This article presents statistics on the major causes of death for people aged 65 and over in the European Union (EU): in 2015, around four fifths (83.0%) of all deaths in the EU-28 — some 4.3 million — occurred among people aged 65 and over (hereafter referred to as the elderly population).

The article presents information for several major causes of death (defined by the international classification of diseases (ICD)): two main disease groups linked to the circulatory system, namely ischaemic heart diseases (also known as coronary heart disease, including heart attacks) and cerebrovascular diseases (such as strokes); respiratory diseases (which include chronic lower respiratory diseases or asthma as well as infectious diseases such as influenza or pneumonia); and four groups of malignant neoplasms, namely lung cancer (including cancers of the trachea and bronchus), colorectal cancer, breast cancer and prostate cancer.

This article is one of a set of statistical articles concerning health status in the EU which forms part of an online publication on health statistics.

Frequency of the main causes of death in the EU for the elderly and for younger people

Circulatory diseases were the main cause of death among the elderly

In 2015, circulatory diseases were the main cause of death for the elderly population within the EU-28, while for persons aged less than 65, cancer was the leading cause of death.

In 2015, just under two fifths (39.8%) of all deaths among the elderly population in the EU-28 were from circulatory diseases, compared with almost one quarter (23.0%) from cancer and 9.3% from respiratory diseases. A higher proportion of the total number of deaths among elderly women could be attributed to circulatory diseases (42.4% compared with 36.7% for elderly men), whereas a higher share of elderly men (than women) died from cancer (27.7% compared with 18.9%) or from diseases of the respiratory system (10.3% compared with 8.4%).

By contrast, cancer was the principal cause of death in 2015 for almost half (47.9%) of all women aged less than 65 who died in the EU-28; cancer was also the leading cause of death among men aged less than 65, accounting for almost one third (32.5%) of the total number of deaths for this subpopulation. A slightly higher proportion (4.8%) of women aged less than 65 died from diseases of the respiratory system (compared with 4.5% for men). By contrast, nearly a quarter (24.5%) of men aged less than 65 died from circulatory diseases, while the corresponding share for women was 16.8%.
Standardised death rates for the elderly — main causes of death in the EU and the Member States

The data presented in this article are based on standardised death rates. Since most causes of death vary significantly by age and according to sex, the use of standardised death rates facilitates comparisons to be made both over time and between countries, independent of population age structures.

In 2015, the highest EU-28 standardised death rates for the elderly — among the diseases covered by this article — were recorded for ischaemic heart diseases (574 deaths per 100 000 inhabitants), cerebrovascular diseases (402), respiratory diseases (413) and lung cancer (198). Figure 1 shows that in 2015, EU-28 standardised death rates among the elderly were systematically higher than for all persons (and therefore implicitly for younger persons) for all four of these major causes of death of the elderly, as well as for colorectal cancer and the two gender specific causes of death that are also shown.

Figure 1: Major causes of death, EU-28, 2015 (standardised death rates per 100 000 inhabitants)

An analysis across the EU Member States of the three main causes of death in 2015 shows that Denmark was the only Member State which did not repeat the pattern observed for the EU-28 aggregate, namely, that its highest standardised death rate among elderly persons was recorded for diseases of the circulatory system, followed by cancer and then respiratory diseases (see Table 1); in Denmark, the standardised death rate for cancer was higher than that for diseases of the circulatory system.
Table 1: Major causes of death for persons aged 65 years and over, 2015 (standardised death rates per 100 000 inhabitants)

