Transport and mobility play a fundamental role in the European Union (EU) by linking regions together. The EU’s transport policy endeavours to foster clean, safe and efficient travel throughout Europe, underpinning the right of citizens, goods and services to circulate freely within the single market.

The EU’s transport sector is considered essential for delivering the overarching goals of smart, sustainable and inclusive growth. It is hoped that the promotion of more efficient and interconnected transport networks will, among other benefits, lead to advanced mobility, carbon reductions, improved competitiveness and productivity gains. Policy initiatives within the transport domain touch on everyday lives: for example, the European Commission has proposed legislation relating to:

- the protection of passenger rights;
- security measures, such as a list of airlines banned from EU skies;
- road safety measures to reduce road fatalities and serious road accidents;
- funding to deliver a modern trans-European transport network (TEN-T) with multimodal transport solutions and traffic management systems to facilitate the mobility of goods and passengers across the EU;
• a range of policies designed to reduce greenhouse gas emissions from transport;
 sustainable urban mobility measures to improve individual’s quality of life;
• funding for research and innovation, for example, to encourage the development of cleaner and more
 energy-efficient vehicles.

Regional transport statistics are collected for a number of transport modes, covering a broad range of indicators, for example, transport infrastructure (the length of transport networks) or equipment rates (the number of vehicles per inhabitant). The other main area of transport statistics concerns flows of passenger and freight traffic between, within and through regions, with differences across regions often closely related to the level and structure of their economic activity, their number of inhabitants, or their geographical location in relation to key transport infrastructure (such as ports, airports, and road and rail networks).

This chapter focuses on regional statistics for air and road transport; note that information on other transport modes, such as maritime services, were covered in a previous edition and will feature again in the 2020 edition. The first part of the chapter provides a regional analysis for air passenger and freight transport while the second part focuses on road transport: the number of passenger cars relative to the total number of inhabitants (the motorisation rate), road fatalities, and road freight transport.

Air passenger transport

The rapid growth of air passenger transport has been one of the most significant developments in transport services in recent years, both in the EU and the rest of the world. These rapid changes have, at least in part, been driven by liberalisation measures covering, for example, air carrier licensing, market access and fares. These measures have led (in particular) to the growth of low-cost airlines and an expansion of smaller regional airports which are generally less congested and charge lower landing fees than main international airports.

The 26 NUTS level 2 regions which reported at least 20 million air passengers in 2017 (as shown by the largest circles on Map 1) were located exclusively in the Member States that were already part of the EU prior to 2004. The regions with the highest numbers of air passengers in the EU unsurprisingly reflected the locations of some of the busiest airports. The peak value for passenger numbers was recorded in the French capital city region, Île de France, with 101.5 million passengers. This was followed by Outer London — West and North West, Noord-Holland and the German region of Darmstadt with between 64.4-78.0 million passengers; Darmstadt includes Frankfurt/Main airport. Note that the two main airports in Paris — Charles De Gaulle and Orly — are both located within the Île de France, whereas there were several major capital city airports that were located outside of the administrative boundaries that delineate their capital city, for example, London Gatwick and London Stansted are situated in Surrey, East and West Sussex (45.5 million passengers) and in Essex (27.0 million passengers) respectively, while Brussels airport is situated in Prov. Vlaams-Brabant (24.8 million passengers) and Wien-Schwechat airport is situated in Niederösterreich (24.3 million passengers).

The highest numbers of air passengers relative to population were often recorded in sparsely populated island regions that are tourist destinations or in or near capital city regions. Map 1 also provides information concerning the ratio of air passengers to the number of inhabitants; this indicator may be used to analyse environmental pressures associated with a high number of flights/air passengers. There were 20 NUTS level 2 regions in the EU which recorded an average ratio of at least 8.0 air passengers per inhabitant in 2017 (as shown by the darkest shade of green). This ratio peaked at 24.9 per inhabitant in Outer London — West and North West (the region with the second highest number of passengers). The next three highest ratios were recorded in relatively sparsely populated island regions that are tourist destinations, namely Notio Aigaio and Ionia Nisia (both in Greece) and Illes Balears (Spain), with 16.9-22.2 air passengers per inhabitant. The fifth and sixth highest ratios were again recorded in regions with high passenger numbers, namely Noord-Holland and Prov. Vlaams-Brabant. Overall, 7 out of these 20 regions were capital city regions and 15 were coastal regions (eight of which were island regions).
Number of air passengers carried (arrivals and departures), 2017 (passengers per inhabitant and thousand passengers, by NUTS 2 regions)

