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Abstract

The paper discusses the main issues arising in the construction of quarterly
national accounts estimates, adjusted for seasonality and calendar effects, obtained
by disaggregating the original annual actual measurements using related monthly
indicators.
It proposes and implements an approach that hinges upon the estimation of a

bivariate basic structural time series model at the monthly frequency, accounting
for the presence of seasonality and calendar components. The monthly frequency
enables more efficient estimation of calendar component.
The main virtue of this approach is to enable adjustment and temporal disaggre-

gation to be carried out simultaneously. The proposed methodology also complies
with the recommendations made by the Eurostat - European Central Bank task
force on the seasonal adjustment of Quarterly National accounts.
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1 Introduction

This paper is concerned with the temporal disaggregation of economic flow series that
are available only at the annual frequency of observations; the resulting quarterly or
monthly estimates incorporate the information available from related indicators at the
higher frequency, but as the indicators are affected by seasonal and calendar variation,
there arise the problem of adjusting the estimates for those effects.
Seasonality and calendar components explain a relevant part of the fluctuations of

economic aggregates. While the former refers to the intra-year movements in economic
activity caused by various factors, among which climatic and institutional ones are promi-
nent, calendar effects result from essentially three sources (see Cleveland and Devlin, 1980,
Bell and Hillmer, 1983): i) weekly periodicity: the level of economic activity depends on
the day of the week. The aggregation of weekly seasonal effects into a monthly series is
referred to as trading day (TD) or working day (WD) effects, according as to whether
the series refers to sales or production. ii) moving festivals, such as Easter, which change
their position in the calendar from year to year. iii) the different length of the month or
quarter: once TD/WD and seasonal effects are accounted for, what residues is the leap
year effect.
Providing quarterly national accounts estimates corrected for seasonality and calen-

dar components satisfies a well established information need for both business cycle and
structural analyses; this is officially recognised in Eurostat’s Handbook of Quarterly Na-
tional Accounts (Eurostat, 1999). A task force established by Eurostat and the European
Central Bank (Eurostat, 2002) has also set forth some guidelines for calendar adjustment,
some of which motivate this contribution: in particular, the use of regression methods is
recommended in the place of proportional adjustment, with the regressors constructed so
as to take into account the country specific holidays; when available, adjustment should
be performed on monthly series, as calendar effects are more easily identified at that
frequency.
The Italian Statistical Institute, Istat, has started trading day adjustment of quarterly

national accounts in June 2003 and publishes seasonally adjusted and trading day cor-
rected series since then. See Istat (2003) for a description of the methodology. The French
methodology is documented in Insee (2004). Essentially, the current practice involves at
least three operations: a separate seasonal and calendar adjustment of the indicator se-
ries, and two temporal disaggregation of the annual aggregate using the two versions of
the indicator. The disaggregation method adopted is based on the technique proposed by
Chow and Lin (1971).
We argue that this is unnecessarily complicated; indeed, the main aim of the paper is

to show that all these operations can easily brought under the same umbrella. Within the
unifying framework represented by the estimation of a multivariate structural time series
model formulated at the higher time interval, seasonal adjustment of the indicators and
the correction for calendar variation are carried out in one step. The multivariate setup
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also provides a more consistent framework for using the information on related series.
The plan of the paper is the following: the next section introduces the disaggregated

basic structural model with regression effects which lay at the basis of our approach.
Section 3 discusses the effects of temporal aggregation on the seasonal component and
considers the consequences on modelling and data dissemination policies. The modelling
of the calendar component is considered in section 4. Section 5 illustrates the statistical
treatment of the model, whereas section 6 presents a real life example.

2 The Bivariate Basic Structural Model

The basic structural model (BSM henceforth), proposed by Harvey and Todd (1983) for
univariate time series and extended by Harvey (1989) to the multivariate case, postu-
lates an additive decomposition of the series into a trend, a seasonal and an irregular
component. Its name stems from the fact that it provides a satisfactory fit to a wide
range of seasonal time series, thereby playing a role analogous to the Airline model in an
unobserved components framework; see also Maravall (1985).
Without loss of generality we focus on a bivariate series yt = [y1t, y2t]0, where t is time

in months; in the sequel y1t will represent the indicator series, whereas y2t is subject to
temporal aggregation, being observed only at the annual frequency.
The BSM is such that each of the component series has the following representation:

yit = µit + γit + x0itδi + �it, i = 1, 2; t = 1, . . . , n, �it ∼ NID(0, σ2i�)
where the series specific trend, µit, is a local linear component:

