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TEMPORAL DISAGGREGATION TECHNIQUES OF TIME SERIES

BY RELATED SERIES: A COMPARISON BY A MONTE CARLO

EXPERIMENT 1

By Anna Ciammola, Francesca Di Palma and Marco Marini2

Istituto Nazionale di Statistica, Italy

This work presents a comparison of different techniques for disaggregating annual

flow time series by a quarterly related indicator, based on a Monte Carlo experi-

ment. A first goal of the study is related to the estimation of the autoregressive

parameter implied by the solution proposed by Chow and Lin (1971), which is

the most used technique by National Statistical Institutes (NSI). Three estimation

approaches have been considered, being the more recurrent in the literature: the

inversion of the relationship linking the first order aggregated autocorrelation and

the autoregressive parameter at the highest frequency (Chow and Lin, 1971), the

maximization of the log-likelihood (Bournay and Laroque, 1979), and the mini-

mization of the sum of squared residual (Barbone, Bodo, and Visco, 1981). We

evaluate the accuracy of the estimated autoregressive parameter from these ap-

proaches and compare the disaggregated series obtained with the simulated ones.

Then, the comparison is extended to other regression-based techniques based on

the proposals by Fernández (1981), Litterman (1983), Santos Silva and Cardoso

(2001) and Di Fonzo (2002). Nearly one hundred and fifty scenarios were designed,

in order to detect the conditions that allow each technique to obtain the best dis-

aggregation (in terms of in-sample and out-of-sample accuracy), verify whether a

technique outperforms the other ones and evaluate the efficiency of the parame-

ter estimates obtained maximizing the log-likelihood and minimizing the sum of

squared residuals.

Keywords: Temporal disaggregation by related series, Monte Carlo simulation,

Quarterly national accounts.
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1 Introduction

The frequency at which official statistics are released by National Statistical Institutes

(NSI) or other data producers is decided on the basis of several factors: the nature of the

underlying phenomenon, the burden of respondents, budgetary constraints, etc. It fol-

lows that official time series are often available at lower frequency than users would like.

The lack of high frequency indicators could be overcome with the help of mathematical,

statistical or econometric techniques to interpolate, distribute or extrapolate the missing

values at the desired frequency. Such methods go under the name of temporal disaggre-

gation (or benchmarking) techniques. Often, NSI themselves rely on such methods when

a direct estimation approach cannot be accomplished: the indirect approach followed by

some European NSI in the estimation of quarterly national accounts (QNA) is a clear

example. This task is usually performed using techniques which base the disaggregation

on one (or more) indicator series, available at an higher frequency, somehow related to

the objective series. Chow and Lin (1971) derive a general formulation of the disaggre-

gation problem. They obtain a least-square optimal solution in the context of a linear

regression model involving the missing series and the related indicators; moreover, they

suggest to impose a first-order autoregressive structure to the residual term. This solution

requires an estimation of the autoregressive parameter at the high-frequency (HF) level,

which, however, can only be inferred by the relationship of the variables at the lower

frequency (LF). Since the temporal aggregation alters much of the properties of the HF

autoregressive process, an exact identification from the LF residuals is not possible.

Different strategies have been developed to get an estimate of the autoregressive parame-

ter from the LF data: the most applied procedures are those proposed by Chow and Lin

(1971), Bournay and Laroque (1979) , and Barbone, Bodo, and Visco (1981) and will be

illustrated in the next section. In the meantime, other authors have proposed alternative

restrictions on the DGP of the disturbance series in the HF regression model. Fernández

(1981) proposes a random walk model for the disturbances that avoids the estimation of

parameters at the HF level. Litterman (1983) refines the Fernández solution by intro-

ducing a Markov process to take account of serial correlation in the residuals. Wei and

Stram (1990) encompasses the three solutions, generalizing the restriction in the class of

ARIMA (AutoRegressive Integrated Moving Average) processes. Recently, some authors

have proposed techniques based on dynamic regression models in the identification of the

relationship linking the series to be estimated and the related indicators. We refer to the

works of Salazar, Smith, and Weale (1997), Salazar, Smith, Weale, and Wright (1997),

Santos Silva and Cardoso (2001), and Di Fonzo (2002).

An empirical comparison of the performances of temporal disaggregation techniques might

be obtained by using real-world data. Many series of interest are however observed only

at annual/quarterly level, so that any judgement on the performance of a method can

merely be done by measuring distances between the disaggregated series and the related

quarterly/monthly indicators. This paper instead presents evidence based on a simulation
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study which investigates on the relative quality of the estimates from alternative solutions

and estimation methods. The objective series are derived as sum of two components, the

indicator series and the disturbance series both simulated at the HF level. Hence, the

series of interests are completely known at the desired frequency and can be used as

benchmarks for evaluating the disaggregated series.

Comparative studies of disaggregation techniques with simulated time series have already

been developed but, in our opinion, they are based on too restrictive hypotheses concern-

ing the data generation process used to simulate the series and the type and the number

of alternative methods compared. Chan (1993) compares the quarterly disaggregation

procedure by Wei and Stram (1990) with other five methods which do not make use of

related indicators. A similar exercise has been recently presented by Feijoo, Caro, and

Quintana (2003), which consider a more refined simulation design to take account of

seasonal components in the simulated series. Pavia, Vila, and Escuder (2003) perform a

simulation experiment in order to assess the quality of the estimates obtained through

the disaggregation procedure proposed by Chow and Lin (1971), but only an estimation

strategy (similar to those suggested by Chow and Lin) has been used. Finally, Caro,

Feijo, and Quintana (2003) extend the comparison to other proposals based on the best

linear unbiased solution given by Chow-Lin. The evaluation of the methods is fairly dif-

ferent with respect to our work because they do not consider any admissibility condition

of the solutions; furthermore, the method based on the dynamic regression model is not

taken into consideration in their analysis.

The last two references are strictly connected with our work. The scenarios considered

are similar to those composed in our experiment (in section 3 we will explain the main

differences). In a first exercise we compare the performances of the three estimation

methods for the Chow-Lin solution mentioned earlier. The methods are assessed in

terms of estimation accuracy of the autoregressive parameter (and of the disaggregated

series) under a Markov-process hypothesis for the disturbance series and different DGPs

for the indicator series. Then, the comparison is extended to other regression-based

proposals based on the Chow-Lin approach. In this second exercise we also introduce

an integration of order one in the disturbance series, as implied by the Fernández and

Litterman proposals. This allows to verify if each method works properly when the

simulated and the assumed HF disturbance series are coherent. The dynamic solution

proposed by Santos Silva and Cardoso (2001) and re-arranged by Di Fonzo (2002) is also

included in our analysis, even if we must say that the comparison with the other solutions

is unfair because the reference model used in the simulation is essentially static.

The structure of the paper is as follows. In the next section we introduce the statement

of the disaggregation problem, providing a review of the methods we intend to compare.

Section 3 describes the simulation design used in our experiment. In Section 4 we present

and discuss the most interesting results obtained from the two exercises. Conclusions are

drawn in the final section.
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2 A brief review on temporal disaggregation methods

The objective of any temporal disaggregation technique is to derive an estimate of the

underlying high-frequency (HF) observations of an observed low-frequency (LF) time

series. This problem is also known as interpolation (for stocks) or distribution (for flows)

of time series (in this paper we only consider distribution of flow time series so we will

refer to it hereafter). Let us denote a vector of LF data by

yl = (y1, y2, . . . , yT )′

and the corresponding vector of (missing) HF observations by

yh = (y1,1, y1,2, . . . , yT,s−1, yT,s)
′

with s the periodicity of yh. The naive solution of the problem is to divide each value of yl

by s. Such a solution is reasonable if we suppose a straight line connecting the HF periods

between subsequent LF observations. This is certainly not the case for economic time

series, because seasonal, cyclical and irregular components do influence their movements

at sub-annual frequencies. How then is it possible to get more acceptable results both

in the statistical and economic sense? The problem have been approached in different

manners by the literature. Di Fonzo (1987) provides a useful classification of the methods

into the following two categories:

• methods which derive disaggregation of the LF values using mathematical criteria

or time series models;

• methods which exploit external variables observed at the desired frequency.

The main references for the first approach are Boot, Feibes, and Lisman (1967), Lisman

and Sandee (1964) and Wei and Stram (1990). The latter proposal is more theoretically

founded because the distribution problem is solved on the basis of an ARIMA represen-

tation of the series to be disaggregated. The methods belonging to the second group

exploit the information from related time series. A further classification in this group

is between two-step adjustment methods and optimal methods. The former techniques

obtain a preliminary disaggregated series which does not fulfil the temporal constraint;

a second step is then required to adjust the HF series to the LF totals. The proposal by

Denton (1971) is the most known two-step adjustment procedure. The solutions in the

second group are optimal in the least-squares sense because they solve the preliminary

estimation and adjustment steps in the context of a statistical regression model which

involves LF variables and HF related series.

Since optimal methods are the primary interest of this paper, we illustrate in detail the

proposals (along with estimation methods) we intend to compare. Let us first introduce

some basic notation. Suppose a n× k matrix of related time series Xh is available, with
4



n ≥ sT . If n = sT we face a distribution (or interpolation) problem; for n > sT , the

last (n−sT ) HF sub-periods need to be extrapolated. Any deterministic term (constant,

trend or similar) might or might not be included in Xh. The following regression model

is assumed at the HF level

yh = Xhβ + uh (1)

where β is the vector of regression coefficients and uh is the disturbance series. As we

will see later, the optimal solution differs for the hypothesis on the underlying DGP of

uh. For the time being, suppose

E(uh|Xh) = 0

E(uhu
′

h|Xh) = Vh

without specifying any form for Vh.

Pre-multiplying both members of model (1) by the T × n aggregation matrix C, defined

as

C = IT ⊗ 1′

where 1 is the s× 1 vector of ones, we obtain the LF counterpart of (1)

Cyh = CXhβ + Cuh

yl = Xlβ + ul. (2)

with E(ulu
′

l|Xh) = CVhC
′ = Vl.

Being observable, model (2) can now be estimated by standard techniques. The optimal

solution (in the BLUE sense) is formally obtained through the expressions

ŷh = Xhβ̂ + VhC
′V−1

l (yl − Xlβ̂) (3)

β̂ = [X′

lV
−1
l Xl]

−1X′

lV
−1
l y0 (4)

where β̂ is the least square estimator of β in the LF regression (2).

The estimator of β and, consequently, the estimated series ŷh is conditioned to the form

of Vh. If Vh = Inσ
2
ε , expression (4) corresponds to the OLS formula and (3) becomes

ŷh=Xhβ̂ + C′(CC′)−1(yl − Xlβ̂);

since CC′ = sIT , then

ŷh=Xhβ̂ +
1

s
C′(yl − Xlβ̂),

obtaining the naive solution we have started from. A non-spherical form of the noise is

thus essential: the problem is that this form is unknown. Two alternative strategies can

be used to define the form of Vh. First, an estimate of Vh can be inferred by the empirical

measure of the aggregate covariance matrix Vl. The form of Vh is thus suggested by the

data at hand. This is the approach followed by Wei and Stram (1990). However, two

orders of problems arise from this approach. Firstly, the covariance matrix of the HF
5



disturbances cannot be uniquely identified from the relationship Vl = CVhC
′. Next, the

approach relies heavily on ARIMA model identification for the aggregate series. Economic

time series have generally a small sample size, so that the estimated autocorrelations at

the LF level (say, annual) have poor sample properties. As an alternative approach,

some authors proposed to restrict the DGP of uh to well-known structure in the class

of ARIMA processes. The pioneers of this approach are surely Chow and Lin (1971).

Their work has had an enviable success in the field of temporal disaggregation: some

European NSI currently base the compilation of their QNA on this method (for example

Italy, France, and Belgium). The Chow-Lin solution is in fact understandable, easy to

apply, fast and robust: features that are very appealing from the standpoint of a data

producer.

Chow and Lin (1971) present a common solution to the problems of distribution, interpo-

lation and extrapolation using the theory of best linear unbiased estimation. Moreover,

they suggest the simple Markov process for uh

ut = ρut−1 + εt (5)

for t = 1, ..., n and u0 = 0. It follows that the covariance matrix Vh has a Toeplitz form

Vh =
σ2

ε

1 − ρ2




1

ρ 1

ρ2 ρ 1

· · · · · · · · · 1

ρn−1 ρn−2 ρn−3 · · · 1




with E(ε2
t ) = σ2

ε . The matrix Vh would be completely defined if the autoregressive

parameter ρ were known. In this case β̂ is the GLS estimator of β. The real problem is

that ρ is not known and must be estimated: it follows that β̂, conditional to ρ̂, is a feasible

GLS estimator of β. If ρ̂ = 0, the matrix Vh is diagonal and the distribution of the annual

discrepancies (y0 − CXβ̂) is simply obtained dividing by four each value, inducing the

spurious jumps in the series we would like to avoid. Different estimated values of ρ imply

different estimates of β̂ and, consequently, different estimated disaggregations.

Different estimation methods have been proposed to obtain an estimate of ρ from LF

variables. We concentrate here on three approaches, the more recurrent in the literature.

A first method has been proposed in the paper of Chow and Lin (1971). Their method

considers the relationship between ρ and the elements of the aggregated covariance ma-

trix V̂l. They propose a strategy based on the relationship between the autoregressive

coefficient at monthly level with the first autocorrelation computed from the quarterly

errors, which is the element [1,2] of V̂l. The strategy originally proposed by Chow-Lin

cannot be immediately extended to the problem of quarterly disaggregation of annual

figures, as indicated by Bournay and Laroque (1979). The quarterly autoregressive co-

efficient ρ and the first-order autocorrelation of the annual disturbances φa
1 are related

through the following expression:

φa
1 =

ρ(ρ+ 1)(ρ2 + 1)2

2(ρ2 + ρ+ 2)
. (6)
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Figure 1: Plot of φa
1 against ρ.

An iterative procedure is then applied to derive an estimate of ρ. From an initial estimate

of φa
1 from the OLS residuals of (2), the value of ρ̂ is continuously obtained replacing the

new values of φa
1 in expression (6). The iterations end up when ρ̂ converges around a

stable value with a fixed precision level.

The aggregation of a quarterly first-order autoregressive process yields an ARMA(1,1)

process at annual frequency. This means that φa
1 depends on both AR and MA coef-

ficients, so that there is not a biunivocal correspondence between the two coefficients

because of the MA part (the quarterly autoregressive parameter is simply given by ρ4).

This is the reason why the iterative procedure of Chow-Lin does not obtain a solution for

some values of φa
1. This occurs for φa

1 < −0.13; moreover, when −0.13 < φa
1 ≤ 0 equation

(6) has two solutions. This can be easily verified in the plot of ρ against φa
1 shown in

Figure (2). In these cases a quarterly disaggregation cannot be achieved.