<table>
<thead>
<tr>
<th>EU-28</th>
<th>Ischaemic heart disease</th>
<th>Cerebrovascular disease</th>
<th>Lung cancer</th>
<th>Colorectal cancer</th>
<th>Breast cancer</th>
<th>Prostate cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1,764.4</td>
<td>574.3</td>
<td>401.7</td>
<td>413.2</td>
<td>1,814.8</td>
<td>197.7</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1,545.5</td>
<td>975.2</td>
<td>1,561.4</td>
<td>244.7</td>
<td>1,817.8</td>
<td>127.8</td>
</tr>
<tr>
<td>Czechia</td>
<td>2,972.9</td>
<td>1,587.6</td>
<td>507.1</td>
<td>391.5</td>
<td>1,102.7</td>
<td>201.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>1,180.1</td>
<td>345.9</td>
<td>324.7</td>
<td>558.6</td>
<td>2,000.6</td>
<td>278.5</td>
</tr>
<tr>
<td>Germany</td>
<td>1,951.7</td>
<td>681.2</td>
<td>310.2</td>
<td>367.5</td>
<td>903.0</td>
<td>193.0</td>
</tr>
<tr>
<td>Estonia</td>
<td>3,063.0</td>
<td>1,257.4</td>
<td>311.8</td>
<td>195.5</td>
<td>1,160.5</td>
<td>203.5</td>
</tr>
<tr>
<td>Ireland</td>
<td>1,505.0</td>
<td>691.6</td>
<td>323.8</td>
<td>598.9</td>
<td>1,138.8</td>
<td>234.5</td>
</tr>
<tr>
<td>Greece</td>
<td>1,741.9</td>
<td>399.3</td>
<td>666.3</td>
<td>590.9</td>
<td>976.4</td>
<td>228.0</td>
</tr>
<tr>
<td>Spain</td>
<td>1,183.2</td>
<td>307.5</td>
<td>275.5</td>
<td>509.3</td>
<td>813.1</td>
<td>158.3</td>
</tr>
<tr>
<td>France</td>
<td>849.6</td>
<td>216.3</td>
<td>212.6</td>
<td>289.9</td>
<td>922.1</td>
<td>163.7</td>
</tr>
<tr>
<td>Croatia</td>
<td>3,349.3</td>
<td>1,493.6</td>
<td>937.9</td>
<td>323.7</td>
<td>2,281.9</td>
<td>214.6</td>
</tr>
<tr>
<td>Italy</td>
<td>1,573.8</td>
<td>472.3</td>
<td>411.1</td>
<td>323.0</td>
<td>988.1</td>
<td>198.7</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1,749.2</td>
<td>461.2</td>
<td>322.1</td>
<td>538.0</td>
<td>836.0</td>
<td>132.4</td>
</tr>
<tr>
<td>Latvia</td>
<td>3,920.8</td>
<td>1,973.6</td>
<td>1,131.6</td>
<td>138.7</td>
<td>1,077.5</td>
<td>156.1</td>
</tr>
<tr>
<td>Lithuania</td>
<td>9,968.6</td>
<td>717.6</td>
<td>974.5</td>
<td>186.2</td>
<td>1,035.2</td>
<td>153.7</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1,389.4</td>
<td>327.2</td>
<td>279.0</td>
<td>395.3</td>
<td>921.2</td>
<td>208.7</td>
</tr>
<tr>
<td>Hungary</td>
<td>3,566.9</td>
<td>1,809.3</td>
<td>673.3</td>
<td>398.0</td>
<td>1,207.2</td>
<td>281.0</td>
</tr>
<tr>
<td>Malta</td>
<td>1,425.2</td>
<td>917.3</td>
<td>393.2</td>
<td>517.9</td>
<td>924.3</td>
<td>180.1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1,506.1</td>
<td>281.2</td>
<td>324.4</td>
<td>419.9</td>
<td>1,146.4</td>
<td>255.2</td>
</tr>
<tr>
<td>Austria</td>
<td>2,101.0</td>
<td>881.6</td>
<td>301.3</td>
<td>253.5</td>
<td>967.0</td>
<td>170.7</td>
</tr>
<tr>
<td>Poland</td>
<td>2,774.2</td>
<td>559.5</td>
<td>456.5</td>
<td>359.8</td>
<td>1,165.0</td>
<td>247.5</td>
</tr>
<tr>
<td>Portugal</td>
<td>1,403.6</td>
<td>297.4</td>
<td>520.2</td>
<td>613.3</td>
<td>911.7</td>
<td>153.9</td>
</tr>
<tr>
<td>Romania</td>
<td>4,423.4</td>
<td>1,468.5</td>
<td>1,271.0</td>
<td>338.2</td>
<td>926.7</td>
<td>166.9</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2,160.8</td>
<td>497.4</td>
<td>412.4</td>
<td>348.7</td>
<td>1,229.0</td>
<td>209.1</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3,046.1</td>
<td>806.0</td>
<td>685.7</td>
<td>404.8</td>
<td>1,225.4</td>
<td>185.3</td>
</tr>
<tr>
<td>Finland</td>
<td>1,697.5</td>
<td>897.6</td>
<td>385.1</td>
<td>105.3</td>
<td>868.6</td>
<td>138.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>1,557.8</td>
<td>529.0</td>
<td>306.2</td>
<td>315.9</td>
<td>977.6</td>
<td>158.3</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,202.5</td>
<td>515.8</td>
<td>319.1</td>
<td>674.6</td>
<td>1,122.9</td>
<td>248.7</td>
</tr>
<tr>
<td>Iceland</td>
<td>1,550.4</td>
<td>639.3</td>
<td>329.9</td>
<td>330.3</td>
<td>1,027.2</td>
<td>209.9</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>1,151.4</td>
<td>439.6</td>
<td>303.2</td>
<td>492.0</td>
<td>760.0</td>
<td>130.7</td>
</tr>
<tr>
<td>Norway</td>
<td>1,264.6</td>
<td>444.1</td>
<td>291.1</td>
<td>475.2</td>
<td>1,030.6</td>
<td>209.0</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1,359.9</td>
<td>456.7</td>
<td>225.1</td>
<td>289.0</td>
<td>909.3</td>
<td>161.2</td>
</tr>
<tr>
<td>Serbia</td>
<td>4,306.4</td>
<td>650.7</td>
<td>941.4</td>
<td>375.0</td>
<td>1,020.2</td>
<td>207.3</td>
</tr>
<tr>
<td>Turkey</td>
<td>2,420.8</td>
<td>909.4</td>
<td>810.4</td>
<td>827.3</td>
<td>744.5</td>
<td>201.2</td>
</tr>
</tbody>
</table>

