

Report on the action @HBS

Version 1

 Barry Schouten (Statistics Netherlands, jg.schouten@cbs.nl)

Joanna Bulman (UK Office for National Statistics)

Marjaana Järvensivu (Statistics Finland)

Marc Plate (Statistics Austria)

Brigita Vrabič-Kek (Statistics Slovenia)

project number 847257

February 28, 2020

summary This report on the action is the main deliverable of project @HBS. It describes the main activities

and results of the @HBS consortium of ONS, Stat Austria, Stat Finland, Stat Netherlands and Stat

Slovenia in the three topical work packages. It also provides a guide to all detailed @HBS reports.

@HBS investigates an app-based approach to the Household Budget Survey.

ACKNOWLEDGEMENTS: To this paper many others have contributed: Annette Jäckle (university of

Essex), Anna Niemelä (Stat Finland), Deirdre Giessen, Jelmer de Groot, Jack Janssen, Mart Nyholt,

Tom Oerlemans, Stefan Theunissen, Nick de Wolf (Stat Netherlands), Mateja Zgonec (Stat Slovenia)

and Joanna Bulman, Rob Doherty, Lanthao Benedikt, Louisa Nolan (ONS).

@HBS >An app-assisted approach for the Household Budget Survey

mailto:jg.schouten@cbs.nl

2

Contents

Summary 3
1. Introduction to the @HBS project 3
2. The Household Budget Survey app 5

2.1 Frontend 5
2.2 Backend 7

3. Evolution of the @HBS app through two test rounds 7
4. Motivation and recruitment strategies 8
5. Smart features 10

5.1 Receipt scanning 10
5.2 Big data linkage 12
5.3 Geo-locations 14

6. Future development 16

Appendix A – Overview of @HBS supplemental products 18
Appendix B – Backend specifications 19
Appendix C – Screenshots HBS app 24
Appendix D – Screenshots HBS app bank mockups 28

3

Summary
Main conclusions from @HBS:

 An app-assisted approach is received very well by test persons in all three countries

 Test persons view an HBS app not just as an official statistics tool, but also as a

personal tool; expenditure statistics are perceived as useful

 The most complex features in an HBS app are product search lists and reporting

prices for products with certain types of discounts (e.g. take three, buy two)

 Country-specific features of a basic HBS app are (apart from NSI logo and app name)

user interface language, product search lists, store search lists, helpdesk contact

information and the type of feedback on incentives earned

 Country-specific features of a receipt scanning HBS app are receipt format and

structure, and the availability of GTIN/EAN product descriptions for matching

receipt text

 Product search lists are time-consuming to prepare and need constant updating

 Tests suggest that respondent recruitment and instruction are crucial, but, once

recruited, respondents remain motivated and perceive the respondent burden as

relatively low

 Consent questions for linkage to loyalty card data, scanner data and bank

transactions data require a careful design of the UI; adding these additional data

sources to the app may make reporting expenses more complicated and may have

relatively limited added value as respondents see entering expenses in the app by

themselves as rather easy.

 Willingness to consent to linkage to bank transactions data demands very convincing

arguments that linkage removes respondent burden and is safe

 Linkage to loyalty card data and/or scanner data was perceived as a more natural

option, but still demands convincing arguments

 Geo-locations were perceived as hardly useful and intrusive in the context of the

HBS

Main recommendations from @HBS:

 Harmonize product search lists across ESS countries

 Develop a full receipt scan processing pipeline with instant feedback of classified

receipts to respondents

 Devote extra care and effort to material for recruiting and instructing respondents

 Further explore consent to link bank transactions data and the utility of such data,

especially in designing the UI such that it supports and not complicates the response

task

 Further explore consent to link scanner data as a precursor to digital receipts

1. Introduction to the @HBS project

Within the ESTAT call Modernization of HBS and TUS, @HBS has developed and explored an

app-assisted approach towards data collection for the household budget survey (HBS). In

particular, it explored three sensor data extensions to reduce the respondent burden. As a

starting point and to focus on the sensor data extensions, the app is modelled after the

existing HBS app developed by Stat Austria. This app does not employ sensors but facilitates

keeping a budget diary by a household. The three extra features that are investigated are

4

receipt scanning and classification, geo-locations, and big (sensor) data linkage through

consent. The receipt scanning is performed in-app for the infrequent expenditures

concerning multiple products. The geo-locations are based on location measurements and

are a form of geo-fencing where the app detects a close vicinity to shops and other sites

where expenses are likely. The big data linkage concerns the necessary extra information to

uniquely link respondent expenditures to relevant data such as scanner data or bank

transactions data.

@HBS was a consortium of ONS, Stat Austria, Stat Finland, Stat Netherlands and Stat

Slovenia. Stat Netherlands was the coordinator and was responsible for the development of

the @HBS app. The project had three topical work packages which comprised of the

following tasks:

 Work package 2 (coordinated by NL) – app development:

1) Copy main features of the Stat Austria app

2) Separate generic and country-specific components

3) Implement receipt scanning

4) Implement geo-locations

5) Implement big data linkage and consent examples

6) Describe specifications for the app backend

 Work package 3 (coordinated by NL and SI) – usability testing and data collection

strategies:

1) Test the basic app in two rounds in three countries

2) Test and report each of the three extensions

3) Recommend candidate recruitment and motivation strategies

 Work package 4 (coordinated by NL and UK) – data analysis and data linkage:

1) Make an inventory of potentially relevant big (sensor) data

2) Identify necessary information to link big (sensor) data after consent

3) Explore OCR and classification of scanned receipts

4) Validate, if feasible, in-app scanning with in-house scanning of receipts

5) Implement instructions for in-app scanning based on the in-house and in-

app comparison

Appendix A provides an overview of all sub-deliverables in the three work packages.