Bournay and Laroque (1979) present an alternative estimation procedure based on the

maximization of the log-likelihood. Assuming normality of the residuals, the log-likelihood

of a regression model with AR(1) disturbances can be defined as

logL(ρ̂; β̂) =
n

2
(−1 − ln(

2π

n
)) −

n

2
ln(ûlV

−1
l û′

l) −
1

2
ln(|Vl|).

The log-likelihood can be maximized with respect to ρ in the region of stationarity (−1; 1).

The optimization is obtained through an iterative computation of the matrix Vh, the

vectors β and ul for a grid of values of ρ. The ML estimate of ρ is that for which

logL(ρ̂; β̂) is maximum over this grid.

The third approach is that outlined in Barbone, Bodo, and Visco (1981). The authors

propose to choose the value of ρ minimizing the sum of squared residuals, ûlV
−1
l û′

l. They

refer to it as an Estimated Generalized Least Squares (EGLS) estimator. Di Fonzo (1987)
7



shows that this solution appears to give better results than ML when sharp movements

are present in the series.

As we mentioned earlier, the quarterly disaggregation of annual national accounts ag-

gregates are obtained by some European NSI through the application of the Chow-Lin

technique. The variant by Barbone, Bodo, and Visco (1981) is currently applied by

ISTAT, the Italian NSI, in the compilation of quarterly national accounts. An algorithm

similar to those of Chow and Lin (1971) is used by INE, the Spanish NSI, while the Bour-

nay and Laroque’s solution is adopted by the Belgium statistical agency. A comparative

assessment of the three estimation approaches is the objective of our first Monte Carlo

experiment.

So far, we have presented an outline of the literature connected to the Chow and Lin’s

suggestion of using an AR(1) structure for uh. Some criticisms to this solution come

from Fernández (1981). The specification of a variance-covariance matrix is impossible

because the data are not observed at the HF level. Furthermore, the AR(1) hypothesis

might introduce an artificial step between the last period of one year and the first period

of the next. The alternative structure for the HF noise proposed by Fernández is the

random walk model

ut = ut−1 + εt (7)

with u0 = 0.

The advantage of this solution is that the form of Vh is completely known without

requiring any estimation procedure. In fact, the initial condition is sufficient to guarantee

its existence. Assuming

D =




1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1




,

the matrix Vh is defined as

Vh = σ2
ε(D

′D)−1 =




1 1 · · · 1 1

1 2 · · · 2 2

1 2 · · · 3 3
...

...
. . .

...
...

1 2 · · · n− 1 n




.

Model (1) with hypothesis (7) imply that β is not a cointegrating vector for yh and Xh:

the objective variable and the related series are thus to be modelled in difference form.

An interesting extension of the Fernández proposal is obtained by the use of the logarith-

mic transformation of yt (Di Fonzo, 2002). The absence of additivity of log-transformed
8



variables can be worked around by using Taylor approximations and benchmarking tech-

niques to fulfil temporal constraints if discrepancies are relatively large. Setting zh =

log(yh) and expressing the HF model in first differences, we obtain

∆zh = ∆Xhβ + εh, (8)

a model expressed in terms of rates of change of yh (approximated by its logarithmic

difference). This solution seems appealing because many economic models are expressed

in terms of growth rates of the variable of interest. Moreover, from the aggregation of

model (8) we obtain a model expressed in terms of the low-frequency rate of change

(approximately). In other terms, the estimated model at the LF level are fully coherent

with the theoretical model supposed at the HF level.

A further modification of the procedure of Fernández (1981) is offered by Litterman

(1983). In several applications he found that the random walk assumption for the monthly

error term did not remove all of the serial correlation. As an alternative, he suggests the

random walk Markov model

ut = ut−1 + et

et = ψet−1 + εt (9)

with |ψ| < 1 and the initial conditions u0 = e0 = 0, for t = 1, ..., n. He compares this

method with both the Chow-Lin and Fernández solutions on some real world economic

time series; his results indicate that hypothesis (9) is more accurate than others when

the estimated Markov parameter ψ̂ is positive.

Both Fernández and Litterman impose fixed conditions on the history of the disturbance

process. During the work of the ISTAT commission (see footnote 1), Proietti (2004)

and Di Fonzo (2005b) investigate on the role of the starting conditions to deal with

nonstationary disturbances and provide a new parametrization of the problem which

does not need the assumption that the starting value be fixed.

The methods illustrated above are all based on a static regression model between the

variable of interest and the related indicators. This can be considered a serious drawback

when the relationships are dynamic, as those usually encountered in applied econometrics

work. In the recent years there have been several proposals to extend the use of dynamic

regression models to temporal disaggregation. Di Fonzo (2002) provides a complete tech-

nical review of this line of research. Gregoir (1995) and Salazar, Smith, and Weale (1997)

propose a simple dynamic regression model, but the algorithm needed to calculate esti-

mates and standard errors are rather complicated. The same linear dynamic model has

been developed by Santos Silva and Cardoso (2001) with a simpler estimation procedure.

From the dynamic model

yt = φyt−1 + x′

tβ + εt (10)
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Santos Silva and Cardoso (2001) apply the recursive substitution suggested by Klein

(1958) obtaining the transformed model

yt =
t−1∑

i=0

(φix′

t−i)β + φtη + ut

ut = φut−1 + εt. (11)

The truncation remainder η is considered as a fixed parameter and can be estimated

from the data. Since model (11) is a static regression model with AR(1) disturbances,

the classical Chow and Lin’s procedure can be applied to obtain an estimate of φ and,

consequently, of the disaggregated series in accordance with the dynamic regression model

(10).

3 The simulation design

A simulation exercise in the context of temporal disaggregation requires (at least) the gen-

eration of two variables, the low-frequency benchmark and one (or more) high-frequency

indicator. To simplify notation, we only consider quarterly disaggregation of annual se-

ries by means of a single related indicator. We denote the annual variable as yt and the

quarterly indicator as xt,h, with t = 1, . . . , T and h = 1, . . . , 4. The two series must be

related somehow. We use the following static relationship between the indicator series

xt,h and the quarterly variable yt,h

yt,h = α+ βxt,h + ut,h (12)

where α and β are parameters to generate and ut,h represents a quarterly series generated

independently from xt,h. The series ut,h is denoted as the disturbance series. Since we

are dealing with the distribution problem, the annual benchmark yt is easily obtained by

summing up the quarters yt,1, ..., yt,4 for any t = 1, ..., T .

The relationship (12) ensures the strong exogeneity of the indicator series with respect to

yt. The signal xt,h is “perturbated” by the noise ut,h, which can be derived from a process

of any nature (stationary, integrated, seasonal, etc.). Clearly, the more complex is the

structure of ut,h the lower is the signal preserved in yt. It follows that the exogenity of xt,h

is a strong condition of our simulation model, not allowing a joint interaction between

variables and related indicators over time. Though this solution may appear not very

appealing from a theoretical point of view, the extent of our experiment needs a simpler

approach.

As a matter of fact, a simulation exercise based on the model (12) consists of various

steps:

1. generation of both the indicator series xt,h and the disturbance term ut,h fulfilling

the orthogonality condition;
10



2. generation of the parameters α and β;

3. derivation of the dependent series yt,h in accordance with different level of adequacy

of the model fit;

4. computation of the annual benchmark yt;

5. temporal (monthly or quarterly) disaggregation of yt based on the related indicator

xt,h by different disaggregation techniques and estimation methods;

6. comparison of the estimated HF data ŷt,h (and the estimated parameters α̂ and β̂)

with the generated data yt,h (and the true parameters α and β) in order to assess

the accuracy of the estimates.

Here we deal with the first four steps, whereas the last ones are described in the next

section as they concern the results and their assessment.

As far as the first step is concerned, the indicator series and the disturbance term are

both generated according to ARIMA models. An ARIMA model can be expressed, apart

from a constant, as

φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dxt,h = θ(L)Θ(Ls)at,h, (13)

where: (i) φ(L) = 1 − φ1L − . . . − φpL
p, Φ(Ls) = 1 − Φ1L

2 − . . . − ΦPL
sP , θ(L) =

1−θ1L− . . .−θqL
q and Θ(Ls) = 1−Θ1L

s− . . .−ΘQL
sQ are finite polynomials in the lag

operator L, of order p, P , q and Q; (ii) s = 4(12) for quarterly (monthly) observations;

(iii) at,h is a sequence of NIID(0, σ2) variables.

A multitude of ARIMA specifications can be defined from (13). To choose among them,

hundreds of series currently used in the process of estimating QNA were analysed using

the procedure TRAMO-SEATS (Gomez and Maravall, 1997). The ARIMA models, au-

tomatically identified, were ranked according to the number of series they were fitted on.3

In our experiment, this empirical results allow us to consider very simple models with

d,D, p, q,Q = 0, 1, P = 0, s = 4 and σ2 = 1; a constant term is added in order to obtain

positive data. These data are then multiplied by a scale factor to guarantee a minimum

amount of volatility in the indicators. Table 1 displays the models chosen to generate

the indicators and their coefficients (φ, θ and Θ). These are fixed to the average of the

parameter estimates coming from the real series.

3The series currently used to estimate QNA and analysed in this paper are indicators of the industrial

production, the compensations of employees and the household consumptions. These last indicators, in

number index form, are just used to produce QNA data and are not released to the final users.
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Table 1: ARIMA models and parameters used to generate the indicator series.

Parameters Seasonal

ARIMA models φ θ Θ adjustment
Name

(0, 1, 1)(0, 1, 1) - 0.4 0.6 no / yes I1 / I1sa

(0, 1, 0)(0, 1, 1) - - 0.6 no / yes I2 / I2sa

(1, 0, 0)(0, 1, 1) 0.4 - - no / yes I3 / I3sa

(0, 1, 1) - 0.4 - no I4

A seasonal adjusted version of the indicator series is obtained by applying TRAMO-

SEATS.4 In order to best reproduce the ordinary compilation of QNA, the seasonal

adjustment is carried out identifying the ARIMA models and estimating their parameters

automatically. Clearly, the estimated models may differ from the ARIMA processes used

to generate the raw series.

The innovation series at,h is derived from a standardized normal distribution using the

GAUSS function rndn based on the algorithm proposed by Kinderman and Ramage

(1976). A Ljung-Box test is performed to verify the randomness of at,h: when the Ljung-

Box statistic computed on the first 16 autocorrelations exceeds the value corresponding

to a 10% probability level, the generated series is discarded and replaced with a new one.

In order to reduce the effect of the initial condition a0 = 0, 4T + 100 observations are

first generated for the disturbance term and the first 100 observations are then discarded

from the final indicator series.

As far as the model for the disturbance series is concerned, we have to distinguish two

different contexts. The first context is the comparison of three estimation methods used in

the Chow-Lin’s solution, then the disturbance series are generated from simple first-order

autoregressive model:

ut,h = ρut−1,h + εt,h. (14)

Since different values of ρ may produce strong changes in the properties of the estimation

methods, we simulate nineteen configurations of (14) with ρ = 0.05, 0.10, . . . , 0.90, 0.95.

Hereinafter, we denote this simulation exercise by E1.

When the purpose of the simulation exercise is the comparison among various disaggre-

gation techniques, the disturbance series are not only generated from (14), but also from

a simple random walk model (supposed in the Fernández’s approach)

ut,h = ut−1,h + εt,h. (15)

4The generation of seasonal series and the next seasonal adjustment could seem a pointless compli-

cation as in economic short-term analysis infra-annual data are mainly used in seasonal adjusted form.

Actually, such a process meets the requirements of the European regulation. In accordance to European

System of Accounts (ESA95), NSI are required to produce both raw and seasonally adjusted QNA.
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and from a Markov-random walk model (supposed in the Litterman’s approach)

ut,h = ut−1,h + et,h

et,h = φet−1,h + εt,h. (16)

Because of the computational complexity of the experiment, in this second exercise,

denoted by E2, we simulate three configurations of (14), (15) and (16) with ρ, φ =

0.1, 0.5, 0.9 (see table 2).

Table 2: ARIMA models and parameters used to generate the error series in exercise E2.

ARIMA models ρ Name ARIMA models φ Name

0.1 C1 0.1 L1

(1, 0, 0) 0.5 C5 (1, 1, 0) 0.5 L5

0.9 C9 0.9 L9

(0, 1, 0) - F

The innovation series εt,h is drawn with the same properties of at,h.

Two transformations are applied to the generated disturbance series: (i) a constant term

is added to obtain positive data; (ii) the standard deviation, σu, is changed in order to

perturb the signal of the indicator series. The former transformation modifies the average

of the series; the latter one implies a modification of the coefficient of determination R2,

according to the formula:

σ∗

u =

√
1 −R2

R2
β2σ2

x. (17)

The final error series are then derived as

u∗ =
σ∗

u

σu

u. (18)

Clearly, for larger values of R2, we expect better results from all the estimation methods

and the disaggregation techniques. To avoid useless and overlapping results, in the ex-

periment E1 the coefficient of determination is fixed to R2 = 0.9, whereas in E2 three

different levels are considered with R2 = 0.3, 0.6, 0.9.

Finally, to complete expression (12) we have to choose the values for the constant α

and the regression coefficient β. In order to understand their effects on the simulation
13



results, we tried two ways. First, we extracted different couples of values for (α, β) from

uniform distributions; then, we kept fixed the coefficients to α = 100.000 and β = 1

throughout the experiments. Given the similarity of the results achieved, we chose the

latter approach. Moreover, on the one hand, the large constant makes the simulated

series yt,h similar to a generic QNA aggregate in value and helps the interpretation of

results in terms of growth rates; on the other hand, fixed regression coefficients allow us

to assess bias and standard error of the respective estimates.

The quarterly simulated series yt,h is then aggregated over time using the matrix expres-

sion

y0 = (IT ⊗ 1′

4)y

y0 = ( y1 y2 · · · yT )′

y = ( y1,1 y1,2 y1,3 y1,4 · · · yT,3 yT,4 )′

where IT is the identity matrix of dimension T and 14 = ( 1 1 1 1 )′.

The number of years used in the experiments is T = 26 (104 quarters): twenty-five years

are used for the estimation of the regression model, while the last year is left apart to

evaluate the forecasting performance of the methods. Combining the indicator and the

disturbance series, 261 scenarios are generated in all: 114 of them concern the exercise

E1, the other ones (147) the exercise E2. For each scenario, 500 couples (with a quarterly

indicator and an annual benchmark) are first generated and then processed using two or

three estimation methods and various disaggregation approaches, running almost two

million disaggregations!

The grid search for the autoregressive parameter is performed in the interval [−0.999,

0.999]. To reduce the computational time, we adopt a two-stage scanning procedure. In

each stage a 25-step grid search is used to optimize the objective function; when in the

first stage a solution |ρ̂| > 0.92 is achieved, a finer grid of 51 steps is used. This choice

will be clearer in section 4; here we only sketch that a finer grid near the bounds ±1

is required because some solutions (i.e. |ρ̂| > 0.998) are considered non-admissible and

rejected.

