
E U R O P E A N
C O M M I S S I O N

Stability Analysis in
ARMA and Unobserved
Component Models

2
0

0
3

 E
D

IT
IO

N



A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server (http://europa.eu.int).

Luxembourg: Office for Official Publications of the European Communities, 2003

ISBN 92-894-6837-8
ISSN 1725-4825

© European Communities, 2003

Europe Direct is a service to help you find answers to your questions about the European Union

New freephone number:

00 800 6 7 8 9 10 11



 
 
 
 

 
 

 
 

4TH EUROSTAT AND DG ECFIN  
COLLOQUIUM ON MODERN TOOLS FOR BUSINESS CYCLE ANALYSIS 

 
 

"GROWTH AND CYCLE IN THE EURO-ZONE" 
 

 
 
 
 
 

20 TO 22 OCTOBER 2003 
 

Luxembourg, European Parliament 
Hémicycle, Schuman building 

 
 
 
 
 

Stability Analysis in ARMA and 
unobserved component models 

 

 
 
 

Juan del Hoyo Bernat, Universidad Autónoma de Madrid  
José Luis Cendejas Bueno, Universidad Autónoma de Madrid 

 
 
 
 
 
 
 

 



 
Stability Analysis in ARMA and 
Unobserved Component Models 

 
Juan del Hoyo Bernat (*) 

José Luis Cendejas Bueno (*) 
 

Universidad Autónoma de Madrid 
 
 
 

ABSTRACT: The chronology of cycle phases may be obtained from the 
estimation of the cyclical components in Unobserved Component Models (UCM). 
When instabilities are present in the coefficients of the cycle equation, the chronology 
obtained may be spurious. These instabilities will be transmitted to the coefficients of 
the ARMA reduced form models of the stationary observable variables under study. 
Therefore, the ARMA model, or the cyclical equation of the UCM, should be tested for 
instabilities before any use of the estimated cyclical component or the ARMA model is 
made. In this paper, we test for parameter instability in the ARMA and Unobserved 
Component Models of the Gross Domestic Product (GDP) and the Industrial Production 
Index (IPI) of several European countries, making use of a recursive Wald type statistic 
applicable to linear models. To do so, for the case of ARMA models we first linearise 
the model and, for the case of UCM, we first obtain the Kalman filtered cyclical 
component. After these initial steps, the recursive statistic may be applied. The 
empirical size and the power of the resulting statistic  are presented for simple models. 
The final results show that the null hypothesis of constant coefficients cannot be 
rejected in most of the models studied. An important exception is that of the IPI series 
computed for the Eurozone. Slight differences in the implied dates of the business cycle 
are found in the cyclical components uncorrected and corrected for parameter 
instability. 
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1. Introduction 
 

Since the definition of business cycle given by Burns and Mitchell (1946), many 
analytical approaches have been used to detect, and eventually to date, the different 
phases of the business cycle. Some very popular rules are roughly coherent with Burns 
and Mitchell’s definition (e.g.: two consecutive declines in quarterly GDP to locate a 
recession) but the complexity of business cycle dynamics and the desire for a richer 
phase characterization compel to design more elaborate tools. With this purpose, time 
domain and frequency domain filters are widely used to extract unobserved components 
useful for business cycle analysis. The risk of spurious components due to the automatic 
implementation of these methodologies has been extensively analyzed (Nelson and 
Kang, 1981; Nelson, 1988; Harvey and Jaeger, 1993; Cogley and Nason, 1995). 
Additionally, the literature has noted the subjectivity in trend cycle decompositions due 
to the a priori considerations related, for example, to the degree of smoothness of the 
trend component or the interval of frequencies selected as specifically cyclical (García 
Ferrer and Queralt, 1998). 
 
 Further considerations arise when trend cycle decomposition involves the 
estimation of parameters. In such case, parameter instability could lead to several 
problems mentioned in business cycle analysis. In this context, testing for parameter 
instability can be necessary to avoid spurious components or inappropriate business 
cycle chronologies. Stock and Watson (1996) studied the stability of univariate and 
bivariate autoregressive models associated to macroeconomic US time series and found 
instabilities in many of the models considered. So, it could happen that models for 
European GDPs and IPIs may have also non constant parameters. 
 

When UCM are employed, the ARMA models directly obtained from the 
stationary observed variables and those derived from the UCM (i.e.: the constrained 
reduced form) should be compatible (Nelson, 1988; Watson, 1986; and Harvey, 1989). 
In practice, however, the unconstrained ARMA models seem to differ significantly from 
the constrained ones. A possible explanation for these differences could be that the 
ARMA or the UCM may have non constant parameters. It is well known that if a time 
series has different autocorrelation functions (acf) in different subsamples, when 
analysing the full sample, we will obtain an acf which will be a combination of the 
different acf’s. In this case, the identification via the full sample acf will point towards 
incorrect models that will be a mixing of the different models in each subsample. 
Therefore, it seems important to test for parameter stability in the context of UCM, 
specifically in trend-cycle decompositions, as well as for the ARMA models associated 
to the stationary observed time series. If breaks are present but ignored, the 
interpretation and the chronology of the cycle phases, as well as the policy implications, 
may be misleading. 

 
Statistics based on recursive estimations for testing the existence of at least one 

break in the parameters (with unknown location) are available. Barnejee, Lumsdaine 
and Stock (1992) focus on linear models, while Andrews (1993) generalizes to non- 
linear models making use of the GMM estimators, and refers to the optimal properties 
of the test in comparison to other alternatives. 
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For non linear models, Andrews’ tests may be quite involved and more 
burdensome than for linear models 1. Some apparently simple models, like ARMA, are 
non linear, and therefore the tests devised for linear models to detect if a break has taken 
place in any of the parameters, are not directly applicable. We will show how a Wald 
type statistic for testing the existence of at least one break in linear models may be 
applicable both to ARMA and to UC models by following two step procedures which 
slightly differ when applied to ARMA and to UC models. 