µi,t+1 = µit + βit + ηit, ηit ∼ N(0, σ2iη)
βi,t+1 = βit + ζit, ζ it ∼ N(0, σ2iζ) (1)

The disturbances ηit and ζit are mutually and serially uncorrelated, but are contempo-
raneously correlated with the disturbances ηjt and ζjt, respectively, affecting the same
equation of the trend for the other series.
The seasonal component, γit, arises from the combination of six stochastic cycles de-

fined at the seasonal frequencies λj = 2πj/s, j = 1, . . . , 6, λ1 representing the fundamental
frequency (corresponding to a period of 12 monthly observations) and the remaining be-
ing the five harmonics (corresponding to periods of 6 months, i.e. two cycles in a year, 4
months, i.e. three cycles in a year, 3 months, i.e. four cycles in a year, 2.4, i.e. five cycles
in a year, and 2 months):

γit =
6X

j=1

γijt,

·
γij,t+1
γ∗ij,t+1

¸
=

 cosλj sinλj
− sinλj cosλj

 · γij,t
γ∗ij,t

¸
+

·
ωij,t

ω∗ij,t

¸
, j = 1, . . . , 5,

(2)
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and γi6,t+1 = −γi6t + ωi6t. For the i-th series, the disturbances ωijt and ω∗ijt are nor-
mally and independently distributed with common variance σ2iω for j = 1, . . . , 5, whereas
Var(ωijt) = Var(ω∗ijt) = 0.5σ

2
iω (see Proietti, 2000, for further details).

The symbol �it denotes the irregular component, which is taken to be series specific,
in that it is also uncorrelated with �jt. This restriction, which is not critical and can be
removed at will, attributes this source of variation to series specific measurement error.
The vector xt is a K× 1 vector of regressors accounting for calendar effects, which will

be specified in section 4 and δi is a vector of unknown regression coefficients for the i− th
series.
According to the model specification, the indicator variable y1t and the national ac-

count flow y2t form a Seemingly Unrelated Time Series Equations system (Harvey, 1989).
There is no cause and effect relationship among them, but they are subject to the same
underlying economic environment. In particular, the first series can be viewed as a partial,
possibly noisier, measurement of the same underlying phenomenon.

3 The effects of temporal aggregation on the seasonal
component

The flow series y2t is not observed; the actual observations pertain to the yearly series

Y2τ =
11X
k=0

y2,12τ−k, τ = 1, 2, . . . , [n/12],

where [a/b] denotes the integer part of a/b.
As the sum of 12 consecutive values of γ2t is a zero mean invertible moving average

process of order equal to 10 months, it immediately follows that the aggregation of γ2t,P11
k=0 γ2,12τ−k, yields a pure white noise, which, without the aid of external information on

the indicator series, would be indistinguishable from the aggregation of the series specific
measurement error, that is

P11
k=0 �2,12τ−k.

As the seasonal disturbances in y2t are contemporaneously correlated with those driving
the seasonal component in the indicator, in principle the bivariate model could identify the
component resulting from aggregation of γ2t, as the white noise source of variation that
is independent of

P11
k=0 �2,12τ−k and which is due to the interaction with the disturbances

ω1jt’s.
However, in the situations typically occurring in practice, where seasonality has a slow

and weak evolution and sample sizes are small, this source of variation is negligible to
an extent that trying to disentangle it from the measurement error would be asking too
much of the available data.
One possibility is to assume it away, as will soon be argued. An alternative feasible

strategy is to borrow the seasonal pattern from the indicator as suggested by Moauro
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and Savio (forthcoming). This is also what is prevailing in current practice adopted by
statistical national offices, which produce disaggregate estimates according to the scheme:
ŷ2t = b0 + b1y1t + et, where b0 and b1 are the generalised least squares estimates of the
regression coefficients based on the Chow and Lin (1971) model, and et is the distribution
residual.
The estimates ŷ2t are referred to as ”raw”; trading day adjusted series are produced by

the same scheme, in which y1t is replaced by a corrected series. The assumption underlying
these operations is that the seasonal component in the national accounts aggregate is
proportional to that in the indicator, the factor of proportionality being the same b1 that
relates the annual series.
The conditions under which the seasonal behavior of the aggregate series can be bor-

rowed from y1t via standard generalised regression are indeed rather stringent. Not only
common seasonal features are required but also a restricted covariance structure in the
nonseasonal component.
Denoting by zt = [z1t, z2t]