Out of the three smart features, receipt scanning was implemented and has been thoroughly

tested, big data linkage has been explored, tested but not implemented, and geo-location

has been explored but not tested or implemented. The motivations will be given in detail in

this report in section 5. In sum, after a number of brainstorms and based on test person

comments, the international project team rated

 the receipt scanning as very promising,

 the big data linkage as promising but associated with a number of complex

methodological and UI questions, and

 geo-locations as only mildly useful for respondents, except perhaps when combined

with big data linkage.

Although it is not fully implemented, @HBS has gained very useful knowledge on big data

linkage options, which will make it relatively straightforward to design and initiate follow-up

research and development.

In the following, it is assumed that the reader is familiar with the HBS data collection and

classification. In section 2, we present frontend and backend of version 3 of the @HBS app.

5

In section 3, we summarize the evolution of the app through two rounds of testing in three

countries. In section 4, we elaborate on recruitment and motivation strategies. In section 5,

we discuss each of the three smart features. We end with future development in section 6.

2. The Household Budget Survey app

The @HBS app is listed as Household Budget Survey app in iOS and Google app stores. The

source code can be found at

https://gitlab.com/tabi/hbs-budget-app/budget-app-cbs

The app will be submitted to the Eurostat inventory of tools following CSPA (Common

Statistical Production Architecture) guidelines. The documentation can be found at:

https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/INVENTORY+of+Tools+and+Sourc

es+for+HBS+and+TUS

The Household Budget Survey app is at version 3 at the time of writing. Here, is the

description of versions:

 Version 0: Version prepared to evaluate technical problems across countries and

devices (June/July 2019)

 Version 1: Version with revisions of technical issues for test round 1 (August 2019)

 Version 2: Version with revisions based on test round 1 (December 2019)

 Version 3: Version with revisions based on test round 2 (March 2020)

 Version 4: Version including receipt scanning pipeline (expected June 2020)

In this section, we describe the frontend and backend of version 3 of the Household Budget

Survey app. In doing so, we distinguish generic and country-specific elements.

 Frontend
Currently, the Household Budget Survey app is available in Dutch, English, Finnish and

Slovenian. The English version is the international demo version of the app. To avoid extra

work, one app was submitted to app stores and respondents need to choose the language.

This can easily be changed. In preparing country apps, the language (not the content) can

also be based on the language settings of the smart device.

Generic features of the app frontend are:

 Diary functionality with option to pre-specify the data collection period

 Manual data entry and receipt scan data entry

 The use of separate product search lists linked to COICOP

 The use of separate store lists to prepare receipt processing and classification of

products

 Four main screens: calendar, list of submitted expenditures, expenditure statistics

and settings

 Check of receipt scan data quality (UNDER DEVELOPMENT FOR VERSION 4)

Country-specific features of the app frontend are:

 App name and colour scheme

https://gitlab.com/tabi/hbs-budget-app/budget-app-cbs
https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/INVENTORY+of+Tools+and+Sources+for+HBS+and+TUS
https://webgate.ec.europa.eu/fpfis/wikis/display/ISTLCS/INVENTORY+of+Tools+and+Sources+for+HBS+and+TUS

6

 App language

 Content of product search lists

 Content of store search lists

 Helpdesk functionality (helpdesk phone number and email)

 Display of incentives earned by the respondent

The country-specific features of the app mean some time investment for each NSI that would

like to employ the app for their HBS. What is needed?:

 App texts need to be translated: This task by itself takes little time as the amount of

text used is limited. However, some iterations may be needed to find the right

balance between length of texts and navigation/buttons. For this purpose, within

@HBS, a file has been prepared with all app texts in English next to screenshots

 Product search lists need to be prepared and linked to COICOP. In @HBS, FIN, SLO

and UK did not have extensive lists, but only smaller lists designed for manual

coding. The preparation of lists can be time consuming. The NL list contains 29.000

entries. Within @HBS, a simple web scraping program was developed that translates

NL product lists to any specified language and that may be used as a starting point

 Store search lists need to be prepared. Store lists are uncommon to most NSI’s and

demand some time investment. The stores are used for three purposes: To assist

processing of scanned receipts, to pre-classify products into main categories for

scanned receipts, and to prepare/anticipate digital receipts in the near future

 Helpdesk contact information needs to be added. This task, obviously, implies much

more than just a phone number and email. We will return to this in the backend

section.

 The app needs to be submitted to app stores by the NSI. This task requires app store

accounts.

A number of design choices has been made in the app:

 Multiple household members can use the same app, but expenditures are not

anonymized within the household

 Product search for manual data entry is based on two principles: At the start of data

entry only recently bought items are shown. When typing, products are suggested

based on a distance metric

 Store search for all data entry is based on the same principles as for products

 Respondents get instant feedback in two ways: a circle diagram with total amounts

and amounts per first digit COICOP, and a timeline with expenditures per day split

over first digit COICOP

The best way to explore and experience the Household Budget Survey app, is to download

the app and to use it for one or a few days. Here, we merely provide screenshots of the most

important screens.

