Revision confidence limits for recent data on trend levels, trend growth rates and seasonally adjusted levels

Peter B. Kenny
Revision confidence limits for recent data on trend levels, trend growth rates and seasonally adjusted levels

Peter B. Kenny
(PBK Research)
Statement of problem

• The latest seasonally adjusted and trend values will be revised as new data are added…
• …even if the unadjusted data are not changed.
• Data compilers know this, but it is not usually highlighted in statistical output.
• Even the compilers seldom have a quantitative idea of the likely extent of revisions.
• There are situations where knowledge of the likely extent of future revisions will aid data users in interpreting current data.
Possible solution

• SEATS output includes estimates of revision standard error for trend and seasonally adjusted.
• X-12-ARIMA has no corresponding output…
• …so can we define a procedure to obtain one?
• If X-12-ARIMA analysis includes an ARIMA model, we can formulate the requirement as:
 – What range of revisions is consistent with the future evolution of the ARIMA model of the series?
• Look for a mathematical representation of this requirement.
Calculation Method (1)

- The default forecast of the ARIMA model assumes all innovations are zero.
- Actual realisations are generated by sampling a set of innovations from a Gaussian model.
- We could generate a large set of realisations and see the extent of revisions (Monte Carlo).
- But it would be more convenient to have a way of expressing the revisions as a function of the innovations.
Calculation Method (2)

• Use the ‘black box’ method – find the response of the filter system to an impulse innovation at each forecast time point.

• Consider how far ahead to estimate revisions – we must be confident that the ARIMA model will provide a reasonable representation.

• Chosen forecast horizon is 36 months.

• How far back to calculate revision limits? – more than 36 months back change is negligible.
Calculation Method (3)

• The first step is to carry out a full modelling and estimation run, identifying an ARIMA model and producing 36 months of forecasts (with zero innovations).
• Table B1 from this run is the basis for all the later variations with non-zero innovations.
• We need to assume that the effects of the future innovations on past values are additive.
• Experiment shows that we cannot make this assumption if extreme values are modified.
 – (This applies only to revision limit estimation)
Calculation Method (4)

- First run to calculate base series for trend and seas. adj. – apply x-11 with no modification of extremes to saved Table B1.
- Modify saved B1 by assuming an innovation of one s.e. in the first forecast period (all others remain zero).
- Apply x-11 to this modified series, again with no extremes.
- Repeat with the non-zero innovation in forecast period 2, 3, ..., 36.
Calculation Method (5)

• Calculate differences between the 36 variant results and the base case.

• These are the coefficients of the linear approximation to the relationship between the actual innovations and the revision to the base trend and s.adj. series.

• Since the innovations are by definition independent, the sum of squares of these coefficients gives the variance of the revision.
Illustration and Testing

• Use Box-Jenkins airline passengers series.
• Initial modelling with X-12-ARIMA identifies model (0 1 1)(0 1 1) and trading day effect.
• Rerun with TD gives model (1 1 0)(0 1 1) - the TD effect is weekday – weekend contrast.
• Take (1 1 0)(0 1 1) with TD as basic model for this series.
• Model (0 1 1)(0 1 1) with TD is a close second and is used as a variant.
Figure 1: Box-Jenkins Airline Data
Original, SA and Trend
Figure 4: Box-Jenkins Airline Data
Revision Limits for X-11 Alternative SA
Figure 6: Box-Jenkins Airline Data
Revision Limits for Seats Trend
Figure 7: Box-Jenkins Airline Data
Comparison of Trend Revision Limits for Seats and X-11
Figure 8: Box-Jenkins Airline Data
Comparison of Formula and Monte Carlo Trend Revision Limits
(no extreme modification)
Figure 8a: Box-Jenkins Airline Data
Comparison of Formula and Monte Carlo Trend Revision Limits
(with extreme modification)
Figure 8b: Box-Jenkins Airline Data
Comparison of Formula and Monte Carlo SA Revision Limits
(with extreme modification)
Example 2

• UK Claimant Count Unemployment.
• No longer the preferred measure – superseded by harmonised measure based on Labour Force Survey.
• But a useful indicator –
 – precise (no sampling)
 – rapidly available
 – clear turning points
Figure 9: UK Claimant Count Unemployment
Original, SA and Trend
Figure 11: UK Claimant Count Unemployment
Revision Limits for X-11 Trend (data to March 2005)
Figure 12: UK Claimant Count Unemployment
Revision Limits for X-11 Trend (data to April 2005)
Example 3

- UK Consumer Price Index
- Harmonised (standard European measure)
- Growth rate is official inflation target for Bank of England Monetary Policy Committee.
- No official seasonal adjustment
- Growth rate is 12-month change in unadjusted index level.
Figure 13: UK Consumer Price Index
Original, SA and Trend
Figure 16: UK Consumer Price Index
Revision Limits for X-11 Trend Growth Rate (H23)
Outstanding Questions

• We are looking at revisions in the X-11 process; what about revisions to regARIMA (level shifts, trading day factors, etc.)?
• If the published s.adj. is based on 12 months’ forecasts, should we still use 36 to estimate the revision limits?
• If there are serious doubts about the additivity of the individual innovation effects, should we use the Monte Carlo approach?
• How best to present the results graphically?
Summary and Conclusions

• The examples show that the inclusion of revision limits can give useful information to data users.

• SEATS can already provide limits; the method proposed here enables X-12-ARIMA to do the same.

• The method does not involve long computation; even if we use the Monte Carlo approach it is just a matter of minutes.

• More research is needed!