 
For ARMA models the two step procedure starts from the null hypothesis that 

the entertained ARMA model is well specified and that their coefficients are constant 
(del Hoyo and Llorente, 2000). Therefore, using Maximum Likelihood Estimation, 
consistent estimates of the model parameters can be obtained. Next, by substituting the 
perturbations by their consistent estimates in the original ARMA model, we can obtain 
an asymptotic equivalent model, which is linear and allows for the use of the recursive 
Wald test available for linear models. As a result of the linearisation process, the critical 
points of the empirical distribution of the derived statistic (under the null of constant 
coefficients) must be computed for different sample sizes and different location points 
in the parameter space to know how the empirical critical points differ from the “true” 
ones. The power of the resulting test will also be studied for some simple cases. 

 
For UC models, the unobserved cyclical components are usually modelled as 

stationary AR(p) equations. For these models, under the null of constant coefficients, it 
is also possible to show that if in the equation for the cyclical component, the 
unobserved component is substituted by its Kalman’s filtered counterpart, the resulting 
equation, apart from some heteroskedasticity, will provide a valid linear equation where 
we can apply simple recursive tests for parameter instability. 

 
This paper applies a recursive Wald type statistic to detect parameter instabilities 

in the estimation of the cyclical equation of trend cycle decompositions, and in the 
implied ARMA models for the UCM. We consider two decomposition approaches, first, 
the classical trend plus cycle decomposition (e.g. Clark 1987) and second, the cyclical 
trend decomposition (Harvey, 1985, 1989). The series under study are the GDPs and the 
IPIs of several European countries. 

 
In the rest of the paper we proceed as follows. Section 2 briefly presents the 

recursive Wald statistic for testing the existence of at least one break in the parameters 
of a linear model. Section 3 presents the two step procedures to apply the Wald type 
statistic to ARMA and UC models. Section 4 deals with the estimated models for 
several European GDPs and IPIs series. When the recursive test detects substantial 
parameter instability we model it with intervention analysis. Finally, Section 5 
concludes.  

                                                 
1 For an α  symmetric trimming, the number of evaluations to compute the Andrew’s  

statistic for a non-linear model is )21(T α− , with T the sample size. 
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2. Recursive Wald Test for parameter instability in Linear Models    
 

The distribution of the recursive statistics considering the possibility of at least 
one break with unknown a priori date, while not conventional is known (see Banerjee, 
Lumsdaine and Stock (1992) for linear models and Andrews (1993) for non linear 
models). For linear models, it is a simple matter to compute recursive statistics using 
subsamples of increasing size Tttt1 maxmin <≤≤< . The recursive estimates derived 
from linear models allow an easy computation of the recursive statistics to detect break 
points. Also, by plotting the recursive estimates of the coefficients, it can be obtained 
valuable information on the stability of the coefficients and, in many cases, on the 
nature of the intervention model to be used to achieve constancy. 

 
Assume that the observations are generated by the following model: 

T2,3,t;eßXy tt1tt L=+= −  
and also that the model is well specified with ßß t =  a (kx1) vector of constants. The 
perturbations 2 )(e t  are assumed to be a martingale difference sequence with respect to 
the σ-fields generated by { }L,X,,X, 2t2t1t1t −−−− εε , where tX  is a (1xk) vector of 

regressors. The regressors are constant and/or I(0) with Xt
'
t )XX(E Σ= . Usually, by 

defining 
T
t

? = , 10 maxmin ≤λ≤λ≤λ≤ , we limit the analysis of distributions to the 

interval [ ]1,0 . It is also assumed that 
[ ]

X
P

T

2t
t

'
t

1
T XXT)(V Σλ→=λ ∑

λ

=

−  uniformly in λ  

for [ ] t)(E;1,0 22
t ∀σ=ε∈λ ; and 

[ ]
)(WX

T
1

)(v k
2/1

X

T

2t
t

'
tT λΣσ⇒ε=λ ∑

λ

=

 where 

2/1
X

2/1
XX ΣΣ=Σ  , )(Wk λ  is a k-dimensional vector of independent Wiener or Brownian 

motion process, and ⇒  denotes weak convergence on [ ]1,0D . 1tX −  can include lagged 
dependent variables as long as they are I(0) under the null (see Stock (1994)). Finally, 
[ ]•  is the integer part of the value inside brackets. The recursive OLS coefficients can 
be written as random elements of [ ]1,0D : 

[ ] [ ]
10;yXXX)( maxmin

T

2t
t

'
1t

1T

2t
1t

'
1t ≤λ≤λ≤
















=λβ ∑∑

λ

=
−

−λ

=
−−           (2.1) 

Notice that )1(β  is the vector with the full sample OLS estimates. 
 

The Wald type statistic used in this paper to test r)(R:H 0 =λβ , where R is a 
non stochastic matrix of rank m, )1(Rr β= , and m the number of coefficients to be 
tested, is: 

                                                 
2 tε  can be conditionally (on lagged tε and tX ) homoskedastic and the results do not 

change. 
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[ ]

)(m

)r)(R(RXXR)r)(R(

)(F
2

1

'

1T

2
1t

'
1t

'

T

max

λσ

−λβ





















−λβ

=λ

−−λ

−−∑
          (2.2) 

where )(2 λσ  is the recursive estimate of the residual variance. 
 