Map 1: Number of air passengers carried (arrivals and departures), 2017 (passengers per inhabitant and thousand passengers, by NUTS 2 regions) Source: Eurostat (tran_r_avpa_nm), (avia_paoc) and (demo_r_d2jan)
Air freight transport

The air freight sector is cyclical and largely dependent on global economic conditions and the level of world trade; its business model is driven by the increasing demand for rapid deliveries and associated logistical services. With a considerable fall in the price of oil during 2015, cargo carriers and their customers transporting goods by air faced lower costs, with air freight becoming more competitive against shipping (which dominates freight transport markets, especially for heavy, bulky goods of relatively low value).

The total quantity of air freight and mail in the EU-28 reached 16.3 million tonnes of goods loaded and unloaded in 2017. The 37 NUTS level 2 regions which reported at least 50 000 tonnes of air freight in 2017 (as shown by the largest circles on Map 2) were located mainly in the Member States that were already part of the EU prior to 2004, along with the capital city regions of Czechia, Hungary and Poland. The four regions with the highest quantity of air freight carried were the same as for the number of air passengers: Ile-de-France, Darmstadt, Outer London — West and North West and Noord-Holland. The peak value — in the French capital city region — was 2.3 million tonnes.

The highest quantities of air freight and mail relative to population size were in or near capital and other large cities in western parts of the EU.

Like the previous map, Map 2 also provides information concerning the ratio of air freight to the number of inhabitants. There were 10 NUTS level 2 regions in the EU which recorded an average ratio of at least 100 kg of air freight per inhabitant in 2017 (as shown by the darkest shade of green). This ratio peaked at 995 kg per inhabitant in Luxembourg. The remaining nine regions were distributed as follows: three regions from Germany; two regions from each of Belgium and the United Kingdom; the capital city regions of France and the Netherlands.
Air freight and mail (loaded and unloaded), 2017
(kg per inhabitant and thousand tonnes, by NUTS 2 regions)

Source: Eurostat (online data codes: tran_r_avgo_nm, avia_gooc and demo_r_d2jan)

Map 2: Air freight and mail (loaded and unloaded), 2017(kg per inhabitant and thousand tonnes, by NUTS 2 regions)Source: Eurostat (tran_r_avgo_nm), (avia_gooc) and (demo_r_d2jan)
Airports

Figure 1 presents information relating to the top 20 passenger airports in the EU, as measured by the total number of passengers carried (arrivals plus departures); note the statistics presented provide a single count of passengers on each flight (with a unique flight number), irrespective of its individual stages. Using this measure, London Heathrow (in the United Kingdom) was the busiest airport in the EU with a total of 78.0 million passengers carried in 2017. There were three other airports which carried more than 60 million passengers the same year (all of which act as hubs): Paris-Charles de Gaulle (France), Amsterdam/Schiphol (the Netherlands) and Frankfurt/Main (Germany).

The seven airports that appear in the top 20 ranking for passengers but not in the ranking for freight and mail (see Figure 2) were: Stockholm/Arlanda (Sweden), Paris-Orly (France), Palma de Mallorca (Spain), Manchester, London Gatwick (both the United Kingdom), Lisboa (Portugal) and Düsseldorf (Germany); some of these airports are in popular tourist destinations and others are predominantly used for package holidays.