All the experiments are performed in GAUSS 4.0 and the temporal disaggregations are

carried out using the GAUSS routine TIMEDIS.g (Di Fonzo, 2005a). Two personal

computers with AMD Athlon XP 2400 processor 2.4 Ghz and 240 Mb RAM are employed.

4 The simulation results

The following two sub-sections show the main results of exercises E1 and E2. The

differences of the experimental design have been already described; we now specify which

methods have been taken into account and how the results have been evaluated in each

experiment.
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A common element of both exercises is the distinction between admissible and non-

admissible solutions. We consider a solution acceptable when the following two conditions

are contemporaneously fulfilled: the estimated value of the autoregressive coefficient lies

in the region of stationarity and the disaggregated series does not contain any negative

value. The rationale behind this choice is both theoretical and pragmatic. When a

stationary autoregressive component is supposed for the disturbance term, we cannot

accept solutions on the boundaries of the interval (namely (ρ̂, φ̂) = −0.999 or (ρ̂, φ̂) =

0.999). In these cases a theoretical assumption is very likely to be violated and the

resulting disaggregations must not be considered. On the other hand, the presence of

negative values in the quarterly disaggregation when the annual variable assumes only

positive values is an unpleasant result, especially when it is in contrast with the definition

of the variable (like GDP or consumption).

The question of admissibility of the solutions is particularly relevant in exercise E1, the

comparative study of the three estimation methods for the Chow-Lin approach illustrated

in section 2, hereafter denoted with CL (Chow and Lin, 1971), ML (Bournay and Laroque,

1979) and SSR (Barbone, Bodo, and Visco, 1981). As we noticed in section 2, CL

method provides non admissible solutions for certain values of φa
1. The other estimation

methods can instead provide estimated values for ρ on the boundaries. We noted in the

experiments that the condition ρ̂ = 0.999 is only verified with SSR, while ML presents

several solutions with ρ̂ = −0.999. Therefore, each method is characterized by a single

non-admissible condition. Differently from the second exercise, we restricted the region of

admissibility to (−0.9; 0.999). In fact, the disaggregated series obtained by ML show too

erratic movements when ρ̂ < −0.9 and are excluded from the calculation of the aggregate

statistics.

The estimation methods are evaluated in terms of their accuracy in reproducing the

simulated coefficients of the regression model and in terms of quality of the resulting

disaggregations, in both in-sample period (100 quarters) and out-of-sample period (4

quarters). Accordingly, the results are organized in two separate sections.

The former concerns the estimation of the three coefficients (α, β, ρ). The estimated

regression coefficients α and β are compared to the fixed values used in the experiments,

100000 and 1 respectively. A boxplot representation is used to compare the estimates of

β. Given the huge amount of results, measures of aggregation across the time and the

experiment dimensions are needed and will be explained later in this section.

The second exercise (E2) is a comparison of the performances of several techniques based

on the solutions proposed by Chow and Lin (1971), Fernández (1981), Litterman (1983),

Santos Silva and Cardoso (2001) and Di Fonzo (2002). Table 3 identifies with acronyms

the selected methods, which differ for the regression model, the disturbance model, the

estimation method, the deterministic term, the starting condition and the logarithmic

transformation used. However, some configurations will not be considered in the next

tables because the results obtained were not very interesting. For example, with the loga-

rithmic transformation of the objective series we never obtained significant improvements
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of the results. To simplify the readability of the tables we will only show the results from

the methods shown in boldface, which can be considered as the most performing in our

exercises.

Table 3: Disaggregation methods considered in exercise E2.

acronyms
regression disturbance estimation deterministic starting

logarithm
model model method term condition

CL ssr static ARIMA(1,0,0) SSR constant fixed no

CL ssr -c static ARIMA(1,0,0) SSR none fixed no

CL ml static ARIMA(1,0,0) ML constant fixed no

CL ml -c static ARIMA(1,0,0) ML none fixed no

FER static ARIMA(0,1,0) - constant fixed no

FER -c static ARIMA(0,1,0) - none fixed no

FER nsc static ARIMA(0,1,0) - constant estimated no

LFER static ARIMA(0,1,0) - constant fixed yes

LFER -c static ARIMA(0,1,0) - none fixed yes

LIT ssr static ARIMA(1,1,0) SSR constant fixed no

LIT ssr -c static ARIMA(1,1,0) SSR none fixed no

LLIT ssr static ARIMA(1,1,0) SSR constant fixed yes

LLIT ssr -c static ARIMA(1,1,0) SSR none fixed yes

LIT ml static ARIMA(1,1,0) ML constant fixed no

LIT ml -c static ARIMA(1,1,0) ML none fixed no

LLIT ml static ARIMA(1,1,0) ML constant fixed yes

LLIT ml -c static ARIMA(1,1,0) ML none fixed yes

LIT nsc static ARIMA(1,1,0) ML constant estimated no

ADL(1,0) ssr ADL(1,0) WN SSR constant fixed no

ADL(1,0) ssr -c ADL(1,0) WN SSR none fixed no

ADL(1,0) ml ADL(1,0) WN ML constant fixed no

ADL(1,0) ml c ADL(1,0) WN ML none fixed no

Again, we verify the estimation accuracy of the regression coefficients. However, to

make the comparison fair we only relate estimated and simulated coefficients when the

simulated disturbance model is coherent with the assumed one by each method. To make

an example, the estimate of β provided by CL ssr is compared with the simulated one

only for the experiments with an ARIMA(1,0,0) process for the disturbance series; similar

considerations hold for the other two static solutions, while the estimated coefficients

by ADL(1,0) (Autoregressive Distributed Lag) are not comparable with any simulated

counterpart.

The quality of the disaggregated series is tested by standard measures of comparison.

We evaluate the goodness-of-fit of the quarterly series both in-sample and out-of-sample.

Denoting with yt the simulated series and with ŷt the estimated disaggregation, we com-

pute for each method the root mean square percentage error on the levels (RMSPEL) and
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the root mean square error on the first-differences (RMSE1) as

RMSPEL =

√√√√
100∑

t=1

(
ŷt − yt

yt

100

)2 /
100

RMSE1 =

√√√√
100∑

t=2

(δŷt − δyt)2

99

where

δyt =
yt − yt−1

yt

100 δyt =
yt − yt−1

yt

100 .

In exercise E1 we also compute a restricted RMSE for the rates of changes corresponding

to the first quarters. These are in fact the most critical quarters, in which there might

be spurious jumps introduced by a bad disaggregation of the annual figures.

Besides, we analyse the forecasting performance of the methods over the four quarters

dropped out from the estimation period. The four extrapolated quarters are annually

aggregated to derive the annual extrapolated figure. The percentage error of the extrap-

olated level (PEL) is computed, while the quarterly growth rates corresponding to the

four extrapolated quarters are evaluated with their mean error (ME1) and root mean

square error. The former permits to highlight bias in the forecasts, while the latter

coincides with the expression given above.

The aggregation across experiments is made by the computation of simple averages and

standard errors of the statistics. In order to have a synthetic view on the quality of the

methods, we finally construct ranking of the methods based on the averaged statistics.

4.1 Exercise E1: a comparison of alternative estimation methods

for the Chow-Lin solution

4.1.1 The admissibility of the solutions

Table 4 presents the percentage of non-admissible solutions for the three methods in the

different scenarios. These percentages are indicative of the robustness of the disaggre-

gation methods, intended as their ability to give acceptable results to a wide range of

situations.

Firstly, the largest percentage of non-admissible solutions is found for CL while this is

very low for SSR. The number of non admissible solutions are related to the value of ρ;

while ML and CL show a strong inverse relationship, the percentage of non admissible

solutions for SSR remains bounded for any value of ρ.

For ρ = 0.1 more than 60% of solutions are discarded for CL; the percentage decreases

to 30% for ρ = 0.5 while for ρ = 0.9 a full admissibility of the solutions is obtained. The
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percentage for ML, around 30% for ρ ≤ 0.5, rapidly decreases to zero. SSR shows lower

percentages for all values of ρ. Moreover, it is worth noting that the non-admissibility

condition set for SSR is less dangerous. In fact, when ρ̂ = 0.999 the estimated series is

coherent with the simulated ones. This cannot be said for disaggregations obtained with

ρ̂ < −0.9; in this case the estimated series is affected by sudden changes between positive

and negative values which destroy the dynamic of the original series.

These results show that the minimization of the sum of squared residuals is the optimiza-

tion procedure providing the highest percentage of admissible results. The statistics in

the following tables and figures are computed considering only the admissible solutions.

4.1.2 The estimation of parameters

Figure 2 shows the boxplot relative to the estimation of β performed by SSR, ML and

CL. Different values of ρ are displayed in columns, while the rows refer to the different

indicator models (I1, I2 and I3, not seasonally adjusted). The percentage of admissible

solutions is shown in brackets for each method. It is clear from the graphs that the best

estimates of β are achieved with the scenario ρ = 0.1; as ρ increases, the width of the box

(and the length of the whiskers) becomes wider and wider. No regularities are detected

across the different indicator models. Looking at the estimation methods, SSR is that

showing the poorest performance while ML and CL give roughly the same results.
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Figure 2: Boxplot relative to the estimation of β.
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Table 5 shows the percentage bias and error, averaged across the 500 experiments, relative

to the GLS estimators of α and β. Confirming the results in the previous graphs, a lower

standard error of the estimates for CL and ML is noticed relative to that of SSR, which

always presents a larger volatility.

In Figure 2 the estimated and simulated values of ρ are compared for the three estimation

methods (only I1 is considered, being the graphs of the other indicator models very

similar). The average and the standard error of the estimates ρ̂ obtained across the

experiments are computed and plotted, respectively the solid line and the dot-dashed

line. The dotted line represents the ideal situation, corresponding to ρ̂ = ρ.

The left panel shows that the SSR estimation is stable around 0.90 with a very low vari-

ability and therefore almost unconditional to the simulated autoregressive disturbance.

Then, estimating ρ with SSR practically corresponds to constrain the parameter in the

interval (0.90, 0.95). Conversely, both ML and CL give estimates which are positively

related to ρ with a very large variability in the experiments. In particular for ρ < 0.50

ML obtains several disaggregations with negative values of ρ̂. A reduction of the standard

error can be noticed for ρ > 0.80. An elevate standard error can either be seen for CL but

no solution with ρ̂ < 0 is actually obtained. The accuracy and stability of the estimates

slightly improve for ρ > 0.50.
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Figure 3: Average and standard deviation of ρ̂ for different values of ρ.

4.1.3 The disaggregated series

The performances of the estimation methods are compared by evaluating the relative

accuracy of the estimated disaggregations in reproducing the simulated series, in both

in-sample (100 quarters) and out-of-sample (4 quarters) periods.

The in-sample comparison among the methods has been made either for raw and seasonal

adjusted series. We report in Table 6 the RMSPE on the levels (L) of the raw and seasonal

adjusted series and the RMSE on the growth rates (G1) of the seasonal adjusted series.

These series are also evaluated through an analysis quarter by quarter: the table shows
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the RMSE of growth rates relative to the first quarters (G1Q1), in order to evaluate the

ability of the different methods to avoid spurious jumps between the fourth quarter of

one year and the first quarter of the next.

Considering I1, larger values of ρ improve the accuracy of the disaggregated series: we

can note that the average statistics (on levels and growth rates) are more than twice from

ρ = 0.1 to ρ = 0.9. The statistics shown by SSR and CL are equivalent for any value

of ρ. Instead, those of ML are always larger for low values of ρ with higher standard

deviations; for ρ = 0.9 the results become indistinguishable from those of SSR and CL.

The RMSE on the first quarters reveals some problems of ML for low values of ρ (for

ρ = 0.1, 8.39% of ML against 5.06% of CL). This implies a larger presence of jumps in

the estimated series by ML, an unpleasant property in the distribution of a time series.

Similar comments can be made for I2 and I3. No difference arises among the methods

when ρ = 0.9 while, if ρ < 0.9, a greater ability of CL and SSR can be observed. The

statistics for I3 are the lowest: this can be explained by the simple structure of the model,

because of the absence of an integrated component. Comparing the statistics for raw and

seasonal adjusted series, any effect in the performance seems to be due to the seasonal

component.

In brief, the in-sample results show the same performances for ρ > 0.9 while, if ρ < 0.9,

CL and SSR outperform ML. This statement is confirmed by Table 7, which shows

the percentage of times with the best RMSPEL for each method. Slight changes of this

proportion can be noticed in the scenarios. The percentage of successes for SSR decreases

as ρ increases while the opposite is true for ML; any clear relationship is noticed with the

three models considered. The percentage with the best RMSPEL for ML varies from 6.2%

(ρ = 0.15) to 25.4% (ρ = 0.95). The percentage relative to SSR is always greater than

50% for ρ ≤ 0.55 and even when ρ > 0.55 SSR largely outperforms the other methods.

The percentage with the best RMSPEL for CL is around 30% and does not show any

clear relationship with ρ.

Combining the results from Table 6 and 7 we would give our preference to SSR, char-

acterized by a low percentage of non-admissible solutions and a better adequacy of the

estimated series.

The out-of-sample performance is assessed for both raw and seasonal adjusted series by

computing the percentage error of the annual extrapolated level (derived as the sum of

the four extrapolated quarters). The ME and RMSE of growth rates for the extrapolated

quarters are also computed. The former statistics are needed to evaluate the accuracy of

the annualized forecast on the basis of the indicator series, while analysing the errors in

terms of growth rates we try to evaluate the ability of the different methods to reproduce

the short-term information of the indicator.

In Table 8 the forecasting results are presented. The forecasting accuracy differs sig-

nificantly for different indicator models. We notice a better quality of the extrapolated
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figures with I3, while the worst results are obtained with I2. ML is the most accurate

estimation method when the goal is to estimate the annual value of the objective series,

while the quarterly movements are often replicated with better accuracy by SSR and CL.

For example, in the scenario I2 and ρ = 0.1 ML shows a mean absolute percentage error

of 3.85% while CL and SSR have 4.06% and 5.34% respectively. On the contrary, the

RMSE on the quarterly growth rates of ML is sensibly higher (14.17% against 10.77% of

CL and 11.66% of SSR). A further interesting result is that all the estimation methods

over-estimate the true level of the quarterly series for the scenario I2, especially for low

values of ρ.

4.2 Exercise E2: a comparison of alternative regression-based

techniques

4.2.1 The admissibility of the solutions

Table 9 shows the percentage of admissible solutions for five disaggregation approaches

(CL, FER, LIT, LIT snc and ADL(1,0)) and two estimation methods (SSR and ML). Be-

cause of the large number of the scenarios simulated in exercise E2, results are presented

aggregating them by indicator model and by disturbance model, whereas the last column

refers to all the scenarios.

The table contains percentages both in boldface and in normal font. The percentages

printed in bold type show the proportion of series for which the disaggregation approach

indicated in the first column fulfil the admissibility conditions. On the contrary, the

percentages printed in normal font refer to the proportion of series for which both the

approaches indicated in the first column fulfil the admissibility conditions. In other

words, they show the size of the series subsets for which two approaches give admissible

solutions simultaneously. As it will be seen later, this helps the interpretation of the

results concerning the disaggregation performances and the comparison among the various

approaches. Therefore we do not describe them in this section and we only consider the

results printed in bold type.