Test logins for the app can be requested at jg.schouten@cbs.nl .

The app is available as Household Budget Survey in Google and Apple stores.

Screenshots of the app can be found in Appendix C.

mailto:jg.schouten@cbs.nl

7

 Backend

Currently, the Household Budget Survey app is linked to a basic backend that supports data

submission, but that does not yet have full monitoring functionality and that is disconnected

from receipt processing. In the two test rounds, the backend was not linked and no data was

transmitted. Instead a separate app was developed for the submission of receipts. The

resulting database of receipts has been used to explore machine learning models for receipt

text recognition.

The backend is implemented as a GO-server with a PostgreSQL database. The backend has

four main functions:

 User authentication: check whether the user password matches the (hashed)

password in the database

 Store receipt data: the data gathered on the smartphone is also stored in the

database.

 Synchronize receipt data: keep the data synchronized between smartphones if the

user uses multiple smartphones.

 Monitoring: respondent activity and app usage is monitored and may be input to

follow-up actions

Generic features of the app backend are:

 Uniform data model

 Transmission of data when device is connected to Wi-Fi

 Monitoring of survey data, receipt data and paradata (app activity and navigation)

through queries on the database (TO BE DEVELOPED FOR VERSION 4)

 In-house receipt scan text recognition (TO BE DEVELOPED FOR VERSION 4)

Country-specific features of the app backend are:

 In-house classification of receipt texts (TO BE DEVELOPED FOR VERSION 4)

 Incorporation into case management systems and strategies, including helpdesk

functionality

Appendix B provides specifications for the backend.

3. Evolution of the HBS app through two test rounds

The Household Budget Survey app went through three versions during project @HBS. In the

coming two years, the app frontend and backend will get major revisions because of the

inclusion of the receipt processing pipeline.

The two test rounds’ protocols, plans and findings are described in great detail in separate

sub-deliverables. In all cases, the app was tested in Finland, the Netherlands and Slovenia.

Desk reviews of the app have been given by ONS, by University of Essex and by Statistics

Canada. Recommendations from these desk reviews have been included as well in the app

user interface. The English version of the app is used for demo purposes and went through

the same revisions as the Dutch, Finnish and Slovenian versions.

8

In test round 2, consent to link to loyalty card data, scanner data and bank transactions data

was evaluated in the Netherlands only through mock-up screens. The extra screens were not

included in the app itself, but were simulated on a smartphone. The mock-ups do not

support actual data entry, but are realistic in all other aspects. In addition, test persons

received a paper instruction how to add bank accounts. A separate sub-deliverable is

prepared including screenshots of the consent linkage screens.

What has changed from version 1 (August 2019) to version 3 (March 2020)?

These are the main changes implemented after test round 1:

 Adding a walk through tutorial for each screen

 Adding tips for making a picture of a receipt

 Improved design for the screen for manual entering of expenses; the flow of this

screen was one of the main issues found in test round 1

 Adding the option to enter negative expenses (e.g. for refunds)

 Enabling entering expenses directly via calendar

 Adding more safety to prevent accidental editing/deleting of expenses

 Several technical issues / bugs

These are the main changes implemented after test round 2:

 Improve usability of walk through tutorial

 Improve explanation of how to report prices with a discount

 Several technical issues / bugs (e.g. not consistently displaying expenses entered

with a picture in overview screen)

4. Motivation and recruitment strategies

During project @HBS, only small-scale, qualitative tests have been conducted, but data

collection strategies have been explicitly included in the two test rounds. Each test round

consisted of two groups: a full observation group and a retrospective group. The

retrospective group was invited to register and open the app themselves with just the help

of the recruitment material. The full observation group was also monitored while performing

this task.

We distinguish recruitment and motivation strategies. Recruitment activities take place

before the actual data collection and motivation activities during data collection. A literature

study revealed relevant papers by the university of Essex (Wenz, Jäckle and Couper 2019

Survey Research Methods, Read 2019 Survey Research Methods, Jäckle, Burton, Couper and

Lessof 2019 Survey Research Methods). The number of reported app-assisted HBS-type

surveys is still relatively low, however. University of Essex acted as advisor on @HBS.

What are design features in recruitment:

 Type and height of incentives

 Employment of interviewers

 Content of invitation and reminder letters

 Use of an information leaflet

 Use of an installation guide

 Use of an online landing page

9

 Provision of individual household statistics about expenditures

What are design features in motivation:

 User interface

 Conditional incentives

 Contacts by an interviewer

 Plausibility checks

 Provision of individual household statistics about expenditures

 Helpdesk (phone, email, social media) for technical support

 In-app notifications

 Push-notifications

 Other household contact info (email, phone number)

In qualitative tests, invitation letters, leaflets, installation guide, and online landing page

could be evaluated for recruitment purposes and user interface, plausibility checks, in-app

notifications and helpdesk for motivation purposes. The provision of household expenditure

statistics can be evaluated for both recruitment and motivation purposes.

We did not evaluate all design features. In the two test rounds, the option of a landing page

was not used. Test persons could make use of the in-app notification functionality, but this

was not explicitly stressed. Plausibility checks were only implemented in a rudimentary

form; test persons have to validate each calendar day as completed. The other design

features were evaluated. In supplemental material, an invitation letter, a flyer and an

installation guide are provided. The user interface, obviously, was the most important

element of the test rounds.