A high proportion of the passengers using the largest airports in the EU were carried to medium and long-haul destinations

In 2017, a total of 809 million passengers passed through the top 20 EU airports, approximately half (48.8 %) of the total number of air passengers that were carried through all airports in the EU-28. Given their size, choice of destinations, and prestige as headquarters for large international carriers, it is perhaps unsurprising that passengers using these 20 airports had a much higher propensity to travel to medium or long-haul destinations: the top 20 airports accounted for more than two thirds (70.3 %) of the total number of EU-28 passengers arriving from/departing to destinations that were outside the EU. By contrast, their share of the total number of passengers on flights to/from other EU Member States was close to half (46.1 %), while this share was just under a third (32.4 %) for passengers travelling on national flights; for the latter there was a much higher degree of competition from regional and local airports.

In 2017, more than half of the passengers carried through London Heathrow (59.3 %) and Paris-Charles de Gaulle (51.2 %) were arriving from/destined to airports in non-member countries. By contrast, extra-EU arrivals/departures accounted for less than 10 % of the total number of passengers that passed through London Stansted (6.1 %) or Palma de Mallorca (4.8 %) airports. Paris-Orly stood out as more than two fifths (44.3 %) of its passengers in 2017 were travelling on national flights; the next highest share for national passengers was recorded for Madrid-Barajas (28.3 %). In the majority of the top 20 airports, intra-EU (but not national) flights accounted for more than half of all passengers, this share peaking in London Stansted at 87.2 %.
The busiest cargo airports in the EU were generally located within close proximity of a large population base and highly developed transport infrastructures; several were hubs for courier activities.

A similar ranking is shown in Figure 2 for the top 20 EU airports handling (loaded and unloaded) freight and mail. In 2017, the busiest cargo airport was Frankfurt/Main (2.19 million tonnes), closely followed by Paris-Charles de Gaulle (2.16 million tonnes), while London Heathrow (1.79 million tonnes), Amsterdam/Schiphol (1.78 million tonnes) and Leipzig/Halle (1.13 million tonnes) were the only other airports to record in excess of a million tonnes of freight and mail. As such, the four largest airports in the EU were the same for air freight and mail as they were for air passengers, albeit in a different order.

The relative specialisation of airports in air freight and mail may, at least to some degree, reflect the geographical proximity of a large population base, as well as spare runway capacity to allow cargo planes to fill slots that would otherwise be occupied by passenger flights. In 2017, the seven airports that were in the top 20 ranking for freight and mail but were not in the top 20 ranking for passengers included: Leipzig/Halle (Germany), Luxembourg, Köln/Bonn (Germany), Liège (Belgium), Milano/Malpensa (Italy) — these ranked from 5th to 9th place among the top cargo airports in the EU — East Midlands (13th; the United Kingdom) and Helsinki-Vantaa (18th; Finland). Some of these airports were particularly specialised in air freight services (with relatively low numbers of air passengers), as a result of developing their freight business as logistics centres. Examples include Luxembourg airport which is the headquarters of Europe’s largest all-cargo airline (Cargolux), Leipzig/Halle airport which is a hub for DHL, Köln/Bonn airport which is as a hub for UPS, or Paris-Charles de Gaulle, Köln/Bonn and Liège airports which are all hubs for FedEx.
Given the relatively high cost of transporting goods by air, it is perhaps unsurprising to find that the majority of air freight and mail that was loaded and unloaded in the EU’s top 20 cargo airports destined for/arrived from non-member countries. This was particularly true for airports near capital cities and also for airports in the most densely populated areas of the EU, with extra-EU air freight and mail accounting for more than 90% of the goods loaded and unloaded in Amsterdam/Schiphol, Luxembourg, Frankfurt/Main, London Heathrow and Rome/Fiumicino. Three exceptions were Köln/Bonn, Leipzig/Halle and East Midlands, where there was more freight and mail from intra-EU flights than extra-EU flights.

Road transport

Road transport plays an essential role in both passenger and freight transport markets. Road freight transport is an important component of modern economic systems, providing services that connect producers, traders and consumers. In a similar vein, road passenger transport is also important, with many individuals and families — especially those living in suburban or more rural regions — dependent to a greater or lesser degree on the use of a car. Roads are by far the most common transport mode in the EU for passenger and inland freight transport.

