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1. INTRODUCTION

Infra-annual macro-economic statistics represent nowadays a key tool for economic policy-

making and business cycle analysis. These need, of course, reliable data to be carried out.

However, reliability is only one of the quality characteristics data should have. Users need long,

homogeneous and high-frequency time series, possibly covering a wide spectrum of key economic

phenomena. Furthermore, geographical aggregates - such as those for the EU/EMU zones - are

increasingly requested and analysed for a number of reasons, notably for monetary purposes.

Despite these pressures, o¢ cial statistics have still shortcomings �such as lack of stability over

time and thus insu¢ cient length, de�nition at lower frequencies than those traditionally needed

for business cycle analysis, lack of timeliness etc. �that could be in part remedied with the use

of analytical tools.

It is an increasing belief that such tools can play an important role in the short-medium term

in gathering momentum for our statistics, and in �lling the existing gaps and shortcomings.

However, the use of such techniques should be viewed as a temporary solution, while waiting

for more structural improvements to take e¤ect, i.e. in the data collection and elaboration

processes at the national level.

In particular, what has emerged thanks to the e¤orts of the �benchmarking community�and

its interaction with o¢ cial statisticians, is that these techniques can give a clear contribution

to improve speci�c aspects of data quality, such as coherence, timeliness and completeness.

Optimal benchmarking methods can contribute to an increase in accuracy of �nal estimates

and relevance of our statistics. In the short-medium term, when resources are �xed and the

capacity of national and international statistical systems to react to abrupt or planned changes

are limited, these techniques often succeed in temporarily satisfy users�needs.

In a very broad sense, benchmarking techniques are those processes optimally combining two

or more sources of measurement to obtain reliable estimates of the series under investigation.

Though traditional �elds of application of benchmarking techniques are national accounts, cen-

suses and demographic data, employment, administrative records and cross-section data, it

is essentially in the �rst �eld that these techniques have known a wider application, both in

Eurostat and in many EU and non-EU NSIs.
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The interest of Eurostat for benchmarking issues dates back to the beginning of the �90s, when

it become clear that these could become a quite natural estimation framework for Quarterly

National Accounts. Since then, it has become more and more evident that backward estimation,

extrapolation, temporal disaggregation, and benchmarking techniques could play a central role

in meeting important challenges for o¢ cial statistics.

The discipline of benchmarking has made considerable advancements over the last decade pro-

moting new theoretical developments, improvements in traditional methods, new ideas in appli-

cations, and the development of freely available software and tools (Di Fonzo 2003c; Abad and

Quilis 2005; Quilis 2005; Palate 2005). Nowadays, benchmarking is widely used - sometimes

more than thought - in national and international statistical agencies, and it is a continuing

source for research and empirical studies in statistics, econometrics and, more generally, time

series analysis.

Eurostat has played a leading role in all these developments. The o¢ cial reference to the so-

called �indirect method�of estimation dates back to the European System of Accounts, ESA

1995 (Eurostat 1996, par. 2.04), and it has been further developed in the Eurostat Handbook on

Quarterly National Accounts (Eurostat 1999), with two Chapters of about 50 pages dedicated

to the theory and use of �Mathematical and statistical methods�in the estimation of national

accounts �gures.

Benchmarking techniques have known a wider dissemination at the EU level and worldwide

through the release by Eurostat of a statistical/econometric tool for temporal disaggregation

called Ecotrim. This software, already developed during the �rst half of the last decade, has

undergone further re�nements up to the current releases, which can run in di¤erent environ-

ments, and are routinely used for a number of purposes in many EU and non-EU NSIs and by

many researcher.

Eurostat, as well as other international organisations such as the OECD, have regarded the

issue of benchmarking and temporal disaggregation as a high priority in its work with NSIs,

trying to keep abreast of the numerous developments and to stimulate further research in the

�eld.

Indeed, theoretical and empirical advances in benchmarking and temporal disaggregation have

been so impressive in the last 5-10 years, that Eurostat and the OECD have decided to jointly

organise a Workshop on �Frontiers in Benchmarking Techniques and Their Application to O¢ cial

Statistics�, held in Luxembourg on April 2005.

The Workshop has been a great success, attracting more then one hundred and �fty participants

from all over the world. The quality of both invited and contributed papers has been very high;

the same holds for the quality of the related talks1

1All reference material from the Workshop, including access to freely available software or descriptions of how
to obtain it, is attached to the workshop program available at the Euroindicators dedicated section of the Eurostat
site. The Workshop featured keynote lectures by eminent researchers in benchmarking, such as S. Brown, T. Di
Fonzo, V. Guerrero, B. Quenneville, A. Ranbaldi, T. Proietti, A. Trabelsi, M. Weale.
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The papers presented during the Workshop encompassed recent advances in several important

areas for benchmarking, such as the use of dynamic and state-space models, model-based ap-

proaches, balancing techniques, and back-recalculation of time series. Speci�c sections have

been dedicated to the comparison of alternative methods for benchmarking, the use of such

techniques in o¢ cial statistics, and recent developments of tools and software.

Eurostat is strongly committed to further promoting and enhancing the use of such benchmark-

ing techniques, where appropriate, with NSIs and its partners and to encourage the use and

experimentation of new benchmarking methods and tools. The Conference organised by Istat

has to be considered a leading initiative in this area, as it gives the opportunity to have an

integrated view of the discipline, to promote exchanges amongst research and o¢ cial statistics,

and to concretely apply recent developments to national data.

The primary target of Eurostat is to extend the Ecotrim tool in order to include such recent

developments and to re�ect the results of the numerous studies carried out with the support

of external experts in the last �ve years. In this respect a speci�c project has been arranged

with the Commission DG-JRC of Ispra, Italy, and the results are expected by the �rst half of

2007. The project foresees both the development of a new Ecotrim tool and the preparation

of a new software for back-recalculation and the reconstruction of long time series, another

important area of research with clear links with benchmarking issues (Di Fonzo 2003b; Bournay

and Ladiray 2005; Caporin and Sartore 2005).