Source: Eurostat (online data code: hlth_cd_asdr2)

In the EU-28 as a whole, the standardised death rate for ischaemic heart diseases was greater than that for cerebrovascular diseases in 2015, 574 deaths per 100 000 inhabitants compared with 402 per 100 000 inhabitants. In 2015, there were five EU Member States, namely, Bulgaria, Greece, the Netherlands, Portugal and Slovenia, where the standardised death rate among the elderly for cerebrovascular diseases was higher than the rate for ischaemic heart diseases; this was also the case in Serbia.

Among all cancers, lung cancer was the most common cause of death among elderly people looking in more detail at the results for different types of cancer, lung cancer was the most common cause of death among the elderly among the four types shown in Table 1, although the standardised rate for prostate cancer for men (191 per 100 000 inhabitants) in 2015 was only marginally lower than the overall rate for lung cancer (198 per 100 000 inhabitants). By contrast, the rates for colorectal cancer (126 per 100 000 inhabitants) and breast cancer among women (111 per 100 000 inhabitants) were clearly lower. Focusing on the two types of cancer that are not gender specific, Slovakia, Portugal and Bulgaria were the only EU Member States where the standardised death rate among the elderly was higher in 2015 for colorectal cancer than it was for lung cancer. Concerning the gender specific cancers, Malta was the only Member State where the standardised death rate among elderly women for breast cancer was higher than the standardised death rate among elderly men for prostate cancer.

Standardised death rates among the EU Member States

Generally, the results for 2015 suggest relatively high standardised death rates among the elderly for circulatory diseases among eastern and Baltic Member States; note, however, that the latest rates for Austria, Germany
and Malta were also above the EU-28 average. In Hungary, Latvia, Lithuania and Romania, the standardised death rate among the elderly for circulatory diseases was more than double the EU-28 average (this was also the case in Serbia), while it was nearly three times as high in Bulgaria. This can be contrasted with the situation in France where the standardised death rate among the elderly for circulatory diseases was close to half (53.8 %) the EU-28 average.

There was also considerable variation between the EU Member States in relation to the latest standardised death rates among the elderly for respiratory diseases. In 2015, particularly high death rates were recorded in the United Kingdom, Ireland, Portugal and Greece (in each case the rate was at least 35 % higher than the EU-28 average), while at the other end of the range the death rate in Latvia was around one third (33.6 %) of the EU-28 average.

The EU Member States were in a relatively small range in terms of the highest and lowest standardised death rates among the elderly for cancer.

By contrast, there was a smaller range between the highest and lowest standardised death rates among the elderly for cancer: the rate in Croatia was 26.3 % more than the EU-28 average, whereas the rate in Bulgaria was just over four fifths (80.6 %) of the EU-28 average; the standardised death rates for cancer among the elderly were lower in Liechtenstein and Turkey than in any of the EU Member States.