Table 4.1 provides an overview of the current recruitment and motivation strategies in the

HBS for the five @HBS countries. A prominent feature in all countries, except NL, is the

employment of face-to-face interviewers. Interviewers may have four roles: recruit sample

households at home and/or over the phone, conduct a basic recruitment survey, assist in

installing and operating an app, and motivate during the data collection period. In the

usability tests, only the third role of assistance could be evaluated.

Table 4.1: Recruitment and motivation strategy choices in the @HBS countries.

 AT FI NL SI UK

Reporting

period

2 weeks in the

diary,

questionnaire

up to 12

months

varying 4 weeks Varying 2 weeks

All

expenditures

2 weeks for all 2 weeks for all 1 week all

3 weeks >20 €

2 weeks

for all

Yes (see

separate list)

Interviewers

recruitment

Yes, F2F;

additionally,

without

interviewer,

for CAWI-only

Yes,

interviewers

choose F2F or

phone

Yes, only if

phone nr

available

Yes Yes, F2F

10

Interviewers

motivation

Yes, by

telephone is

recommended

to interviewers

but not

mandatory

Yes Yes, during 2nd

week

Not

during

fieldwork

Yes,

checking

calls

Unconditional

incentives

Shopping bag

with HBS logo

Small gift (1 €) 5 € No 2nd class

Stamps

Conditional

incentives

50€ voucher

for shops in

Austria

Lottery (2016)

10-20€ (2012)

30 € No £20

Info or landing

page

Info page Yes,

landing page

No

Yes Yes No Yes

The two test rounds revealed, especially, the importance of clear instruction material, both

on paper and in-app. We learned that it must be assumed that respondents will only partly

read instruction material, as even test persons did not while instructed to. This finding

implies that in-app help and an intuitive, familiar UI are imperative. Based on the first test

round, the in-app tutorial was revised completely and made very prominent. The

consequence of all this is that landing pages are less important as a tool to provide

instructions and answers to frequently-asked-questions.

5. Smart features

We describe the three main smart features that have been explored in @HBS: receipt

scanning, big data linkage and geo-locations.

The Python source for receipt scan text recognition is available at

https://gitlab.com/Nickdewolf/hbs.wp4-shopping-receipt-recognition

The big data consent mockups in Figma format are presented in Appendix D but are also

available at

https://www.figma.com/proto/x270TIsAatqM7uZtATP3cQ/Bank-koppeling-proces-

prototype-HBS-englisch?node-id=3%3A684&scaling=min-zoom

 Receipt scanning

Most of the research and development time in @HBS on smart features has been devoted

to data entry through receipt scans. The focus was on the utility and usability of the inclusion

of receipt scanning in the app user interface for respondents. Although, it was not formally

part of @HBS, also a receipt scan processing pipeline has been investigated.

The two test rounds clearly revealed the added value of receipt scans as a data entry option

to remove respondent burden. The test persons considered the data entry option to be

useful and relatively easy to operate. In the first test round, no special instructions were

https://gitlab.com/Nickdewolf/hbs.wp4-shopping-receipt-recognition
https://www.figma.com/proto/x270TIsAatqM7uZtATP3cQ/Bank-koppeling-proces-prototype-HBS-englisch?node-id=3%3A684&scaling=min-zoom
https://www.figma.com/proto/x270TIsAatqM7uZtATP3cQ/Bank-koppeling-proces-prototype-HBS-englisch?node-id=3%3A684&scaling=min-zoom

11

given, other than stressing that the receipt is fully scanned. In the second round, test persons

did receive in-app instructions about scanning. These instructions were based on OCR

machine learning models‘ performance. The test persons were instructed:

 To photograph receipts in daylight

 To avoid white backgrounds when photographing

 To photograph receipts straight from above

 To avoid shadows

 To make sure that receipt edges are straight and visible

 To avoid curves in the receipt

These instructions were only shown the first time a scan is made. They could be displayed

for later scans by clicking on the information button.

In @HBS, the assumption was that receipts are scanned in-app. However, various countries

ask respondent to collect receipts and send them to a specified postal address where the

receipts are scanned in-house. This is an expensive option that also complicates (instant)

feedback on expenditures to respondents. Within WP4 of @HBS, a first evaluation was made

of accuracy of in-app versus in-house scanning. In-house scanning is performed using a

flatbed scanner. The number of receipts in the evaluation was small. Results showed that

the accuracy between in-app and in-house scanning was relatively similar if test persons

follow in-app instructions. The number of receipts was too small to draw string conclusions,

but these results are promising.

The full receipt scan processing pipeline is anticipated to consist of nine steps:

1. Respondent photographs receipt (in-app)

2. Text recognition is applied and instructions are given to respondent (in-app)

3. Scan is sent to web server (in-app)

4. Scan is transformed to symbols (in-house)

5. Symbols are transformed to text (in-house)

6. Product-price pairs are derived from text (in-house)

7. Products are classified to COICOP (in-house)

8. Classified products-prices are returned to respondent (in-house)

9. Respondent checks classification (in-app)

Step 2 may be seen as a preliminary version of steps 4 to 6. As much as possible may be done

in-app in order to avoid data exchange between respondents and backend. Steps 4 to 6 may

become obsolete, when text recognition accuracy is sufficient. However, accuracy may, in

general, be too low to avoid in-house text recognition. In order to avoid low quality scans,

an in-app first check is imperative and step 2 provides feedback and instructions to

respondents.