0 the nonseasonal component, we rewrite the disaggregate
bivariate model as yit = zit + γit, i = 1, 2. Assume now that γ2t = λγ1t (proportional
seasonal component) and that the nonseasonal component follows a seemingly unrelated
system of equations:

zt =
θ(L)

φ(L)
κt, κt ∼ NID(0,Σκ), Σκ =

µ
σ21κ σ12,κ
σ12,κ σ22κ

¶
, (3)

where θ(L) and φ(L) are suitable scalar lag polynomials.
If zt results from the sum of several orthogonal components, zt =

P
j
θj(L)

φj(L)
κjt, κjt ∼

NID(0,Σjκ), such as zt = µt + �t, then (3) requires homogeneity (see Harvey, 1989, sec.
8.3), which amounts to Σjκ = qjΣκ, where Σκ is a constant matrix and qj is a proportion-
ality factor which equals 1 for a selected component.
If further σ12,κ = λσ22κ, then it is possible to write

y2t = λy1t + z∗1t, z
∗
1t =

θ(L)

φ(L)
κ∗1t, κ

∗
1t ∼ NID(0, σ21κ − λ2σ22κ)

and thus we can safely attribute the portion λ of the seasonality in the indicator to the
aggregate series.
The restrictions under considerations are testable, say by the LR principle, although

the properties of such a test are yet to be investigated. The test might become integral
part of the modelling strategy and an example is shown in a next section.
We believe that the strategy of giving up the idea of estimating the seasonality in y2t

altogether is more neutral. Thus, in the sequel we shall assume that

11X
k=0

γ2,12τ−k = 0, (4)
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en lieu of E
¡P11

k=0 γ2,12τ−k
¢
= 0. Notice that (4) strictly holds when seasonality is deter-

ministic (that is σ22ω = 0).
In the light of the previous discussion, the ”raw” series are more a statistical artifact,

than a useful addition to the supply of official economic statistics. If the primary interest
of the investigation were the seasonal fluctuations on their own, it is more sensible and
informative to study the monthly indicators from the outset.
A final important point arises as a consequence of (4). The simplification preserves the

accounting relationship that the sum of the disaggregated series over 12 months adds up
exactly to the annual total, which would not hold otherwise. As for the series corrected
for the calendar component, this would sum up to the annual estimate with the calendar
effects removed.
In conclusion the proposed solution has the additional merit of complying with the

recommendation of the Eurostat/ECB task force concerning time consistency with annual
data (recommendation 3.c):

Time consistency of adjusted data should be maintained for practical reasons.
The reference aggregates should be the annual total of quarterly raw data for
seasonally adjusted data and annual total of quarterly data corrected for trading
day effects for seasonally and trading day adjusted data. Exceptions from the
time consistency may be acceptable if the seasonality is rapidly changing.

In situations were seasonality is not rapidly changing, our assumption seems plausible.

4 Calendar components

Calendar effects have been introduced as regression effects in the model equation for yit.
Three sets of regressors are defined to account for each of the three sources of variation
mentioned in the introduction.
Trading day (working day) effects occur when the level of activity varies with the day

of the week, eg. it is lower on Saturdays and Sundays.
Letting Djt denote the number of days of type j, j = 1, . . . , 7, occurring in month t

and assuming that the effect of a particular day is constant, the differential trading day
effect for series i is given by:

TDit =
6X

j=1

δij (Djt −D7t)

The regressors are the differential number of days of type j, j = 1 . . . , 6, compared to the
number of Sundays, to which type 7 is conventionally assigned. The Sunday effect on the
i-th series is then obtained as −P6

j=1 δij. This expedient ensures that TD effect is zero
over a period corresponding to multiples of the weekly cycle.
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The regressors are then corrected to take into account the national calendars: for
instance, if the Christmas falls on a Monday, one unit should be deducted from D1t

and reassigned to D7t if for that particular application a holiday can be assimilated to
a Sunday. This type of correction is recommended by Eurostat and is adopted in this
paper, giving:

TDit =
6X

j=1

δ∗ij
¡
D∗

jt −D∗
7t

¢
.

