for road injuries were principally reported in more rural German, Italian and Austrian regions. Leaving aside the atypical case of Ciudad Autónoma de Melilla (Spain), which had the highest rate in the EU, there were 12 regions where the incidence rate for road injuries was within the range of 5 750-7 000 injuries per million inhabitants in 2016: Niederbayern, Schwaben, Schleswig-Holstein and Oberpfalz (Germany); Liguria and Toscana (Italy); Salzburg, Tirol, Vorarlberg, Kärnten, Oberösterreich and Steiermark (Austria).
Map 3: Number of fatal road accidents relative to population size, by NUTS 2 regions, 2016 (per million inhabitants)

Source: Eurostat (tran_r_acci), (tran_sf_roadse) and (demo_r_d2jan)

Source: Eurostat (online data codes: tran_r_acci, tran_sf_roadse and demo_r_d2jan)
Road freight

Road freight transport is crucial for economic activity, carrying goods to where they are needed, as part of the deepening integration of the EU’s single market: whether as part of seamless production chains within manufacturing, acting as an interface between manufacturers and wholesalers/retailers, or delivering goods to customers (other businesses or households). The ability to move goods safely, quickly and efficiently to markets is important for international trade, national distributive trades and economic development. Strains on transport infrastructure (such as congestion) and the environmental impact of transport are two of the issues faced by road freight service providers.

As for passenger transport, roads are by far the most popular transport mode in the EU for inland freight transport, accounting for more than three quarters (76.4 %) of all tonne-kilometres in 2016, while the share of inland freight transported by rail (17.4 %) was almost three times as high as the share for inland waterways (6.2 %). There was only a small shift in EU-28 inland freight developments between 2006 and 2016, as the quantity of goods transported by rail fell by 0.9 points, while the relative share transported by road rose by the same amount, with no change in the share for inland waterways.

The highest quantity of road freight loaded was in Barcelona (Spain), both for road freight transported within national boundaries or elsewhere within the EU-28

In 2016, the total weight of goods loaded for road freight transport in the EU-28 was 14.2 billion tonnes; when taking account of the distance travelled for each goods operation, this equated to 1 852 billion tonne-kilometres (tkm).

Regional statistics for road freight transport should be interpreted with care as the data presented may reflect, to some extent, the size of each region, as those regions characterised by a large area normally transport more freight. In a similar vein, those regions that are characterised by transporting bulk products that tend to weigh a lot are also likely to report higher values.

In 2016, Barcelona (Spain) was the NUTS level 3 region with the highest level (22.5 billion tkm) of road freight loaded and transported within the EU-28; it was followed by two other Spanish regions, Valencia / València (16.0 billion tkm) and Madrid (13.1 billion tkm). There were three more regions in the EU where the level of road freight loaded and transported within the EU-28 was higher than 10 billion tkm: Groot-Rijnmond, which covers the conurbation around the city of Rotterdam in the Netherlands (12.1 billion tkm); Murcia in south-eastern Spain (11.7 billion tkm); and Hamburg in northern Germany (also 11.7 billion tkm). Together these six regions accounted for approximately 4.7 % of the total road freight that was loaded and transported within the EU-28.

Map 4 confirms that many of the regions with the highest levels of road freight transport were characterised by the presence of freight ports, a relatively high population density, or were located on major road arteries. Road freight transport appeared to be particularly concentrated in Spanish and Polish regions, with the latter particularly specialised in international transport following the opening up of the European haulage market. By contrast, the regions with the lowest levels of road freight were often relatively small island regions, where goods tended to be unloaded rather than loaded, or rural regions (predominantly in eastern or southern parts of the EU).
Road freight transport within the EU-28, by NUTS 3 regions, 2016
(million tonne-kilometres by region of loading)

Map 4: Road freight transport within the EU-28, by NUTS 3 regions, 2016 (million tonne-kilometres by region of loading) Source: Eurostat (road_go_ta_rl) and (road_go_ta_tott)

Note: the former Yugoslav Republic of Macedonia, Albania, Serbia and Turkey, national data.
Source: Eurostat (online data codes: road_go_ta_rl and road_go_ta_tott)
Figure 2 is based on the quantity of road freight loaded (in tonnes), with the information presented limited to goods that are transported within national borders. In 2016, the combined weight of goods loaded in each of the top 20 regions across the EU was 1.2 billion tonnes, equivalent to 8.5 % of the EU-28 total. Many of the NUTS level 3 regions at the top of the ranking for national road freight transport were the same as the regions which appeared near the top of the ranking for goods transported within the EU-28 (as shown in Map 4). Barcelona once again recorded the highest level of road freight loaded (118.0 million tonnes), followed by the northern Greek region of Grevena, Kozani (80.6 million tonnes), and the Spanish regions of Valencia / València (79.5 million tonnes) and Madrid (75.4 million tonnes).

Figure 2: NUTS 3 regions with the highest levels and ratios of national road freight transport, 2016

Source data for figures and maps

- Transport at regional level

Data sources

The legal basis for road transport statistics is Regulation (EU) No 70/2012 of the European Parliament and of the Council which provides for comprehensive regional statistics with regard to both the carriage of goods and vehicle journeys. Regional data on vehicle stocks are currently provided by EU Member States, EFTA and candidate countries on a voluntary basis.

National road freight transport is defined as road transport between two places (a place of loading and a place of unloading) located in the same country by a vehicle registered in that country. By contrast, international road freight transport is composed of four categories:

- international loaded, where the place of the loading of goods is in the reporting country (in other words the country in which the vehicle performing the transport is registered) and the place of unloading is in a different country;
• international unloaded, where the place of the unloading of goods is in the reporting country and the place of loading is in a different country;

• cross-trade, where the places of loading and unloading are two different countries, neither of which are the one where the hauling vehicle is registered;

• cabotage, where the places of loading and unloading are the same country, and this is not the one where the vehicle is registered.