Step 7 is specific to HBS. There are two settings. The first setting is where GTIN/EAN product

descriptions are available at the national statistical institute as a byproduct of scanner data.

Typically, these descriptions are linked to COICOP categories on an on-going, continuous

basis. Classification of products comes down to matching in this setting. The second setting

is where suck descriptions are absent and classification needs to be based on machine

learning models that are trained with a large set of annotated and coded receipts. In @HBS,

Stat Finland, Stat Netherlands and Stat Slovenia are under the first setting and ONS is under

the second setting.

12

It is very likely that step 7 will need to be done in-house as products are too dynamic to use

fixed in-app lists of product descriptions and/or to fix in-app machine learning models. Since

part of the processing is outside the app anyway, it remains an option to perform part of the

text recognition.

The @HBS WP4 report by Benedikt, Joshi, Nolan, De Wolf and Schouten gives a detailed

account of the various steps as well as the performance and accuracy. We strongly

recommend to read this report for those interested in receipt processing. The report forms

the basis for on-going development of the receipt scan processing pipeline that currently

takes place outside @HBS. In Section 5 of the report, a first comparison is made between in-

app scans and in-house scans. Surprisingly, the accuracy and percentages missed lines and

extra lines, see table 5 in the report, for in-app scans are close to in-house scans. The number

of receipts included is, however, yet too small to draw strong conclusions, but these results

are promising.

 Big data linkage

The second smart feature, big data linkage, has two main types:

1. Ask respondents for consent to link data already in the possession of the NSI

2. Ask respondents to themselves request data from holders of relevant data

Under the first type, the app asks for consent to link data at the NSI and may ask the

respondent for additional information to perform the linkage. The consent may be retracted

by the respondent, after which the app has to send a request to undo the data linkage. Given

that individual household expenditure statistics are deemed an important incentive in

recruiting and motivating respondents, the linked data needs to be sent and presented to

the respondent in the app. The app may ask the respondent to check/validate the data.

However, such respondent checks may introduce measurement errors themselves and may,

therefore, be discouraged.

Under the second type, sometimes termed data donation, respondents allow the app to

communicate with external data holder databases. The app sends the request for data,

receives the external data, presents the data to the respondent, may ask for

checks/validation of the data, and asks the respondent to submit the data. For this type, the

NSI may only receive a summary or sufficient derived statistic.

Four relevant data sets have been identified before and during @HBS:

1. Barcode product descriptions and prices: In certain COICOP categories, products are

linked to GTIN/EAN codes that are displayed as barcodes on products. Online

databases exist that provide detailed descriptions of these products. Online

databases may also exist that include prices of the products at different stores.

Respondents may scan barcodes in-app and the resulting GTIN/EAN are linked to

databases in-house.

2. Scanner data: Part of the NSI’s in ESS countries receive scanner transactions data

from one or more stores. For example, in NL around 30 stores deliver weekly

aggregated scanner data. Individual scanner data transactions are usually not

received by NSI’s, but are available in store databases. Respondents would need to

provide some information for linkage, either a receipt number or a mix of total

expenditure amount, time and location. Based on the information, individual

13

transactions may be earmarked and sent. It must be noted, however, that such

earmarking has to be done separately for each store and demands for extra effort

by the stores. This type of linkage shows resemblance to on-going innovation at

Eurostat involving iCards and/or dedicated apps with NFC (Near Field

Communication) to store scanners.

3. Bank transactions data: Under PSD2 (Payment Service Directive 2, November 2015)

legislation that applies to the EU, banks are obliged to provide API’s that allow for

communication with bank account holders. In order to access such transactions

data, the respondent has to select banks, has to provide bank accounts and has to

enable the functionality in-app to send requests to bank API’s. Bank transactions

data have limited metadata and respondents will have to supplement with extra

contextual information. The combined data then is submitted.

4. Loyalty card data: In many countries, part of the stores employ loyalty cards to

attract customers. By GDPR legislation, loyalty card holders can at any time request

the data that is stored about them. The respondent has to select stores, has to

provide loyalty card numbers and has to enable the functionality in-app to send

requests to store API’s or websites. The received data can be merged into the app

and needs to be submitted

The first two big data sets are of the first type, the NSI performs the linkage, whereas the

latter two are of the second type, the respondent requests the data about her/him.

The four options have been discussed and rated within project @HBS. With each option

development costs and time are associated and processing and feeding back of data may be

complicated. These need to be outweighed by removal of respondent burden and by the

general willingness of respondents to really enable and employ the feature. Table 5.1 sets

scores to each option on a scale. It must be added the scores are subjective.

Table 5.1: Scores of the four big data options on reduction in respondent burden, willingness

to consent, complexity of app frontend and complexity of app backend. Burden and

willingness are rated on a three-point scale of + to +++ with +++ the largest reduction of

burden. Frontend and backend complexity are rated on a three-point scale from – to -– with

--- the most demanding in development and maintenance.

 Reduction in

respondent

burden

Respondent

willingness to

consent

Complexity of

app frontend

Complexity of

app backend

Barcode data + ++ - -

Scanner data +++ ++ - ---

Bank transactions +++ + -- --

Loyalty card data ++ +++ -- -

Barcode data implies that respondents need to scan barcodes of all products with the mobile

device on which the HBS app is installed and that the NSI maintains a database with all

product descriptions linked to COICOP and prices. Implementation of in-app barcode

scanning is relatively straightforward, although accuracy will depend on the device camera

and the scan circumstances (light, contrast, folds). Scanning all product barcodes still poses

some burden to the respondent. However, we expect that respondents will have few

objections against scanning. The added complexity of the frontend is relatively small, but

14

the maintenance and processing of the GTIN/EAN data plus prices demands for a complex

backend, especially because the data need to be sent to the respondent.