This paper aims at giving an overview of such recent theoretical developments and their

links with traditional methods (Sections 2). We concentrate here on temporal disaggregation

techniques because this is the focus of the event organised by Istat. After that, we move

to a short description of a multivariate method for temporal disaggregation, which uses

seemingly unrelated time series equations to solve the problem of missing observations

(Section 3, an Appendix contains further details on the approach). Section 4 is dedicated

to a comparison between univariate and multivariate methods for time disaggregation.

Some case studies trying to shed light on the di¢ cult task of the choice among di¤er-

ent disaggregation methods are discussed in Section 5. Section 6 contains our conclusions.

2. CLASSICAL METHODS AND RECENT DEVELOPMENTS IN TEMPORAL
DISAGGREGATION

Temporal disaggregation has been extensively considered in the econometric and statistical lit-

erature and numerous solutions have been proposed. Broadly speaking, two alternative methods

have been considered so far:

� methods which do not use related series but rely upon purely mathematical criteria or
time series models to derive a smooth path for the unobserved series;

� methods which make use of the information obtained from related indicators observed at

the desired higher frequency.
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The �rst approach comprises the model-based methods (Stram and Wei 1986; Wei and Stram

1990) relying on the ARIMA representation of the series to be disaggregated (e.g., see Eurostat

1999, Ch. 6, for a survey and a taxonomy of temporal disaggregation methods). The latter

approach includes, among others, the adjustment procedure developed by Denton (1971) and

the methods proposed by Chow and Lin (1971), Fernández (1981) and Litterman (1983).

The last 5-10 years re�nements of these traditional techniques have of course bene�ted from

the advances of the econometric, statistical and economic literature in the last two decades

or more. As such, they are less prone to critics that instead could be addressed to the tra-

ditional approaches indicated above. For example, Di Fonzo (2003b, pg. 2) states that these

approaches �sometimes demonstrates obsolete and not responding to the increasing demand for

more sophisticated and/or theoretically well founded statistical and mathematical methods in

estimating national accounts �gures.�.

Recent developments have essentially followed two distinct lines of research:

1. univariate dynamic regression models - usually represented as autoregressive distributed

lag (ADL) models -, possibly using non-linearly transformed data;

2. univariate or multivariate approaches that use formulations in terms of unobserved com-

ponents and structural time series models (and possibly non-linearly transformed data)

and Kalman �ltering techniques to get optimal estimates of missing observations by a

smoothing algorithm.

The �rst line of research comprises the work by Gregoir (1995), Santos Silva and Cardoso (2001),

Santos Silva (2005), Mitchell et al. (2005), Mitchell and Weale (2005) and Guerrero (2005). The

rationale under these papers have been further investigated and extended by Di Fonzo (2003a,

2003b)2.

The second line of research has been exploited by Gudmundsson (1999), Hotta and Vasconcellos

(1999), Proietti (1999) and Gómez (2000). The original idea dates back to Harvey and Pierce

(1984), and has been further developed in the framework of structural time series models by

Durbin and Quenneville (1997), Harvey (1989) and, in a recent application, by Harvey and

Chung (2000), where use is made of seemingly unrelated structural time series (SUTSE) models

to obtain timely estimates of the underlying change in unemployment. In the spirit of the

work by Harvey and Chung (2000), Moauro and Savio (2005) have further developed the use of

SUTSE models for temporal disaggregation.

Other �elds of research at the border of the two lines discussed above are the use of nonlinear

transformations of the data (Proietti 2004a; Di Fonzo 2003a; Mitchell et al. 2005) and the con-

temporaneous disaggregation and seasonal adjustment of time series in multivariate structural

models (Moauro and Proietti 2005).

2A representation of the dynamic models in state-space form has been carried out in Proietti 2004b.
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Both the rationale and the numerous dynamic formulations underlying dynamic

models for temporal disaggregation are quite well known in the literature. Con-

trarily, the use of multivariate SUTSE models for time disaggregation is rela-

tively recent. Therefore, the next Section brie�y introduces this class of models.

3. MULTIVARIATE STRUCTURAL TIME SERIES MODELS AND THEIR USE
FOR TEMPORAL DISAGGREGATION

These models jointly represent in a multivariate framework the series to be disaggregated and

the set of related time series. The framework used in SUTSE models represents a multivariate

generalization of standard structural time series models (see, e.g., Harvey 1989; Fernández and

Harvey 1990; Harvey and Koopman 1997).

Given a cross-section of time series yt = (y1t; : : : ; yNt)
0, it is assumed that each yit, i =

1; 2; : : : ; N and t = 1; 2; :::; n, is not directly related with the others, although the series are

subject to similar in�uences. yt is expressed in terms of additive N -dimensional unobserved

components, e.g. level �t, slope �t, cycle  t, seasonality 
t and irregular �t, which can be

contemporaneously correlated.

SUTSE models can be formulated in a number of ways: the natural starting point is the

multivariate local linear trend (LLT) model, where yt consists of a stochastic trend plus a white

noise:

yt = �t + �t; �t � NID(0;��) ; (1)

�t = �t�1 + �t + �t; �t � NID(0;��) ; (2)

�t = �t�1 + �t; �t � NID(0;��) ; (3)

where the �h�s, h = �, � and �, are the covariance matrices of system disturbances, �t, �t and

�t, assumed to be mutually uncorrelated in all time periods.

The LLT model may take a variety of forms: if �� = 0 the stochastic slope reduces to a �xed

slope and the trend reduces to a multivariate random walk with drift (RWD); when �� = 0,

while �� is positive semi-de�nite, a smooth trend or integrated random walk (IRW) is obtained;

�� = �� = 0 implies a deterministic linear trend. Di¤erent forms also arise when restrictions

on the covariance matrices �h�s are introduced. The restrictions can concern the rank of any

of the �h�s, implying a common component restriction, and/or proportionality of the �h�s to

each other, that is homogeneity.

The LLT collapses to the local level (LL) model when there is no slope component. Then, the

system is de�ned by equation (1) and by a random walk (RW): �t+1 = �t+�t. The restriction

�� = 0 leads the RW to become a constant level. In both cases the LLT and the LL models can

allow for more complicated expressions by introducing a cyclical and/or a seasonal component.