From the percentages in the last column, it can be seen that the Fernández solution

always fulfils the admissibility conditions, as it does not require the estimation of any

autoregressive parameter. For CL the percentage of admissible solutions exceeds 85% and

it depends on the estimation method: 85.8% for SSR and 98.4% for ML5. An opposite

result comes from LIT: the percentage is 98.4% for SSR, drops to 55% for ML and

gets worse by estimating the starting condition (49%). Similarly, ADL(1,0) ssr (91.5%)

outperforms ADL(1,0) ml (78.9%).

5The result is in contrast with that found in the previous exercise because in this exercise we extend

the admissibility interval of ρ̂ to [-0.999,0.999].

21



This regularity is confirmed by the percentages presented in boldface in the columns 2-

8, where the results are aggregated by indicator model. This means that the ARIMA

models used to generate the indicator series, in particular their integration order and their

seasonality, do not influence the number of admissible solutions (except for ADL(1,0) ssr).

From the aggregation by disturbance model (columns 9-15, figures in boldface) it is seen

that the percentage of admissible solutions depends upon the ARIMA model and the

estimation method. In fact, for ML, the larger ρ, φ and the integration order, the fewer

the solutions to be discarded. An opposite regularity is detected for SSR.

4.2.2 The estimation of parameters

As we stressed in Section 3, the use of fixed parameters to generate the disturbance series

allows us to assess the estimation accuracy. Table 9 shows the average bias and the

standard error of the estimated coefficients β̂, ρ̂ (for CL) and φ̂ (for LIT). These statistics

are computed when the temporal disaggregation fulfils the admissibility conditions.

As regards β, CL approach gives the best estimates. In particular the bias of the ML

estimates are larger than the SSR estimates, but the former are less unstable than the

latter. For LIT approach the ML method reduces the bias and the standard error of the

SSR estimates; the estimation of the starting condition does not improve the ML results

(the discrepancy between LIT ml and LIT nsc is negligible).

As far as the estimation of ρ is concerned (see the upper left corner in the second panel

of Table 10), the results are remarkably affected by the estimation method. Firstly, SSR

overestimates the generated value of ρ, even when ρ = 0.9 (this confirms the results of

exercise E1), while ML underestimates the generated ρ. Secondly, the standard error of

the estimates decreases for larger values of ρ. With regard to φ (see the lower right corner

of the table), LIT ssr results are analogous to those ones achieved by CL ssr and do not

need further discussion. LIT ml performs very well, particularly for large values of the

generated parameter, and better than LIT nsc.

4.2.3 The disaggregated series

The accuracy of the disaggregation techniques can be evaluated through the statistics

shown in tables 11-14. In order to better understand the properties of the disaggregation

methods, the results are showed by indicator and disturbance models. The results by

different R2, on the contrary, are not considered, as they confirm our expectations: the

larger the coefficient of determination, the better the disaggregated series. The tables also

distinguish in-sample and out-of-sample periods; in the former we show the average (first

line) and standard error (second line, italic font) of RMSPEL across the experiments, while

in the latter we report the same aggregated measures of the annual absolute percentage

error (APEL).
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Following the same reasoning introduced in Section 4.2.1, we arrange the data in a way

that fair comparisons of the relative performances of the methods can be made. The

tables include eight sub-tables, one for each method shown in the first row (in boldface).

Each sub-table shows the statistics relative to the method denoted in the first column,

computed only considering its admissible solutions (see Table 9). The next rows show

the same statistics for the other methods, but calculated on the subset of solutions for

which the method in the first row have provided admissible results. Clearly, the number

of experiments considered for these other methods can be at most the same of those

obtained by the method in the first row. Consider the following examples which make

clear the understanding of figures across the tables. From Table 11 we notice that CL ml,

with 97.7% of admissible solutions, obtains a global average RMSPEL of 7.6 for I1 (see

the panel in the upper right corner of the table) but produces an higher statistic, 8.5 (see

the panel in the upper left corner of the table), when only the common solutions with CL

ssr (82.4%) are selected. At the same time, from Table 13 we see that CL ml improves

its accuracy for C1 when it is crossed with ADL(1,0) ml (from 16.2 to 13.6, with 96.6%

and 66.1% of admissible results respectively).

By crossing the admissible solutions we are able to compare each method with the others

on a common set of experiments. In this way we try to help those methods (like FER)

which provide acceptable disaggregations to experiments in which other methods normally

fail. Obviously, when crossed with FER the statistics of the other methods do not change.

But we are also able to discover, for instance, that the global accuracy of FER for I2

(6.0) is much better when only the common solutions with LIT nsc (2.8, with 48.3% of

admissible results) are considered.

Unfortunately for the reader, there is a huge amount of figures in the following tables.

This makes rather complicated to have an immediate idea on the relative positions of the

methods. An attempt to rank the methods by considering both accuracy measures and

percentages of admissible results is illustrated at the end of this section. Now we instead

try to highlight some interesting aspects from the results in Tables 11-14.

The eight sub-tables of Table 11 show the in-sample accuracy of the method in the first

row by different DGPs for indicator models, compared to those of the other methods in

the common set of experiments.

The scenarios I1 and I2 are those for which the disaggregation methods meet major

difficulties, in both raw and seasonal adjusted versions. The reason is probably connected

with the inclusion of a second-order integrated component in the indicator series, while

I3 and I4 both contain a first-order integrated process. An interesting result can be noted

for I3: the static solutions obtain the best accuracy for this model among the seasonal

series while, on the contrary, a higher level of RMSPEL is provided by ADL(1,0).

CL ssr improves over CL ml for all scenarios. A lower average level of RMSPEL is al-

ways achieved by the SSR estimation of ρ; moreover, the volatility obtained by the ML

estimation is almost twice. Opposite considerations apply for the Litterman solution:

23



estimating by maximum likelihood we always achieve better results than SSR. The dy-

namic solution ADL(1,0) (both SSR and ML) never outperforms the results given by the

static solutions.

Only LIT nsc and LIT ml improve over the results by FER (for example, 2.9 and 3.2

against 5.9 for I1). However, we continue to stress that these statistics are based on a

different number of experiments because of the non-admissible results (48.9% and 55.1%

for the same example). The comparison of the Fernández solution is better achieved by

looking at the relative accuracy on the common solutions with the other methods. Using

this perspective we find that FER is almost always in the first positions. If we look at the

tables relative to LIT nsc and LIT ml, we note that FER improves its accuracy obtaining

roughly the same performance. It is also clear that the common solutions to LIT nsr

or LIT ml are those for which the static methods derive very similar results; this view

makes clear why the good performance of the Litterman solution is only apparent.

Table 13 analyses the results by different DGPs for disturbance series. The scenarios

C1 and C5 are those in which the disaggregation techniques have the worse results: the

level of RMSPEL is sensibly reduced when the disturbance series contain an integrated

process. This evidence confirms the results found in exercise E1.

To synthesize the results, we try to order the methods considering both accuracy of

disaggregation and capacity to give admissible results. Firstly, we assign the ranks (in

ascending order) to the methods in each table. Then, we take the rank of the method

placed in the first row. The resulting list does not take account of the different number

of solutions on which the statistics are calculated. We want now to produce a modified

classification in which the methods with lower number of admissible results are penalized.

Denote the initial rank of a generic method by r. This is adjusted through the following

formula

ra = r +

(
2 −

AS

TS

)3

− 1 (19)

where AS is the number of admissible solutions and TS is the total number of experi-

ments. The greater is the number of non-admissible results, the more penalized is the

method. When AS = TS, no adjustment is done. If AS = 0, the maximum penalization

(7) is added to the original rank. The final order is achieved by sorting the methods by

ra.

Table 15 shows the adjusted ranking ra by indicator models, for both distribution and

extrapolation periods. We remind that each line represents the adjusted ranking of each

method in the corresponding sub-table; this explains why the same rank is associated

to different methods. The simple average of the ranks is shown in the last column of

the tables; the methods are listed in ascending order by this average. The technique by

Fernández is the best method in the interpolation period (1.3); for 6 out of 7 indicator

models FER provides the most accurate distributions. CL ssr is in the second position
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(2.1), while LIT nsc (2.3) and LIT ml (2.7) are surely the most penalized by the adjust-

ment for non-admissible disaggregations. CL ml is almost always in the last place (7.1),

but the worst result is provided by ADL(1,1) ml (7.3).

In spite of the bad position in the distribution problem, CL ml results as the the best

method concerning the accuracy of the extrapolated annual figures. Furthermore, FER

shows a much lower performance (5.0), surpassed by LIT nsc (1.4), LIT ml (2.4) and CL

ssr (4.1).

From Table 16 we can see the same tables organized by disturbance models. This analysis

shows CL ssr in the first place (2.0), for its better accuracy with AR(1) disturbances,

while FER stays in the second position (2.9). The two Chow-Lin solutions occupy the

first places in extrapolation, with CL ml the best one when AR(1) model is used for the

disturbance series. FER reaches the second place when the simulated disturbance is I(1),

coherent with the theoretical assumption of the method. Similarly, LIT nsc is the best

method for L9 in both distribution and extrapolation cases.

5 Conclusions

It is not simple to derive general conclusions from simulation exercises. We acknowledge

that results might differ changing the simulation design, like the length of series or the

models for indicators/disturbances. Nevertheless, some remarks can be made about the

properties of the methods we have tested. In particular, we refer to those properties

desirable for the needs of a data producer: existence of admissible solutions, estimation

accuracy of the parameters and goodness of fit with respect to the objective series.

In the first exercise we compare three estimation approaches for the autoregressive pa-

rameter assumed in the Chow-Lin solution. In the scenarios considered the maximum

likelihood procedure (ML) and the method suggested by Chow and Lin (CL) show a

larger amount of non-admissible solutions than the minimization of the sum of squared

residuals (SSR). This is particularly true for low values of the AR parameter. However, it

is important to stress that the AR parameter rarely assumes low values with real time se-

ries and that the percentage of successes with ML and CL should improve with real-world

variables.

Considering the admissible solutions, CL and ML provide better estimates of the regres-

sion coefficients than SSR. In general the estimates improve for decreasing values of ρ.

Opposite considerations hold for the estimation of ρ. Both ML and CL give better results

as the simulated ρ increases; they turn out to be rather volatile with respect to SSR. In

particular, for ρ < 0.50 ML is likely to provide negative estimates of ρ. The estimates

of ρ by SSR are approximately around 0.90 − 0.95 with little volatility and almost inde-

pendently to the true value of the AR parameter. Even though this guarantees a good

reliability of the estimated series, it is not theoretically correct as the parameter ρ is
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almost always overestimated.

Finally, the estimated series obtained by SSR are generally the closest one to simulated

series in the in-sample period while ML obtain slight improvements over the other esti-

mation methods in the extrapolation case. It must be considered that for high values of

ρ the results of the methods tend to coincide.

In the second exercise we extend the comparison to other proposals based on the Chow-

Lin formulation of the disaggregation problem. Considering either admissibility of results

and accuracy of disaggregation, we found that the Fernández approach gives the most

satisfactory results in the in-sample analysis, while it yields intermediate results in the

out-of-sample analysis. As far as the forecasting accuracy is concerned, it is the Chow-

Lin solution with maximum likelihood estimation of the autoregressive parameter which

outperforms the other methods. The admissible results for the Litterman proposal are

very accurate, but the number of solutions with φ = −0.999 is too high. The results from

the dynamic solutions do not compete with those from the static techniques, but this is

certainly connected with the fact that the simulation model used in the experiments is

static.
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Table 4: Percentage of non-admissible solutions for different scenarios.

condition
I1 I2 I3

ρ = 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

CL not invertible 62.2 28.2 0.0 63.2 29.2 0.4 62.8 25.8 0.0

ML ρ̂ < −0.9 32.0 27.0 0.2 31.8 26.8 0.2 25.0 24.0 0.4

SSR ρ̂ = 0.999 2.6 2.8 8.2 2.6 2.2 4.8 0.0 0.2 8.8

Table 5: Average bias and error (%) of the estimated regression coefficients.

ρ = 0.1

I1 I2 I3

α̂ β̂ α̂ β̂ α̂ β̂

Bias Error Bias Error Bias Error Bias Error Bias Error Bias Error

CL 0.59 4.99 -0.20 1.38 0.70 5.53 -0.11 1.34 0.08 1.34 -0.08 1.88

ML -0.01 4.81 -0.07 1.35 -0.78 6.35 0.13 1.37 -0.10 1.26 0.14 1.84

SSR 0.25 7.86 -0.05 2.67 -0.48 10.97 0.41 2.84 -0.32 2.58 0.39 3.66

ρ = 0.5

I1 I2 I3

α̂ β̂ α̂ β̂ α̂ β̂

Bias Error Bias Error Bias Error Bias Error Bias Error Bias Error

CL -0.59 6.90 -0.01 2.20 0.60 9.53 -0.10 2.13 -0.18 2.03 0.22 2.86

ML -1.06 7.82 0.04 2.29 0.01 9.26 -0.06 2.09 -0.28 2.06 0.42 2.95

SSR -1.19 11.73 0.05 3.88 -0.46 15.26 0.28 3.59 -0.24 3.50 0.42 5.0

ρ = 0.9

I1 I2 I3

α̂ β̂ α̂ β̂ α̂ β̂

Bias Error Bias Error Bias Error Bias Error Bias Error Bias Error

CL 0.08 17.09 -0.25 4.92 1.59 21.70 -0.12 4.48 0.26 2.67 -0.34 3.82

ML 0.11 17.07 -0.26 4.89 1.41 21.72 -0.09 4.47 0.24 2.64 -0.31 3.77

SSR -1.22 21.53 0.07 6.34 -0.94 28.06 0.42 5.79 0.23 2.74 -0.29 3.79
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Table 6: Performance measures in the in-sample period: average error and standard

deviation of RMSE (%).