Scanner data have become a standard source for many NSI’s, but only at the aggregated

level. In @HBS test rounds, test persons had few objections against linkage. To search for

the transaction, respondents would, however, have to provide some information. One

option may be to provide date, time and amount as presented at the receipt. Another, more

intrusive, option would be to ask for location-time measurements. Scanner data does

remove burden, but not completely. The app frontend would be easy to adapt. The most

problematic is the backend as the NSI would have to negotiate the provision of individual

transactions from all stores. Since it will cost extra effort and there is little added value,

stores may be reluctant to do this.

Bank transactions data are to be linked as a form of data donation by the respondent. In

@HBS test rounds, respondents were very mixed about the consent. The main reason was

that they did not see the added value, i.e. how the NSI would transform the transaction data

to statistics. This is a legitimate concern as transactions will only present total amounts of

expenditures and metadata about the transaction is limited. The transactions data are

especially useful for certain COICOP categories, part of which may normally be asked in

online questionnaires and not in the diaries. For such expenditures, the data may give

reduction of burden. Furthermore, the data may serve as a reminder of expenditures. In

order to get consent, instructions and motivations should be very clear on what respondent

effort is removed and/or how data are enriched. The app frontend is complicated by the

multitude of banks and the need for bank account numbers. Also the bank transactions data

need to be translated to products and COICOPS. Given that bank transactions data will only

apply to a subset of the expenditures and a set of decision rules will have to be applied about

completeness of data, the backend is complex.

Loyalty card data resemble scanner data. However, data is requested by the respondent and

not the NSI, which means that the backend can easily be adapted. In @HBS test rounds, test

persons were very positive about this option. We expect that willingness would be high. For

stores that have loyalty card programs, the respondent effort would be greatly reduced.

He/she only needs to provide a loyalty card number. The downside is, however, that there

are many stores and respondents would have to provide numbers for all stores. They should

also be able to remove consent. The frontend becomes more complicated due to the

consultation of store API’s/websites and the mix of stores without and with loyalty card

programs.

All four big data solutions have their strong and weak features. Since barcode scanning still

is burdensome and demands for a complex backend, this option was not considered within

@HBS. The scanner data option is very dependent on the negotiations with a wide range of

stores and also demands for a complex backend. This option was explored but not deemed

feasible unless stores move to digital receipts. The other options, bank transactions data and

loyalty card data, may be the most promising as they, essentially, lean on a “backend” at

banks and stores.

 Geo-locations

15

The third smart feature employs location sensors (GPS, Wi-Fi, GSM) in mobile devices. Time-

location data can be measured and stored by devices after explicit respondent consent and

may serve two purposes: 1) assist respondents by providing overviews of visited locations

where expenditures are likely, and 2) provide information to link big data, in particular

scanner data.

Location measurements have imperfections. Location measurements have an accuracy that

depends on the type of sensor. GPS is the most accurate but can be blocked by buildings and

constructions. Wi-Fi is the second most accurate, but is only available in or near buildings.

GSM is the leas accurate but almost always available. A mobile device does not need to

connect to internet or to Wi-Fi to detect GPS or Wi-Fi.

GPS location measurements cost device battery. For this reason, modern operating systems

limit the access of apps to GPS when the app runs on the background. This can to some

extent be avoided by disabling battery reduction in the mobile device settings. Nonetheless,

missing data occurs.

For the first purpose, identification of expenditure locations, two approaches exist: geo-

fencing and stop detection. Geo-fencing means that beforehand a database of coordinates

of points-of-interest is prepared. Every time a respondent approaches such a coordinate

within a pre-specified distance, the app is triggered and may list or sent a notification. Online

databases of points-of-interest are available and contain some metadata about the

locations. Stop detection means that location-time measurements are clustered to tracks

and stops. A stop is detected when the mobile device stays within a specified perimeter for

at least a specified amount of time. The perimeter and time parameters can be tuned,

making stop detection more or less sensitive. The advantage of geo-fencing over stop

detection is the robustness to temporary inaccuracy or missing data of location

measurements. The advantage of stop detection over geo-fencing is the absence of need for

a database of points-of-interest.

In HBS, both options can be implemented and three strategies to employ the data have been

identified within @HBS:

1. Map in app UI: Time-location measurements are made on a constant basis and

respondents can consult their travels throughout the day on a map provided on a

separate tab of the app UI. They then have to decide themselves whether they

visited locations or points-of-interest where they made an expenditure.

2. List in app UI: The app only lists stops on a separate tab of the app UI. Respondents

can go through the stops as a reminder to where they have (as predicted by the

location measurements).

3. Notification: Once a stop is detected or a geo-fence is passed, the app sends

notifications to the respondent, asking her/him whether an expenditure was made.

The second purpose of time-location measurements, the link to scanner data, is strongly

dependent on the access to individual transactions. This option was discussed in section 5.2

and not deemed realistic until digital receipts are introduced and/or stores have a backend

ready for data requests. It was not further explored within @HBS.