Total international road freight transport therefore includes transport performed, completely or partially, outside of the country where a vehicle is registered.

Road safety

For road safety statistics, regional data are also collected on a voluntary basis. Two types of casualties are distinguished: people who are killed (road fatalities) and people who are injured. Road fatalities are include persons who are killed immediately in a traffic accident or who die within 30 days as a result of an injury sustained in a road accident; these statistics exclude suicides. An injured person is any person who, as result of an injury sustained in a road accident, was not killed immediately or did not die within 30 days, but sustained an injury, normally needing medical treatment; these statistics exclude attempted suicides. Persons with lesser wounds, such as minor cuts or bruises are not normally recorded as injured persons.

For more information:

Dedicated section on transport

Reference manual — regional transport statistics

Context

The European Commission’s Directorate-General for Mobility and Transport is responsible for developing transport policy within the EU. Its remit is to ensure mobility in a single European transport area, integrating the needs of the population and the economy at large, while minimising adverse environmental effects.

In March 2011, the European Commission adopted a White paper titled Roadmap to a single European transport area — towards a competitive and resource-efficient transport system (COM(2011) 144 final). It contains 40 specific initiatives designed to help build a competitive transport system in the EU and also set a range of environmental goals to be achieved by 2050, including:

• cutting transport-related greenhouse gas emissions by 60 % compared with 1990 levels;

• excluding conventionally-fuelled cars in cities;

• accomplishing a 50 % shift in medium-distance inter-city passenger and freight journeys from road to either rail or waterborne transport;

• progressing towards zero traffic fatalities;

• increasing to 40 % the use of sustainable low-carbon fuels in the aviation sector;

• reducing shipping emissions by at least 40 %;

• completing the European high-speed rail network.

The European Commission’s jobs, growth and investment package, adopted in 2014, highlights a range of infrastructure projects including: transport links between EU Member States; the expansion and upgrading of freight and passenger capacities in ports and airports; dedicated rail connections between important airports and urban centres; ‘green’ projects in the area of maritime transport; or the promotion of alternative fuel-infrastructures along major roads. When re-assessing its investment plan for Europe in 2016, the European Commission made proposals to double the duration of the fund and its financial capacity.
The European Commission has also enacted legislation in order to promote a safer, more connected and cleaner mobility system in the EU — Europe on the move. The objective is to promote safer traffic, less polluting vehicles and more advanced technological solutions through an integrated policy for future road safety, emission standards for heavy-duty vehicles, an action plan for developing and manufacturing batteries for use in transport vehicles, as well as a strategy for connected and automated mobility.

Within a regional context, smart mobility, multi-modal transport, clean transport and urban mobility are particular priorities for cohesion policy during the 2014-2020 funding period. The EU may use regional funds to help upgrade transport infrastructure and road safety initiatives, especially in EU Member States with comparatively poor road safety performance. European Regional Development Fund (ERDF) and cohesion fund support is available to provide co-financing for projects linked to the following investment priorities:

- supporting a multi-modal single European transport area by investing in the trans-European transport network (TEN-T);
- enhancing regional mobility by connecting secondary and tertiary nodes to TEN-T infrastructure;
- developing and improving environmentally-friendly and low-carbon transport systems, including inland waterways and maritime transport, ports, multimodal links and airport infrastructure, in order to promote sustainable regional and local mobility;
- developing and rehabilitating comprehensive, high-quality and interoperable railway systems.

Other articles

- Freight transport statistics
- Passenger transport statistics
- Railway freight transport statistics
- Road safety statistics - characteristics at national and regional level
- Stock of vehicles at regional level

Publications

- Eurostat regional yearbook
- Energy, transport and environment indicators — 2017 edition

Main tables

- Transport, see:
 - Regional transport statistics (t_tran_r)

Regional transport statistics (t_reg)

- Regional statistics (t_reg), see:
 - Regional transport statistics (t_reg_tran)
Database

- Transport, see:

 Multimodal data (tran)

 Regional transport statistics (tran_r)

Road transport (road)

 Road transport equipment - stock of vehicles (road_eqs)

 Stock of vehicles by category and NUTS 2 regions (tran_r_vehst)

Road freight transport measurement (road_go)

 Total road freight transport (road_go_tot)

 Annual road freight transport by region of unloading (1 000 t, Mio Tkm, 1 000 Jrnys) (road_go_ta_ru)

National road freight transport (road_go_nat)

 National annual road freight transport by regions of loading (NUTS 3) and by group of goods (1 000 t), from 2008 onwards (road_go_na_rl3g)

 National annual road freight transport by regions of unloading (NUTS 3) and by group of goods (1 000 t), from 2008 onwards (road_go_na_ru3g)

- Regional statistics by NUTS classification (reg), see:

Regional transport statistics (reg_tran)

 Road freight (reg_road)

 Other regional transport (reg_otran)

Dedicated section

- Regions and cities

- Transport

Data visualisation

- Eurostat statistical atlas (Chapter 11)

- Regional statistics illustrated

Methodology

- Regional transport statistics (ESMS metadata file — reg_tran_esms)

- Road freight transport methodology — 2016 edition

Legislation

- Regulation (EU) No 70/2012 of the European Parliament and of the Council of 18 January 2012 on statistical returns in respect of the carriage of goods by road (recast)
Maps can be explored interactively using Eurostat’s statistical atlas (see user manual).

This article forms part of Eurostat’s annual flagship publication, the Eurostat regional yearbook.

View this article online at https://ec.europa.eu/eurostat/statistics-explained/index.php/Transport_statistics_at_regional_level