The asymptotic behaviour of this statistic is derived applying the Functional 
Central Limit Theorem and the Central Mapping Theorem. The form of the final 
distributions will depend on R and r. In what follows, the subscripts and superscripts 
refer to the particular null hypothesis to be tested. In particular, if we want to test for 
stability along the sample with respect to km ≤ of the final estimates )1(β , we represent 

the statistic by m
)1()(F βλ . Following Stock (1994), it may be shown that: 

( )
λ

λΣΣΣλ
⇒λ

−−−−

β m
)(BRRRR)(B

)(F k
2/1

X

1'1
X

'2/1
X

'
km

)1(T           (2.3) 

where )1(W)(W)(B kkk λ−λ=λ  is a k-dimensional Brownian bridge. Therefore, for 
testing all the coefficients recursively along the sample against the full sample 
estimators, i.e. kIR =  and )1(r β= , we will obtain that: 

λ
λλ

⇒λ β k
)(B)(B

)(F k
'

kk
)1(T           (2.4) 

By defining 
)1(

)(B)(B
)(F

)1(
k

)(F~ k
'

kk
)1(T

k
)1(T λ−λ

λλ
⇒λ

λ−
=λ ββ , the Andrews (1993) statistic is 

obtained. The statistic to be tabulated is: 

λ
λλ

⇒λ
λ≤λ≤λ

β
λ≤λ≤λ k

)(B)(B
sup)(Fmax k

'
kk

)1(T
maxminmaxmin

          (2.5) 

It is easy to show that for the case of testing only km ≤ coefficients, the statistic is: 

λ
λλ

⇒λ
λ≤λ≤λ

β
λ≤λ≤λ m

)(B)(B
sup)(Fmax m

'
mm

)1(T
maxminmaxmin

          (2.6) 

In Table 2.1, the critical values for the size of the statistic  are presented. They 
have been computed using a 15 percent trimming as it is usual in this kind of work. The 
approximate critical values for this sequential statistic, that we call m

)1()(Fsup βλ , were 
computed as the sup values of the functionals of Brownian processes using 10000 
replications with T=3600. These critical values are directly applicable for asymptotic 
sample sizes. For other sample sizes the critical values should be adjusted. 

Table 2.1: Critical values for the statistic k
)1()(Fsup βλ  

Percentile k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 
0.75 2.8088 2.2295 1.9666 1.7759 1.6550 1.5695 1.5045 1.4613 1.4172 1.3967 
0.80 3.1724 2.4475 2.1194 1.9199 1.7796 1.6717 1.5942 1.5407 1.5004 1.4611 
0.85 3.5573 2.7013 2.3164 2.0755 1.9261 1.7984 1.7126 1.6537 1.5882 1.5469 
0.90 4.4013 3.1631 2.6265 2.3128 2.1511 1.9921 1.8881 1.8210 1.7485 1.6998 
0.95 5.5368 3.7825 3.0944 2.6896 2.4585 2.2710 2.1316 2.0234 1.9591 1.9019 
0.99 7.9646 5.1483 4.2098 3.6146 3.1835 2.9418 2.6524 2.5430 2.3886 2.2765 
Entries are the sup values of the functionals of Brownian processes. All the critical values have been computed by 

10000 Monte Carlo replications and T=3600. Sup k
)1()(F βλ  is the sup Wald type statistic to test the recursive 

estimations against the full sample estimations. The recursive statistic has been computed with symmetric 15% 
trimming. 
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3. A Sequential Test for parameter instability in ARMA and UC 
models 
 
3.1. ARMA models 
 
   The application of (2.5) or (2.6) to AR(p) models is straightforward, but for 
ARMA models the moving average part induces nonlinearities that prevent the direct 
use of this sequential test. An easy solution3 to this problem makes use of a two-step 
procedure to obtain linearity. The first stage assumes the null hypothesis of correct 
specification of the model and, in particular, that the model coefficients are constant. 
Under this null, consistent estimates of the model parameters and perturbations can be 
obtained. Next, a pseudolinear regression model is obtained4 by substituting the 
unknown perturbations by their consistent estimates. Finally, once the model is linear, 
the recursive Wald test for the detection of breaks may be applied. 
 

Without loss of generality, let ty  follow an ARMA(1,1) model: 

t1t11t1t yy ε+εθ+φ+µ= −−           (3.1) 
If et is a consistent estimation of tε , and ttt e−ε=ν , then: 

))1((ey)(eyy pt1t11t11t1t1t11t1t ο+ε+θ+φ+µ=νθ+ε+θ+φ+µ= −−−−−  

since )1(v pt ο= , then: 

t1t11t1t eyy ε+θ+φ+µ= −−           (3.2) 
Model (3.2) is linear and asymptotically equivalent to model (3.1). Moreover, it 

can be shown (Del Hoyo, Llorente and Rivero 2003), that the asymptotic distribution of 
the statistic (2.5) applied to model (3.2), where the unknown perturbation 1t −ε has been 
substituted by its consistent estimation 1te − , converges to the same distribution of the  
statistic (2.5) applied to model (3.1). This convergence to the same asymptotic 
distribution is a particular case of a more general result valid for ARMA models in 
which the lagged unknown perturbations are substituted by consistent estimates. In 
proving this result the same hypothesis assumed in obtaining (2.4) plus an additional 
one are stated. This new assumption states that if T is the full sample size, then for each 
T, the estimated parameters are uniformly consistent in T. That is, if T

1tX −  is the 
consistent estimate of the regressors 1tX − , given the sample size T, then: 

0XXmax
T

P
1t

T
1t

T,2t ∞→
−−

=
→−

L
 

Under these conditions, we can apply the recursive Wald type test to (3.2). 
 

However, using the recursive test in (3.2) may distort the size and power of the 
test. In particular, while the critical points will coincide asymptotically, the 
approximation to the “true” ones in Table 2.1 will depend on the particular location in 
the parameter space as well as the actual sample size considered in estimating the 

                                                 
3 Other solutions also applicable to more complex models, i.e. Transfer Function 

models, may be seen in Del Hoyo and Llorente, 2000. 
4 We have estimated the ARMA models using the armax.m sentence from Matlab 6.5p 

and obtained the empirical distributions of (2.6) under the null and alternative hypothesis to 
compute the size and power presented in Tables B.1 to B.8. 
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coefficients5. To illustrate this, we can compare the critical points of the sup test when 
applied for ARMA models. To facilitate comparisons we have simulated AR(1), MA(1) 
and ARMA(1,1) models, whose size and power are presented in Tables B.1 to B.8. As 
can be seen, the size of the two-step statistic is quite good but the power depends on the 
sample size as well as on the distance between the null and the alternative hypothesis. 
 