16

The geo-location feature was scored on the same criteria as the four big data options in

section 5.2,:respondent burden reduction, respondent willingness, frontend complexity and

backend complexity. See table 5.2 for the subjective scores. Reduction in respondent burden

is modest as it does not remove tasks but only reminds respondents of tasks. In general,

there is some privacy concern about time-location measurements. This may be outweighed

by the utility for the survey; for example, in an app-assisted travel survey at Stat Netherlands

around 30% of the sample consented to time-location data and around 20% kept the app

going for at least a week. In HBS the rationale for time-location data is weaker, which will

affect willingness. The app frontend is relatively complex as any information on stops should

be included in the app UI without distracting the main tasks. The app backend is relatively

straightforward as the time-location data do not have to be stored and kept.

Table 5.2: Scores of geo-locations on reduction in respondent burden, willingness to consent,

complexity of app frontend and complexity of app backend. Burden and willingness are rated

on a three-point scale of + to +++ with +++ the largest reduction of burden. Frontend and

backend complexity are rated on a three-point scale from – to -– with --- the most demanding

in development and maintenance.

 Reduction in

respondent

burden

Respondent

willingness to

consent

Complexity of

app frontend

Complexity of

app backend

Geo-location + + -- -

Based on the scores, it was decided within @HBS to prioritize receipt scanning and big data

linkage over geo-locations. Given past experiences, it would be relatively straightforward

how to include time-location in the frontend and backend of the HBS app. The most natural

approach is geo-fencing, which is less sensitive to inaccurate and missing location

measurements.

6. Future development

Based on the test rounds in three countries, we conclude that an app-assisted approach

towards the HBS is a very promising and feasible route. We recommend that this approach

is further elaborated and expanded. Out of the three smart features, receipt scanning, big

data linkage and geo-locations, the first turned out very useful and the second sufficiently

promising to refine and test. Receipt scanning and scanner data linkage have a close

resemblance to on-going research by Eurostat into iCards/NFC-type payments where shop

transactions are flagged and sent to the NSI. We recommend that in further development,

these options are closely monitored in conjunction with each other.

From January 2020 to December 2021, ESSnet Smart Surveys will explore smart surveys and

trusted smart surveys and provide specifications to collection platforms for such surveys.

One of the four survey themes in the ESSnet is consumption and the HBS app will feature in

usability tests and field tests across four to six countries. The ESSnet is not intended to

further develop apps, but will, obviously, bring new results and experience that will help

17

improve the app. In the ESSnet field test, two experimental conditions are investigated:

interviewer assistance in recruiting, helping and motivating respondents to use an app, and

the type of feedback given to the household on their expenditures.

As the main follow-up topics for development of the HBS app, we see the following:

 Receipt scanning pipeline: It is likely that the receipt scan processing needs a few

iterations to be perfected. At first, it will be assumed that most of the processing

needs to be done in-house, but gradually tasks may be performed in-app;

 Big data consent questions: This is a promising option to reduce respondent burden

and one that should be explored further;

 Concepts/user-centered approach: App-assisted instruments will benefit strongly

from a reconsideration of concepts and terminology within a user/respondent-

centered approach.

 Multi-devices/modes: It is likely that multiple devices and modes will have to be

combined in order to ensure good representation of the population;

As a stepping stone to such research and development, Stat Austria will conduct analyses on

field data they have collected in 2019 with the Konsumerhebung app. The Household Budget

Survey app has partly been modelled after this app.. Stat Austria will focus on three topics:

 Representation and devices: In the Austrian app, respondent scan choose the type

of device, i.e. desktop/laptop, tablet and smartphone. Relevant questions are what

devices households prefer and, if and how this preference is related to their

characteristics.

 Protocol adherence: The various devices are synchronized, so that device switches

are possible. After respondents have chosen a device, the relevant questions are

whether they use different devices for different tasks and whether they switch

devices during data collection. Subsequent questions are whether design features

of the data collection strategy affect this behaviour.

 Data quality: Perhaps, most importantly, does device choice affect the richness and

completeness of expenditure data.

Findings and results of project @HBS will be presented at various conferences and
workshops. Future plans and development will be discussed at these occasions.

18

Appendix A – Overview of @HBS supplemental
products

List of detailed products of @HBS:

1. Test material round 1, WP3, Giesen, D., Theunissen, S., Nyholt, M., Vrabič-Kek, B.,

Zgonec, M., Järvensivu, M., Niemelä, A.

2. Test plan, WP3, Giesen, D.

3. Test protocol round 2, WP3, Giesen, D., Theunissen, S., Nyholt, M., Vrabič-Kek, B.,

Zgonec, M., Järvensivu, M., Niemelä, A

4. Test report round 1 + 2, WP3, Vrabič-Kek, B., Giesen, D., Järvensivu, M.

5. Test mock-ups for big data linkage consent, WP3, Giesen, D., Theunissen, S.

6. Comparison of in-app and in-house receipt processing, WP4, Benedikt, L., Joshi, C.,

Nolan, L., Wolf, N. de, Schouten, B.

7. Installation guide, WP2, Theunissen, S.

8. Recruitment flyer HBS, WP3, Theunissen, S.

9. Invitation letter HBS, WP3, various authors at NL

10. Source code HBS app, WP2, Oerlemans, T., Janssen, J.

11. Backend specifications, WP2, Janssen, J.

12. CSPA documentation, WP2, Janssen, J., Oerlemans, T., Schouten, B.

19

Appendix B – Backend specifications

Household Budget Survey - Mobile App - System overview

System parts:

 Users enter/manage data on Apple or Android smartphones with HBS app. HBS app is

developed in Dart/Flutter.