The motorisation rate in the Italian region of Valle d’Aosta/Vallee d’Aoste was 6.6 times as high as the rate in the Greek region of Peloponnisos

Passenger cars are road motor vehicles, other than mopeds or motor cycles, intended for the carriage of passengers and designed to seat no more than nine persons (including the driver). This category includes vans designed and used primarily for the transport of passengers, as well as ambulances and motor homes. The number of passenger cars per inhabitant — also referred to as the motorisation rate — is calculated on the basis of the stock of vehicles as of 31 December and population figures as of 1 January of the following year.

This section examines equipment rates for passenger cars. The availability/use of passenger cars may be
expected, at least to some degree, to be inversely related to the availability of public transport: people living in regions with efficient and extensive public transport systems with frequent services may be less inclined to own a vehicle (or multiple vehicles within one household), especially when the regions where they live/work are characterised by congestion and/or difficulties to find a place to park.

There were approximately 262 million passenger cars circulating on the roads of the EU-28 in 2017 (this figure is based on summing the latest information available for the EU Member States and includes 2016 data for Italy, Luxembourg and Romania), with the largest stocks of vehicles in Germany (46.5 million), Italy (37.9 million; 2016 data), France (32.0 million) and the United Kingdom (31.2 million).

Relative to population size, there were, on average, 506 passenger cars per 1 000 inhabitants in the EU-28 in 2016; in other words, there was slightly more than one car for every two persons. The distribution of motorisation rates across the 258 regions for which data are available was relatively balanced insofar as 121 regions had rates that were below the EU-28 average, while 136 regions had rates that were above the average and a sole region, Utrecht in the Netherlands, had a rate that was identical to the EU-28 average.

Regional motorisation rates in the EU ranged in 2016 from a high of 1 173 passenger cars per 1 000 inhabitants in Valle d’Aosta/Vallée d’Aoste (north-western Italy) down to 178 passenger cars per 1 000 inhabitants in Peloponnisis (southern mainland Greece). As such, relative to population size, the availability of passenger cars in Valle d’Aosta/Vallée d’Aoste was 6.6 times greater than in Peloponnisis. While these statistics on motorisation rates can be linked to the economic fundamentals of each region, they may also reflect specific circumstances: for example, the highest equipment rates in Valle d’Aosta/Vallée d’Aoste may, at least in part, be attributed to lower taxation on new vehicle registrations. A closer analysis of the results reveals that alongside Valle d’Aosta/Vallée d’Aoste both the second and third highest motorisation rates in the EU were also recorded in northern Italy — Provincia Autonoma di Trento (925 passenger cars per 1 000 inhabitants) and Provincia Autonoma di Bolzano/Bozen (876) — while the only other region to record a rate above 800 passenger cars per 1 000 inhabitants was Flevoland in the Netherlands (836). The darkest shade in Map 3 identifies the 14 regions across the EU where the motorisation rate was at least 650 passenger cars per 1 000 inhabitants in 2016. Aside from the four regions mentioned above, these included five additional Italian regions (Umbria, Molise, Piemonte, Toscana and Marche).

Several island regions reported relatively high motorisation rates, including Åland (799 passenger cars per 1 000 inhabitants, the highest rate in Finland), Sicilia (635), Sardegna (619), Malta (615), the Illes Balears (595, the highest rate in Spain), Cyprus (595) and Corse (558, the second highest rate in France). These relatively high figures may, at least in part, be explained by a lack of alternative modes of transport for inland passenger travel; for example, most of these islands had relatively underdeveloped rail infrastructures or no rail services at all. Equally, these islands are all tourist destinations and experience a high demand from non-residents for rental vehicles, the inclusion of which inflates this ratio (which is calculated relative to the resident population).

Metropolitan and capital city regions in western and northern Europe often had relatively low motorisation rates

At the lower end of the range, there were 24 regions in the EU where the motorisation rate was less than 350 passenger cars per 1 000 inhabitants in 2016 (these are shown in the lightest shade in Map 3). They were principally located in Greece (eight regions), Romania (seven out of eight regions) and Hungary (four regions) — by contrast, relatively high motorisation rates were recorded in the Greek and Romanian capital city regions.