ρ = 0.1

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

L L G1 G1Q1 L L G1 G1Q1 L L G1 G1Q1

CL
3.74 3.71 5.15 5.06 4.63 4.62 5.96 5.75 0.90 0.64 0.91 0.89

(1.87) (1.89) (2.49) (2.64) (3.94) (3.94) (3.42) (3.81) (0.21) (0.17) (0.25) (0.26)

ML
5.0 4.96 6.45 8.39 6.36 6.36 7.97 10.65 1.18 0.84 1.14 1.40

(2.94) (2.96) (3.53) (6.02) (4.66) (4.69) (4.94) (11.34) (0.40) (0.30) (0.34) (0.65)

SSR
3.81 3.77 5.19 5.14 4.67 4.65 6.09 6.04 0.94 0.66 0.94 0.93

(1.94) (1.97) (2.52) (2.70) (3.29) (3.32) (3.21) (3.64) (0.23) (0.17) (0.25) (0.27)

ρ = 0.5

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

L L G1 G1Q1 L L G1 G1Q1 L L G1 G1Q1

CL
3.02 2.99 4.25 3.63 3.56 3.55 4.91 4.24 0.73 0.52 0.76 0.66

(1.56) (1.59) (2.11) (1.86) (2.09) (2.12) (2.49) (2.39) (0.17) (0.13) (0.20) (0.19)

ML
4.02 3.98 5.35 6.49 4.92 4.90 6.46 8.07 1.02 0.73 1.00 1.17

(3.03) (3.04) (3.56) (7.27) (3.94) (3.98) (4.59) (10.64) (0.57) (0.42) (0.49) (0.96)

SSR
3.04 3.01 4.29 3.62 3.63 3.62 4.99 4.30 0.79 0.53 0.78 0.67

(1.54) (1.58) (2.14) (1.84) (2.15) (2.18) (2.56) (2.45) (0.24) (0.14) (0.21) (0.19)

ρ = 0.9

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

L L G1 G1Q1 L L G1 G1Q1 L L G1 G1Q1

CL
1.52 1.50 2.19 1.71 1.84 1.83 2.58 2.00 0.43 0.26 0.40 0.32

(0.86) (0.88) (1.23) (1.00) (1.28) (1.30) (1.58) (1.21) (0.18) (0.09) (0.13) (0.11)

ML
1.52 1.50 2.19 1.72 1.86 1.84 2.60 2.04 0.42 0.26 0.40 0.32

(0.86) (0.88) (1.23) (1.01) (1.31) (1.33) (1.60) (1.39) (0.18) (0.08) (0.13) (0.11)

SSR
1.53 1.49 2.18 1.71 1.85 1.83 2.58 2.00 0.43 0.26 0.40 0.32

(0.86) (0.88) (1.22) (0.99) (1.32) (1.34) (1.59) (1.21) (0.20) (0.09) (0.13) (0.11)
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Table 7: Percentage of times with the best RMSPEL: in-sample period.

I1

ρ = 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

CL 22.8 24.4 22.0 25.2 31.4 30.0 27.4 33.6 31.4 27.6

ML 10.8 8.2 9.4 11.2 11.2 13.4 20.2 21.0 22.4 22.0

SSR 66.4 67.4 68.6 63.6 57.4 56.6 52.4 45.4 46.2 50.4

I2

ρ = 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

CL 23.0 26.6 23.0 27.4 27.6 25.8 25.4 30.6 31.8 26.6

ML 6.8 6.2 9.2 9.6 12.6 16.0 16.4 18.6 20.0 22.8

SSR 70.2 67.2 67.8 63.0 59.8 58.2 58.2 50.8 48.2 50.6

I3

ρ = 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

CL 24.4 23.4 27.0 30.4 29.4 29.0 30.4 29.8 29.0 34.2

ML 9.6 9.2 11.8 11.0 17.8 19.6 25.2 24.0 23.8 25.4

SSR 66.0 67.4 61.2 58.6 52.8 51.4 44.4 46.2 47.2 40.4
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Table 8: Performance measures in the out-of-sample period average and standard devia-

tion of some statistics (%).

ρ = 0.1

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

apeL apeL me1 rmse1 apeL apeL me1 rmse1 apeL apeL me1 rmse1

CL
2.78 2.76 -0.60 7.12 4.06 4.07 -1.34 10.77 0.45 0.32 0.01 0.91

(0.04) (0.04) (3.15) (8.76) (0.08) (0.07) (5.86) (16.24) (0.00) (0.00) (0.25) (0.41)

ML
3.02 3.01 0.22 8.77 3.85 3.84 -1.32 14.17 0.47 0.34 0.01 1.08

(0.05) (0.05) (4.19) (11.82) (0.08) (0.08) (9.87) (25.83) (0.01) (0.00) (0.25) (0.59)

SSR
4.05 4.04 -0.37 7.62 5.34 5.26 -1.97 11.66 0.65 0.47 0.01 0.93

(0.07) (0.07) (3.44) (9.03) (0.10) (0.10) (8.67) (21.22) (0.01) (0.01) (0.26) (0.43)

ρ = 0.5

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

apeL apeL me1 rmse1 apeL apeL me1 rmse1 apeL apeL me1 rmse1

CL
4.07 4.04 -0.20 6.02 6.26 6.20 -1.27 9.29 0.60 0.44 0.00 0.70

(0.07) (0.07) (2.80) (7.24) (0.16) (0.16) (8.82) (20.40 (0.01) (0.01) (0.25) (0.32)

ML
3.65 3.62 0.25 6.65 6.05 5.96 -0.61 10.91 0.62 0.45 0.01 0.91

(0.06) (0.06) (4.54) (11.14) (0.15) (0.15) (9.58) (23.51 (0.01) (0.01) (0.26) (0.65)

SSR
4.57 4.53 -0.17 5.97 7.30 7.19 -1.34 9.30 0.81 0.58 0.00 0.74

(0.09) (0.08) (3.33) (7.02) (0.17) (0.17) (8.01) (18.68 (0.01) (0.01) (0.27) (0.34)

ρ = 0.9

I1 I2 I3

raw seasonal adjusted raw seasonal adjusted raw seasonal adjusted

apeL apeL me1 rmse1 apeL apeL me1 rmse1 apeL apeL me1 rmse1

CL
3.95 3.93 -0.11 3.11 5.67 5.64 -0.16 4.37 0.60 0.44 0.01 0.37

(0.07) (0.07) (2.54) (4.05) (0.11) (0.11) (3.45) (6.23) (0.01) (0.01) (0.18) (0.20)

ML
3.93 3.91 -0.11 3.11 5.63 5.59 -0.17 4.36 0.59 0.43 0.01 0.37

(0.07) (0.07) (2.53) (4.06) (0.11) (0.11) (3.44) (6.24) (0.01) (0.01) (0.17) (0.19)

SSR
3.89 3.84 -0.18 3.19 5.95 5.84 -0.48 4.53 0.65 0.46 0.00 0.38

(0.07) (0.07) (2.57) (4.12) (0.12) (0.12) (4.20) (6.71) (0.01) (0.01) (0.19) (0.20)
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Table 9: Percentages of admissible solutions.

by indicator model by disturbance model
Total

I1 I2 I3 I1sa I2sa I3sa I4 C1 C5 C9 F L1 L5 L9

CL ssr 84.7 86.1 86.3 84.7 86.2 86.3 86.3 98.3 98.4 93.0 92.0 91.8 86.2 40.9 85.8
CL ml 97.7 97.2 99.4 97.8 97.2 100.0 99.7 96.6 92.7 99.7 100.0 100.0 100.0 100.0 98.4
FER 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
LIT ssr 97.5 97.6 99.3 97.8 97.7 99.3 99.4 99.5 98.3 98.8 99.4 99.1 98.8 94.7 98.4
LIT ml 55.1 54.1 55.7 55.1 54.1 55.7 54.9 1.8 4.0 47.0 70.6 71.2 90.3 99.9 55.0
LIT nsc 48.9 48.3 50.1 48.9 48.3 50.0 48.7 1.0 2.1 32.0 61.4 61.8 85.0 99.9 49.0
ADL(1,0) ssr 87.7 87.5 96.4 87.8 87.5 98.7 95.2 99.8 99.4 96.4 91.0 90.0 86.6 77.7 91.5
ADL(1,0) ml 78.8 78.0 77.7 78.9 78.2 80.5 80.4 66.7 60.6 81.6 84.1 85.0 87.5 87.0 78.9
CL ssr - CL ml 82.4 83.4 85.7 82.6 83.4 86.2 86.0 95.0 91.2 92.6 92.0 91.8 86.2 40.9 84.2
CL ssr - FER 84.7 86.1 86.3 84.7 86.2 86.3 86.3 98.3 98.4 93.0 92.0 91.8 86.2 40.9 85.8
CL ssr - LIT ssr 82.7 84.3 86.1 82.9 84.4 86.1 86.1 97.8 96.7 91.8 91.5 90.9 85.3 38.7 84.7
CL ssr - LIT ml 41.4 41.8 42.6 41.5 41.8 42.6 41.8 1.4 3.6 43.0 63.8 63.9 76.9 40.9 41.9
CL ssr - LIT nsc 35.6 36.3 37.1 35.6 36.3 37.1 35.9 0.5 1.8 28.3 55.1 55.5 71.9 40.9 36.3
CL ssr - ADL(1,0) ssr 77.0 77.8 83.8 77.1 77.9 85.3 82.8 98.1 97.8 89.8 84.6 83.7 75.8 32.0 80.3
CL ssr - ADL(1,0) ml 65.7 66.2 68.1 65.9 66.4 71.7 70.8 66.0 60.0 77.0 78.0 78.6 76.5 38.7 67.8
CL ml - FER 97.7 97.2 99.4 97.8 97.2 100.0 99.7 96.6 92.7 99.7 100.0 100.0 100.0 100.0 98.4
CL ml - LIT ssr 95.4 94.9 98.7 95.7 94.9 99.3 99.1 96.1 91.5 98.4 99.4 99.0 98.8 94.7 96.9
CL ml - LIT ml 55.1 54.1 55.7 55.1 54.0 55.7 54.9 1.7 3.9 47.0 70.6 71.2 90.3 99.9 54.9
CL ml - LIT nsc 48.9 48.3 50.1 48.9 48.3 50.0 48.7 0.9 2.1 32.0 61.4 61.8 85.0 99.9 49.0
CL ml - ADL(1,0) ssr 85.4 84.7 95.8 85.6 84.7 98.7 94.9 96.4 92.2 96.0 90.9 90.0 86.6 77.7 90.0
CL ml - ADL(1,0) ml 78.3 77.4 77.4 78.4 77.6 80.5 80.3 66.1 58.7 81.6 84.1 85.0 87.5 87.0 78.6
FER - LIT ssr 97.5 97.6 99.3 97.8 97.7 99.3 99.4 99.5 98.3 98.8 99.4 99.1 98.8 94.7 98.4
FER - LIT ml 55.1 54.1 55.7 55.1 54.1 55.7 54.9 1.8 4.0 47.0 70.6 71.2 90.3 99.9 55.0
FER - LIT nsc 48.9 48.3 50.1 48.9 48.3 50.0 48.7 1.0 2.1 32.0 61.4 61.8 85.0 99.9 49.0
FER - ADL(1,0) ssr 87.7 87.5 96.4 87.8 87.5 98.7 95.2 99.8 99.4 96.4 91.0 90.0 86.6 77.7 91.5
FER - ADL(1,0) ml 78.8 78.0 77.7 78.9 78.2 80.5 80.4 66.7 60.6 81.6 84.1 85.0 87.5 87.0 78.9
LIT ssr - LIT ml 53.6 52.6 55.0 53.6 52.5 55.1 54.3 1.8 3.9 46.4 70.1 70.6 89.3 94.6 53.8
LIT ssr - LIT nsc 47.4 46.8 49.4 47.5 46.8 49.4 48.1 1.0 2.1 31.6 61.0 61.2 84.0 94.6 47.9
LIT ssr - ADL(1,0) ssr 85.9 85.7 95.7 86.3 85.8 98.1 94.7 99.2 97.8 95.3 90.5 89.2 85.8 74.5 90.3
LIT ssr - ADL(1,0) ml 76.9 76.1 77.2 77.0 76.3 80.1 80.0 66.6 60.1 80.5 83.6 84.2 86.4 82.3 77.7
LIT ml - LIT nsc 48.6 48.2 50.0 48.7 48.2 49.9 48.7 0.8 1.9 31.7 61.2 61.8 85.0 99.9 48.9
LIT ml - ADL(1,0) ssr 43.8 42.6 52.7 43.8 42.6 54.8 50.9 1.8 4.0 44.8 62.7 62.8 77.6 77.6 47.3
LIT ml - ADL(1,0) ml 51.9 50.8 45.6 51.6 50.7 44.0 45.2 1.5 3.4 41.5 62.5 63.6 80.4 86.9 48.6
LIT nsc - ADL(1,0) ssr 38.0 37.2 47.2 38.0 37.2 49.2 44.9 1.0 2.1 30.4 54.3 53.9 72.4 77.6 41.7
LIT nsc - ADL(1,0) ml 46.0 45.8 41.2 45.8 45.8 39.6 40.3 0.6 1.8 28.6 54.9 55.6 76.1 86.9 43.5
ADL ssr - ADL(1,0) ml 67.5 66.6 74.6 67.8 66.8 79.7 77.1 66.6 60.4 78.8 76.5 76.4 75.5 65.9 71.4
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Table 10: Average bias and standard error of the estimated coefficients.

β

C1 C5 C9 F L1 L5 L9

CL ssr -0.002 0.001 0.002 - - - -

s.e. 0.286 0.342 0.365 - - - -

CL ml 0.000 -0.002 0.007 - - - -

s.e. 0.161 0.229 0.321 - - - -

FER - - - -0.004 - - -

s.e. - - - 0.378 - - -

LIT ssr - - - - 0.044 -0.001 -0.012

s.e. - - - - 2.342 2.029 0.854

LIT ml - - - - -0.013 -0.004 -0.003

s.e. - - - - 0.436 0.453 0.505

LIT ml nsc - - - - -0.012 -0.004 -0.005

s.e. - - - - 0.412 0.431 0.485

ρ (for CL) and φ (for LIT)

C1 C5 C9 F L1 L5 L9

CL ssr 0.808 0.427 0.073 - - - -

s.e. 0.809 0.428 0.075 - - - -

CL ml -0.602 -0.562 -0.089 - - - -

s.e. 0.839 0.906 0.183 - - - -

LIT ssr - - - - 0.816 0.431 0.074

s.e. - - - - 0.817 0.432 0.076

LIT ml - - - - 0.224 -0.015 -0.040

s.e. - - - - 0.450 0.262 0.090

LIT ml nsc - - - - 0.158 -0.096 -0.047

s.e. - - - - 0.450 0.360 0.103
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Table 11: In-sample period: RMSPEL for different DGPs for indicators.