5



Equations (1)-(3) can be written in a more compact form in the following SSF:

�t+1 = Tt�t +Ht"t; �1 � N (0;P) ; (4)

yt = Zt�t +Gt"t; (5)

where the system matrices Tt, Ht, Zt and Gt can be time-varying to allow for missing ob-

servations. The state vector �t is such that �t =
�
�0t;�

0
t

�0, "t �NID(0; I) and, dropping the
subscripts, the system matrices are T =

�
IN IN
0 IN

�
, H =

�
�� ��
0 ��

�
, Z = [IN ;0] and

G = [0;0;�"], with the �h�s lower triangular matrices such that �h = �h�0h and h = �, �, �.

SUTSE models are estimated in the time domain by using the Kalman Filter (KF). Once

their State-Space Form (SSF) have been set up, the KF yields the one-step ahead prediction

errors and the Gaussian log-likelihood function via the prediction error decomposition. The

system matrices Tt, Ht, Zt, and Gt of the SSF (4)-(5) depend on a set of unknown parameters,

denoted by '. Then, numerical optimization routines can be used to maximize the log-likelihood

function with respect to '. Once ' has been estimated, the output of the KF may be used for

di¤erent purposes, such as forecasting, diagnostic checking and smoothing. In particular, the

backward recursions given by the smoothing algorithm yield optimal estimates of the unobserved

components. The treatment of the di¤use initial conditions is e¢ ciently approached by using

the methods proposed by Koopman (1997) and Koopman and Durbin (2003).

The use of SUTSE models for temporal disaggregation is straightforward in the KF framework,

the disaggregation problem being treated as a missing observation problem. What is required

in this case is an adjustment of the SSF of the general multivariate model through the use of

a cumulator variable for each series contained in the vector yt subject to temporal aggregation

(see the Appendix for details).

In synthesis, the steps one concretely could follow when a SUTSE model is used for temporal

disaggregation closely resemble a general-to-speci�c approach to time series modelling. These

steps are:

1. start from the general multivariate LLT model, augmented in order to include seasonal

and cyclical components, if appropriate;

2. once a �rst estimation is run, some of the variances of the system in the LLT model can

be �xed by the system estimation itself because they are approximately equal to zero;

3. test for the form of the trend component and the existence of common factors can be

carried out using parametric and non-parametric tests (see the Appendix for further details

and references);

4. if restrictions are accepted by the data, the parameters of the models can be estimated

again by imposing the associated (rank) restrictions in order to obtain a more parsimonious

model.
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4. COMPARISON OF UNIVARIATE AND MULTIVARIATE METHODS

The main traditional methods for temporal disaggregation proposed by the literature hypoth-

esize a simple linear univariate relationship between the unknown low-frequency variable y1t
and the high-frequency related time series y2t. The most important di¤erence among the vari-

ous methods lies in the structure imposed on the disturbances of the hypothesized econometric

relationship. Starting from the high frequency variables regression, y1t = � + �y2t + ut, the

key issue - after temporal aggregation and model estimation using the observed series - is the

identi�cation of the covariance matrix of the disturbances of the high frequency model from

the estimated covariance matrix of the low-frequency model. This model is derived from the

available low-frequency data, possibly by imposing an ARIMA structure on the data generat-

ing process of ut j y2t. This structure is assumed to be an AR(1) process by Chow and Lin

(1971), an I(1) process by Fernández (1981), and an ARIMA(1; 1; 0) process by Litterman

(1983). Though the proposal of Stram and Wei (1986) encompasses the other models - the

authors considers a general ARIMA(p; d; q) structure of the data generation process of the ag-

gregated series or, if an indicator is available, an ARIMA(p; d; q) model for the disturbances -

NSI�s often use the Chow and Lin�s family procedures because of their computational simplicity

(see Bloem, Dippelsman and Mæhke 2001). The quadratic minimization approach suggested

by Denton (1971), strongly favoured by Bloem, Dippelsman and Mæhke (2001, Ch. 6), can be

easily seen as a special case of the least squares approach of Chow and Lin (1971) (see also

Fernández 1981).

Implicit assumptions of the univariate approaches are the weak exogeneity of y2t and the exis-

tence of a behavioural relation between y1t and y2t. As stated by Harvey (1989, pp. 463-465),

none of these assumptions are necessarily ful�lled in current practices.

Then, the question naturally arises as to when is a multivariate approach equivalent to the

univariate approaches utilised for temporal disaggregation by most NSIs so far. In order to

theoretically compare the various methods, it is important to note that the reduced form of the

LLT model is multivariate IMA(2; 2). Therefore, comparable models can be obtained only if

restrictions are imposed on its form, and in particular on the MA component.

Let us assume that N=2 and consider the following factorization of the covariance matrix �h�s

for the h-th component, h = �, � and �:

�h =

�
�21h �h�1h�2h

�h�1h�2h �22h

�
: (6)

Starting from the multivariate LL model, whose reduced form is multivariate IMA(1; 1), Harvey

(1989, 1996) has shown the conditions to obtain fully e¢ cient estimates of the parameters of

interest from the univariate model, namely the hypotheses for y2t to be weakly exogenous.

However, these conditions lead to disturbances which are either IMA(1; 1) or white noise. The

�rst case arises if the following results hold: (a) �� and �� are positive de�nite and the system

is homogeneous, �� = q���, with known homogeneity coe¢ cient; (b) �2� = 0; (c) �2� = 0;

(d) �� = �� in the factorization of the covariance matrix discussed in the Appendix for the case
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of common components. The second case occurs if �� = 0, or if �2� = 0 with the further

restriction that �h = 1, namely common levels.

The condition that must be satis�ed to obtain a single equation form equal to the model

proposed by Fernández (1981) with IMA(1; 0) disturbances is, in some respects, more stringent,

as we need �� = 0 (the two series are equal to their trend components). The same result is

obtained by making the same assumption, but the starting point here is the LLT model with

�xed slope. In this case, the �nal univariate model contains a time trend as an additional

regressor. Further, weak exogeneity is only obtained when the slope is known and identical for

both series.