Developments over time

Standardised death rates for most leading causes of death for the elderly in the EU followed a downward path between 2005 and 2015, most notably in the case of the rates for cerebrovascular diseases and ischaemic heart diseases.

Between 2005 and 2015, there was a 34.1 % reduction in EU-28 standardised death rates relating to cerebrovascular diseases for men and a 35.1 % reduction for women — see Figures 2 and 3. Similar declines were recorded in relation to deaths from ischaemic heart disease, where death rates fell by 30.0 % for men and 34.5 % for women. Declining standardised death rates were also recorded for colorectal cancer and diseases of the respiratory system for both elderly men and elderly women during this period.

By contrast, death rates for lung cancer (including also cancer of the trachea and bronchus) increased for men by 8.3 % and for women by 59.0 %. The difference in the development for elderly men and elderly women concerned not just the rate of change, but also the direction of its development: the standardised death rate for lung cancer for men in the EU peaked in 2009 and fell slightly every year thereafter, whereas for women the rate increased every year during the period studied.
Turning to the gender specific causes of death shown in Figures 2 and 3, the standardised death rate for breast cancer was 2.6% lower for elderly women in 2015 than it had been in 2005. For elderly men, the rate for prostate cancer was 15.2% lower in 2015 than it had been in 2005, having decreased every year but one (2015) during this 10 year period.
Gender differences for standardised death rates among the elderly were highest for lung cancer.

In 2015, the gender gap between rates for elderly men and elderly women was smallest for the two circulatory diseases: the standardised death rate for elderly men was 14.5 % higher than that for elderly women for cerebrovascular diseases and 65.0 % higher for ischaemic heart disease. For respiratory diseases, the standardised death rate for elderly men was nearly twice as high (84.2 % higher) as that for elderly women. However, by far the largest gender difference among the selected causes of death was observed for lung cancer, where the standardised death rate for elderly men was nearly three times as high (194.2 % higher) as that for elderly women.
Figures 5 to 9 illustrate the gender differences for each of the five main causes of death among the elderly that are common to both sexes.

For elderly men and for elderly women, France had the lowest standardised death rates among the EU Member States for ischaemic heart disease and cerebrovascular diseases.

The highest standardised death rates from ischaemic heart disease among both elderly men and elderly women were recorded in 2015 in Lithuania, Latvia, Slovakia and Hungary, while the lowest incidences of deaths from ischaemic heart disease among both elderly men and elderly women were registered in France, the Netherlands, Portugal and Spain. The incidence of death from ischaemic heart disease was systematically higher for elderly men than for elderly women in each of the EU Member States — see Figure 5 — with the largest gender gaps in relative terms recorded in France, Belgium and the Netherlands where the rates for men were more than twice as high as those for women as well as in Spain and the United Kingdom where they were nearly twice as high. Among the EFTA countries, the rate for men was more than three times as high for men as for women in Liechtenstein and more than twice as high in Iceland.
With one exception, standardised death rates for cerebrovascular diseases were systematically higher for elderly men than for elderly women in 2015 among the EU Member States — see Figure 6. The exception was Greece where the rate for elderly men was slightly lower than the rate for elderly women; among the non-member countries shown in Figure 6 Liechtenstein also recorded a lower rate for elderly men than for elderly women. The largest gender gaps in 2015 were in Estonia and Hungary, where the rates for elderly men were 43 % and 33 % higher than for elderly women. Bulgaria, Latvia and Romania had the highest standardised death rates for elderly people, both for elderly men and for elderly women. As for ischaemic heart disease, France recorded the lowest standardised death rates for cerebrovascular diseases for both elderly men and elderly women.
For diseases of the respiratory system, the United Kingdom and Ireland reported the highest standardised death rates for elderly women in 2015 and the three Baltic Member States the lowest ones. Among elderly men the situation was somewhat different, as Portugal had the highest rate ahead of the United Kingdom and Ireland, while Finland had the lowest rate, below Latvia. The standardised death rates for diseases of the respiratory system in 2015 were considerably higher for elderly men than for elderly women in all EU Member States, although among the non-member countries shown in Figure 7 Iceland recorded a lower rate for elderly men than for elderly women. In relative terms, the three Baltic Member States had the largest gender gaps, with the rates for men at least three times as high as for women and in fact more than four times as high in Latvia. The narrowest gender gaps, where the rates for elderly men were between 32 % and 43 % higher than for elderly women, were recorded in Denmark, the United Kingdom, Ireland, Sweden, Luxembourg and Greece. Nearly all of the non-member countries shown in Figure 7 reported a gender gap between the extremes observed among the EU Member States, the one exception being Iceland where the standardised death rate was in fact lower for elderly men than for elderly women.
The gender gap in the standardised death rates for lung cancer for elderly people varied greatly between the EU Member States: it was narrowest in Sweden and widest in Lithuania.