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
CL ssr 6.3 6.7 4.8 6.1 6.6 2.2 3.4 CL ml 7.6 7.9 5.4 7.4 7.8 2.9 4.3
s.d. 5.2 5.6 4.1 5.3 5.6 1.9 2.9 s.d. 9.3 9.5 6.5 9.3 9.5 4.4 6.1
CL ml 8.5 8.7 6.0 8.3 8.6 3.3 4.9 CL ssr 6.1 6.3 4.7 5.9 6.3 2.2 3.3
s.d. 9.6 9.8 6.7 9.6 9.8 4.6 6.4 s.d. 5.1 5.3 4.1 5.1 5.4 1.9 2.9
FER 6.4 6.7 4.8 6.1 6.6 2.2 3.4 FER 5.6 5.8 4.3 5.4 5.7 2.0 3.0
s.d. 5.3 5.6 4.2 5.3 5.6 1.9 2.9 s.d. 5.0 5.3 4.1 5.0 5.3 1.9 2.8
LIT ssr 7.7 7.3 5.2 6.3 6.7 2.3 3.5 LIT ssr 7.0 6.5 4.6 5.6 5.9 2.0 3.1
s.d. 6.4 6.0 4.8 5.4 5.7 2.0 3.0 s.d. 6.2 5.7 4.6 5.1 5.3 2.0 2.9
LIT ml 3.4 3.5 2.9 3.2 3.4 1.2 1.8 LIT ml 3.2 3.2 2.4 2.8 3.0 1.0 1.5
s.d. 2.7 2.9 2.7 2.6 2.9 1.0 1.4 s.d. 2.7 2.8 2.6 2.6 2.8 0.9 1.4
LIT nsc 3.2 3.2 2.7 2.9 3.1 1.1 1.6 LIT nsc 2.9 2.9 2.2 2.6 2.8 0.9 1.3
s.d. 2.5 2.6 2.5 2.4 2.6 0.9 1.3 s.d. 2.6 2.6 2.4 2.4 2.6 0.9 1.3
ADL(1,0) ssr 7.5 7.5 10.0 6.6 7.1 3.7 5.0 ADL(1,0) ssr 7.0 6.8 9.9 6.0 6.4 3.6 4.8
s.d. 5.0 5.5 3.2 5.2 5.7 1.6 2.3 s.d. 4.8 5.2 3.3 5.0 5.3 1.5 2.2
ADL(1,0) ml 7.1 6.9 8.8 6.2 6.5 3.5 4.8 ADL(1,0) ml 6.5 6.2 8.8 5.5 5.7 3.4 4.6
s.d. 7.0 7.1 5.3 6.8 7.0 3.7 4.4 s.d. 6.6 6.6 5.2 6.4 6.6 3.5 4.2

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
FER 5.9 6.1 4.3 5.6 6.0 2.0 3.0 LIT ssr 7.2 6.8 4.7 5.8 6.2 2.0 3.1
s.d. 5.2 5.5 4.1 5.2 5.6 1.9 2.8 s.d. 6.4 6.0 4.7 5.3 5.6 2.0 3.0
CL ssr 6.3 6.7 4.8 6.1 6.6 2.2 3.4 CL ssr 6.3 6.7 4.8 6.1 6.6 2.2 3.4
s.d. 5.2 5.6 4.1 5.3 5.6 1.9 2.9 s.d. 5.2 5.6 4.1 5.2 5.6 1.9 2.9
CL ml 7.6 7.9 5.4 7.4 7.8 2.9 4.3 CL ml 7.6 7.9 5.4 7.4 7.8 2.9 4.3
s.d. 9.3 9.5 6.5 9.3 9.5 4.4 6.1 s.d. 9.2 9.5 6.5 9.3 9.5 4.4 6.1
LIT ssr 7.2 6.8 4.7 5.8 6.2 2.0 3.1 FER 5.8 6.1 4.3 5.6 6.0 2.0 3.0
s.d. 6.4 6.0 4.7 5.3 5.6 2.0 3.0 s.d. 5.2 5.5 4.1 5.2 5.5 1.9 2.8
LIT ml 3.2 3.2 2.4 2.8 3.1 1.0 1.5 LIT ml 3.2 3.2 2.5 2.8 3.1 1.0 1.5
s.d. 2.7 2.9 2.6 2.6 2.8 0.9 1.4 s.d. 2.7 2.9 2.6 2.6 2.8 0.9 1.4
LIT nsc 2.9 2.9 2.2 2.6 2.8 0.9 1.3 LIT nsc 2.9 2.9 2.3 2.6 2.8 0.9 1.4
s.d. 2.6 2.7 2.4 2.4 2.6 0.9 1.3 s.d. 2.6 2.7 2.4 2.4 2.6 0.9 1.3
ADL(1,0) ssr 7.2 7.1 9.9 6.2 6.7 3.6 4.8 ADL(1,0) ssr 7.2 7.1 9.9 6.2 6.7 3.6 4.8
s.d. 5.0 5.4 3.3 5.2 5.6 1.5 2.3 s.d. 4.9 5.4 3.3 5.2 5.6 1.5 2.3
ADL(1,0) ml 6.6 6.3 8.8 5.6 5.9 3.4 4.6 ADL(1,0) ml 6.6 6.4 8.8 5.6 5.9 3.4 4.6
s.d. 6.6 6.7 5.2 6.5 6.7 3.5 4.2 s.d. 6.6 6.7 5.2 6.5 6.8 3.5 4.2

continued on next page
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continued from previous page

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
LIT ml 3.2 3.2 2.4 2.8 3.1 1.0 1.5 LIT nsc 2.9 2.9 2.2 2.6 2.8 0.9 1.3
s.d. 2.7 2.9 2.6 2.6 2.8 0.9 1.4 s.d. 2.6 2.7 2.4 2.4 2.6 0.9 1.3
CL ssr 3.4 3.5 2.9 3.2 3.4 1.2 1.8 CL ssr 3.1 3.2 2.7 2.9 3.1 1.1 1.6
s.d. 2.6 2.9 2.7 2.6 2.9 1.0 1.4 s.d. 2.4 2.6 2.4 2.4 2.6 0.9 1.3
CL ml 3.1 3.2 2.5 2.9 3.1 1.0 1.5 CL ml 2.9 2.9 2.3 2.6 2.8 0.9 1.4
s.d. 2.9 3.0 2.5 2.8 3.0 0.9 1.4 s.d. 2.8 2.8 2.4 2.8 2.8 0.9 1.2
FER 3.1 3.2 2.5 2.8 3.1 1.0 1.5 FER 2.9 2.9 2.3 2.6 2.8 0.9 1.4
s.d. 2.7 2.9 2.5 2.6 2.8 0.9 1.4 s.d. 2.6 2.7 2.3 2.4 2.6 0.8 1.2
LIT ssr 4.1 3.7 2.6 2.9 3.2 1.0 1.5 LIT ssr 3.8 3.4 2.4 2.7 2.9 0.9 1.4
s.d. 3.9 3.4 2.8 2.7 2.9 1.0 1.4 s.d. 3.7 3.2 2.5 2.5 2.7 0.9 1.3
LIT nsc 2.9 2.9 2.2 2.6 2.8 0.9 1.3 LIT ml 2.9 2.9 2.2 2.6 2.8 0.9 1.4
s.d. 2.6 2.6 2.4 2.4 2.6 0.9 1.3 s.d. 2.6 2.6 2.3 2.4 2.6 0.9 1.3
ADL(1,0) ssr 4.6 4.1 9.4 3.3 3.5 3.1 3.8 ADL(1,0) ssr 4.3 3.8 9.4 3.1 3.2 3.1 3.7
s.d. 2.8 2.9 3.2 2.5 2.9 0.9 1.1 s.d. 2.7 2.7 3.2 2.4 2.7 0.8 1.1
ADL(1,0) ml 4.2 3.8 8.3 3.1 3.2 2.5 3.3 ADL(1,0) ml 4.0 3.5 8.3 2.8 3.0 2.5 3.2
s.d. 2.8 2.9 3.8 2.6 3.0 1.8 1.9 s.d. 2.6 2.6 3.8 2.3 2.7 1.7 1.9

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
ADL(1,0) ssr 7.2 7.1 9.9 6.2 6.7 3.6 4.8 ADL(1,0) ml 6.6 6.3 8.8 5.6 5.9 3.4 4.6
s.d. 5.0 5.4 3.3 5.2 5.6 1.5 2.3 s.d. 6.6 6.7 5.2 6.5 6.7 3.5 4.2
CL ssr 6.7 7.1 4.8 6.5 7.0 2.2 3.4 CL ssr 5.3 5.5 4.5 5.1 5.4 2.2 3.2
s.d. 5.3 5.7 4.2 5.3 5.7 1.9 2.9 s.d. 4.5 4.8 3.8 4.5 4.8 1.9 2.7
CL ml 8.4 8.7 5.4 8.2 8.6 2.9 4.4 CL ml 5.8 6.0 5.2 5.7 6.0 3.0 4.2
s.d. 9.6 9.9 6.6 9.6 9.9 4.4 6.2 s.d. 7.1 7.4 6.0 7.2 7.4 4.4 5.8
FER 6.4 6.7 4.4 6.1 6.6 2.0 3.1 FER 4.9 5.0 4.1 4.6 4.9 2.0 2.9
s.d. 5.3 5.7 4.2 5.3 5.7 1.9 2.9 s.d. 4.5 4.7 3.8 4.4 4.7 1.9 2.7
LIT ssr 7.8 7.3 4.7 6.3 6.7 2.0 3.2 LIT ssr 6.1 5.6 4.4 4.8 5.0 2.0 3.0
s.d. 6.6 6.1 4.7 5.4 5.8 2.0 3.0 s.d. 5.7 5.1 4.3 4.6 4.7 2.0 2.8
LIT ml 3.4 3.5 2.4 3.1 3.3 1.0 1.5 LIT ml 3.2 3.2 2.6 2.8 3.1 1.0 1.5
s.d. 2.9 3.0 2.5 2.7 3.0 0.9 1.4 s.d. 2.7 2.9 2.6 2.5 2.8 1.0 1.4
LIT nsc 3.2 3.2 2.2 2.8 3.0 0.9 1.3 LIT nsc 2.9 2.9 2.4 2.6 2.8 0.9 1.4
s.d. 2.8 2.8 2.3 2.5 2.8 0.9 1.2 s.d. 2.5 2.6 2.4 2.4 2.6 0.9 1.3
ADL(1,0) ml 7.1 6.9 8.7 6.1 6.5 3.4 4.6 ADL(1,0) ssr 6.2 5.9 9.7 5.2 5.5 3.5 4.6
s.d. 7.0 7.1 5.3 6.8 7.0 3.5 4.3 s.d. 4.3 4.6 3.2 4.5 4.8 1.5 2.1
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Table 12: Out-of-sample period: Absolute annual percentage error for different DGPs for indicators.

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
CL ssr 9.9 10.9 4.8 9.8 10.9 2.9 4.2 CL ml 8.7 9.8 4.0 8.6 9.8 2.4 3.5
s.d. 12.3 14.0 5.0 12.3 14.0 3.1 4.6 s.d. 11.4 13.6 4.3 11.3 13.6 2.6 3.9

CL ml 9.1 10.2 4.2 9.1 10.2 2.5 3.7 CL ssr 9.7 10.6 4.7 9.6 10.6 2.9 4.2
s.d. 11.8 13.9 4.4 11.8 13.9 2.6 4.0 s.d. 12.1 13.7 5.0 12.1 13.7 3.1 4.6
FER 10.3 11.3 5.0 10.2 11.3 3.0 4.5 FER 9.4 10.5 4.8 9.3 10.4 2.9 4.3
s.d. 12.7 14.3 5.3 12.6 14.3 3.3 4.9 s.d. 11.9 13.6 5.1 11.9 13.6 3.2 4.7
LIT ssr 14.7 16.0 7.5 14.7 16.0 4.5 6.8 LIT ssr 13.2 14.5 6.9 13.2 14.5 4.2 6.3
s.d. 17.9 19.6 8.3 18.0 19.6 5.1 7.7 s.d. 16.7 18.1 7.9 16.8 18.2 5.0 7.4
LIT ml 8.8 9.5 4.0 8.7 9.4 2.4 3.5 LIT ml 7.9 8.7 3.7 7.8 8.7 2.2 3.3
s.d. 11.6 12.8 4.3 11.6 12.8 2.7 3.8 s.d. 10.7 12.3 4.2 10.7 12.3 2.5 3.7
LIT nsc 8.5 9.0 3.9 8.4 9.0 2.3 3.4 LIT nsc 7.5 8.3 3.5 7.4 8.3 2.1 3.1
s.d. 11.5 12.7 4.1 11.5 12.7 2.5 3.7 s.d. 10.6 12.2 4.0 10.5 12.2 2.4 3.6
ADL(1,0) ssr 10.5 11.6 5.8 10.4 11.5 4.0 5.3 ADL(1,0) ssr 9.8 11.0 5.7 9.7 10.9 4.0 5.3
s.d. 12.3 14.0 5.4 12.3 14.0 3.7 5.0 s.d. 11.8 13.5 5.3 11.7 13.5 3.7 5.0
ADL(1,0) ml 9.5 10.3 5.1 9.5 10.3 3.3 4.5 ADL(1,0) ml 9.0 10.0 5.1 9.0 10.0 3.3 4.5
s.d. 11.9 13.3 4.9 11.9 13.3 3.2 4.4 s.d. 11.3 13.1 4.8 11.3 13.1 3.2 4.4

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
FER 9.6 10.8 4.8 9.6 10.8 2.9 4.3 LIT ssr 13.6 15.1 6.9 13.6 15.1 4.2 6.3
s.d. 12.1 14.0 5.2 12.1 14.0 3.2 4.8 s.d. 17.2 19.0 8.0 17.2 19.0 5.0 7.5

CL ssr 9.9 10.9 4.8 9.8 10.9 2.9 4.2 CL ssr 9.7 10.8 4.8 9.6 10.8 2.9 4.2
s.d. 12.3 14.0 5.0 12.3 14.0 3.1 4.6 s.d. 12.0 13.8 5.0 12.0 13.8 3.1 4.6
CL ml 8.7 9.8 4.0 8.6 9.8 2.4 3.5 CL ml 8.6 9.7 4.0 8.5 9.7 2.4 3.6
s.d. 11.4 13.6 4.3 11.3 13.6 2.6 3.9 s.d. 11.3 13.6 4.3 11.2 13.6 2.6 3.9
LIT ssr 13.6 15.1 6.9 13.6 15.1 4.2 6.3 FER 9.4 10.7 4.8 9.3 10.7 2.9 4.3
s.d. 17.2 19.0 8.0 17.2 19.0 5.0 7.5 s.d. 11.8 13.8 5.2 11.8 13.8 3.2 4.8
LIT ml 7.9 8.8 3.7 7.8 8.7 2.2 3.3 LIT ml 7.8 8.7 3.7 7.7 8.7 2.2 3.3
s.d. 10.7 12.3 4.2 10.7 12.3 2.5 3.7 s.d. 10.5 12.2 4.2 10.5 12.2 2.6 3.7
LIT nsc 7.5 8.3 3.5 7.4 8.3 2.1 3.1 LIT nsc 7.4 8.2 3.6 7.3 8.3 2.1 3.1
s.d. 10.6 12.2 4.0 10.5 12.1 2.4 3.6 s.d. 10.3 12.1 4.0 10.4 12.2 2.4 3.6
ADL(1,0) ssr 10.1 11.2 5.7 10.0 11.2 4.0 5.3 ADL(1,0) ssr 9.8 11.1 5.7 9.8 11.1 4.0 5.3
s.d. 12.0 13.8 5.3 11.9 13.8 3.7 5.0 s.d. 11.7 13.6 5.3 11.7 13.6 3.7 5.0
ADL(1,0) ml 9.1 10.1 5.1 9.0 10.0 3.3 4.5 ADL(1,0) ml 9.0 10.0 5.1 8.9 10.0 3.3 4.5
s.d. 11.4 13.1 4.8 11.3 13.1 3.2 4.4 s.d. 11.3 13.1 4.8 11.3 13.1 3.2 4.4
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I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
LIT ml 7.9 8.8 3.7 7.8 8.7 2.2 3.3 LIT nsc 7.5 8.3 3.5 7.4 8.3 2.1 3.1
s.d. 10.7 12.3 4.2 10.7 12.3 2.5 3.7 s.d. 10.6 12.2 4.0 10.5 12.1 2.4 3.6