The model proposed by Chow and Lin (1971) is obtained from a modi�ed LL model where

the level component is AR(1) with autoregressive coe¢ cient equal for both series, namely

�t = ��t�1 + �t; �t � NID(0;��), with � scalar and known. The conclusions here are

the same as those discussed above for the model proposed by Fernández (1981). In this situ-

ation weak exogeneity can also be obtained by assuming the homogeneity restriction with q�
known. However, in the majority of cases q� is unknown, then y2t is no longer weakly exogenous

and there is a loss of information in neglecting the equation for y2t. In these cases, the single

equation estimator is only asymptotically e¢ cient. Similar conclusions can be obtained from

a modi�ed LL model with common levels and common AR(1) disturbances. Because y1t and

y2t are co-integrated, it follows from the results in Stock (1987) that the obtained estimates

are (super-)consistent and e¢ cient in large samples even if y2t and the disturbances themselves

are correlated by construction. Note that the hypothesis of common levels actually reduces the

integration order of the error component, so that it is no longer an I(1) process.

If the starting point is the modi�ed LLT model with autoregressive slopes and �� = 0, weak

exogeneity is obtained if the model is trend homogeneous, �� = q���, with q� known. Further-

more, as stated before, unless the autoregressive parameters are equal in the two equations and

known, there is a loss of e¢ ciency in parameters estimates if these are based on single equation

estimation: in other words, we do not have weak exogeneity. However, the resulting distur-

bances of the single equation for y1t are ARIMA(1; 1; 1): then, a moving average component is

added to the disturbances of the model proposed by Litterman (1983) and the �nal result can

be considered as closer to the wider assumptions of the approach by Stram and Wei (1986) and

Wei and Stram (1990).

It should be noted that the assumptions of common levels and slopes, even when �� = 0, do not

lead us to obtain weak exogeneity for y2t in the equation of interest. Therefore, as noticed for

the model by Fernández (1981), the model favoured by Litterman (1983) is by itself in con�ict

with the likely property of co-integration between y1t and y2t.

In a univariate context, most of the classical models for temporal disaggregation are particular

cases of the class of the ADL(1; 1) models of the form y1t = �y1t�1 + �+ �0y2t + �1y2t�1 + ut,

either on levels or �rst di¤erence of the series (Di Fonzo 2003a; Proietti 2004b). The ADL(1; 1)

model encompasses both the model of Chow and Lin (1971), when �1 = ���0 (common factors
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restriction), and the model by Fernández (1981), when the condition � = 1 is further imposed.

The scheme suggested by Santos Silva and Cardoso (2001) is again a particular case of the

ADL(1; 1) model, when �1 = 0 (partial adjustment). Finally, the model proposed by Litterman

is a special case of the same ADL(1; 1) model in �rst di¤erences, when the common factor

restriction is imposed.

The ADL(1; 1) models have, of course, the great merit of generalizing the models traditionally

used in the context of time disaggregation. As such, their strenght consists in designing a

bridge toward more genuine dynamic extensions that do not impose a priori restrictions on the

parameters of the model before these being validated by the data.

However, the ADL(1; 1) model is again nested in the multivariate SUTSE framework, when

the series are characterised by a multivariate stationary AR(1) process with drift and di¤erent

autoregression coe¢ cients. The conclusions here are the same as those reported above: the

major consequence in neglecting the multivariate nature of the model is a loss of information

and ine¢ ciency in the estimation of the unknown parameters.

5. RESULTS OF THE ANALYSES

In this Section we analyse the results obtained by applying a number of disaggregation methods

proposed so far by the literature. The results of the structural approach have been generated

using the Ox program, version 3.0 (see Doornik 2001), and the SsfPack package (see Koopman,

Shephard and Doornik 1999, 2002), while for the other methods we have mainly bene�ted

from the program Ecotrim developed by Eurostat (see Eurostat 1999) and on Gauss routines

developed by T. Di Fonzo on behalf of Eurostat (see Di Fonzo 2003c).

The �rst set of comparison is taken from Moauro and Savio (2005), whilst other examples are

either part of research conducted at Eurostat, or speci�c runs carried out for presentation at

the Istat Conference.

5.1 The OECD data set

The �rst set of analyses has been carried out by considering a wide data set drawn from OECD

(2002). The time series utilised refer to the twelve biggest OECD countries in terms of GDP

at current prices in 2001. Eight sets of bivariate data are used: 1) Industrial production index

and deliveries in manufacturing; 2) GDP and industrial production index; 3) Consumer and

producer price indices; 4) Private consumption and GDP; 5) GDP de�ator and consumer price

index; 6) Broad and narrow money supply; 7) Short-term and long-term interest rates; 8)

Imports evaluated on a f.o.b. (free on board) and c.i.f. (costs, insurances and freights) basis. In

total, 96 cases (8 data sets times 12 countries) are considered. Whenever available in the OECD

data set, unadjusted data have been preferred to the corresponding seasonally adjusted series.

The eight sets of data have been chosen in order to cover almost all the various situations which

typically occur in practice.
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The results of the disaggregations have been compared with the actual data using standard

statistics, such as root mean squared or mean absolute errors. In what follows, we report

the results obtained in terms of root mean squared percentage errors (RMSPE) only to save

space the results obtained with other criteria do not change the ordering of results and the

conclusions. The results of the comparisons among the various methods for disaggregation and

some synthetic measures of their relative performances are displayed in Tables 1-3 (see Moauro

and Savio 2005 for more details on the models chosen and the tests carried out for the form of

the �nal model).

The results indicate that the multivariate structural approach is likely to be more accurate than

the other methods in virtually all the distributions of time series. Table 1 indicates for each

experiment and country the best and worst performing method in terms of RMSPE. Table 2

shows that the SUTSE approach has an overall probability to have the lowest RMSPE close

to 55%. Over each competitor, the percentage varies from about 78% (against the univariate

structural model) to about 92% (against Chow-Lin�s approach), see Table 2, �rst column. For

all the experiments, the average gain in terms of RMSPE varies from about 14% in the case

of Litterman�s procedure, to some 60% for Denton�s model (Table 2, �rst row). Among the

methods using related time series, the approach by Litterman seems to be, on average, the

second-best solution for time disaggregation issues. This is probably due to the fact that this

approach is the closest to the SUTSE approach because, on the one hand, it requires fewer

restrictions on the form of the underlying multivariate system, and on the other hand it is more

able to resemble the time behaviour of highly non-stationary time series. Almost at the same

level, the approaches by Denton (1971) and Chow and Lin (1971) have quite unsatisfactory

performances with respect to the other methods: they have lower RMSPEs, even compared

with methods which do not use related time series, seldom above 40% of cases (Table 3).