It is often found that the effect of the working day from Mondays to Friday is not
significantly different and that it helps to avoid collinearity among the regressors to assume
that δ∗ij = δ∗i for j = 1, . . . 5; in such case a single regressor can validly be employed, writing

TDit = δ∗iD
∗
t , D∗

t =
5X

j=1

D∗
jt −

5

2
D∗
6t.

The only moving festival in the Italian case concerns Easter; its effect is modelled
as Et = δht where ht is the proportion of 7 days before Easter that fall in month t.
Subtracting 1/12 from ht yields a regressor h∗t = ht − 1/12 which has a zero mean over
the calendar year.
Finally, the length of month (LOM) regressor results from subtracting from the number

of days in each month,
P

j Djt, its long run average, which is 365.25/12.
What are the consequences of temporal aggregation from the monthly frequency to the

annual one? The holiday effect becomes constant (hτ = 1, h∗t = 0), whereas the LOM
regressor takes the value 3/4 in leap years and -1/4 in normal years, describing a four
year cycle, which is an identifiable though not necessarily significant effect.
As shown by Cleveland and Devlin, the presence of trading day effects in a monthly

time series induces a peak in the spectrum at the frequency 0.348 × 2π in radians, and
a secondary peak at 0.432× 2π. For yearly data the relevant frequencies are 0.179× 2π
and 0.357 × 2π, corresponding to a period of 5.6 years and 2.80 years, respectively. In
conclusion, the presence of a calendar component in yearly data produces peaks at the
frequencies 0.358π (TD), 0.5π (leap year), 0.714π (TD) and π (leap year).
In conclusion, the calendar component has detectable effects on an annually aggregated

time series; thus, one possibility is to let the vector δ∗2 measuring the corresponding effects
unrestricted. An alternative parsimonious strategy is to assume that δ∗2 = κδ∗1 for a scalar
κ, which amounts to assume that the calendar effects on the second series are proportional
to those affecting the first. This would require the estimation of a single coefficient. The
difference with the unrestricted approach is that the disaggregated time series including
the calendar component would feature the Easter effect, which would otherwise be absent.
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5 Statistical treatment

The state space methodology provides the necessary inferences, starting from the esti-
mation of unknown parameters, such as the variances of the disturbances driving the
components, the regression coefficients, the estimation of the disaggregated values y2t and
the assessment of their reliability. Moreover, diagnostic checking can be carried out on
the model’s innovations, so as to detect and possibly take the corrective actions against
any departure from the stated assumptions.
As a first step, the monthly bivariate model, with temporal aggregation concerning

solely the second variable, is cast in the state space form using an approach due to
Harvey (1989, sec. 6.3, 2001), which translates the aggregation problem into a missing
value problem. According to this approach, the following cumulator variable is defined
for the second variable:

yc2t = ψty
c
2,t−1 + y2t, ψt =

½
0, t = 12(τ − 1) + 1, τ = 1, . . . , [n/12]
1, otherwise

(5)

In the case of monthly flows whose annual total is observed,

yc21 = y21, yc22 = y21 + y22, . . . yc2,12 = y21 + . . .+ y2,12,
yc2,13 = y2,13, yc2,14 = y2,13 + y2,14, . . . yc2,24 = y2,13 + . . .+ y2,24,

...
... · · · ...

Only a systematic sample of every 12-th value of yc2t process is observed, y
c
2,12τ , τ =

1, . . . [n/12], so that all the remaining values are missing.
The cumulator is included in the state vector and the state space representation if

formed. The associated algorithms, and in particular the Kalman filter and smoother are
used for likelihood evaluation, and estimation of the missing observations and thus of the
disaggregated values of the series. The smoothed estimates of the monthly series are then
aggregated to the quarterly frequency. All the computations concerning the illustrations
presented in the next section were carried out in Ox1. The statistical treatment of the
model was performed using the augmented Kalman filter and smoother due to de Jong
(1991, see also de Jong and Chu-Chun-Lin, 1994), suitably modified to take into account
the presence of missing values, which is accomplished by skipping certain updating op-
erations. More technical details, which we purposively omit for brevity, and computer
programmes are available from the authors.

6 Illustrations

This section presents two illustrations, both based on Italian time series released by Istat,
dealing with the problem of disaggregating the annual production resulting from the

1Ox is a matrix programming language developed by J.A. Doornik (2001).
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National Accounts (NA), given the availability of the monthly industrial production (IP)
index. The first concerns the estimation of a bivariate basic structural model under the
hypothesis of null seasonality for the annual flow; the latter implements the estimation
of a trend homogeneous system with proportional restriction on the seasonal component
and test for the attribution of seasonality on the annual flow.

