Effects of mis-specification of seasonal cointegrating ranks: An empirical study

Byeongchan Seong
Sinsup Cho
S. Y. Hwang
Sung K. Ahn
Effects of mis-specification of seasonal cointegrating ranks: An empirical study

Byeongchan Seong
Pohang University of Science and Technology

Sinsup Cho
Seoul National University

S. Y. Hwang
Sookmyung Women’s University

Sung K. Ahn
Washington State University

1 Byeongchan Seong’s research was supported by the Post-doctoral Fellowship Program of Korea Science & Engineering Foundation (KOSEF). The research of Sinsup Cho, S. Y. Hwang, and Sung K. Ahn was supported by the Korea Research Foundation Grant (KRF-2005-070-C00022) funded by the Korean Government (MOEHRD).
Co-integration (Engle & Granger, 1987)

An m-dimensional I(d) process y_t is co-integrated, if there exists a vector β such that $\beta'y_t$ is an I(b) process, $b < d$, denoted by CI(d, $d-b$).

Typically, processes are CI(1, 0), i.e., $d=1$ & $b=0$.

The number of linearly independent vectors is called the co-integrating rank, denoted by r.

“Disappearance” of the non-stationarity, or unit root in $\beta'y_t$ is attributable to the common feature (Engle & Kozicki, 1993), more specifically called, common trend in some or all of the elements of y_t.

Seasonal Co-integration
(Hylleberg, Engle, Granger & Yoo, 1990)

A seasonal process y_t with period s is seasonally co-integrated at frequency f, if there exists a vector β such that $\beta'y_t$ does not have the seasonal unit root $e^{i\theta}$ corresponding to the frequency f, $\theta = 2\pi f$.

Since seasonal unit roots exist in conjugate pairs, there exists polynomial co-integrating vector $\beta_R + \beta_I L$ such that $(\beta_R + \beta_I L)'y_t$ does not have the seasonal unit root $e^{\pm i\theta}$.
The characteristics of (seasonal) co-integration are concentrated in the error correction terms through the reduced ranks of the coefficient matrices.

\[
\Phi^*(L)(1 - L)y_t = Cy_{t-1} + \varepsilon_t
\]

\[
\Phi^*(L)(1 - L^4)y_t = C_1 u_{t-1} + C_2 v_{t-1} + C_3 w_{t-1} + C_4 w_{t-2} + \varepsilon_t
\]

where

\[
u_{t-1} = (1 + L)(1 + L^2)y_{t-1},
\]

\[
v_{t-1} = (1 - L)(1 + L^2)y_{t-1}, \text{ and}
\]

\[
w_{t-1} = (1 - L^2)y_{t-1}
\]

Statistical inference of co-integration involves reduced rank estimation in the error correction representation of the vector autoregressive model.
Multivariate Regression Model

\[z = C_1 x_1 + C_2 x_2 + C_3 x_3 + C_4 x_4 + \varepsilon \]

Estimation:

- Regression of z on x_1, x_2, x_3, and x_4 simultaneously.
- Regression of z on x_j for each $j = 1, \ldots, 4$ if the x_j’s are uncorrelated.
- Partial regression of z on x_j adjusted for x_k, $k \neq j$ for each $j = 1, \ldots, 4$.
Partial regression is especially useful if one of the C_j’s, say C_1 is of reduced rank. To estimate C_1 with the reduced rank structure imposed:

- Regress z on $x_2, x_3, \text{ and } x_4$ and get the residual r_z;
- Regress x_1 on $x_2, x_3, \text{ and } x_4$ and get the residual r_1;
- Redused-rank regress r_z on r_1, as in Anderson (1951).

In co-integration analysis

$$\Phi^* (L)(1 - L)y_t = Cy_{t-1} + \varepsilon_t$$

- Regress $(1 - L)y_t$ on lagged $(1 - L)y_t$ and get the residual r_y;
- Regress y_{t-1} on lagged $(1 - L)y_t$ and get the residual r_1;
- Reduced-rank regress r_y on r_1, as in Johansen (1988).
In seasonal co-integration analysis, more than one C_j’s in
$$z = C_1x_1 + C_2x_2 + C_3(\theta)x_3 + C_4(\theta)x_4 + \varepsilon$$
can be of reduced rank and some of the C_j’s are dependent on the common parameter vector.

