Energy statistics - an overview
Data extracted in July 2020
Planned article update: July 2021
Gross inland energy consumption by fuel, EU-27, 1990-2018
This article provides an overview of the energy economy in the European Union (EU) in 2018, based on annual data from each Member State. Trends are shown for the main energy commodities for primary energy production, imports and exports, gross inland consumption and final energy consumption.
Gross inland energy consumption in the European Union in 2018 was slightly smaller than in 2017 (-0.8 %). Oil (crude oil and petroleum products) continues to be the most significant energy source for the European economy, despite the long-term downward trend, while natural gas remains the second largest energy source. Nevertheless, between 2014 and 2017, the use of oil and natural gas slowly increased, while in 2018 the use of the two energy sources decreased again. The contribution of renewable energy sources is constantly increasing, surpassing solid fossil fuels in 2018.
Primary energy production
Primary production of energy within the EU in 2018 was 635 million tonnes of oil equivalent (Mtoe), 1.1 % lower than in 2017. The biggest decrease was in natural gas (11.8 %) which continued to decrease year by year, followed by solid fossil fuels with the same downward trend (5.3 % decrease) and oil and petroleum products (2.1 % decrease). An increase was registered for renewable energies with 2.8 % and non-renewable waste with 1.5 %, while nuclear heat remained almost constant (0.1 % increase)., see Figure 1. Renewable energies accounted for the highest share in primary energy production in EU in 2018 (34.2 %), followed by nuclear heat (30.8 %), solid fossil fuels (18.3 %), natural gas (9.3 %), oil and petroleum products (3.9 %) and non-renewable wastes (2.1 %).

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)
Imports and exports
The decrease of primary energy production in the EU over the past decades resulted in increased imports of primary energy and energy products. The quantity of imported natural gas more than doubled over the period 1990–2018 to 330 Mtoe (Figure 2), making it the second highest imported energy product. In 2017, imports from natural gas reached the highest value, while in 2018 a decrease of 3.6 % was recorded compared to 2008. Crude oil ranked first in terms of quantities imported, though for 2018, the figure was 519 Mtoe, 8.5 % lower than 10 years previously.

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)
Gross inland energy consumption
Gross inland energy consumption in the EU in 2018 was 1 479 Mtoe, 0.8 % lower than in 2017 (Figure 4). It was relatively stable during the period 1990-2010, with a strong decrease in 2009, mostly as a result of the financial and economic crisis[1]

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)

(toe per capita)
Source: Eurostat (nrg_bal_s), (demo_pjan)

(tonnes of oil equivalent per capita)
Source: Eurostat (nrg_bal_s), (demo_pjan)
Note: Detailed information for all years can be found in the source file

(%)
Source: Eurostat (nrg_bal_c)
Final energy consumption
Final energy consumption in EU in 2018 was 939 Mtoe, 0.1 % lower than in 2017 (Figure 9). Final energy consumption has increased slowly since 1994, reaching its highest value, 991 Mtoe, in 2006. By 2018, the final energy consumption decreased from its peak level by 5.1 %.

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)

(% of total, based on tonnes of oil equivalent)
Source: Eurostat (nrg_bal_s)

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)

(1990 = 100, based on tonnes of oil equivalent)
Source: Eurostat (nrg_bal_s)
Non-energy consumption
Final non-energy consumption includes fuels that are used as raw materials and are not consumed as fuel or transformed into another fuel (for example, chemical reactions or bitumen for road construction). Non-energy consumption in 2018 amounted to 91.1 Mtoe (Figure 13). Oil and petroleum products accounted for 74.6 %, natural gas 14.9 %, and 1.6 % of all non-energy consumption was from solid fossil fuels.

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_c)
Energy dependency
Gross available energy represents the quantity of energy necessary to satisfy the energy needs of a country or a region. The ratio between net imports and gross available energy indicates the ability of a country or region to meet all its energy needs. In other words, it shows the extent to which a country or a region is dependent on energy imports. This is illustrated in Figure 14, where the light coloured proportion of the column shows net imports with respect to gross available energy (gross inland consumption + international maritime bunkers), which is represented by total column height.