Many of the western and northern capital city regions recorded motorisation rates that were close to or below the EU-28 average in 2016, including those from Belgium, Denmark, Germany, France, the Netherlands, Austria, Finland, Stockholm and the United Kingdom. A closer analysis reveals that each of these capital city regions had the lowest motorisation rate within their national territory, except for London — which had the second lowest rate in the United Kingdom (with a lower rate in South Yorkshire — a metropolitan region that includes the city of Sheffield).

By contrast, some of the highest motorisation rates in eastern and southern parts of the EU were recorded in capital city regions: the capital city regions of Bulgaria, Czechia, Greece, Romania, Slovenia and Slovakia recorded the highest motorisation rates within their national territory; furthermore, motorisation rates in most of these regions were higher than the EU-28 average.
Map 3: Motorisation rate, 2016
(number of passenger cars per 1 000 inhabitants, by NUTS 2 regions)

Note: Közép-Magyarország (HU1), Makroregion Województwo Mazowieckie (PL9) and London (UK1), NUTS level 1. Ireland, Lithuania and Portugal: national data.
Source: Eurostat (online data codes: tran_r_vehst, road_eqs_carage and demo_pjan)
The risk of dying in a road traffic accident was 19 times as high in Severozapaden (Bulgaria) as in Outer London — West and North West in the United Kingdom.

The incidence of road accidents can be linked to a wide range of different factors, including: the propensity to own a vehicle (the motorisation rate), the type of motor vehicle (car, motor cycle or moped), the characteristics of the vehicle stock (such as average age and engine power), the number of kilometres driven, the average speed, population density, the extent and quality of the road infrastructure, climatic and geographic conditions, national regulations that apply to vehicles and drivers, or driver conduct (for example, inadequate training/experience, a lack of concentration, dangerous driving, speeding, or driving while using a mobile device or while under the influence of alcohol or drugs).

Road safety is a major societal issue: in 2016, there were 25 643 road fatalities in the EU-28, while there were no fewer than 1.45 million road injuries. When expressed relative to population size, there were, on average, 50 road fatalities in the EU-28 per million inhabitants.

Regional statistics for road accidents should be interpreted with care as the data presented may involve vehicles which are in transit through a region or non-residents staying in a region on holiday, for business or other reason. As such, and other things being equal, regions that have transit corridors or regions with high numbers of visitors may well experience a higher incidence of injuries and fatalities. Among the 267 regions for which data are available (see Map 4), the incidence of road fatalities was somewhat skewed, as there were 120 regions with ratios below the EU-28 average, compared with 146 regions that had ratios above the average; one region, Lorraine in eastern France, had a rate that was identical to the EU-28 average. This skewed nature reflects, at least to some degree, a lower incidence of road fatalities in metropolitan regions (where average speeds are generally much lower), in contrast to higher rates in the more numerous rural regions.

There were 21 regions across the EU where the number of road fatalities was at least 100 deaths per million inhabitants in 2016. These regions with the highest incidence rates for road fatalities were concentrated in eastern and southern parts of the EU, with five regions in Greece and four regions from each of Bulgaria, Poland and Romania. Relatively high ratios were also recorded for two regions in southern Belgium — Prov. Luxembourg and Prov. Namur — the French island region of Corse, and the rural Portuguese region of Alentejo.

The highest incidence rate for road fatalities in the EU — across NUTS level 2 regions — was recorded in the Bulgarian region of Severozapaden (note this region also had the lowest level of economic activity per inhabitant in the EU), with 153 road fatalities per million inhabitants in 2016. Alentejo (142 road fatalities per million inhabitants), Prov. Luxembourg (138), the Greek region of Notio Aigaio (134) and another Bulgarian region, Severen tsentralen (132) were the only other regions in the EU to record incidence rates above 125 deaths per million inhabitants.