 Communication over internet via secure HTTPS URL.

 Web Server monitors HTTPS URL and synchronizes data on smartphones with data in

input database. User can manage data on multiple smartphones. Data is timestamped

on smartphone, data with latest timestamp is valid. Web server is developed in GO

language.

20

 Input Database stores and synchronizes data from smartphones. Also used for

management of usernames and passwords (hashed). Input database is developed in

PostgreSQL.

System parts vision (to be implemented in Q2 2020):

 Maintenance and monitoring of user response, management of passwords.

 Maintenance Server for communication between maintenance and input database.

 Analysis of data by statisticians.

 Analysis Server for analysis of data in analysis database, and data import from input

database to analysis database.

 Analysis Database for final data storage and data analysis.

Functionality

The main functionality of the HBS backend is:

 User authentication: check whether the user password matches the (hashed) password

in the database

 Store receipt data: the data gathered on the smartphone is also stored in the database.

 Synchronize receipt data: keep the data synchronized between smartphones if the user

uses multiple smartphones.

 Monitoring: respondent activity and app usage is monitored and may be input to follow-

up actions

The HBS-App maintains the receipt data locally on a phone. When the HBS-App is started, or

when a receipt is entered or changed the app tries to connect to the GO server to

synchronize the locally stored data with the data in the database. The HBS-App does not

need a continuous connection with the GO server, when there is a connection all data will

be synchronized.

Status

The Dutch Statistics office is in a transition going towards an infrastructure that is delivered

through Pivotal Cloud Foundry. We aimed at releasing the HBS backend with this new

infrastructure. Unfortunately this infrastructure is not yet fully operational therefore we

could not test a full working backend.

We did manage to test the backend on a Pivotal Cloud Foundry playground outside of the

Dutch Statistics office.

 the database size on this playground was only 20 MB.

 the URL we used for this test was not secure (HTTP instead of HTTPS).

The backend was tested on a small scale (one user with two smartphones, max. 4 photos).

On this small scale (using a HTTP URL) everything worked fine.

PostgreSQL Input Database

The PostgreSQL Input database contains eight tables (see data model below):

 tbl_user : username + hashed password

 tbl_phone : multiple phones per users

 tbl_sync : data synchronization mechanism

 tbl_receipt_transaction : receipt information

 tbl_receipt_product : receipt products

 tbl_receipt_image : receipt photos

21

 tbl_search_suggestions_products : frequently used products

 tbl_search_suggestions_stores : frequently used stores

There is no further functionality in the database. The contents of these tables is managed by

the GO server. The creation script for these tables is located in the file structure of the GO-

language server. It is possible to initialize the database (add users + hashed passwords) with

the GO-language server.

The required size of the database depends on the number of users, the length of the survey

period and the number of receipts a user enters per day. Per receipt the required database

size is: +/- 5 MB, this is roughly the size of a photo + 1KB of textual data. Example: If 100

users take 2 photos per day for a period of one month, the required database size is: 100 *

2 * 5 MB * 30 = 30.000 MB = 30 GB.

Household Budget Survey Input data Model.

22

GO-language server

File structure of GO server for the HBS-App:

- PostgreSQL script for creating tables
- Initial connection with database
- Main interface with database

- Standard functions per table (insert,

update, delete, select etc.)

- General constants
- General functions
- General Types

- Create initial users + hashed passwords
- Password generation

- Rest-api URL Interface

- Secrets folder with users + passwords
- Compiled GO server executable
- Main entry of GO server
- Used modules
- Module summary

The main entry point for the GO server budget.go is initialized via environment settings:

 PORT : http port

 BUDGET_HOST : database host

 BUDGET_DBNAME : database name

 BUDGET_PORT: : database port

 BUDGET_USER : database user

 BUDGET_PASSWORD : database password

These environment settings are required and have to be set for your environment.

23

The GO server can be used to generate a set of standard usernames and passwords. See

the readme section in passwords/manager.go. The generated usernames and hashed

password are used to initialize the database. Also, in the folder secrets, files will be

generated with usernames and passwords that can be communicated with users.

Future steps (Q2 and Q3 2020)

The HBS backend as it is, is only equipped to authenticate users and store receipt data in

an input database. Additional functionality is not yet available.

The not yet implemented part of the system overview is:

 Maintenance and monitoring of user response, management of passwords.

 Maintenance server for communication between maintenance and input database.

 Data analysis by substantive researchers and methodology

 Analysis server for analysis of data in analysis database, and data import from input

database in analysis database.

 Analysis database for final data storage and data analysis.

While this functionality is not available the input database can be managed/queried

directly with the pgAdmin_4 tool for PostgreSQL databases.

Additional functionality:

 Analyze photos: create fully classified receipts from photos of receipts. This

functionality can be added to the web server or (if required) another server with

access to the input database.

 App usage data: at this moment we only gather data of receipts. We are interested in:

o Type of phone used

o Dwell time on app pages

o Technical problems/crashes

o Use of certain help options

o Consultation of personal statistics in the app

24

Appendix C – Screenshots HBS app

Calendar:

Manual data entry:

25

Scan data entry:

26

Expenditure overview:

Statistics overview:

27

Settings:

Tutorial:

28

Appendix D – Screenshots HBS app bank mockups