(million tonnes of oil equivalent)
Source: Eurostat (nrg_bal_s)
Energy intensity
Energy intensity can be considered as an approximation of the energy efficiency of a country’s economy and shows how much energy is needed to produce a unit of GDP. There are various reasons for observing improvements in energy intensity: the general shift from industry towards a service based economy in Europe, a shift within industry to less energy-intensive activities and production methods, the closure of inefficient units, or more energy-efficient appliances. In Map 2 the energy intensity is presented using GDP purchasing power standards (PPS) values that are more suited for comparison across countries in one specific year.

(kilogram of oil equivalent per thousand euro PPS)
Source: Eurostat (nrg_bal_s), (nama_10_gdp)

(kilogram of oil equivalent per thousand EUR)
Source: Eurostat (nrg_ind_e)
Source data for tables and graphs
Data sources
Data on energy are submitted on the basis of internationally agreed methodology in joint annual energy questionnaires (Eurostat - OECD/International Energy Agency (IEA) - UNECE). Data are available for all EUcountries and the methodology is harmonised for all reporting countries. Consequently, data comparability across countries is very high.
Gross inland energy consumption represents the quantity of energy necessary to satisfy inland consumption of the geographical entity under consideration (excluding the international maritime bunkers). It is defined as primary production plus imports, recovered products and stock changes, less exports and fuel supply to maritime bunkers (for sea-going ships of all flags). It describes the total energy needs of a country (or entity), covering: consumption by the energy sector itself; distribution and transformation losses; final energy consumption by end-users; non-energy use of energy products and statistical differences.
Gross available energy covers the gross inland consumption plus the international maritime bunkers.
Final energy consumption includes the consumption of energy by all users except the energy sector itself (whether for transformation, and/or for its own use), and includes, for example, energy consumption by agriculture, industry, services and households, as well as energy consumption for transport. It should be noted that fuel quantities transformed in the electrical power stations of industrial auto-producers and the quantities of coke transformed into blast-furnace gas are not part of overall industrial energy consumption but are classified instead as part of the transformation sector.
Energy intensity is measured as the ratio between gross available energy and GDP; this indicator is a key indicator for measuring progress under the Europe 2020 strategy for smart, sustainable and inclusive growth. The ratio is expressed in kilograms of oil equivalent (kgoe) per thousand euro, and to facilitate analysis over time the calculations are based on GDP at constant prices with reference year 2010. If an economy becomes more efficient in its use of energy and its GDP remains constant, then the ratio for this indicator should fall.
Context
Energy statistics are in the spotlight due to the strategic importance of energy on the agenda of competitive and sustainable economic growth. In recent years, the European Union has faced several important issues that have pushed energy towards the top of national and European political agendas. Energy statistics have provided crucial information for policy makers: volatility in oil prices, interruptions of energy supply from non-member countries, blackouts aggravated by inefficient connections between national electricity networks, and the difficulties of market access for suppliers in relation to gas and electricity markets.
Consequently, a major policy package was adopted and has become binding legislation, known as the 20-20-20 targets. This ‘climate and energy package’ includes the following targets for 2020:
- A reduction in EU greenhouse gas emissions of at least 20 % below 1990 levels;
- At least 20 % of EU gross final energy consumption to come from renewable energy sources;
- At least 10 % of transport final energy consumption to come from renewable energy sources;
- A 20 % reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency
These targets were further emphasised in the Europe 2020 strategy.
The European Commission adopted an Energy efficiency plan 2011 (COM(2011) 109 final) in March 2011, which was followed in October 2012 by a Directive (2012/27/EU) of the European Parliament and of the Council on energy efficiency. This aims to establish a common framework to promote energy efficiency and specifies actions to implement some of the proposals included in the energy efficiency plan; it also foresees the establishment of indicative national energy efficiency targets for 2020. The Commission hopes that these plans will be pursued in conjunction with other policy actions under the Europe 2020 flagship initiative for a resource-efficient Europe, including the Roadmap for moving to a competitive low carbon economy by 2050 (COM(2011) 112 final). The energy efficiency plan proposes several actions to:
- promote the role of the public sector and propose a binding target to accelerate the refurbishment rate of the public sector building stock; introduce energy efficiency criteria in public procurement;
- trigger the renovation process in private buildings and improve the energy performance of appliances;
- improve the efficiency of power and heat generation;