In 2016, there were 28 regions across the EU where the incidence of road fatalities was less than half the EU-28 average, in other words, below 25 deaths per million inhabitants (as shown by the lightest shade in Map 4). The lowest incidence rate was recorded in the British capital city region of Outer London — West and North West (8 deaths per million inhabitants), while there were 15 more regions in the EU where the number of road fatalities was less than 20 per million inhabitants, the vast majority of which were urban areas, including:

- three more capital city regions covering London (the exception was Inner London — West);
- the capital city regions of Belgium, Germany, Spain, Austria and Sweden;
- the metropolitan regions of Bremen and Hamburg (both Germany), Northumberland and Tyne and Wear, Merseyside and West Yorkshire (all in the United Kingdom), Zuid-Holland (which includes the cities of the Hague and Rotterdam).
Map 4: Fatal road accidents 2016 (per million inhabitants, by NUTS 2 regions)

Source: Eurostat (tran_r_acci), (tran_sf_roadse) and (demo_pjan)
Road transport: freight

In 2017, the total weight of goods loaded for road freight transport in the EU-28 was 14.7 billion tonnes; when taking account of the distance travelled for each goods operation, this equated to 1 921 billion tonne-kilometres (tkm).

Regional statistics for road freight transport should be interpreted with care as the data presented may reflect, to some extent, the size of each region, as those regions characterised by a large area normally transport more freight. In a similar vein, those regions that are characterised by transporting bulk products that tend to weigh a lot (such as raw materials) are also likely to report higher values.

The highest quantity of road freight loaded for transportation within the EU-28 was in Barcelona (Spain)

In 2017, Barcelona (Spain) was the NUTS level 3 region with the highest level (22.7 billion tkm) of road freight loaded and transported within the EU-28; it was followed by two other Spanish regions, Valencia/València (17.0 billion tkm) and Madrid (14.3 billion tkm). There were four more regions in the EU where the level of road freight loaded and transported within the EU-28 was higher than 10 billion tkm: Hamburg in northern Germany (12.4 billion tkm), Murcia in south-eastern Spain (12.2 billion tkm), the Nord region of France (10.8 billion tkm), Arr. Antwerpen in Belgium (10.1 billion tkm). Together these seven regions accounted for approximately 5.4 % of the total road freight that was loaded and transported in any of the 1 306 regions within the EU-28 for which data are available.

Map 5 confirms that many of the regions with the highest levels of road freight transport were characterised by the presence of freight ports, a relatively high population density, or were located on major road arteries. Road freight transport appeared to be particularly concentrated in Spanish and Polish regions, with the latter particularly specialised in international transport following the opening up of the European haulage market. By contrast, the regions with the lowest levels of road freight were often relatively small island regions, where goods tended to be unloaded rather than loaded, or rural regions, predominantly in eastern or southern (other than Spain and northern Italy) parts of the EU.
Map 5: Road freight transport for goods loaded within the EU-28, 2017 (million tonne-kilometres, by NUTS 3 region of loading)

Source: Eurostat (road_go_ta_rl) and (road_go_ta_tott)
Figure 3 is based on the quantity of road freight loaded (in tonnes), with the information presented limited to goods that are transported within national borders; unlike for Map 5 the data are not presented in absolute values but relative to the size of the population. The northern Greek region of Grevena, Kozani recorded the highest level of freight loaded for national road transport relative to its population size, 603 tonnes per inhabitant. This was by far the highest ratio among all regions within the EU:

- the second highest level of national road freight transport was 389 tonnes per inhabitant in Florina, which is situated further north still in Greece, close to the border with North Macedonia;
- the third highest level was recorded in Thurrock (158 tonnes per inhabitant) on the Thames, east of London.

While the remainder of the top 20 regions for national road freight transport included three other Greek regions, and one region from each of Spain and Finland, it was dominated by 12 German regions (four from Bayern, three from Rheinland-Pfalz, two each from Weser-Em (in Niedersachsen) and Sachsen-Anhalt and one from Schleswig-Holstein).