CL ssr 8.9 9.6 3.9 8.8 9.6 2.3 3.4 CL ssr 8.6 9.2 3.7 8.5 9.2 2.2 3.2
s.d. 11.8 13.1 4.2 11.7 13.1 2.6 3.7 s.d. 11.8 13.1 4.0 11.8 13.1 2.5 3.6
CL ml 8.4 9.5 3.5 8.3 9.5 2.1 3.0 CL ml 8.1 9.1 3.3 8.0 9.1 2.0 2.9
s.d. 11.8 13.8 3.8 11.8 13.8 2.3 3.3 s.d. 11.6 13.6 3.6 11.6 13.6 2.2 3.2
FER 8.1 9.0 3.8 8.0 9.0 2.3 3.3 FER 7.8 8.7 3.6 7.7 8.6 2.2 3.1
s.d. 10.9 12.6 4.1 10.9 12.7 2.5 3.6 s.d. 10.8 12.5 3.9 10.8 12.5 2.4 3.5
LIT ssr 10.1 11.0 4.9 10.0 11.0 2.9 4.3 LIT ssr 9.5 10.4 4.6 9.4 10.4 2.7 4.0
s.d. 13.5 14.9 5.8 13.6 14.9 3.5 5.2 s.d. 12.9 14.5 5.4 13.0 14.6 3.3 5.0
LIT nsc 7.5 8.3 3.5 7.4 8.3 2.1 3.1 LIT ml 7.5 8.3 3.6 7.5 8.3 2.1 3.1
s.d. 10.6 12.2 4.0 10.6 12.2 2.4 3.6 s.d. 10.6 12.1 4.0 10.6 12.1 2.5 3.6
ADL(1,0) ssr 9.1 10.1 5.4 9.0 10.1 4.0 5.0 ADL(1,0) ssr 8.7 9.7 5.3 8.7 9.7 4.0 4.9
s.d. 11.3 12.9 4.8 11.2 12.9 3.6 4.5 s.d. 11.1 12.8 4.7 11.1 12.8 3.6 4.4
ADL(1,0) ml 8.8 10.0 5.2 8.8 9.9 3.5 4.7 ADL(1,0) ml 8.6 9.6 5.1 8.6 9.6 3.5 4.6
s.d. 11.5 13.2 4.6 11.5 13.2 3.2 4.3 s.d. 11.4 12.9 4.6 11.3 12.9 3.2 4.2

I1 I2 I3 I1sa I2sa I3sa I4 I1 I2 I3 I1sa I2sa I3sa I4
ADL(1,0) ssr 10.1 11.2 5.7 10.0 11.2 4.0 5.3 ADL(1,0) ml 9.1 10.1 5.1 9.0 10.0 3.3 4.5
s.d. 12.0 13.8 5.3 11.9 13.8 3.7 5.0 s.d. 11.4 13.1 4.8 11.3 13.1 3.2 4.4

CL ssr 10.0 11.2 4.8 10.0 11.2 2.9 4.2 CL ssr 9.4 10.3 4.6 9.4 10.2 2.7 4.0
s.d. 12.3 14.2 5.0 12.3 14.2 3.1 4.6 s.d. 11.8 13.3 4.8 11.9 13.3 3.0 4.3
CL ml 8.8 10.1 4.0 8.8 10.0 2.4 3.5 CL ml 8.6 9.7 4.0 8.6 9.7 2.3 3.4
s.d. 11.4 13.9 4.3 11.4 13.9 2.6 3.9 s.d. 11.2 13.3 4.2 11.2 13.3 2.5 3.8
FER 10.0 11.2 4.8 9.9 11.2 2.9 4.3 FER 9.0 10.0 4.6 9.0 10.0 2.8 4.1
s.d. 12.3 14.4 5.1 12.2 14.4 3.2 4.8 s.d. 11.5 13.2 4.9 11.5 13.2 3.1 4.5
LIT ssr 14.3 15.8 6.9 14.3 15.8 4.2 6.3 LIT ssr 12.4 13.5 6.6 12.4 13.6 4.1 6.1
s.d. 17.5 19.3 8.0 17.5 19.4 5.0 7.5 s.d. 16.2 17.2 7.4 16.2 17.3 4.8 7.0
LIT ml 8.2 9.2 3.7 8.1 9.2 2.2 3.2 LIT ml 7.9 8.7 3.9 7.8 8.7 2.2 3.3
s.d. 11.0 13.0 4.1 10.9 13.0 2.5 3.6 s.d. 10.5 12.2 4.3 10.4 12.2 2.5 3.7
LIT nsc 7.8 8.7 3.4 7.7 8.7 2.1 3.0 LIT nsc 7.5 8.3 3.7 7.4 8.3 2.1 3.2
s.d. 10.8 12.9 3.9 10.8 12.9 2.4 3.5 s.d. 10.4 12.0 4.1 10.4 12.0 2.4 3.6
ADL(1,0) ml 9.2 10.3 5.0 9.2 10.3 3.3 4.5 ADL(1,0) ssr 9.6 10.7 5.6 9.6 10.7 3.8 5.1
s.d. 11.3 13.3 4.8 11.3 13.3 3.1 4.3 s.d. 11.5 13.2 5.2 11.5 13.2 3.6 4.8
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Table 13: In-sample period: RMSPEL for different DGPs for disturbances.

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
CL ssr 10.4 8.5 4.8 3.3 3.0 2.1 0.8 CL ml 16.2 13.8 4.9 3.4 3.1 2.0 0.7
s.d. 6.0 5.0 3.1 2.5 2.3 1.7 0.8 s.d. 10.9 10.6 3.6 2.7 2.3 1.7 0.8

CL ml 16.2 13.7 4.9 3.4 3.1 2.1 0.8 CL ssr 10.1 8.0 4.8 3.3 3.0 2.1 0.8
s.d. 10.9 10.6 3.5 2.7 2.4 1.7 0.8 s.d. 5.8 4.8 3.1 2.4 2.3 1.7 0.8

FER 10.4 8.5 4.8 3.3 3.1 2.1 0.8 FER 10.1 8.1 4.8 3.3 3.0 2.0 0.7
s.d. 6.0 5.0 3.1 2.5 2.3 1.7 0.8 s.d. 5.8 4.8 3.1 2.4 2.2 1.7 0.8

LIT ssr 10.9 9.1 5.2 3.7 3.3 2.3 0.9 LIT ssr 10.7 8.6 5.2 3.7 3.4 2.3 0.7
LIT ml 10.1 7.7 4.6 3.2 2.9 2.0 0.8 LIT ml 10.4 7.9 4.6 3.1 2.9 2.0 0.7
s.d. 6.0 4.6 3.0 2.3 2.2 1.7 0.8 s.d. 5.8 4.6 3.0 2.3 2.1 1.6 0.8

LIT nsc 11.0 8.2 4.4 3.1 2.8 2.0 0.8 LIT nsc 11.8 8.7 4.4 3.1 2.9 2.0 0.6
s.d. 6.8 4.7 2.9 2.2 2.1 1.6 0.8 s.d. 5.8 4.8 2.9 2.3 2.1 1.6 0.7

ADL(1,0) ssr 11.0 9.3 6.2 5.0 4.8 4.2 2.8 ADL(1,0) ssr 10.8 8.9 6.2 5.0 4.8 4.2 3.5
s.d. 5.7 4.6 3.1 2.9 2.9 3.0 2.9 s.d. 5.5 4.5 3.1 2.9 2.9 3.0 3.3

ADL(1,0) ml 12.1 10.5 5.9 4.6 4.4 3.6 2.3 ADL(1,0) ml 12.1 10.3 5.9 4.6 4.4 3.6 2.8
s.d. 9.2 8.7 3.4 3.1 2.9 2.8 2.9 s.d. 9.2 8.6 3.4 3.0 2.9 2.8 3.2

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
FER 10.4 8.6 4.8 3.3 3.0 2.0 0.7 LIT ssr 11.0 9.1 5.2 3.7 3.4 2.3 0.7
s.d. 6.0 5.0 3.1 2.5 2.2 1.7 0.8 s.d. 6.5 5.6 3.7 3.0 2.7 2.2 0.9

CL ssr 10.4 8.5 4.8 3.3 3.0 2.1 0.8 CL ssr 10.3 8.4 4.7 3.3 3.0 2.0 0.8
s.d. 6.0 5.0 3.1 2.5 2.3 1.7 0.8 s.d. 6.0 4.9 3.1 2.4 2.3 1.7 0.8

CL ml 16.2 13.8 4.9 3.4 3.1 2.0 0.7 CL ml 16.2 13.6 4.8 3.4 3.0 2.0 0.7
s.d. 10.9 10.6 3.6 2.7 2.3 1.7 0.8 s.d. 10.9 10.5 3.5 2.6 2.3 1.7 0.8

LIT ssr 11.0 9.1 5.2 3.7 3.4 2.3 0.7 FER 10.4 8.5 4.7 3.3 3.0 2.0 0.7
s.d. 6.5 5.6 3.7 3.0 2.7 2.2 0.9 s.d. 6.0 5.0 3.1 2.4 2.2 1.7 0.8

LIT ml 10.9 8.0 4.6 3.1 2.9 2.0 0.7 LIT ml 10.8 8.0 4.5 3.1 2.9 2.0 0.6
s.d. 6.1 4.7 3.0 2.3 2.1 1.6 0.8 s.d. 6.1 4.7 3.0 2.3 2.1 1.6 0.7

LIT nsc 12.3 8.8 4.4 3.1 2.9 2.0 0.6 LIT nsc 12.2 8.8 4.4 3.1 2.8 1.9 0.6
s.d. 6.2 4.9 2.9 2.3 2.1 1.6 0.7 s.d. 6.2 4.9 2.9 2.2 2.1 1.6 0.7

ADL(1,0) ssr 11.0 9.3 6.2 5.0 4.8 4.2 3.5 ADL(1,0) ssr 11.0 9.3 6.2 5.0 4.8 4.2 3.5
s.d. 5.7 4.6 3.1 2.9 2.9 3.0 3.3 s.d. 5.7 4.6 3.1 2.9 2.9 3.0 3.3

ADL(1,0) ml 12.2 10.5 5.9 4.6 4.4 3.6 2.8 ADL(1,0) ml 12.1 10.4 5.8 4.6 4.3 3.6 2.8
s.d. 9.2 8.6 3.4 3.0 2.9 2.8 3.2 s.d. 9.2 8.5 3.4 3.0 2.9 2.8 3.2

continued on next page
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C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
LIT ml 10.9 8.0 4.6 3.1 2.9 2.0 0.7 LIT nsc 12.3 8.8 4.4 3.1 2.9 2.0 0.6
s.d. 6.1 4.7 3.0 2.3 2.1 1.6 0.8 s.d. 6.2 4.9 2.9 2.3 2.1 1.6 0.7

CL ssr 10.1 7.7 4.5 3.1 2.9 2.0 0.8 CL ssr 10.9 8.1 4.4 3.1 2.8 1.9 0.8
s.d. 6.0 4.5 3.0 2.3 2.1 1.7 0.8 s.d. 6.8 4.7 2.8 2.2 2.1 1.6 0.8

CL ml 13.3 8.2 4.5 3.1 2.9 2.0 0.7 CL ml 16.5 9.9 4.4 3.0 2.8 1.9 0.7
s.d. 10.0 5.7 3.0 2.3 2.1 1.6 0.8 s.d. 10.4 7.5 3.0 2.2 2.1 1.6 0.8

FER 10.9 8.0 4.6 3.1 2.9 2.0 0.7 FER 12.3 8.7 4.4 3.0 2.8 1.9 0.7
s.d. 6.2 4.6 3.0 2.3 2.1 1.6 0.8 s.d. 6.3 4.9 2.9 2.2 2.1 1.6 0.8

LIT ssr 11.6 8.5 5.0 3.4 3.2 2.3 0.7 LIT ssr 13.9 9.6 4.8 3.3 3.1 2.2 0.7
s.d. 6.9 5.2 3.6 2.7 2.6 2.1 0.9 s.d. 7.7 5.8 3.4 2.7 2.5 2.1 0.9

LIT nsc 11.9 8.6 4.4 3.1 2.9 2.0 0.6 LIT ml 12.0 8.6 4.4 3.1 2.9 1.9 0.7
s.d. 6.5 4.9 2.9 2.3 2.1 1.6 0.7 s.d. 6.5 4.9 2.9 2.2 2.1 1.6 0.8

ADL(1,0) ssr 11.5 8.9 6.1 4.9 4.8 4.2 3.5 ADL(1,0) ssr 12.6 9.5 6.0 4.9 4.7 4.2 3.5
s.d. 5.8 4.4 3.1 2.9 2.8 3.0 3.3 s.d. 5.9 4.4 3.0 2.9 2.9 3.0 3.3

ADL(1,0) ml 12.9 8.6 5.8 4.5 4.3 3.6 2.8 ADL(1,0) ml 13.0 9.6 5.6 4.5 4.3 3.6 2.8
s.d. 8.9 5.0 3.3 2.9 2.8 2.8 3.2 s.d. 7.8 5.6 3.1 2.8 2.8 2.8 3.2

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
ADL(1,0) ssr 11.0 9.3 6.2 5.0 4.8 4.2 3.5 ADL(1,0) ml 12.2 10.5 5.9 4.6 4.4 3.6 2.8
s.d. 5.7 4.6 3.1 2.9 2.9 3.0 3.3 s.d. 9.2 8.6 3.4 3.0 2.9 2.8 3.2

CL ssr 10.4 8.5 4.8 3.3 3.1 2.0 0.8 CL ssr 8.8 7.3 4.8 3.4 3.1 2.1 0.8
s.d. 6.0 5.0 3.1 2.5 2.3 1.8 0.8 s.d. 5.5 4.8 3.1 2.4 2.2 1.7 0.8

CL ml 16.3 13.8 4.9 3.4 3.1 2.0 0.7 CL ml 13.6 12.1 4.9 3.4 3.1 2.1 0.8
s.d. 10.9 10.7 3.6 2.7 2.4 1.7 0.8 s.d. 9.4 9.6 3.3 2.5 2.3 1.6 0.8

FER 10.4 8.6 4.8 3.3 3.0 2.0 0.7 FER 8.9 7.3 4.9 3.4 3.1 2.1 0.8
s.d. 6.0 5.0 3.1 2.5 2.3 1.7 0.8 s.d. 5.6 4.8 3.2 2.4 2.2 1.7 0.8

LIT ssr 11.0 9.1 5.2 3.7 3.4 2.3 0.7 LIT ssr 9.3 7.8 5.3 3.7 3.4 2.4 0.8
s.d. 6.5 5.6 3.8 3.1 2.7 2.3 0.9 s.d. 6.0 5.4 3.7 3.0 2.6 2.2 0.9

LIT ml 10.9 8.0 4.6 3.1 2.9 1.9 0.6 LIT ml 10.7 7.8 4.7 3.2 3.0 2.0 0.7
s.d. 6.2 4.7 3.0 2.3 2.2 1.7 0.7 s.d. 6.3 4.7 3.0 2.3 2.2 1.6 0.8

LIT nsc 12.3 8.8 4.4 3.0 2.8 1.9 0.6 LIT nsc 11.5 8.7 4.6 3.2 3.0 2.0 0.7
s.d. 6.2 4.9 2.9 2.3 2.1 1.6 0.7 s.d. 6.9 5.0 2.9 2.3 2.1 1.6 0.8

ADL(1,0) ml 12.2 10.5 5.9 4.6 4.4 3.7 3.0 ADL(1,0) ssr 9.6 8.3 6.2 5.0 4.7 4.0 3.2
s.d. 9.2 8.6 3.4 3.0 2.9 2.8 3.4 s.d. 5.3 4.5 3.1 2.9 2.8 2.8 3.1
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Table 14: Out-of-sample period: Absolute annual percentage error for different DGPs for disturbances.