6.1 BSMwith seasonal adjustment and temporal disaggregation

The application is referred to the electrical and optical equipment industry (subsection
DL of the Nace Rev.1 economic activity classification), with the NA annual aggregate
measured at constant price 1995 = 100, covering the years from 1977 to 2003; on the
other hand, the monthly index has base year 2000 = 100, is seasonal unadjusted, with
sample period from January 1977 to December 2003. The original series are plotted in
figure 1.
The first step of the analysis was to estimate the bivariate basic structural model under

temporal aggregation. Maximum likelihood estimation produced the following parameter
estimates:

σ̂1η = 1.334, σ̂2η = 6.137, ρ̂η = 0.737,
σ̂1� = 1.916, σ̂2� = 0.035,
σ̂1ω = 0.224,

with σ1ζ = σ2ζ = 0, where the suffix 1 denotes the industrial production index and 2
the output, whereas ρη represents the correlation between η1t and η2t; the maximised
log-likelihood is equal to −1056.891.
These results show that for both the series the trend features a constant slope, since

its disturbance variance is zero; as a result the trend is a bivariate random walk with a
constant drift, with positively, but not perfectly, correlated disturbances (ρη is estimated
equal to 0.737). This suggests that the series are not cointegrated.
The non-zero value for the seasonal variance parameter σ21ω indicates that the seasonal

pattern changes in the sample period. The seasonal pattern extracted for the monthly in-
dustrial production index is plotted in figure 2 along with the resulting seasonally adjusted
series.
The model specification also included 3 regressors representing the calendar effects: the

single trading days regressor D∗
t , the Easter variable h

∗
t using seven days before Easter,

and the length of the month (LOM) variable; the trading day variable accounts for Italian
specific holidays (e.g. New Year’s Day, Easter Monday, First of May, 8th of December,
Christmas, etc.). The estimated coefficients for the industrial production index, denoted

respectively by δ̂
∗
1, δ̂

Easter

1 and δ̂
LOM

1 have been

δ̂
∗
1 = 0.947

(0.060)
δ̂
Easter

1 = −2.774
(0.800)

δ̂
LOM

1 = 2.024
(1.283)

8



where in parenthesis are reported the standard errors. The overall effect is shown in figure
2. All the parameters are significant, with the exception of LOM, and have the expected
sign. For the second series the calendar effects have been restricted to be proportional to
the coefficients of the indicators: the estimated scale factor resulted 2.955, with standard
error 0.238. We may thus conclude that the calendar effect on the NA aggregate is
significant.
The restrictions on calendar effects associated to the annual series plays a particular

role in model specification: by extending this exercise to the other 15 industries cover-
ing manufacturing, it has been verified that it is rarely possible to obtain reliable results
setting unconstrained coefficients on calendar regressors; further, imposing proportional-
ity, 10 cases converged towards a 0 value for the scale factor, 3 cases gave positive but
unreliable values, with only two other cases (cars and machinery and equipment n.e.c.)
resulting acceptable. In other words it is clear that moving from a finer towards a larger
timing interval reduces accuracy in the estimates of calendar components, at point that
these are not more detectable under annual temporal aggregation.
Figure 3 plots the Kalman filter innovations for the IP series and the NA aggregate,

along with the standard error confidence interval and the density of standardised innova-
tions. Diagnostics based on these values suggest a satisfactory specification for both the
equations: in particular the Box-Ljiung statistic based on 15 and 6 autocorrelations for
the two series respectively is equal to 10.078 and 0.183; the Bowman-Shenton normality
test is 8.054 for the IP index and 0.915 for the annual NA aggregate.
The smoothed estimates of the disaggregate NA production series are available at

both the monthly and quarterly observation frequency. They are presented in unadjusted
form in figure 4, along with their 95% upper and lower confidence limits. The size of the
confidence interval informs on the reliability of the estimates and embodies the uncertainty
surrounding the estimation of the calendar effects (but not that ascribed to the estimation
of the hyperparameters - namely the variance parameters).
The quarterly estimates, adjusted for calendar effects, are presented and compared to

the raw ones in the last two panels of figure 4. The last plot refers to the estimated growth
rates on an annual basis and highlights that not only the adjusted series is smoother, but
that the adjustment influences the location and sharpness of turning points.