The incidence of deaths from lung cancer among the EU Member States varied enormously when comparing the rates for elderly men with those for elderly women. For example, in 2015 Lithuania had the lowest rate for elderly women, but the eighth highest rate for elderly men, while Estonia had the eighteenth highest rate for elderly women and the highest rate for elderly men. By contrast, Sweden had the lowest standardised death rate for elderly men, but the sixth highest rate for elderly women, while Ireland and the United Kingdom had the twentieth and eighteenth highest rates for elderly men and the third and second highest rates for elderly women. As a consequence of these very different rankings, there was quite a large range in the gender gaps observed among the EU Member States for the standardised death rate for lung cancer in 2015. In relative terms, the three Baltic Member States and Spain had the largest gender gaps: the rates for men were close to six times as high as for women in Latvia and Estonia, nearly seven times as high in Spain and just over eight times as high in Lithuania. The narrowest gender gaps were recorded in Ireland, the United Kingdom, Denmark and Sweden, which were the only Member States where the rate for elderly men was not at least double the rate for elderly women. Nearly all of the non-member countries shown in Figure 8 reported a gender gap between the extremes observed among the EU Member States, with a relatively narrow gap in Norway; the one exception was again Iceland, where the standardised death rate for lung cancer was lower for elderly men than for elderly women.
Croatia, Hungary and Slovakia reported the highest standardised death rates for colorectal cancer for elderly men and for elderly women in 2015 and Croatia recorded the largest gender gap for this cause of death.

While nearly all EU Member States reported higher standardised death rates in 2015 for colorectal cancer among elderly men than among elderly women (see Figure 9), Luxembourg was an exception as the rate for elderly women just surpassed that for elderly men; this resulted from having the lowest rate for elderly men combined with the 12th highest rate for elderly women. Other Member States that reported relatively small gender gaps also tended to report relatively low rates for elderly men, for example Cyprus (which also had the lowest rate for elderly women among all EU Member States) and the United Kingdom. The largest gender gaps in 2015 in relative terms were in Croatia, Portugal and Slovakia. Two of these — Croatia and Slovakia — along with Hungary recorded the highest standardised death rates for colorectal cancer, both for elderly men and for elderly women.
Figure 9: Deaths from colorectal cancer among persons aged 65 years and over — standardised death rate, 2015 (per 100 000 inhabitants)
Source: Eurostat (hlth_cd_asdr2)

Source data for tables and graphs

- Causes of death — persons aged 65 and over: tables and figures

Data sources

Statistics on the underlying causes of death provide information on mortality patterns. This source is documented in more detail in this background article which provides information on the scope of the data, its legal basis, the methodology employed, as well as related concepts and definitions.

Eurostat began collecting and disseminating mortality data in 1994. Currently data are analysed by:

- a shortlist of 86 causes of death based on the International Statistical Classification of Diseases and Related Health Problems (ICD), developed and maintained by the World Health Organisation (WHO);
 - sex;
 - age;
 - geographical region (NUTS level 2).

Annual data are provided in absolute numbers, as crude death rates and as standardised death rates. Since most causes of death vary significantly by age and according to sex, the use of standardised death rates improves comparability over time and between countries as death rates can be measured independently of the population’s age structure.

In April 2011, European Commission Regulation (EU) No 328/2011 as regards statistics on causes of death was adopted specifying in detail the variables, analyses (breakdowns) and metadata that EU Member States should deliver.

For country specific notes on this data collection, please refer to this background information document.
Data sources

Statistics on causes of death are based on two pillars: medical information contained on death certificates, which may be used as a basis for ascertaining the cause of death; and the coding of causes of death following the WHO-ICD system. All deaths in the population are identified by the underlying cause of death, in other words 'the disease or injury which initiated the train of morbid events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury’ — a definition adopted by the World Health Assembly.