If C_1 and C_2 are of reduced rank and C_3 and C_4 depend on θ, then:

Since the adjustment for x_2, x_3, and x_4 is based on the full rank regression, partial reduced-rank regression of z on x_1 is affected by over-specification of the rank of C_2;

Since the adjustment for x_1, x_2, and x_3 is based on the full rank regression, the dependence between C_3 and C_4 is ignored in partial (reduced-rank) regression of z on x_4.
Seasonal Co-integration

\[\Phi^* (L)(1 - L^4)y_t = \alpha_{1R} \beta'_{1R} u_{t-1} + \alpha_{2R} \beta'_{2R} v_{t-1} + (\alpha_{3R} \beta'_{3I} + \alpha_{3I} \beta'_{3R}) w_{t-1} + (-\alpha_{3R} \beta'_{3R} + \alpha_{3I} \beta'_{3I}) w_{t-2} + \epsilon_t \]

Lee (1992), Johansen & Schaumburg (1999), and Cubadda (2001) use partial reduced rank regression exploiting asymptotic zero correlations:

- Lee assumes \(\alpha_{3I} = 0 \) and \(\beta_{3I} = 0 \);
- J&S uses the “switching” algorithm to estimate \(\alpha_{3R} \), \(\beta_{3R} \), \(\alpha_{3I} \), and \(\beta_{3I} \);
- Cubadda, in essence, estimates \(\alpha_{3R} \), \(\beta_{3R} \), \(\alpha_{3I} \), and \(\beta_{3I} \) based on partial regression of \((1 - L^4)y_t \) on \(w_{t-1} \).

These create over-specification problems.
Ahn & Reinsel (1994) and Ahn, Cho & Seong (2004) use an iterative scheme that incorporates
 • the co-integrating ranks at all the seasonal frequencies simultaneously and
 • the dependency among the coefficient matrices.

But this requires the correct specification of the seasonal co-integrating ranks and is subject to over- and under-specification. (Furthermore, it can be computationally challenging.)
Simulation Study

DGP (Ahn & Reinsel, 1994):

\[(1 - L^4)y_t = \alpha_1 \beta_1 u_{t-1} + \alpha_2 \beta_2 v_{t-1} \]

\[+ (\alpha_3 \beta_4 + \alpha_4 \beta_3) w_{t-1} \]

\[+ (-\alpha_3 \beta_3 + \alpha_4 \beta_4) w_{t-2} + \epsilon_t \]

where

\[\alpha_1 = (a_{11}, a_{21})' = (0.6, 0.6)',\]

\[\alpha_2 = (a_{12}, a_{22})' = (-0.4, 0.6)',\]

\[\alpha_3 = (a_{13}, a_{23})' = (0.6, -0.6)',\]

\[\alpha_4 = (a_{14}, a_{24})' = (0.4, -0.8)',\]

\[\beta_1 = (1, b_1)' = (1, -0.7)', \quad \beta_2 = (1, b_2)' = (1, 0.3)',\]

\[\beta_3 = (1, b_3)' = (1, 0.7)', \quad \beta_4 = (0, b_4)' = (0, -0.2)',\]
\[\text{Cov}(\varepsilon_t) = \Omega = \begin{pmatrix} 1 & \rho \sigma \\ \rho \sigma & \sigma^2 \end{pmatrix} \]

for \(\rho = -0.5, 0, 0.5 \) and \(\sigma^2 = 0.5, 1, 2 \).

Series length: 100

Replications: 1000

Nominal size: 0.05

For \(H_0 : r_f = 0 \) vs \(H_1 : r_f > 0 \) for
\(f = 0, 1/2, 1/4 \), \(H_0 \) is rejected almost all the cases regardless of under or over-specification.

For \(H_0 : r_f = 1 \) vs \(H_1 : r_f > 1 \), the results are summarized below.
Table 1. Comparison of the rejection rates of 5% level tests for hypotheses in (6) for the frequency $f = 1/2$.

<table>
<thead>
<tr>
<th>ρ</th>
<th>σ^2</th>
<th>C.I. ranks $(r_0, r_{1/4}, r_{1/2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.5</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.081</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.088</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.079</td>
</tr>
</tbody>
</table>