- foresee energy efficiency requirements for industrial equipment, improved information provision for small and medium-sized enterprises, and energy audits and energy management systems for large companies;
- focus on the roll-out of smart grids and smart meters providing consumers with the information and services necessary to optimise their energy consumption and calculate their energy savings.
Energy efficiency also features in the two most recent strategic developments, the EU’s energy security strategy (COM(2014) 330 final) and a framework strategy for a resilient energy union with a forward-looking climate change policy, as detailed in a European Commission Communication (COM(2015) 80 final). The first lists increasing energy efficiency and reaching the proposed 2030 energy and climate goals as one of five areas for action, while the latter lists energy efficiency as having the potential to moderate energy demand as one of its five dimensions; for more information see the introductory article on energy statistics. The European Commission is optimistic that the 20 % primary energy consumption target will be reached if the EU Member States adhere to their commitments and continue to implement existing energy efficiency legislation and energy efficiency programmes. The Commission publishes an assessment of the progress being made in relation to national energy efficiency targets for 2020 and towards the implementation of the Energy Efficiency Directive; for more information, see the 2018 progress report (COM(2019) 224 final).
By using energy more efficiently, Europeans can lower their energy bills, reduce their reliance on external suppliers of oil and gas, and help protect the environment. The EU harmonises national measures relating to the publication of information on the consumption of energy by household appliances, thereby allowing consumers to choose appliances on the basis of their energy efficiency. A range of different products (for example, light bulbs, refrigerators, washing machines) carry the EU’s energy label (Directive 2010/30/EU) that details the energy efficiency of products, rating them according to a scale that ranges from A to G, with ‘A’ (or even A+, A++ or A+++ for some types of appliances) as the most energy efficient products and ‘G’ the least efficient; a maximum of seven colours are also used with dark green always representing the most efficient and red the least efficient.
There are many factors that impact on energy use for transport, for example, overall economic growth, the efficiency of individual transport modes, the take-up of alternative fuels, advances in transport technology and fuel, and lifestyle choices. The globalised nature of the EU economy has fuelled demand for international freight movements (principally by ship), while within the single market there has been a considerable expansion in the use of road freight transport. The growth of low-cost airlines, an increase in motorisation rates (the average number of motor vehicles per inhabitant), a trend for living in suburban areas, or the expansion of tourism (more frequent breaks, and more long-haul destinations) are among some of the factors that have contributed to the longer-term increase in demand for energy as a result of personal travel (especially for road transport and international aviation).
- Energy (t_nrg), see:
- Energy statistics - main indicators (t_nrg_indic)
- Energy (nrg), see:
- Energy statistics - quantities, annual data (nrg_quanta)
- Energy balances (nrg_bal)
- Supply, transformation and consumption - commodity balances (nrg_cb)
- Energy indicator (nrg_ind)
- Energy infrastructure and capacities (nrg_inf)
- Stocks (nrg_stk)
- Trade by partner country (nrg_t)
- Energy balance sheets — 2017 data — 2019 edition
- Energy balance sheets — 2016 data — 2018 edition
- Energy balance sheets — 2015 data — 2017 edition
- Energy balance sheets — 2014 data — 2016 edition
- Energy balance sheets — 2013 data — 2015 edition
- Energy balance sheets — 2011-2012 — 2014 edition
- Energy, transport and environment statistics — 2019 edition
- Shedding light on energy in the EU — A guided tour of energy statistics (digital publication) — 2017 edition
- Supply, transformation and consumption — commodity balances (ESMS metadata file — nrg_cb_esms)
- Final energy consumption by sector (ESMS metadata file — nrg_bal_esms)
- Regulation (EC) No 1099/2008 on energy statistics
- Summaries of EU legislation: Common system for the production of energy statistics
- European Commission — Directorate-General for Energy — Energy strategy
- European Commission — Directorate-General for Mobility and Transport — European strategies
- International Energy Agency (IEA) — World Energy Outlook
- OECD — Green growth and sustainable development — Greening energy
- Energy Community
- INOGATE
Notes
- ↑ Since 2010, a decreasing trend can be noticed until 2014, as in 2015, 2016 and 2017 it increased a bit, while in 2018 it decreased again. The weather, especially during winter periods for northern European countries and summer periods for southern European countries, also influences consumption of energy.
- ↑ Please note that the definition of solid fossil fuels excludes peat and peat products as well as oil shale and oil sands.
- ↑ Energy transformation includes energy lost during conversion of primary energy products into secondary energy products that are actually consumed by end users; for example crude oil refining into motor gasoline or production of electricity from coal.