The validity and reliability of statistics on causes of death rely, to some degree, on the quality of the data provided by certifying physicians. Inaccuracies may result for several reasons, including:

- errors when issuing the death certificate;
- problems associated with the medical diagnosis;
- the selection of the main cause of death;
- the coding of the cause of death.

Sometimes there is ambiguity in the cause of death: besides the illness leading directly to death, the medical data on the death certificate should also contain a causal chain linked to the suffering of the deceased. Other substantial health conditions may be indicated, which did not have a link to the illness leading directly to death, but which may have unfavourably affected the course of a disease and thus contributed to the fatal outcome. Indeed, there is sometimes criticism that the coding of only one illness as a cause of death appears more and more unrealistic in view of increasing life expectancy and associated changes in morbidity. For a majority of the deceased aged 65 and over the selection of just one out of a number of possible causes of death may be somewhat misleading. For this reason, some of the EU Member States have started to consider multiple-cause coding. Eurostat has supported EU Member States in their efforts to develop a joint automated coding system called IRIS for the improvement and better comparability of causes of death data in Europe.

Revised European standard population
The number of deaths from a particular cause of death can be expressed relative to the size of the population. A standardised (rather than crude) death rate can be compiled which is independent of the age and sex structure of a population: this is done as most causes of death vary significantly by age and according to sex; the standardisation of death rates facilitates comparisons over time and between countries.

The European standard population was used for the standardisation of crude death rates back to 1976. It became clear that the standard population should be adapted to reflect changes in the age-structure of the EU’s population since the mid-1970s. A revised European standard population (ESP) was agreed with the EU Member States and EFTA countries in the summer of 2013 on the basis of population projections that were made in 2010 covering the period 2011-2030.

Context

Statistics concerning causes of death among persons aged 65 and over (the elderly) are of increasing interest. A dramatic change in the nature and delivery of healthcare over the past century has resulted in much longer life spans and a greater prevalence of chronic illnesses. This in turn has led to increased demand on healthcare systems, particularly for long-term care. Public health programmes throughout the EU are often targeted at reducing mortality among people aged less than 65 through preventive measures, for example, the promotion of healthier lifestyles through improved nutrition, lower tobacco and alcohol consumption, an increase in physical activity or a reduction of professional risk.

The percentage of the population aged 65 and over in the EU-28 is projected (according to Eurostat 2015 base year projections) to increase, on average, from 19.4 % of the total population in 2017 to 29.0 % of the total by 2058, thereafter dipping slightly before rising again to reach 29.2 % in 2081.
Other articles

Online publications

- Health in the European Union — facts and figures
- Disability statistics

Causes of death

- Causes of death statistics

Health status — selected diseases and related health problems

- Cardiovascular diseases statistics
- Cancer statistics
- Cancer statistics - specific cancers
- Respiratory diseases statistics
- Mental health and related issues statistics
- Accidents and injuries statistics

Methodology

- Causes of death statistics - methodology

General health statistics articles

- Health statistics introduced
- Health statistics at regional level — causes of death
- Healthy life years statistics
- Mortality and life expectancy statistics
- The EU in the world — health

Publications

- 1 in 4 deaths caused by cancer in the EU-28 — Lung cancer main fatal cancer — News release 179/2014
- Causes of death in the EU-28 in 2010 — Circulatory diseases main cause of death for men and women aged 65 years and over — News release 178/2013
- Causes of death in the EU — Statistics in focus 10/2006
- Circulatory diseases — Main causes of death for persons aged 65 and more in Europe, 2009 — Statistics in focus 7/2012
- Health statistics — Atlas on mortality in the European Union

Main tables

- Causes of death (t_hlth_cdeath)

Database

- Causes of death (hlth_cdeath)
Dedicated section

- Health
- Causes of death

Methodology

- Causes of death statistics (ESMS metadata file — hlth_cdeath_esms)

External links

- European Commission — Directorate-General for Health and Food Safety — Non-communicable diseases
- European Commission, Directorate-General for Health and Food Safety — European Core Health Indicators (ECHI), ECHI 13Disease-specific mortality
- Joint OECD / European Commission reportHealth at a Glance: Europe
- WHO Global Health Observatory (GHO) — Mortality and global health estimates