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
CL ssr 7.5 10.2 8.8 6.7 6.5 6.7 5.1 CL ml 5.3 7.5 8.5 7.2 6.7 7.2 4.3
s.d. 8.8 12.9 12.4 9.7 9.1 11.5 8.4 s.d. 6.0 9.7 12.1 10.7 9.8 13.0 7.5

CL ml 5.3 7.4 8.6 7.2 6.6 7.1 5.4 CL ssr 7.2 9.5 8.8 6.7 6.5 6.7 5.1
s.d. 6.0 9.6 12.3 11.0 9.6 13.3 9.1 s.d. 8.3 12.1 12.4 9.7 9.1 11.5 8.4
FER 8.4 11.0 8.9 6.8 6.6 6.7 5.1 FER 8.1 10.2 8.9 6.7 6.7 6.8 4.2
s.d. 9.8 13.6 12.5 9.7 9.2 11.5 8.3 s.d. 9.2 12.7 12.3 9.5 9.3 11.2 7.0
LIT ssr 14.0 17.1 13.2 9.4 8.8 8.2 4.3 LIT ssr 13.4 15.9 13.2 9.3 9.0 8.2 3.3
s.d. 16.3 20.1 17.0 13.0 12.1 12.9 6.7 s.d. 15.3 18.7 16.8 12.8 12.2 12.5 5.7
LIT ml 8.5 11.2 8.7 6.7 6.1 6.8 4.1 LIT ml 7.9 11.7 8.7 6.7 6.2 6.8 3.2
s.d. 9.3 17.7 10.9 9.4 8.7 11.4 6.3 s.d. 8.3 18.0 10.7 9.2 8.9 11.1 5.5
LIT nsc 4.4 14.8 8.4 6.4 5.9 6.8 4.2 LIT nsc 6.2 14.3 8.3 6.4 6.0 6.8 3.2
s.d. 4.4 20.9 10.9 8.8 8.7 11.7 6.4 s.d. 5.0 20.9 10.7 8.5 8.9 11.3 5.5
ADL(1,0) ssr 7.6 10.2 9.5 7.4 7.6 7.9 6.7 ADL(1,0) ssr 7.2 9.5 9.4 7.4 7.7 8.0 5.6
s.d. 8.8 12.6 12.5 9.3 9.3 11.4 9.0 s.d. 8.3 11.8 12.3 9.1 9.4 11.3 7.2
ADL(1,0) ml 4.7 7.0 8.8 7.9 7.4 8.4 6.9 ADL(1,0) ml 4.6 6.8 8.8 7.9 7.5 8.4 5.9
s.d. 5.3 9.7 11.5 10.6 9.1 12.5 9.7 s.d. 5.2 9.5 11.3 10.4 9.5 12.4 8.2

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
FER 8.5 11.0 8.9 6.7 6.7 6.8 4.2 LIT ssr 14.1 17.1 13.3 9.3 9.0 8.2 3.3
s.d. 9.8 13.6 12.3 9.5 9.3 11.2 7.0 s.d. 16.3 20.1 16.8 12.8 12.2 12.5 5.7

CL ssr 7.5 10.2 8.8 6.7 6.5 6.7 5.1 CL ssr 7.5 9.9 8.6 6.7 6.4 6.7 5.0
s.d. 8.8 12.9 12.4 9.7 9.1 11.5 8.4 s.d. 8.8 12.6 12.1 9.5 9.0 11.5 8.1
CL ml 5.3 7.5 8.5 7.2 6.7 7.2 4.3 CL ml 5.3 7.4 8.4 7.1 6.5 7.2 4.1
s.d. 6.0 9.7 12.1 10.7 9.8 13.0 7.5 s.d. 6.0 9.6 11.9 10.7 9.7 13.0 7.1
LIT ssr 14.1 17.1 13.3 9.3 9.0 8.2 3.3 FER 8.4 10.6 8.7 6.7 6.6 6.8 4.0
s.d. 16.3 20.1 16.8 12.8 12.2 12.5 5.7 s.d. 9.8 13.1 12.0 9.3 9.2 11.2 6.8
LIT ml 8.2 11.7 8.7 6.7 6.2 6.8 3.2 LIT ml 8.2 11.7 8.4 6.6 6.2 6.7 3.1
s.d. 8.5 17.9 10.7 9.2 8.9 11.1 5.5 s.d. 8.5 18.0 10.2 9.0 8.9 11.0 5.3
LIT nsc 6.3 14.4 8.3 6.4 6.0 6.8 3.2 LIT nsc 6.3 14.6 8.1 6.3 5.9 6.7 3.2
s.d. 4.9 20.8 10.7 8.5 8.9 11.3 5.5 s.d. 4.9 21.1 10.3 8.4 8.8 11.2 5.4
ADL(1,0) ssr 7.6 10.2 9.5 7.4 7.7 8.0 5.6 ADL(1,0) ssr 7.5 9.9 9.2 7.3 7.6 8.0 5.5
s.d. 8.7 12.6 12.3 9.2 9.4 11.3 7.2 s.d. 8.7 12.2 12.0 9.0 9.3 11.2 7.1
ADL(1,0) ml 4.7 7.1 8.8 7.9 7.5 8.4 5.9 ADL(1,0) ml 4.7 7.0 8.7 7.9 7.4 8.4 5.8
s.d. 5.3 9.8 11.3 10.4 9.5 12.4 8.2 s.d. 5.3 9.8 11.2 10.4 9.4 12.4 7.9
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C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
LIT ml 8.2 11.7 8.7 6.7 6.2 6.8 3.2 LIT nsc 6.3 14.4 8.3 6.4 6.0 6.8 3.2
s.d. 8.5 17.9 10.7 9.2 8.9 11.1 5.5 s.d. 4.9 20.8 10.7 8.5 8.9 11.3 5.5

CL ssr 7.9 10.3 8.5 6.5 6.1 6.7 5.1 CL ssr 3.9 13.8 8.2 6.2 5.9 6.7 5.1
s.d. 8.9 16.4 10.9 9.2 8.9 11.6 8.4 s.d. 4.2 19.9 10.9 8.7 8.8 11.8 8.4
CL ml 6.0 7.8 8.2 6.7 6.2 7.2 4.3 CL ml 5.0 10.4 7.7 6.3 5.9 7.2 4.3
s.d. 6.5 12.1 11.1 9.8 9.6 13.0 7.5 s.d. 4.9 14.3 10.6 8.9 9.5 13.2 7.5
FER 8.2 11.3 8.5 6.5 6.2 6.8 4.2 FER 6.6 14.0 8.1 6.2 6.0 6.7 4.2
s.d. 8.3 16.8 10.7 9.0 9.1 11.3 7.0 s.d. 5.5 19.9 10.6 8.4 9.1 11.4 7.0
LIT ssr 14.2 17.5 11.9 8.9 8.4 8.0 3.3 LIT ssr 15.7 23.6 11.1 8.7 8.0 8.0 3.3
s.d. 15.1 24.9 13.5 12.2 11.7 12.2 5.7 s.d. 17.3 30.2 13.0 11.5 11.4 12.3 5.7
LIT nsc 5.7 15.6 8.4 6.4 6.0 6.8 3.2 LIT ml 5.7 16.1 8.5 6.4 6.0 6.8 3.2
s.d. 4.7 21.3 10.7 8.6 8.9 11.3 5.5 s.d. 4.7 22.0 10.8 8.6 8.9 11.2 5.5
ADL(1,0) ssr 7.9 10.8 9.0 7.1 7.3 8.0 5.6 ADL(1,0) ssr 5.8 14.0 8.6 6.8 6.9 8.0 5.6
s.d. 8.5 16.0 10.6 8.3 9.1 11.3 7.2 s.d. 4.7 19.3 10.4 7.7 8.9 11.5 7.2
ADL(1,0) ml 6.3 8.2 8.8 7.5 7.2 8.5 5.9 ADL(1,0) ml 4.6 10.5 8.4 7.3 6.9 8.4 5.9
s.d. 7.4 11.9 11.1 9.9 9.2 12.4 8.2 s.d. 4.1 14.7 10.6 9.1 9.0 12.5 8.2

C1 C5 C9 F L1 L5 L9 C1 C5 C9 F L1 L5 L9
ADL(1,0) ssr 7.6 10.2 9.5 7.4 7.7 8.0 5.6 ADL(1,0) ml 4.7 7.1 8.8 7.9 7.5 8.4 5.9
s.d. 8.7 12.6 12.3 9.2 9.4 11.3 7.2 s.d. 5.3 9.8 11.3 10.4 9.5 12.4 8.2

CL ssr 7.5 10.1 8.8 6.5 6.5 6.7 5.0 CL ssr 6.1 8.9 8.7 6.9 6.5 6.9 5.3
s.d. 8.8 12.6 12.4 9.3 9.2 11.9 8.8 s.d. 7.0 12.4 11.9 9.4 8.8 11.5 8.5
CL ml 5.3 7.5 8.5 6.9 6.6 7.2 3.9 CL ml 4.5 6.8 8.5 7.3 6.7 7.5 4.6
s.d. 6.0 9.7 12.0 10.1 10.0 13.2 7.2 s.d. 5.2 9.5 11.4 10.3 9.5 13.1 7.8
FER 8.5 10.9 8.8 6.5 6.7 6.8 3.8 FER 6.9 9.5 8.9 6.9 6.7 7.0 4.4
s.d. 9.8 13.3 12.4 9.1 9.4 11.6 6.9 s.d. 7.8 13.0 11.9 9.2 9.1 11.2 7.3
LIT ssr 14.1 16.8 13.2 9.1 8.9 8.1 3.1 LIT ssr 11.4 14.6 13.4 9.5 9.1 8.4 3.6
s.d. 16.3 19.3 16.8 12.9 12.2 12.8 5.5 s.d. 12.9 18.7 17.1 12.6 12.0 12.6 6.0
LIT ml 8.0 11.7 8.6 6.3 6.2 6.7 3.0 LIT ml 8.2 12.1 8.9 6.9 6.3 7.0 3.5
s.d. 8.3 17.9 10.7 8.6 9.0 11.4 5.2 s.d. 8.8 18.8 10.9 9.3 8.7 11.2 5.7
LIT nsc 6.3 14.5 8.2 6.0 5.8 6.7 3.0 LIT nsc 5.0 15.0 8.6 6.6 6.1 7.0 3.4
s.d. 4.9 20.9 10.6 7.8 8.9 11.7 5.3 s.d. 4.1 22.0 11.0 8.9 8.5 11.3 5.8
ADL(1,0) ml 4.7 7.0 8.7 7.6 7.5 8.5 5.8 ADL(1,0) ssr 6.2 8.9 9.4 7.4 7.7 8.2 5.8
s.d. 5.3 9.7 11.3 9.5 9.5 12.7 7.9 s.d. 7.0 12.1 11.9 8.9 9.2 11.2 7.6
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Table 15: Ranking (adjusted for non admissible solutions) by different DGPs for indica-

tors.

In-sample period

I1 I2 I3 I1sa I2sa I3sa I4 Total

FER 1 1 1 1 3 1 1 1.3

CL ssr 1 1 1 3 5 3 1 2.1

LIT nsc 4 4 1 3 2 1 1 2.3

LIT ml 4 4 2 2 3 2 2 2.7

LIT ssr 7 6 3 5 5 3 3 4.6

ADL(1,0) ssr 6 6 8 5 5 8 8 6.6

CL ml 8 8 6 8 8 6 6 7.1

ADL(1,0) ml 8 8 7 7 7 7 7 7.3

Out-of-sample

I1 I2 I3 I1sa I2sa I3sa I4 Total

CL ml 1 1 1 1 1 1 1 1.0

LIT nsc 1 1 2 1 1 2 2 1.4

LIT ml 2 2 3 2 2 3 3 2.4

CL ssr 5 5 3 5 5 3 3 4.1

FER 5 5 5 5 5 5 5 5.0

ADL(1,0) ml 5 5 6 4 5 6 6 5.3

ADL(1,0) ssr 7 6 7 7 6 7 7 6.7

LIT ssr 8 8 8 8 8 8 8 8.0

Table 16: Ranking (adjusted for non admissible solutions) by different DGPs for distur-

bances.

In-sample period

C1 C5 C9 F L1 L5 L9 Total

CL ssr 1 1 1 2 2 3 4 2.0

FER 2 2 2 3 3 4 4 2.9

LIT ml 2 3 5 5 5 4 2 3.7

LIT nsc 3 4 4 5 5 4 1 3.7

CL ml 5 6 5 5 5 3 5 4.9

LIT ssr 3 3 6 6 6 6 4 4.9

ADL(1,0) ml 5 5 7 7 7 7 6 6.3

ADL(1,0) ssr 4 4 8 8 8 8 7 6.7

Out-of-sample

C1 C5 C9 F L1 L5 L9 Total

CL ssr 3 4 4 2 2 1 5 3.0

CL ml 1 1 1 5 4 5 5 3.1

LIT nsc 6 6 4 4 4 2 1 3.9

FER 5 5 6 2 5 4 4 4.4

LIT ml 6 6 5 5 5 4 2 4.7

ADL(1,0) ml 2 2 3 7 6 7 7 4.9

ADL(1,0) ssr 4 4 7 6 7 6 6 5.7

LIT ssr 6 6 8 8 8 7 3 6.6
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