Furthermore, these methods have the highest RMSPEs in the whole sample in 34.4% and

27.1% of cases respectively (Table 2).

When no indicator is available, the best solution seems again to be o¤ered by the use of a

structural approach, with a gain in terms of accuracy over the approaches by Denton and

Stram-Wei of about 15%. Another interesting result emerges from our experiments. Other

things being equal, the use of a related series can have an impact on the accuracy of �nal

estimates which greatly depends on the method used for time disaggregation. In fact, while

the gains obtained passing from the univariate structural model to the SUTSE approach are

substantial (about 35%, with an increase of the probability success of 42.8% and a zeroing of

the probability failure), for Denton�s approach the use of a related time series seems even to

worsen �nal outcomes (a reduction of 3% in accuracy and a consistent increase of the proba-

bility failure). Therefore, what this limited experiment seems to indicate is that the choice of

the method for time disaggregation can be even more relevant than the use of a good refer-

ence series, even if the use of this series can substantially add in terms of accuracy when an

appropriate framework for time disaggregation is chosen. Furthermore, as noted before, the

gains from using the SUTSE over the univariate structural approach can be low when the series
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show similar behaviour. This is what emerges from cases C and E in our data set where, on

average, the target and the related series are characterised by similar patterns. Here the gain

in terms of RMSPE from using an indicator series is 2.4% (against the average of 35.1% in

the whole data set) and the probability success decreases to 62.5% from an average of 78.1.

.

5.2 Extensions to cases where N > 2

Extensions of the applications presented above to cases where N > 2 are straightforward even

with SUTSE models, but in such a context an issue to be addressed is the choice of the related

series. In a time disaggregation framework it is quite natural to select the related series by

looking at the performance of the competing models in terms of forecast (or extrapolation,

following the terminology used by Chow and Lin 1971). This could be viewed as an extension

of what envisaged by the Eurostat (1996) (par. 12.04) for the choice of the method:

The choice between the di¤erent indirect procedures must above all take into ac-

count the minimisation of the forecast error for the current year, in order that the

provisional annual estimates correspond as closely as possible to the �nal �gures.

Therefore, the alternative models can be evaluated on the basis of the out-of-sample RMSPEs

obtained by comparing the true low frequency data with the sum of the high frequency extrap-

olated data.

Here we report the results obtained with an extended version of the Private consumption-GDP

dataset that includes investment, in�ation, the money supply and a short-term interest rate.

A similar dataset has been extensively used in the framework of Real Business Cycle literature

in order to study the �stylised facts� of business �uctuations and the relative importance of

nominal/real shocks in explaining the bulk of economic �uctuations.

Table 4 shows the results of the forecasting comparisons for Canada and the USA. In order to

make the comparisons easy, we have included under Model 1, Case A, the in-sample RMSPEs

for the bivariate models discussed in the previous paragraph (Table 1); the column Model 1,

Case B, reports the corresponding results for the out-of-sample forecasts.

Following King, Plosser, Stock and Watson (1991), two extensions of the original Private

consumption-GDP dataset are considered. The �rst consists in a trivariate system including

Private consumption, GDP and Gross �xed capital formation (Model 2), the second is based on

a six-variable dataset obtained by adding the de�ated money supply (broad money), the GDP

de�ator growth rate and the short-term interest rate (Model 3).

In the comparisons the univariate approaches have not been considered for obvious reasons, and

Denton�s model because it is an adjustment method that can be used if N � 2. The sample

for the forecasting evaluation has been kept equal to a fourth of the number of annual data (5

years for Canada, 10 years for the USA).
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It is not easy to draw conclusions from this limited experiment. However, three points need

to be noticed: (a) the SUTSE approach seems once again to be successful over competitors;

(b) according to the out-of-sample RMSPEs, the �nal rank does not dramatically change from

those reported under Model 1, Case A, for both countries; (c) in the forecasting examples, the

di¤erences in terms of RMSPEs among the various methods are bigger than those obtained for

the in-sample exercises.

In the Canada example, the six-dimension model is the best solution for all approaches except

for Litterman�s, whilst for the USA a bivariate system should generally be preferred. In almost

all cases there is a gain in extending the dataset from N = 3 to N = 6, but for the USA the

best choice seems to be - in three out of four cases - a bivariate Consumption-GDP model.

As noticed above, once the approach for disaggregation has been chosen, one could get

substantial gains from choosing the more appropriate set of related series. This set and its

dimension could depend upon a number of factors, notably the nature of the disaggregation at

hand, the country, and the preferred approach. For example, looking at the SUTSE model, the

RMSPE obtained for the USA is about 20% higher for the full system than for the bivariate

case, whilst for Canada it is about half. Hence, the suggestion for NSIs would be, of course, to

choose the related series on a case-by-case basis, perhaps periodically checking their forecasting

behaviour out-of-sample once a new set of low-frequency benchmark data set becomes available.

5.2 An example using Italian QNA series

In this illustration we show the inadequacy of some classical approaches to face a disaggregation

problem of the ones routinely faced in current practices. The example takes the series of the

annual Value Added and the quarterly Industrial Producton Index of the Metal Sector, de�ned

over the sample 1977-2003. These series have been analysed e.g. in Proietti (2004), who

compares the performances of some classical (Chow-Lin, Fernández and Litterman) approaches

to quarterly disaggregation of value added in terms of in-sample forecasting outcomes.