- Significantly larger empirical sizes with under-specification for $f=0$ & $1/2$.
- Significantly smaller empirical sizes with under-specification for only one of $f=0$ & $1/2$.
<table>
<thead>
<tr>
<th>CI ranks ((r_0, r_{1/4}, r_{1/2}))</th>
<th>(a_{12} = -0.4) Mean</th>
<th>(a_{12} = -0.4) MSE</th>
<th>(a_{22} = 0.6) Mean</th>
<th>(a_{22} = 0.6) MSE</th>
<th>(b_2 = 0.3) Mean</th>
<th>(b_2 = 0.3) MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1)</td>
<td>-0.3060</td>
<td>0.0182</td>
<td>0.7821</td>
<td>0.0624</td>
<td>0.2938</td>
<td>0.0002</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>-0.2391</td>
<td>0.0541</td>
<td>0.6164</td>
<td>0.0566</td>
<td>0.2989</td>
<td>0.0004</td>
</tr>
<tr>
<td>(0,2,1)</td>
<td>-0.2521</td>
<td>0.0462</td>
<td>0.6031</td>
<td>0.0534</td>
<td>0.2977</td>
<td>0.0009</td>
</tr>
<tr>
<td>(1,0,1)</td>
<td>-0.3186</td>
<td>0.0148</td>
<td>0.6789</td>
<td>0.0196</td>
<td>0.2931</td>
<td>0.0002</td>
</tr>
<tr>
<td>(1,1,1)</td>
<td>-0.3621</td>
<td>0.0107</td>
<td>0.5145</td>
<td>0.0443</td>
<td>0.3014</td>
<td>0.0000</td>
</tr>
<tr>
<td>(1,2,1)</td>
<td>-0.3603</td>
<td>0.0102</td>
<td>0.5160</td>
<td>0.0430</td>
<td>0.3014</td>
<td>0.0001</td>
</tr>
<tr>
<td>(2,0,1)</td>
<td>-0.3099</td>
<td>0.0148</td>
<td>0.6701</td>
<td>0.0181</td>
<td>0.2938</td>
<td>0.0001</td>
</tr>
<tr>
<td>(2,1,1)</td>
<td>-0.3600</td>
<td>0.0108</td>
<td>0.5038</td>
<td>0.0463</td>
<td>0.3014</td>
<td>0.0001</td>
</tr>
<tr>
<td>(2,2,1)</td>
<td>-0.3581</td>
<td>0.0104</td>
<td>0.5055</td>
<td>0.0449</td>
<td>0.3014</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

- Serious biases occur with under-specification for the stationary parameters.
- Biases are not serious with under-specification for the long-run parameter.
Table 2. Comparison of the rejection rates of 5% level tests for hypotheses in (6) for the frequency \(f = 0 \).

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\sigma^2)</th>
<th>CI ranks ((r_0, r_{1/4}, r_{1/2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((1,0,0))</td>
<td>((1,0,1))</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.5</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.273</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.318</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.340</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.376</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.445</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.494</td>
</tr>
</tbody>
</table>

- Significantly larger empirical sizes with under-specification.
- Significantly larger empirical sizes with under-specification for \(f = 1/4 \) and over-specification for \(f = 1/2 \).
- Significantly smaller empirical sizes with over-specification for \(f = 1/4 \) and under-specification for \(f = 1/2 \).
Table 3. Comparison of the rejection rates of 5% level tests for hypotheses in (6) for the frequency $f = 1/4$.

<table>
<thead>
<tr>
<th>ρ</th>
<th>σ^2</th>
<th>C.I. ranks ($r_0, r_{1/4}, r_{1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0,1,0) (0,1,1) (0,1,2) (1,1,0) (1,1,1) (1,1,2) (2,1,0) (2,1,1) (2,1,2)</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.5</td>
<td>0.093 0.058 0.066 0.019 0.020 0.017 0.018 0.019 0.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.132 0.100 0.105 0.020 0.018 0.019 0.020 0.017 0.018</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>0.167 0.138 0.143 0.019 0.016 0.016 0.020 0.016 0.016</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.083 0.048 0.055 0.024 0.025 0.024 0.024 0.025 0.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.112 0.091 0.094 0.027 0.029 0.030 0.027 0.029 0.031</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>0.137 0.113 0.116 0.030 0.024 0.026 0.030 0.025 0.026</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.139 0.094 0.095 0.073 0.075 0.079 0.074 0.076 0.080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.165 0.128 0.134 0.075 0.084 0.086 0.076 0.084 0.083</td>
</tr>
<tr>
<td></td>
<td>2.000</td>
<td>0.199 0.164 0.167 0.078 0.077 0.077 0.079 0.079 0.078</td>
</tr>
</tbody>
</table>

- Significantly larger empirical sizes with under-specification for both $f=0$ and $1/4$ and for only $f=0$.
- No significant difference with under-specification for only $f=1/2$.
- Significantly larger empirical sizes with under-specification for $f=0$ and over-specification for $f=1/2$.
- No significant difference with over-specification for $f=0$ and under-specification for $f=1/2$.
Summary

• Over specification of co-integrating ranks is acceptable, and so is the partial regression based approach.

• May need to check the validity of the critical values.

• Further simulation study is needed.

• Theoretical investigation in needed.