
VALIDATION AND TRANSFORMATION LANGUAGE – VTL 1.1 Cheat Sheet (page 1)

Input data types for functions and operations
 Scalar; e.g. a simple numeric expression written within the code like 14 or 6.23

E.g., round(6.23, 0) rounds the number 6.23 to zero decimals (i.e. it returns 6.00)

 Referenced Measure or Attribute within a dataset; e.g. ds_bep.obs_value expression takes the

obs_value Measure (containing e.g. a list of numbers) from the ds_bep dataset

E.g., round(ds_bep.obs_value, 0) rounds all values found in the obs_value Measure

 Referenced dataset without selected Measure or Attribute; e.g. ds_bep, which takes the entire

ds_bep dataset and applies the given operations on all values whose data type allows it

E.g., round(ds_bep, 0) rounds all numeric values found in any Measure of the ds_bep dataset

As in the examples above, functions and operators can be used, in general, not only on simple scalars,

but also on datasets or on given measures within a dataset, in a logical manner. E.g. dset_1 + dset_2

pairs the rows of the two datasets based on matching Identifier Components, and returns a dataset

containing the addition of the Measures of these rows – see dataset operations on page 2.

Basic dataset structure
Components: (1) Identifiers, (2) Measures, (3) Attributes

Example:

Employee_ID Salary Currency

A1 1000 dollar

B1 1200 euro

C2 800 yen

D2 900 pound

(In real datasets, there can be any number of each component.)

The component titles with corresponding columns and

rows in this table and elsewhere in the descriptions are

representational – real datasets may store components

and respective data in a different structure.

Syntax
Assignment with := symbols – e.g. var_1 := 12 assigns the number 12 to the variable var_1
Assignments within { } (curly brackets) are local, i.e. the variable can be returned only within those brackets
Comments start with /* and end with */ – e.g. /* some comments */ can be inserted along the code

Conditional expression:
if condition_1 then statement_1 elseif condition_2 then statement_2 else condition_3 then statement_3
E.g. the expression: B := if A > 5 then 1 else 2

assigns the number 1 to the variable B if A greater than 5, otherwise it assigns the number 2 to B

String operations

Return length: length("hi") ⇨ 2

To uppercase: upper("hi") ⇨ "HI"

To lowercase: lower(Hi") ⇨ "hi"

Trim whitespace: trim(" hi ") ⇨ "hi"

Join: "ki" || "wi" ⇨ "kiwi"

Slice: substr(str, start, length)

E.g. if we assign A := "Hello"

 substr(A, 2, 3) ⇨ "llo"

 substr(A, 0, 1) ⇨ "H"

Find: instr(strToSearch, strToFind)

E.g. if we assign B := "lo"

 instr(A, B) ⇨ 3 (start índex)

Replace: replace(str, old, new)

E.g. if we assign C := "ium"

 replace(A, B, C) ⇨ "Helium"

 replace(A, "ell", "2") ⇨ "H2o"

Date type from string type:

E.g. if we assign D := "2016-02"

date_from_string(D, YYYY-MM)

 ⇨ 2016/02/01 (date type)

Rulesets

 Datapoint ruleset: rules that apply to individual “rows” in the data, e.g.:

define datapoint ruleset wage_curr (Currency, Salary) is

curr_rule: Currency = “euro” errorcode "not euro" errorlevel 2;

amount_rule_1: when Currency = “euro” then Salary between 1100 and 2500;

amount_rule_2: when Currency = “dollar” then Salary > 1200

end datapoint ruleset

⇨ wage_curr can now be used for validation checks or filtering (see check() and filter())

(When used for validation with the check() function, violation of the curr_rule rule returns the given

row including the "not euro" text under a new "ERRORCODE" component, and the number 2

under an "ERRORLEVEL" component.)

 Hierarchical ruleset: rules that interrelate the contents of “rows” across the data, e.g.:

define hierarchical ruleset wage_compare (variable = Employee_ID) is

compare_employees: A1 > B1 errorcode "A1 lower nominal wage than B1";

compare_sum: C2 = A1 + D2 errorcode "sum does not equal C2"

end hierarchical ruleset

⇨ wage_compare can now be used for checks or calculations (check(), aggregate())

(Again, when used for validation, the appropriate errorcodes are returned.)

Validation check
The check() function performs validation checks using (one or more) predefined rulesets.

E.g. check(ds3, wage_curr) or check(ds_3, wage_compare) performs the wage_curr or

wage_compare checks, respectively, as described in the given rules, on the ds3 dataset. By default,

only rows that violate the rule are returned, with (optional) errorcode/errorlevel feedback columns.

The check() function can also be used with a single in-line rule, e.g. check(ds3.obs_val < 10) checks

each (number) value within the obs_val measure of the ds4 dataset to evaluate whether it is less

than 10 – and returns rows in which the value is greater than or equal to the number 10.

The check_value_domain_subset() function checks whether the specified components in a dataset

respect the restrictions (format, content) given in a value domain predefinition (see page 2), in the

format of check_value_domain_subset(dataset, components_to_check, domain_val_predefinition).

Aggregate
The aggregate() function aggregates datasets based on applicable rules (equations) in a hierarchical

ruleset. (All non-applicable details, e.g. errorcodes or boolean inequality, are ignored.)

E.g. aggregate(ds3, wage_compare) returns the A1+D2 sum under component C2 (see Rulesets).

For more general aggregate functions, without rulesets, see avg(), max(), etc. on page 2.