 
3.2. UC models 
 
 In unobserved component models a two-step procedure may also be used to 
decide whether the parameters are constant in a similar way as in ARMA models. The 
procedure first estimates the model parameters consistently, under the null hypothesis of 
no structural change using the whole sample. Then, by applying the Kalman filter 
estimable linear equations for the cyclical components are obtained. Once they have 
been written as linear estimable equations, it will be possible to test for stability of the 
parameters conditional on the first stage consistent estimates. 
 

We employ two UC models: the Trend plus Cycle Model and the Cyclical Trend 
Model. The Trend plus Cycle model decomposes yt  (commonly the logarithmic 
transformed of the series in levels) as: 

yt=Tt+Ct+et          (3.3a) 
where Tt is the trend component, Ct  is the cyclical component, and et is the noise series. A 
commonly used decomposition consists on a trend “viewed as a nonstationary stochastic 
process, generally a random walk with drift”, and a cycle viewed as “a stationary 
process, generally an autoregression” (Nelson, 1988). Following this specification: 

 
Tt=µ+ Tt-1+ε1t          (3.3b) 
φp(L)Ct=ε2t                 (3.3c) 

where µ is the drift6 and ε1t ~ iid N(0, 2
1σ ). tC  is the autoregressive cyclical component, 

which follows φp(L)Ct=ε2t, with ε2t ~ iid N(0, 2
2σ ) and the roots of φp(L) lying outside the 

unit circle7. Additional assumptions in the decomposition (3.1a) to (3.1c) are the 
following orthogonality conditions between components: E(et  ε1s)=0, E(et  ε2s)=0, and 
E(ε1t ε2s)=0 for all pair (t,s) 8. 
 
 The specification (3.3a) to (3.3c) can be modified to allow for a non-constant drift 
(Clark, 1987; Harvey, 1985; Young, 1994). For example, specifying a random walk for 
the drift, we obtain the local linear trend model: 

Tt=µt+Tt-1+ε1t          (3.3b’) 
µt =µt-1 + ε3t           (3.3d) 

where ε3t ~ iid N(0, 2
3σ ) and it is uncorrelated with et, ε1t  and ε2t. 

                                                 
5 When the coefficients are close to the non-stationary region or the sample size is not 

very large, better size and power may be obtained if more efficient initial conditions are used to 
estimate the perturbations, i.e. backforecasting. 

6 In some models we will include this term in the cyclical equation 
7 The method may be extended to the autoregressive coefficients of a stationary ARMA 

model. 
8 Orthogonality restrictions are also necessary for identification (Nelson, 1988; Harvey, 

1989). 
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In empirical estimations (Harvey 1985, Clark, 1987) it is often found that 2
3σ  is 

very small, reducing the random walk drift component to a constant drift component. 
The decomposition (3.3a) to (3.3c) is generally considered as the standard Trend plus 
Cycle decomposition9

. 
 
 The second decomposition we consider is the Cyclical Trend model (Harvey, 
1985). The main difference with respect to the Trend plus Cycle decomposition is that 
the trend component is assumed to emerge from the accumulation of the cyclical 
variation, so in (3.3a) the cyclical component must be eliminated. Consequently, in the 
Cyclical Trend decomposition we have that 

t
*
tt eTy +=                               (3.4a) 

1t
*

1t
*

1t
*
t eCTµT +++= −−           (3.4b) 

*
t2

*
t*p C)L( ε=ψ                          (3.4c) 

where we employ the asterisk to denote different components with respect to the Trend 
plus Cycle decomposition10. Stationarity conditions 11 on )L(*pψ  and orthogonality 
restrictions also apply. 

 
In both decompositions, a smooth trend component is obtained by assuming that 

02
1 =σ . In the estimated models, we impose this restriction given our interest on 

cyclical behaviour. In the Trend plus Cycle model this restriction implies a linear 
deterministic trend. 

 
The State Space representations of the Trend plus Cycle and the Cyclical Trend 

decompositions allow Maximum Likelihood Estimation of the parameters and the 
estimation of the filtered components Tt/t  and Ct/t. The smoothed trend and cycle 
components Tt/T  and Ct/T  are obtained conditional on full sample information by means of 
a Fixed Interval Smoothing algorithm. The smoothed components may be used to date 
business cycle phases, as we shall do later. 

 
The State Space form (Hamilton, 1994) is 

ttt

t1tt

eHy
F
+ξ=

ε+ξ+δ=ξ −           (3.5) 

                                                 
9 We have added the noise term et for comparative purposes with the Cyclical Trend 

model that we also consider. In our empirical applications, we have also tried a random walk 
drift component, obtaining in most cases that 2

3σ =0. When this was not the case (in 3 of the 13 

series considered), the drift component tµ followed a cyclical pattern and, instead, the estimated 
cyclical parameters of φp(L) were nearly zero. 

10 To simplify notation, we assume the series noise et, the trend noise ε 1t, and the drift µ  
remain the same in both decompositions, (3.3) and (3.4). 

11 In Trend plus Cycle decompositions stationary restrictions must be imposed on φp(L) 
by bounding the parameter search space. In its absence, the search algorithm tends to violate the 
stationarity conditions. When imposing these restrictions the estimated roots are close to unity. 
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Without loss of generality and for notational convenience, let us assume 

)L()L( p*p φ=ψ  and p=2. Then, in the Trend plus Cycle decomposition 















=ξ

−1t

t

t

t

C
C

T

, 
















φφ=
010

0

001

F 21 , 















ε

ε

=ε
0

t2

t1

t , and [ ]011H = . While in the Cyclical Trend 

decomposition, 
















=ξ

−

−
*

2t

*
1t

*
t

t

C
C
T

, 















φφ=
010

0

011

F 21 , 















ε

ε

=ε −

0

*
1t,2

t1

t  and [ ]001H = . 