6.2 The homogeneous system

This example implements an homogeneous system for the Italian series referred to manu-
facture of cars. Similarly to the first illustration the NA aggregate refers to production at
constant prices 1995 = 100 for the years from 1997 to 2003 and the IP series to a monthly
index with base 2000 = 100 and sample January 1977-December 2003. The plot of both
the series is shown in figure 5.
The estimation of a homogeneous BSM under proportional seasonality, i.e. γ2t = λγ1t

with the suffixes 1 and 2 denoting the IP index and the output series respectively, gave
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the following maximum likelihood parameter estimates:

σ̂1� = 3.746, σ̂2� = 9.441, ρ̂� = 0.928,

σ̂1ω = 0.135, bλ = 2.521, bq = 0.669,
where bq is the homogeneity proportionality factor among the irregular and the level com-
ponents (Ση = qΣ�), the slope is supposed to be deterministic and ρ̂� represents the
correlation between the irregular components �1t and �2t; the maximised log-likelihood is
equal to −1193.723.
The specification of homogeneity chosen in this case reproduce the model of trend of

the first illustration, i.e. a bivariate random walk with constant drift; the series are not
cointegrated since correlation among disturbances is estimated equal to 0.928.
The seasonal pattern on the IP series is time varying given that σ̂1ω is a non-zero value.

Figure 6 shows the estimated seasonal component along with calendar effects. In this
regard only the coefficient related to the single trading days regressor resulted significant,
with value and standard error estimated respectively equal to 0.972 and 0.090; the Easter
and the LOM regressors were dropped from model specification. The estimate of trading
days for the annual series is 3.028 with standard error 0.911.
The diagnostics based on Kalman filter innovations, figure 7, show a satisfactory spec-

ification for both the series: in particular the Box-Ljiung statistic based on 15 autocor-
relations of standardised innovations is equal to 14.772 for the IP series; it is 0.668 for
the NA aggregate based on 6 autocorrelations. The Bowman-Shenton normality test is
15.042 and 0.668 for the IP index and the annual NA aggregate.
Figure 8 presents the smoothed disaggregated estimates. In the first two panels the

seasonal unadjusted estimates with calendar effects removed are shown under both the
monthly and quarterly frequency along with their 95% upper and lower confidence interval.
In the third panel a monthly seasonal adjusted comparison is performed between the
disaggregated levels of the NA series and the indicator. Finally, in the forth panel the
comparison concerns the annual growth rates of the series.
The most important difference with the first illustration is that the particular form of

the model considered here gives the advantage to estimate disaggregated values including
the seasonal component. Moreover, the attribution of seasonality to the aggregate series
seems to be justified in this example, since there is not significant difference in the log-
likelihood values whether the further restriction σ12,� = λσ22� is specified. The consequence
is that the LR test proposed in section 3 is zero and the null hypothesis of identical
regression coefficients among the seasonal and non seasonal components might be not
rejected.

7 Conclusions

This article has proposed a disaggregation strategy for the estimation of quarterly national
account series that has several advantages over current practice. The strategy is a novel
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application of the ideas contained in Harvey (1989) and Harvey and Chung (2000).
The estimates arise from fitting a multivariate structural time series model formulated

at the monthly interval, which relates the annual national account series to the corre-
sponding monthly indicator. The monthly frequency allows more accurate estimation of
the calendar effects.
Maximum likelihood estimation of the unknown parameters, the estimation of the

disaggregated observations and their reliability, diagnostic checking and the assessment
of goodness of fit are achieved through the state space methodology.
The approach yields automatically ”raw” and adjusted estimates without the need to

iterate the disaggregation procedure.
Simultaneity and statistical modelling render the proposed strategy more transparent.
From a more philosophical standpoint the approach has the merit of moving away from

the exogeneity assumption underlying the disaggregation methods based on a regression
framework, such as Chow-Lin (1971), according to which the indicator is considered as
an explanatory variable.
Although we have illustrated the bivariate case, which is nevertheless the leading case

of interest for statistical agencies, the approach is immediately extended to higher dimen-
sional systems and other frequencies of observations.
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Figure 1: Annual production and monthly industrial production index for electrical and
optical equipment.
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Figure 2: Monthly and quarterly calendar effects estimated for the electrical and optical
equipment production series.
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Figure 3: Kalman filter innovations of the model for production of eletrical and optical
equipment
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Figure 4: Monthly and quarterly disaggregated production series.
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Figure 5: Annual production and monthly industrial production of cars
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Figure 6: Monthly and quarterly calender effects estimated for the cars series
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Figure 7: Kalman filter innovations of the model for production of cars
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Figure 8: Mnthly and quarterly disaggregated series for production of cars
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