Basic variable types
integer (whole number, e.g. 36)
float (floating-point number, e.g. 36.45)
boolean (true or false value)
date (timestamp, e.g. 2016/11/18)
string (any UNICODE string, e.g. "hi!")

Indexing of string characters:

 e.g. string_var := "hello"

h e l l o
0 1 2 3 4

VALIDATION AND TRANSFORMATION LANGUAGE – VTL 1.1 Cheat Sheet (page 2)

Basic functions and operators

Function Description Example(s)

get

Retrieves dataset from a structure.

Optional clauses: keep(), dedup(),

filter(), aggregate().

get(“DIR_1/DATAFILE2”, keep(ID1, M2) retrieves the

dataset contained in the “DATASET2” file and returns it

with only the ID1 Identifier and M2 Measure components

put Stores dataset to persistent structure.
put(ds1, “DIR2/DFILE.STO”) stores the ds1 dataset to

a file named “DFILE.STO”

[] (i.e. join)

Joins datasets based on Identifiers.

Optional clauses: drop(), keep(),

filter(), etc. See dataset operations .

[ds1, ds2] { filter ds2.M4 <> 0 } returns a dataset that

contains all rows with common Identifiers in the ds1 and

ds2 datasets, but excluding those with 0 value in ds2

Sets:

union

intersect

symdiff

setdiff

Set functions merge datasets based

on Identifier components: union()

keeps one of each unique row;

intersect() keeps only the rows that

are common in the input datasets;

symdiff() keeps all rows that are not

common, setdiff() keeps one of each

row that is not common.

union(ds1, ds2) returns all unique rows once; namely, it

returns all rows in the dataset ds1 and complement it with

all rows in the dataset ds2 that do not have the exact same

Identifiers as any of the rows in ds1

symdiff(ds1, ds2) returns all the rows in ds1 that do not

have the exact same Identifiers as any of the rows in ds2,

and also all the rows in ds2 that do not have the same

Identifiers as any of the rows in ds1

Aggregate,

e.g.:

avg

count

max

min

sum

The specified aggregate functions

calculate averages, sums, variances,

maximum values, ranks, etc., within

the specified Measure component.

One may "group by" or "along" one

or more Identifier component. The

"time_aggregrate" aggregates values

along a time dimension.

avg(ds1.m3) group by time_year returns the averages of

the m3 measure in the ds1 dataset grouped by the

time_year Identifier values (e.g. average of all data from

2009, average of all data from 2011, average of 2012, etc.)

max(ds1.m5) along time disregards the time values and

return max. values grouped by all other Identifier values

sum(ds4) time_aggregate("Q","A") transforms all quarterly

Measure values in ds4 into corresponding yearly sums

Analytic,

e.g.:

first_value

last_value

lag

rank

ntile

Analytic functions use customizable

sliding windows that move across the

rows of a dataset to calculate the

rows of the output dataset, e.g. by

moving each original row forwards or

backwards, or aggregating the values

in several subsequent rows, etc.

first_value(ds3) over (partition by area ordered by time)

for each Measure component in ds3, for each value within

the same area (ID), assigns the 1st value (in 1st row) of the

given Measure within that area, with rows ordered by time

lag(ds3,1,5) over (partition by geo ordered by age)

moves each Measure value within the same geo (ID) into

the previous row, and replaces every offset (every last row

within geo) with the number 5, with rows ordered by age

Define function

User defined function definition e.g.:

create function multiply_func(x, y)

 as x*y

⇨ multiply_func(2, 3) returns 6

Recoding identifier values

The transcode() function recodes the values of a given identifier component. E.g. transcode(ds1, ds_map, GEO) recodes all values in the GEO

Identifier component of the ds1 dataset, based on the ds_map variable – which can be, in the simplest case, a dataset containing a MAPS_FROM

Identifier component, and MAPS_TO Measure component; the former containing values to be changed, the latter the values to insert (e.g. FRANCE to

FR, GERMANY to DE, etc.). The ds_map variable can also be a predefined "mapping object"; see define mapping ruleset in the Reference Manual.

Dataset operations
E.g. ds_A is:

Employee Salary Currency Benefits

A1 1000 dollar 200

B1 1200 euro 150

C2 800 yen 270

and ds_B is:

Employee Salary Currency Benefits

A1 700 dollar 40

B1 950 euro 0

D2 1100 pound 190

where, in both cases, Employee is an Identifier component, Salary and

Benefits are both Measure components, and Currency is an Attribute

component. Consequently, the exemplary calculations below may be

executed. In each of these examples, the components in the resulting

dataset keep their names and types, so e.g. the two Measures always both

stay Measures (though the values may be changed).

ds_A / 2 (division of the dataset by a simple scalar) returns:

Employee Salary Currency Benefits

A1 500 dollar 100

B1 600 euro 75

C2 400 yen 135

 [inner ds_A, ds_B] { ds_A - ds_B } (or simply: ds_A - ds_B) returns:

Employee Salary Currency Benefits

A1 300 dollar 160

B1 250 euro 150

[outer ds_A, ds_B] { ds_A + ds_B } (or: [outer] ds_A + ds_B) returns:

Employee Salary Currency Benefits

A1 1700 dollar 240

B1 2150 euro 150

C2 null yen null

D2 null pound null

[inner] { ds_A + ds_B , drop Benefits, filter ds_A.Salary < 2000}) returns:

Employee Salary Currency

B1 2150 euro