Finally, for both decompositions, 














µ

=δ
0
0 . 

 Under both decompositions we are interested in analyzing whether the 
parameters in the cycle equation are constant. If the cyclical component tC  were 

observable the solution would be straightforward. The problem here is that tC  (or *
1tC −  

in the Cyclical Trend decomposition) is unobserved and must be estimated firstly. In the 
Appendix A it is shown a solution by means of the Kalman filter: 

1tttC2t2t21t1t1tt ksCCC −−−−− η+φ+φ=         (3.6) 

where the unobserved cycle component tC  is substituted by its filtered estimation ttC ; 

[ ]010sC =  is a selection vector; tk  is related to the Kalman gain and is defined in 
the Appendix A; and 1ttt1tt yy −− −=η  is the prediction error. In Appendix A, it is also 

shown that the error term 1tttCt ks −η=ζ  is heteroskedastic but uncorrelated. So the 

only remaining problem to obtain efficient OLS estimations is to correct the 
heteroskedasticity. To do so, if 2

tζσ is the variance of tζ , define: 

t/t
1

t/t CC~
t

−
ζσ=  

and the final equation to be estimated recursively turns out to be: 
t2t2t21t1t1t/t C~C~C~ ω+φ+φ= −−−−          (3.7) 

with t
1

t t
ζσ=ω −

ς . This final equation is ready to be recursively estimated and tested for 
the existence of at least one break in the parameters along the sample. This is so 
because it can be shown (Del Hoyo, Llorente y Rivero, 2003) that the recursive 
statistics (2.5) or (2.6) applied to (3.3c) or (3.4c), with p=2, and to (3.7) have the same 
asymptotic distributions. This result can be proved assuming that we can obtain 
consistent estimates, uniformly in T, for the model parameters ),,,,,( 2

2
2
1

2
e21 σσσφφµ and 

assuming that the largest eigenvalue of the transition matrix F , is unity; then, if T
ttC~  is 

the filtered cyclical component corrected for heteroskedasticity obtained with the 
Kalman filter, being T the full sample size: 

0C
~

C
~

max
T

P
tt

T
tt

T2,t ∞→=
→−

L
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which is a similar situation to the case of estimating the unknown regressors 
),,( pt1t −− εε L . 

 
Again, the size and power of the statistic will depend of the sample size and on 

the particular region of the parametric space under study, in particular, for parameter 
values near the non-stationary boundary like the obtained in Trend plus Cycle 
decomposition. 

 
 

4. Testing for parameter stability for selected European GDPs and 
IPIs 
 
 In this section we first follow the procedure discussed above to detect parameter 
instabilities in the cyclical components of several European GDPs and IPIs, and then in 
their implied ARMA models. We start by estimating UCM for the two decompositions 
analyzed in the previous section. The estimation results and the sup Wald type statistic 
(2.6) for parameter stability in the autoregressive polynomials are presented in Tables 
4.1 and 4.2. The estimated parameters correspond to a constant drift, the variance of the 
cyclical component and the autoregressive parameters. In the Appendix C, the graphs 
of some smoothed cyclical components have been plotted12. 
 
 As indicated, once we dispose of the cyclical filtered components with the 
heteroskedasticity correction presented in the previous section, it is possible to calculate 
the Sup k

)1()(F βλ  to test for the stability of the autoregressive parameters. To test for 
parameter stability, the values presented in Tables 4.1 and 4.2 should not be compared 
directly with those of Table 2.1 because the latter are asymptotic and we dispose of 
reduced sample sizes. Instead, under the null hypothesis of no structural change, it is 
convenient to calculate the empirical distributions of statistic (2.5) for the size and 
parameters values shown in Tables 4.1 and 4.2. This has been done for 1000 
replications in each one of the estimated models. The critical values are tabulated in the 
Tables B.9 and B.10 of the Appendix. 
  
 By comparing the calculated Sup k

)1()(F βλ for each of the models with the 
tabulated values, we deduce that we cannot reject the null hypothesis of no structural 
change in most of the cases13. There are few exceptions like the Spanish GDP, and the 
Eurozone IPI in the Trend plus Cycle model, and, again, Spanish GDP and Spanish and 
Eurozone IPIs in the Cyclical Trend model14. 
  

                                                 
12 When necessary, intervention analysis was performed modifying appropriately the 

UCM in order to avoid the possible distorting effects of outliers on stability analysis. Their 
presence is evident in some of the IPIs. 

13 The graphs of the recursive estimates of the autoregressive coefficients show some 
instability but not statistically significant according to the Sup k

)1()(F βλ statistic. 
14 According to Tables B.9 and B.10 the rejection levels of the null hypothesis of no 

structural change for the five cases mentioned are at least of 10% .  The information provided by 
these tests should be completed with power analysis as we indicated in relation to ARMA 
models.   
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If instability in the parameters of the UCM is confirmed, their implied reduced 
form may also be affected by parameter variation. As mentioned in Section 2, ARMA 
models are non linear and the sequential tests must be performed after obtaining 
consistent estimates of both the parameters and the perturbations. 