Top 20 regions for national road freight transport, 2017

(tonnes of goods loaded per inhabitant, by NUTS 3 region of loading)

![Bar chart showing the top 20 regions for national road freight transport in 2017](image)

Note: based on those NUTS level 3 regions for which data are available. Several regions make use of an earlier reference period (2015 or 2016), too many to document.

Source: Eurostat (unlike data codes: road_go_na_rl3g and demo_r_pjangerp3)

Figure 3: Top 20 regions for national road freight transport, 2017 (tonnes of goods loaded per inhabitant, by NUTS 3 region of loading) Source: Eurostat (road_go_na_rl3g) and (demo_r_pjangerp3)

Source data for figures and maps

Transport at regional level

Data sources

Air transport

Regional data by NUTS for air passenger and freight transport are aggregated from data at the level of main airports. Only main airports (with more than 150 000 passengers per year) are taken into account.

Road safety

For road safety statistics, regional data are also collected on a voluntary basis. Two types of casualties are distinguished: people who are killed (road fatalities) and people who are injured. Road fatalities include persons who are killed immediately in a traffic accident or who die within 30 days as a result of an injury sustained in a road accident; these statistics exclude suicides. An injured person is any person who, as result of an injury sustained in a road accident, was not killed immediately or did not die within 30 days, but sustained an injury, normally needing medical treatment; these statistics exclude attempted suicides. Persons with lesser wounds, such as minor cuts or bruises are not normally recorded as injured persons.

Road transport

The legal basis for road transport statistics is Regulation (EU) No 70/2012 of the European Parliament and of the Council which provides for comprehensive regional statistics with regard to both the carriage of goods and vehicle journeys. Regional data on vehicle stocks (for example, passenger cars) are currently provided by EU Member States, EFTA and candidate countries on a voluntary basis.

National road freight transport is defined as road transport between two places (a place of loading and a place of unloading) located in the same country by a vehicle registered in that country. By contrast, international road freight transport is composed of four categories:

- international loaded, where the place of the loading of goods is in the reporting country (in other words the country in which the vehicle performing the transport is registered) and the place of unloading is in a different country;
- international unloaded, where the place of the unloading of goods is in the reporting country and the place of loading is in a different country;
- cross-trade, where the places of loading and unloading are two different countries, neither of which are the one where the hauling vehicle is registered;
- cabotage, where the places of loading and unloading are the same country, and this is not the one where the vehicle is registered.

Total international road freight transport therefore includes transport performed, completely or partially, outside of the country where a vehicle is registered.

For more information:

Dedicated section on transport
Reference manual — regional transport statistics

Context

The European Commission’s Directorate-General for Mobility and Transport is responsible for developing transport policy within the EU. Its remit is to ensure mobility in a single European transport area, integrating the needs of the population and the economy at large, while minimising adverse environmental effects.

In March 2011, the European Commission adopted a White paper titled Roadmap to a single European transport area — towards a competitive and resource-efficient transport system (COM(2011) 144 final). It contains 40 specific initiatives designed to help build a competitive transport system in the EU and also set a range of environmental goals to be achieved by 2050, including:

- cutting transport-related greenhouse gas emissions by 60 % compared with 1990 levels;
• excluding conventionally-fuelled cars in cities;
• accomplishing a 50% shift in medium-distance inter-city passenger and freight journeys from road to either rail or waterborne transport;
• progressing towards zero traffic fatalities;
• increasing to 40% the use of sustainable low-carbon fuels in the aviation sector;
• reducing shipping emissions by at least 40%;
• completing the European high-speed rail network.

The European Commission’s jobs, growth and investment package, adopted in 2014, highlights a range of infrastructure projects including: transport links between EU Member States; the expansion and upgrading of freight and passenger capacities in ports and airports; dedicated rail connections between important airports and urban centres; ‘green’ projects in the area of maritime transport; or the promotion of alternative fuel-infrastructures along major roads. When re-assessing its investment plan for Europe in 2016, the European Commission made proposals to increase the duration of the fund and its financial capacity; an amending Regulation (EU) No 2017/2396 was adopted in December 2017, with the goal of making at least EUR 500 billion of investment available up until the end of 2020, principally through the European Fund for Strategic Investments (EFSI).