In the limited sample here considered, the series show a clear tendency to move together, at

least as far as concerns their levels and slopes. A univariate estimation of the ADL(1; 1) model

carried out on the annualised series gives the following results (t-stats in parentheses under the

coe¢ cients):

y1t = �9092:83
(2:82)

+ 0:477393
(2:67)

y1t�1 + 652:348
(5:27)

y2t � 69:1383
(0:41)

y2t�1 + 37:1578
(0:07)

t:

The common factors restriction imposed by the Chow-Lin (1971) model is rejected by the data,

as we obtain a �2(1) statistic equal to 5:3450 with a p-value equal to 0:0208. The same holds

for the restrictions imposed by Fernandez (1981), with a test �2(2) = 16:108, p = 0:0003. The

estimation of the ADL(1; 1) model in �rst di¤erences and the hypothesis of common factors

restriction leading to Litterman�s model is again rejected, with a �2(1) = 27:614.
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The annualised series could be described by a multivariate LLT model, with results given by:

e�1� = 36632:00 e�2� = 80:95 e�� = 1:00e�1� = 0:00 e�2� = 0:00 e�� = 0:00e�1� = 27462:00; e�1� = 67:40; e�� = 1:00
The starting estimation of the multivariate model should lead us to further investigate a LL

model with common levels. Final estimates of such a system are as follows:

y1t = �yt + �1t;

y2t = 0:00127�yt � 5:5174 + �2t;

where �yt is a univariate random walk. Thus we have the following relationship between the

level components as they appear in the two series: �2t = 0:00127�1t � 5:5174.

Here again the alternative models can be evaluated on the basis of the out-of-sample RMSPEs

obtained by comparing the true low frequency data with the sum of the high frequency extrap-

olated data. As in the preceding example, the sample for the forecasting evaluation has been

kept equal 6 years, a fourth of the number of annual data. The RMSPE for the multivariate LL

model is equal to 3:0544, slightly lower than the RMSPE obtained with the model of Fernández

(3:0587), but with a good gain over the models by Chow-Lin (3:1362) and Litterman (3:2718)3.

5.2 An estimation of monthly value added in Industry for the Euro-zone

Here we take the quarterly value added in Industry for the Euro-zone, de�ned over the sample

1991.1-2005.1 and the corresponding monthly industrial production index de�ned over the same

sample period. The situation is quite close to the case discussed above, the exception being

that the estimated relation gives a clear indication in favor of the ADL(1; 1) or the Chow-Lin

model, as the common factor restriction is accepted by our data (�2(1) = 0:12392, p = 0:7248):

y1t = �26889:5
(3:38)

+ 0:581376
(5:49)

y1t�1 + 2632:24
(13:5)

y2t � 1497:60
(3:96)

y2t�1 + 32:0415
(1:07)

t:

The results obtained in terms of forecasting RMSPEs over the last �ve quarters indicate for the

ADL(1; 1) model a value equal to 4:0012, followed by the Chow-Lin (4:03309), and the partial

adjustment scheme (4:13655). The assumptions underlying the model by Fernandez are clearly

rejected by our quarterly data (�2(2) = 16:764, p = 0:0002), and its RMSPE in the forecasting

exercise is equal to 4:63721. The same applies for Litterman�s model, with a RMSPE equal to

4:83834. In this case, the estimation of the SUTSE (2; 0; 2) places in a intermediate position,

with an error equal to 4:36451.

3The estimation of the annual relationship leads us to suspect that the partial adjustment representation could
be a good parsimonious candidate in the ADL(1; 1) family. In e¤ect, in the annual estimated relation reported
above the restriction implied by a partial adjustment model is decidedly accepted by the data, �2(1) = 0:20414,
p = 0:6514.
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6. CONCLUSIONS

The last few years have been characterised by substantial advances in temporal disaggregation

techniques which have exploited di¤erent but interrelated aspects of the discipline, among these:

a) the use of general dynamic models (and the related problem of initial conditions); b) the

introduction of non-linear transformation of the data; c) the extensions to multivariate models

for time disaggregations casted in the family of unobserved component models.

Once taken into account the availability of data and the limited samples statisticians have often

to cope with, the use of genuine dynamic models, such as the ADL(1; 1), seems to be a valid

starting point.

The use of standard models for time disaggregation often implies a reduction process that in

e¤ect has never been tested before the disaggregations start. Another implicit assumption of

some schemes is the lack of co-integration between the series to be disaggregated and the set of

related time series, a circumstance not likely in a time disaggregation context. Imposing these

models on hundreds of disaggregations routinely carried out without checking their likelihood

in the observed low-frequency data seems to be at least questionable.

There are models in the ADL(1; 1) family, such as the partial adjustment model, with a re-

spectable pedigree in economic analysis but, again, imposing a priori such models in a world

where the restrictions are not supported by the data will transpire to generate results which are

an artifact of selecting, for example, a partial adjustment principle. Note that we do not make

a critique of the principle, but of the way the principle is actually implemented.

A further step toward a model-based (and data-based) approach consists in the use of a mul-

tivariate model to temporal disaggregation, such as the one embedded in the class of SUTSE

models. Since there is usually no behavioural relationship between the series to be disaggregated

and the set of related variables, the SUTSE model could be a more appropriate framework than

the traditional univariate regression approaches to represent and solve temporal disaggregation

issues. The SUTSE approach is based on the use of related time series, but in this context

the term �related�has a di¤erent and more appealing meaning, as the implicit assumption is

that the series to be disaggregated and the set of related series are simply a¤ected by a similar

environment. Consequently, the series should move together and measure similar things, though

none of them necessarily causes the other in any statistical or economic sense.

In this framework, common component restrictions - such as common trends, cycles and

seasonalities - can be tested and imposed quite naturally. This represents a further depar-

ture from traditional literature on time disaggregation. The SUTSE approach is �exible

enough to allow for almost any kind of disaggregation problem (i.e. annual to quarterly,

annual to monthly, quarterly to monthly ...) and to handle interpolation, distribution

and extrapolation of both raw and seasonally adjusted time series. In this respect, an-

other advantage of this methodology is that it can allow for simultaneous disaggregation

and seasonal adjustment of the series, whereas NSIs usually undertake these two proce-

dures separately (�rst disaggregation, then seasonal adjustment of the estimated raw series).
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APPENDIX

Both interpolation and distribution �nd an optimal and general solution in the KF framework

where they are treated as missing observation problems. The Kalman �ltering and smoothing

(KFS) allows for an adjustment in the dimension of the data and, in particular, in the system

matrices Zt and Gt. Moreover, if for certain values of t no observations are available, the KFS

can be simply run by skipping the updating equations, without a¤ecting the validity of the

prediction error decomposition.