  
From (3.3) and (3.4), the reduced forms corresponding to the Trend plus Cycle 

and the Cyclical Trend decompositions can be obtained. When no common factors are 
present in the AR and MA parts, the reduced form of the first decomposition is a 
restricted ARIMA(p,1,p+1): 

tpt2t1pptp e)L()L()1(y)L( ∆φ+ε∆+εφ+µφ=∆φ  

Applying the restriction that the variance of the trend component is zero ( 02
1 =σ ) this 

expression simplifies to 

tpt2ptp e)L()1(y)L( ∆φ+ε∆+µφ=∆φ           (4.1) 
The reduced form of the Cyclical Trend decomposition (3.4) corresponds to the restricted 
ARIMA(p*,1,p*+1) 

t*p
*

1t,2t1*p*pt*p e)L()L()1(y)L( ∆ψ+ε+εψ+µψ=∆ψ −  

and when 02
1 =σ , 

t*p
*

1t,2*pt*p e)L()1(y)L( ∆ψ+ε+µψ=∆ψ −           (4.2) 
The ARMA models of Table 4.3 have been estimated with the series in 

deviations from their means given our interest in the autoregressive parameters. The 
estimations have been performed with a general parametric specification roughly 
coherent with the two UCM analysed. Again, the sup statistics in Table 4.3 must be 
evaluated by comparing their values with those presented in Table B.11. As for UC 
models, the null hypothesis of no structural change could not be rejected for most of the 
cases15 (except for Spanish GDP and Euro4 GDP). The discrepancies in the rejection of 
the null hypothesis of parameter stability in the UCM and the compatible ARMA 
models for the analysed series can be attributed to the low power of the test for small 
sample sizes and the proximity between the null and the alternative hypothesis as we 
indicated in Section 3.1. 
 

In absence of a power analysis of the Sup k
)1()(F βλ  test in UCM, visual inspection 

of the recursive parameters may offer complementary information to the sup statistic. 
We have plotted the recursive estimates of the autoregressive parameters of some of the 
UCM in the Appendix C (Graph C.5). These graphs also contain additional information 
about how to model parameter instability. The recession periods16 in these graphs are 
shaded and the correspondence between recessions and changes in the autoregressive 
parameters is clear. Although the parameter variations are not substantial in most of the 
cases, as indicated by the Sup k

)1()(F βλ , some stability gains would be possible if we 
model the most important changes in a convenient way (i.e. by means of regime 
switching or with intervention analysis). 

                                                 
15 According to Table B.11, the rejection levels are less than 10%. 
16 The criteria used to date recession periods are exposed in the Tables B.12 and B.13 of 

the Appendix B. 
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Table 4.1: Estimation results of the Trend plus Cycle model (3.3) 

 
  

Sup k
)1()(F βλ  

 
µ 

 
2
2σ  

 
1φ  

 
2φ  

 
3φ  

UK GDP 
70.I–03.I 

0.8188 0.5539    
(0.0140) 

 

0.1351    
(0.0530) 

1.4263    
(0.0524) 

-0.1133    
(0.0071) 

-0.3527    
(0.0397) 

Germany 
GDP 70.I–

03.I 

1.7743 0.5721    
(0.0161) 

0.2231    
(0.0570) 

 

1.2644    
(0.0095) 

0.0371    
(0.0062) 

-0.3336    
(0.0007) 

France GDP 
70.I–03.I 

0.3021 0.5998    
(0.0521) 

0.1441    
(0.0283) 

1.6864    
(0.0112) 

 

-0.9591    
(0.0119) 

0.2727    
(0.0005) 

Italy GDP 
70.I–03.I 

0.4537 0.6041    
(0.0412) 

 

0.3722    
(0.0829) 

1.3924    
(0.0162) 

-0.3985    
(0.0099) 

 

Spain GDP 
80.I–03.I 

2.7475 0.6499    
(0.0403) 

 

0.0659    
(0.0192) 

1.8874    
(0.0253) 

-1.0855    
(0.0221) 

0.1898    
(0.0044) 

Eurozone 
GDP 91.I–

03.I 

0.1543 0.4386    
(0.0327) 

 

0.0421    
(0.0203) 

1.8155    
(0.0958) 

-0.9547    
(0.0912) 

0.1138    
(0.0115) 

Euro-4 
GDP(*) 

80.I–03.I 

1.0560 0.4938    
(0.0248) 

0.0681    
(0.0189) 

1.7146    
(0.0239) 

-0.8669    
(0.0150) 

0.1367    
(0.0024) 

 
UK IPI 

70.01-03.04 
1.0347 0.1112    

(0.0058) 
 

0.0408    
(0.0125) 

1.8723    
(0.0359) 

-0.8820    
(0.0353) 

 

Germany IPI 
70.01-03.04 

1.4030 0.1281    
(0.0061) 

 

0.0809    
(0.0168) 

1.5651    
(0.0452)  

-0.3797    
(0.1108) 

-0.1965    
(0.0626) 

France IPI 
72.01-03.04 

0.4009 0.1316    
(0.0059) 

 

0.0448    
(0.0149) 

1.8619    
(0.0560) 

-0.8811    
(0.0666) 

0.0098    
(0.0118) 

Italy IPI 
70.01-03.03 

0.9306 0.1626    
(0.0080) 

 

0.1173    
(0.0374) 

1.6338    
(0.0358) 

-0.4501    
(0.0319) 

-0.1978    
(0.0050) 

Spain IPI 
75.01-03.04 

1.9140 0.1616    
(0.0107) 

 

0.2217    
(0.0473) 

1.4129    
(0.0115) 

-0.4242    
(0.0052) 

 

Eurozone IPI 
85.01-03.03 

6.7900 0.1627    
(0.0088) 

0.0330    
(0.0089) 

1.2236    
(0.0023) 

0.4109    
(0.0018) 

-0.6466    
(0.0008) 

 
Each series corresponds to y t=100*log(GDPt) or y t=100*log(IPIt). 
The standard deviations are present in parenthesis. 
(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
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Table 4.2: Estimation results of the Cyclical Trend model (3.4) 
 

  

Sup k
)1()(F βλ  

 
µ 

 
2
2σ  

 
1φ  

 
2φ  

 

3φ  
UK GDP 
70.I–03.I 

0.5865 0.5722    
(0.0961) 

0.0118    
(0.0093) 

1.6565    
(0.1489) 

     

-0.7571    
(0.1262) 

 

Germany 
GDP 70.I–

03.I 

1.6039 0.5475    
(0.0860) 

 

0.0086    
(0.0088) 

1.9948    
(0.4336) 

-1.4301    
(0.7433) 

0.3430    
(0.3702) 

France GDP 
70.I–03.I 

0.3649 0.5820    
(0.1081) 

 

0.0019    
(0.0006) 