The European Commission has also enacted legislation in order to promote a safer, more connected and cleaner mobility system in the EU — Europe on the move. The objective is to promote safer traffic, less polluting vehicles and more advanced technological solutions through an integrated policy for future road safety, emission standards for heavy-duty vehicles, an action plan for developing and manufacturing batteries for use in transport vehicles, as well as a strategy for connected and automated mobility.

Within a regional context, smart mobility, multimodal transport, clean transport and urban mobility are particular priorities for cohesion policy during the 2014-2020 funding period. The EU may use regional funds to help upgrade transport infrastructure and road safety initiatives, especially in EU Member States with comparatively poor road safety performance. European Regional Development Fund (ERDF) and cohesion fund support is available to provide co-financing for projects linked to the following investment priorities:

• supporting a multimodal single European transport area by investing in the trans-European transport network (TEN-T);
• enhancing regional mobility by connecting secondary and tertiary nodes to TEN-T infrastructure;
• developing and improving environmentally-friendly and low-carbon transport systems, including inland waterways and maritime transport, ports, multimodal links and airport infrastructure, in order to promote sustainable regional and local mobility;
• developing and rehabilitating comprehensive, high-quality and interoperable railway systems.

Other articles
• Freight transport statistics
• Passenger transport statistics
• Railway freight transport statistics
• Road safety statistics — characteristics at national and regional level
• Stock of vehicles at regional level

Publications
• Eurostat regional yearbook
• Energy, transport and environment indicators — 2018 edition
Main tables

- Transport, see: Regional transport statistics (t_tran_r)

- Regional statistics (t_reg), see: Regional transport statistics (t_reg_tran)

Database

- Transport, see:

 Multimodal data (tran)

 Transport safety (tran_sf)

 Road transport safety (tran_sf_road)

 Persons killed in road accidents by sex (CARE data) (tran_sf_roadse)

 Regional transport statistics (tran_r)

Road transport (road)

 Road transport equipment - stock of vehicles (road_eqs)

 Passenger cars, by age (road_eqs_carage)

 Road freight transport measurement (road_go)

 Total road freight transport (road_go_tot)

 Summary of annual road freight transport by type of operation and type of transport (1 000 t, Mio Tkm, Mio Veh-km) (road_go_ta_tott)

 Annual road freight transport by region of loading (1 000 t, Mio Tkm, 1 000 Jrnys) (road_go_ta_rl)

 National road freight transport (road_go_nat)

 National annual road freight transport by regions of loading (NUTS 3) and by group of goods (1 000 t), from 2008 onwards (road_go_na_rl3g)

Air transport (avia)

 Air transport measurement - passengers (avia_pa)

 Air transport measurement - freight and mail (avia_go)

 Air transport measurement - traffic data by airports, aircrafts and airlines (avia_tf)

 Regional statistics by NUTS classification (reg), see:

Regional transport statistics (reg_tran)

 Road freight (reg_road)

 Other regional transport (reg_ortran)

Dedicated section

- Regions and cities
- Transport
Data visualisation

- Eurostat statistical atlas (Chapter 11)
- Regional statistics illustrated

Methodology

- Road freight transport methodology — 2016 edition
- Regional transport statistics (ESMS metadata file — reg_tran_esms)

Legislation

- Regulation (EU) No 70/2012 of the European Parliament and of the Council of 18 January 2012 on statistical returns in respect of the carriage of goods by road (recast)

External links

- CARE: the EU’s road accidents database
- European Commission — Mobility and Transport — TEN-T and transport policy
- European Commission — Mobility and Transport — Infrastructure — TEN- — Connecting Europe
- European Commission — Regional policy — Transport and energy networks
- Innovation and Networks Executive Agency (INEA)
- International Road Transport Union (IRU)
- International Transport Forum (ITF)
- UNECE — Transport statistics

Maps can be explored interactively using Eurostat’s statistical atlas (see user manual).

This article forms part of Eurostat’s annual flagship publication, the Eurostat regional yearbook.