While in the interpolation case the SSF introduced in Section 2 remains valid, in the distribution

case the model and the observed timing intervals are di¤erent. By extending the discussion in

Harvey (1989, p. 309) and Harvey and Chung (2000), we indicate with � the model frequency

and with �+1 ; : : : ; �
+
N the frequencies at which the unobserved disaggregated �ows y1;t; : : : ; yN;t

are observed. Model and observed frequencies are such that their ratios, denoted �i = �=�+i ,

are integers for each i. Then, the aggregates are such that:

yyi;t =
�i�1X
r=0

yi;t�r; t = �i; 2�i; : : : : (7)

Let us suppose that yt is generated by the LLT model (1)-(3), but that some elements of yt
are observed in temporally aggregated form. Following Harvey (1989, p. 313) and Harvey and

Chung (2000), let us de�ne the cumulator as:

yci;t��i+r =
rX
j=1

yi;t��i+j ; r = 1; : : : ; �i; i = 1; : : : ; N (8)

so that yci;t = y
y
i;t for t = �i; 2�i; : : :. The cumulator can also be written as:

yct = Cty
c
t�1 + �t + �t =

= Cty
c
t�1 + �t�1 + �t�1 + �t + �t + �t; (9)

where Ct = diag (c1t; c2t; : : : ; cNt) and:

cit =

�
0 t = 1; �i + 1; 2�i + 1; : : :
1 otherwise.

(10)

Then, the state vector in equations (4)-(5) becomes �t =
�
�0t;�

0
t;y

c0
t

�0
and the system matrices

are given by

Tt =

0@ IN IN 0
0 IN 0
IN IN Ct

1A ; H =

0@ �� 0 0
0 �� 0
�� �� ��

1A ; Z =
�
0 0 IN

�
; (11)

with yc0 � 0, and G = 0. Note that, though the form above is not the most parsimonious, it

allows for the use of fast Kalman �ltering and smoothing as suggested by Koopman and Durbin

(2000). Further, the system matrix T is now time-varying as denoted by the subscript t.
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The model above can account for cyclical components. In structural time series models

the cyclical component is a linear function of sines and cosines. When a distribution

problem occurs, the treatment of this component is similar to the treatment of the

level. In a cycle plus noise model, the state vector is de�ned as �t =
�
 0t; 

�0
t ;y

c0
t

�0
,

and the system matrices become Tt =

0@ C	 S	 0
�S	 C	 0
C	 S	 Ct

1A and H=

0@ �� 0 0
0 �� 0
�� 0 ��

1A,
where C	 = � cos� � IN , S	 = � sin� � IN , the frequency of the cyclical component

is 0 � � � � and the damping factor is 0 < � � 1. The matrix �� is obtained by

the Cholesky decomposition of the covariance matrix �� for the cyclical disturbances �t.

Though SUTSE models do not necessarily require common components, common factor restric-

tions on level, slope, cycle and irregular can be introduced by imposing rank restrictions on the

covariance matrices of the disturbances driving the components of interest. In this respect, it is

possible to use a factorization of the covariance matrix �h such as �h = �hD
2
h�

0
h, h = �, �,

�, �, where �h is a lower triangular matrix with 1�s along the principal diagonal and with Dh

diagonal (note that �h = �hDh). A model with r common restrictions for the h-th component,

1 < r � N , reduces the dimension of Dh to N � r and �h to a full rank (N � (N � r))
matrix. The limit case given by r = N lets the h-th component be deterministic since �h = 0.

The LLT model in (1) can also be extended to deal with seasonal time series. In the dummy

seasonal (DS) model the multivariate seasonal component 
t is such that:

S (L)
t = !t; !t � NID(0;�!) ; (12)

where S (L) = 1 + L + ::: + L��1, with L the lag operator and !t the vector of disturbances

driving the seasonal pattern.

Hotta and Vasconcellos (1999) discuss the aggregation problem of the DS model for univariate

time series. When a �ow variable is aggregated across time, the form (12) does not change if

� is not a multiple of the aggregation period. If that is the case, the seasonality is unobserved

and it is confused with the irregular component.

In a multivariate context, we consider the case in which seasonality is observed only for some

elements of yyt . Then, the limited seasonal information has to be distributed among all the

elements of yyt by restricting in some way model (12). A �rst solution is the common seasonal

model: if r is the number of elements of yyt for which seasonality is not observed, both 
t and

!t will become ((N � r) � 1) vectors. Thus, for a simple seasonal plus irregular model, yyt is
represented by:

yyt = �!
t + 
t + �t; (13)

where �! follows the de�nition of the previous Section and 
t is a (N � 1) vector of �xed
seasonal e¤ects.
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When 
t is set to zero, model (13) leads to the stronger restriction of similar seasonals. In

other words, the seasonal pattern is proportional among the elements of yyt . Finally, seasonality

is identical when r = N � 1 and �! is further restricted to a N vector of ones.

The strategy of model building adopted in Moauro and Savio (2005) consists in starting from the

general multivariate LLT model, augmented in order to include seasonal and cyclical components

if appropriate. Once a �rst estimation is run, some of the variances of the system in the general

LLT model can be �xed by the system estimation itself because they are approximately equal

to zero.

In this reduction strategy, a number of parametric tests for the form of the trend component

and for the existence of common factors (see, e.g. Harvey 2001; Nyblom and Harvey 2000, 2001)

are of great help. These tests are based on the innovations obtained from the model estimated

at the lower frequency at which the series are observed. These tests start from estimating the

nuisance parameters of the unrestricted model, then the Kalman �lter and smoother with the

appropriate variances set to zero in order to extract the innovations is run.

In the LL model, a test for the null hypothesis that �� = 0 against the homogeneous alternative

�� = q��, q > 0, is given by �(r;N) = tr
�
S�1C

�
, with C = n�2

Pn
i=1

�Pi
t=1 �t

��Pi
t=1 �t

�0
,

S = n�1
Pn
t=1 �t�

0
t and with �t indicating the innovations. In the LLT with constant slope,

the test above is indicated with �0(r;N), with di¤erent rejection regions from �(r;N). In

the IRW model, the test for �� = 0 against the homogeneous alternative �� = q�� is

given by � = tr
�
S�1T

�
, where T = n�2

Pn
i=1

hPi
s=1

Ps
r=1 �t

i hPi
s=1

Ps
r=1 �

0
t

i
(see Nyblom

and Harvey 2001). The test against a stochastic slope with �� > 0 is again given by

�(r;N). Furthermore, one might test for a speci�ed number r of common levels/slopes,

that is one might test for the rank of the relevant covariance disturbance. The test is con-

structed on the sum of the N�r smallest eigenvalues of the matrices constructed on innovations.
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Table 1. Results of time disaggregations; methods with lower and higher RMSPE.