2.4138    
(0.0481)   

-2.1851    
(0.0562) 

0.7336    
(0.0387) 

Italy GDP 
70.I–03.I 

2.2946 0.5958    
(0.0781) 

 

0.0473    
(0.0149) 

1.4710    
(0.0380)   

-0.7503    
(0.0085) 

 

Spain GDP 
80.I–03.I 

3.1467 0.6083 
(0.1414) 

 

 0.0138 
(0.0063) 

0.8507    
(0.0092) 

0.6816    
(0.0531) 

-0.5496    
(0.0403) 

Eurozone 
GDP 

91.I–03.I 

0.0566 0.4439    
(0.0884) 

 

0.0068    
(0.0077) 

1.8202    
(0.3971)   

-1.2216    
(0.5015) 

0.2625    
(0.1587) 

Euro-4 
GDP(*) 

80.I–03.I 

1.3916 0.4777    
(0.0906) 

0.0042    
(0.0038) 

1.9713    
(0.3320) 

-1.4369    
(0.5528) 

0.3936    
(0.2704) 

 
UK IPI 

70.01-03.04 
0.9850 0.0937    

(0.0603) 
0.0041    

(0.0015) 
1.7090    

(0.0306) 
-0.7651    
(0.0255) 

 

 

Germany IPI 
70.01-03.04 

1.1794 0.1311    
(0.0503) 

0.0037    
(0.0011) 

 

1.0200    
(0.0605) 

0.6436    
(0.1299) 

 

-0.7256    
(0.0709) 

France IPI 
72.01-03.04 

1.6951 0.1291    
(0.0451) 

 

0.0039    
(0.0012) 

1.1227    
(0.0076) 

0.4461    
(0.0060) 

-0.6434    
(0.0013) 

Italy IPI 
70.01-03.03 

0.9040 0.1502    
(0.0525) 

 

0.0042    
(0.0014) 

0.9707    
(0.0056)  

0.8274    
(0.0126) 

-0.8655    
(0.0144) 

Spain IPI 
75.01-03.04 

4.0036 0.1595    
(0.0499) 

0.0007    
(0.0004) 

1.8469    
(0.0593) 

-0.8770    
(0.0541) 

 

 

Eurozone IPI 
85.01-03.03 

5.1546 0.1525    
(0.0538) 

 

0.0017    
(0.0008) 

0.8964    
(0.0065) 

0.9139    
(0.0656) 

-0.8654    
(0.0634) 

 
Each series corresponds to y t=100*log(GDPt) or y t=100*log(IPIt). 
The standard deviations are present in parenthesis. 
(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
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Table 4.3: Estimation results of the ARMA Models 

 
 

Sup k
)1()(F βλ  2

aσ  1φ  2φ  3φ  1θ  2θ  3θ  

UK GDP 
70.I–03.I 

0.3103 0.7391 0.0374 
(0.2034) 

              

-0.2046 
(0.1845) 

-0.3764 
(0.1460) 

0.3002 
(0.2259)              

-0.2397 
(0.2452) 

-0.2031 
(0.1897) 

Germany GDP 
70.I–03.I 

1.8873 0.7724 -0.2856 
(0.3850) 

             

0.6570 
(0.1430) 

-0.5353 
(0.3373) 

-0.2559 
(0.4203)    

0.7489 
(0.1368)           

-0.3772 
(0.3914) 

France GDP 
70.I–03.I 

0.2067 0.2593 1.0177 
(0.2028) 

              

-0.3609 
(0.2889) 

-0.5578 
(0.1554) 

1.3747 
(0.2340)               

0.1697 
(0.3913) 

-0.2629 
(0.2223) 

Italy GDP 
70.I–03.I 

1.3783 0.6072 -1.4996 
(0.1244) 

         

0.8708 
(0.1243) 

 -1.1842 
(0.1577)            

0.5211 
(0.1546)    

0.1285 
(0.1142) 

Spain GDP 
80.I–03.I 

2.8948 0.3141 0.4979  
(0.1873) 

             

-0.5608 
(0.1420) 

-0.4564 
(0.1033) 

0.6230 
(0.2147)       

-0.3551 
(0.2154) 

 

Eurozone GDP 
91.I–03.I 

0.1757   
0.1726 

-0.5338 
(0.3247) 

               

0.6429 
(0.3452) 

-0.3528 
(0.2465) 

-0.0322 
(0.2723)        

0.8150 
(0.2340) 

 

Euro-4 GDP(*) 
80.I–03.I 

3.0227 0.2396 -1.5863 
(0.3139) 

               

1.4694 
(0.3386) 

-0.5552 
(0.2627) 

-1.4324 
(0.3500)               

1.3667 
(0.3885) 

-0.3412 
(0.3493) 

UK IPI 
70.01-03.04 

1.7404 1.1289 -0.1114 
(0.0608)  

       

-0.0400 
(0.0568) 

 -0.2027 
(0.0805)           

-0.0392 
(0.0778)    

0.1277 
(0.0526) 

Germany IPI 
70.01- 03.04 

0.6239 1.8633 0.0841 
(0.1164) 

               

-0.0431 
(0.1192) 

0.0413 
(0.0942) 

-0.2359 
(0.1273)               

-0.0566 
(0.1144) 

0.1552 
(0.0922) 

France IPI 
72.01-03.04 

1.6829 1.3863 -0.0898 
(0.1633) 

              

-0.1210 
(0.1562) 

-0.3096 
(0.1334) 

-0.3667 
(0.1735)               

0.0183 
(0.1521) 

-0.1869 
(0.1315) 

Italy IPI 
70.01-03.03 

1.0075 5.0048 0.0589 
(0.0896) 

                

0.1555 
(0.0863) 

0.1665 
(0.0746) 

-0.3868 
(0.1041)                

0.1797 
(0.1016) 

0.1666 
(0.0819) 

Spain IPI 
75.01-03.04 

1.5211 2.8882 0.4145 
(0.2538) 

