Conference on Seasonality, Seasonal Adjustment and their implications for Short-Term Analysis and Forecasting

10-12 May 2006

Advances in Seasonal Adjustment Software at the U. S. Census Bureau

Brian Monsell
Advances in Seasonal Adjustment Software at the U. S. Census Bureau

Brian Monsell
U.S. Census Bureau

brian.c.monsell@census.gov

May 10, 2006
Overview

• Outline the next two major releases of seasonal adjustment software
 » Version 0.3 of X-12-ARIMA
 » X-13A-S

• Updated features and recent work

• Demonstration of RunX12
Next Major Release

• Version 0.3
 » Available by the end of June 2006
 » Reformatted Documentation, with indexing

• Windows Interface to X-12 (RunX12)
 » Developed by Roxanne Feldpausch of the Time Series Methods Staff

• Updated version of X-12-Graph (Hood 2002)
Version 0.3 will include

- A new automatic model selection procedure
 - Based on the procedure in TRAMO
 - Specified with the `automdl` spec
 - Previous procedure can be accessed in `pickmdl` spec
• Does not always duplicate TRAMO’s model selections
 » Different estimation procedures in the two programs
• Version 0.3 produces more “mixed” models than TRAMO, e.g. (2 0 1)(0 1 1)
 » Option to avoid “mixed” models
New force spec (annual totals)

- Forces annual totals of adjusted series to conform to benchmarked annual totals of the “original” series
 - Statistics Canada Regression method (Quennewilie, Cholette, Huot, Chiu, and Fonzo 2004)
- Smaller revisions at the end of the forced seasonally adjusted series than the Denton method
 - Hood (2005)
Version 0.2.10 spec file

series{ title = "US Imports"
 format="datevalue" file="m0.dat" name="m0"
}
transform { function=log }
regression { variables = (td ao1997.oct) }
arima{ model=(0 1 1)(0 1 1) }
forecast{ maxlead = 24 }
x11 { force = totals save = saa }
Version 0.3 spec file

series{ title = "US Imports"
 format="datevalue" file="m0.dat" name="m0" }
transform { function=log }
regression { variables = (td ao1997.oct) }
arima{ model=(0 1 1)(0 1 1) }
forecast{ maxlead = 24 }
x11 { }
force { type = regression rho = 0.95
 lambda = 1.0 target = calendaradj
 save = saa }
Unified diagnostics summary file

- All summary diagnostics now stored in unified diagnostics file (.udg)
 - Additional seasonal adjustment and model diagnostics stored
 - Updated version of X-12-Graph will read new and old diagnostic files
Optional HTML Output

- Conversion Utility for X-12-ARIMA Output
 » Will produce HTML for the output, log and error file
 » Will allow output to be accessible to visually impaired users
 » Integrated into the Windows Interface
What’s after Version 0.3?

X-13A-S =
X-13ARIMA-SEATS =
 X-12-ARIMA + SEATS

All enhancements from Version 0.3 are carried over into X-13A-S
What is X-13A-S?

• An experimental program that produces model-based seasonal adjustments from the SEATS seasonal adjustment procedure.

• Collaboration between the U. S. Census Bureau and the current developers of SEATS, Agustin Maravall of the Bank of Spain and Gianluca Caporello.
Why X-13A-S?

• Allows users to
 » generate X-11 and SEATS seasonal adjustments using the same interface
 » compare X-11 and SEATS seasonal adjustments using a common set of diagnostics
Sample X-13A-S spec file

series{ title = "US Imports"
 format="datevalue" file="m0.dat" name="m0" }
transform { function=log }
regression { variables = (td ao1997.oct) }
arima{ model=(0 1 1)(0 1 1) }
forecast{ maxlead = 24 }
x11 { save = d11 }
seats { save = s11 }
slidingspans { savelog = pct }
history { estimates = (sadj trend fcst) }
Sample X-13A-S spec file

```plaintext
series{ title = "US Imports"
    format="datevalue" file="m0.dat" name="m0" } 
transform { function=log }
regression { variables = ( td ao1997.oct ) }
arima{ model=(0 1 1)(0 1 1) }
forecast{ maxlead = 24 }
x11 { save = d11 }
# seats { save = s11 }
slidingspans { savelog = pct }
history { estimates = (sadj trend fcst) }
```
Seasonal Adjustment Diagnostics

• Sliding Spans and Revisions History
 » Default lengths of sliding spans for SEATS set as in Findley (2003)

• Spectral Diagnostics
 » SEATS residuals, seasonally adjusted series and irregular

• Graphical Diagnostics
 » X-12-Graph (Hood 2002)
Spectrum of the Differenced Logged Seasonally Adjusted Series

Decibels

Cycles/Month

Seasonal Frequencies

Trading Day Frequencies
Seasonal Factors

ABS retail turnover (easter2[5], SEATS 3A)

Seasonal Factors

ABS retail turnover (easter2[5], X=11 3A)
Original Series and Trend

HStMWlu and HStMWlu - SEATS default adjustment

Grid lines at January

HStMWlu:
- Original Series
- Trend

HStMWlu - SEATS default adjustment:
- Trend
New Finite Sample Diagnostics

- Uses matrix formulas rather than infinite length Wiener-Kolmogorov filter
 » Originally in Bell and Hillmer (1988), further developed in McElroy (2005)
 » Evaluation study by Findley, Gagnon and McElroy (2006)
Finite filter diagnostics

• X-13A-S also generates
 » Gain and time delay graphs for the finite concurrent signal extraction filter
 » Filter weights for the finite concurrent adjustment filter

• For details, see Findley and Martin (2006 JOS)
Seasonal Outlier

- Seasonal Level Shift outlier from Bell (1983), discussed in Maravall and Kaiser (2001)
- Currently implemented in TRAMO modeling software

```plaintext
regression{ variables = so1997.jul  save = so  }
```
Future plans

• Release a beta version of X-13A-S to selected users for evaluation this summer

• Standardize program output
 » Make SEATS output look more like X-12
 » Make X-13A-S accessible
Future plans (continued)

• Release a new version of regCMPNT (with documentation)
 » Software that fits regComponent models
 » Developed by Bill Bell and Richard Gagnon

• Further research on growth rates (McElroy 2006)
Longer Range Plans

- Fully test our implementation of TRAMO Pulse regressors
- Develop an X-12 DLL
- Develop XML output/input for X-12/X-13
Windows Interface to X-12-ARIMA

• Visual Basic program by Roxanne Feldpausch, U.S. Census Bureau

• Includes spec wizard
 » Writes a spec file incorporating the most common specs and arguments
Software Demonstration
Contact Information

x12@census.gov
or
brian.c.monsell@census.gov

Brian Monsell
U.S. Census Bureau
SRD, Room 3228-4
Washington DC 20233-9100