COUNTRY Can Mex Usa Aus� Jap Kor Fra Deu Ita Nld Esp Gbr

A. Quarterly industrial production - Monthly deliveries
Lower STS STS C-L FNZ STS STR DTU STS STS STR STS STR
Higher DTU DTM DTM LTM DTM DTM DTM LTM S-W DTM S-W DTM

B. Annual GDP - Quarterly industrial production
Lower STS STS STS STS STR STS STS STS STS STS LTM LTM
Higher S-W S-W C-L C-L DTM DTU C-L DTM DTM C-L C-L C-L

C. Quarterly consumer prices - Monthly producer prices
Lower S-W S-W LTM STS STS STS S-W STS STS STS DTU STR
Higher C-L C-L C-L C-L DTM C-L C-L C-L C-L DTM C-L C-L

D. Annual private consumption expenditures- Quarterly GDP
Lower STS STS STS STS DTM STR DTM FNZ STR STS STR STS
Higher DTM LTM C-L C-L S-W LTM DTU LTM FNZ DTM LTM DTU

E. Annual GDP de�ator - Quarterly consumer prices
Lower LTM STR STS STS S-W LTM STR STR STS STS S-W STS
Higher DTU C-L DTM DTM DTM STR DTM DTM DTU DTM C-L C-L

F. Quarterly broad money supply - Monthly narrow money supply
Lower STS STS STS STS STS STS STS STS STS STS DTU STS
Higher DTM C-L DTM DTM DTM C-L DTM DTM DTM DTM C-L DTM

G. Annual short-term interest rates - Monthly long-term interest rates
Lower LTM STS LTM LTM STS C-L LTM LTM DTU LTM LTM STS
Higher DTM DTU DTM DTM LTM S-W DTM C-L S-W S-W S-W LTM

H. Annual imports c.i.f. - Quarterly imports f.o.b.
Lower STS STS DTM STS STS DTM DTM STS DTM STS DTM DTM
Higher S-W S-W STR S-W S-W DTU S-W STR S-W DTU DTU S-W

Note: Legenda for countries - Can=Canada, Mex=Mexico, USA=The United States of America, Aus=Australia,
Jap=Japan, Kor=North Korea, Fra=France, Deu=Germany, Ita=Italy, Nld=Netherlands, Esp=Spain,
Gbr=Great Britain.
Legenda for methods - STS= SUTSE (in bold), C-L= Chow-Lin, FNZ= Fernández, LTM= Litterman, DTM=
Denton with related series, STR= Structural, DTU= Denton without related series, S-W= Stram-Wei.
� In cases A and C annual-quarterly exercise instead of quarterly-monthly.

Table 2. Synthesis of results: percentage of cases where the
method has the lowest/highest RMSPE

METHODS SUTSE Chow- Fernández Litterman Denton Structural Denton Stram-
Lin univ. Wei

% lowest RMSPE 54.2 2.1 2.1 12.5 8.3 11.4 4.2 5.2
% higher RMSPE 0.0 27.1 0.0 8.3 34.4 5.2 8.3 16.7

Note: The Table shows the proportion of times that each method has the lowest/highest RMSPE. If the RMSPE
were all equal, the number of times one particular model has the lowest/highest RMSPE should be distributed
as a Binomial (96; 0:125). Using the Normal approximation to the Binomial, one can derive a 95% con�dence
interval p� 0:066 for each proportion p reported in the Table.
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Table 3. Synthesis of results and gains/losses in terms of RMSPEs.

METHODS SUTSE Chow- Fernández Litterman Denton Structural Denton Stram-
Lin univ. Wei

SUTSE - 147.2 123.1 114.3 158.8 135.5 154.1 155.4
Chow-Lin 91.7 - 83.6 77.7 107.9 92.1 104.7 105.6
Fernández 86.5 26.0 - 92.9 129.0 110.1 125.2 126.2
Litterman 81.3 31.3 41.7 - 138.8 118.5 134.7 135.9
Denton 88.5 52.1 71.9 71.9 - 85.4 97.1 97.9

Structural 78.1 36.5 45.8 54.2 33.3 - 113.7 114.7
Denton univ. 82.3 41.7 57.3 62.5 36.5 76.0 - 100.8
Stram-Wei 83.3 43.8 59.4 65.6 36.5 79.2 59.4 -

Note: The Table shows, in the lower part, the percentage of successes of the method in column over that
in row, in the upper part the geometric average of the ratios of RMSPE of the method in column over the
method in row. A geometric mean is used for its reciprocity properties.

Table 4. Results of time disaggregations, N � 2: RMSPEs.
Canada USA

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
Case A Case B Case A Case B

SUTSE 0.345 (1) 0.694 (1) 0.582 (1) 0.329 (1) 0.314 (1) 0.533 (1) 0.731 (1) 0.639 (1)
Chow-Lin 0.393 (4) 0.993 (4) 1.012 (4) 0.341 (2) 0.465 (4) 0.796 (3) 0.970 (4) 0.842 (4)
Fernández 0.372 (2) 0.809 (2) 0.758 (3) 0.433 (3) 0.434 (3) 0.844 (4) 0.945 (3) 0.761 (3)
Litterman 0.384 (3) 0.869 (3) 0.656 (2) 0.785 (4) 0.333 (2) 0.649 (2) 0.812 (2) 0.737 (2)

Note: In Model 1, Case A, N = 2 (Consumption and GDP), and RMSPEs are computed in-sample; in Model 1,
Case B, N = 2 (Consumption and GDP), and RMSPEs are computed out-of-sample; in Model 2, N = 3 (Con-
sumption, GDP and Investments), and RMSPEs are computed out-of-sample; in Model 3, N = 6 (Consumption,
GDP, Investments, Money supply, Interest rate and In�ation rate), and RMSPEs are computed out of sample. In
parentheses is reported the ranking of the method in the experiment, in bold the best performing method.
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