         

0.2874 
(0.2273) 

 -0.1047 
(0.2621)               

0.2000 
(0.2085) 

-0.0856 
(0.1201) 

Eurozone IPI 
85.01-03.03 

1.5087 0.4801 -0.1968 
(0.0913)  

              

-0.5982 
(0.0659) 

0.0191 
(0.0908) 

-0.5785 
(0.0747)               

-0.6704 
(0.0690) 

0.6706 
(0.0746) 

 
Each series corresponds to y t=100*∆log(GDPt) or y t=100*∆log(IPIt) in deviations from the mean. 
The standard deviations are present in parenthesis. The signs of the autoregressive parameters follow the notational 
convention of the estimation command armax.m  of Matlab, so, to compare with those of Tables 4.1 and 4.2 must be 
changed. 
(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
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5. Some illustrative examples of parameter instability 
 
 

The computed values of the Sup k
)1()(F βλ  for UCM and ARMA reduced forms do 

not reject the null hypothesis of constant coefficients in most of the series modelled. 
Nevertheless, Spanish GDP and the Industrial Production Index of the Eurozone show 
high values for this statistic both in Trend plus Cycle and Cyclical Trend 
decompositions. The graphs of the recursive coefficients (Graph C.5 in the Appendix C) 
seem to confirm this result. 

 
To achieve parameter stability we have several modelling strategies that 

consider parameter variation as Markov Switching models or SETAR models. 
Intervention analysis can also be useful in some cases. For illustrative purposes we have 
modelled the Eurozone IPI with a simple intervention model that allows for variation in 
the autoregressive parameters from 1991.11 until the end of the sample. This date 
coincides with the beginning of a recession period located using the smoothed cyclical 
component of the Eurozone IPI. For the case of the Spanish GDP, the second sample 
period begins after 1991.I in which the graph of )ylog( t∆  clearly shows a different 
behaviour. The Sup k

)1()(F βλ  statistic in the ARMA model confirms parameter 
instabilities. 

 
 

Table 5.1: Estimation results with varying autoregressive parameters of the 
Eurozone IPI and the Spanish GDP 

 
 µ 2

2σ  1φ  2φ  3φ  

Eurozone IPI 
85.01-03.03 

 

0.1525    
(0.0538) 

0.0017    
(0.0008) 

0.8964    
(0.0065) 

0.9139    
(0.0656) 

-0.8654    
(0.0634) 

85.01-91.10 0.3016    
(0.0058) 

 

0.6579    
(0.0026) 

0.0402    
(0.0030) 

91.11-03.03 

 
0.1598(*)    
(0.0689) 

     
    

 
0.0038(*)    
(0.0014) 

 0.8894    
(0.0253) 

0.8690    
(0.0739) 

-0.8213    
(0.0516) 

      
Spain GDP 
80.I–03.I  

0.6083 
(0.1414) 

 

 0.0138 
(0.0063) 

0.8507    
(0.0092) 

0.6816    
(0.0531) 

-0.5496    
(0.0403) 

80.I-90.IV 0.8946    
(0.0872) 

0.4440    
(0.1199) 

 -0.3526    
(0.0731) 

 
91.I-03.I 

 
0.5976(*)    
(0.3813)    

    

 
0.0142(*)    
(0.0063) 

1.0846    
(0.2792)  

 0.2583 
(0.4860) 

-0.3680    
(0.2621) 

 Standard deviations in parenthesis. 
(*)  These parameters have been assumed constant in both subperiods. 
 

 Table 5.1 shows that, in both cases, the parameter variations seems substantial. 
The plotted filtered components of the Spanish GDP and the Eurozone IPI obtained 
from these new estimations show only slight differences, but the smoothed component 
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of the Eurozone IPI (Graph 5.1) experiments enough variation to change the dating 
obtained when the parameter variation in the coefficients is not modelled. 

 
Graph 5.1: Smoothed cyclical components of the Eurozone IPI with and without 

parameters variation modelled (Trend Cycle decomposition (3.4) )(*) 
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(*)Shadowed areas: recession periods from the constant parameter UC model. 
 

In the case of the Eurozone IPI, the changes in the dating of the business cycle 
anticipate at least one month the inflexion points (beginnings and endings of recessions) 
and also signal a possible recession period at the end of the sample. The confirmation of 
this period as really recessive depends on the data available in the following months 
(the sample period ends in 2003.03) due to the conditioning of the smoothed component 
on future information17. 

 
 

6. Conclusions  
 
 
 When using UCM, the dating of the cycle phases departs from the estimation of 
the cyclical unobserved components. When the UCM specified to estimate these 
components have parameter instability, the estimated cyclical components may be 
misleading. If instabilities are present in the UCM parameters these may be translated to 
the parameters of the ARMA model of the corresponding observed stationary variable. 
To detect the presence of instabilities in the UCM and ARMA models, first we have 
obtained linear models and then computed a recursive Wald type test. Since the results 
are asymptotic, the combined effect of samples of moderate size and parameters values 
near nonstationarity may distort the size and power of the recursive Wald tests. To 
illustrate this point, the empirical size and power of the test have been presented for 
some selected examples, showing reasonable values. 
 

                                                 
17 The data later available confirm a good portion of the year 2003 as recessive. 
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When the recursive statistics have been computed for the UC and ARMA 
models of selected GDPs and IPIs, we have found stability in most of the models 
analysed. The main exceptions are Spain’s GDP and the Eurozone IPI. Once corrected 
for the instabilities, the chronology of the cycle phases of the Eurozone IPI, as given by 
the smoothed cyclical component, shows small changes that indicate a systematic 
anticipation for all the phases when comparing to the chronology obtained with the 
uncorrected cyclical component.  
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Appendix A: Heteroskedasticity correction in the cyclical equation 

 
 
A general State Space form (Hamilton, 1994) is 
  

ttt

t1tt

eHy
F
+ξ=

ε+ξ+δ=ξ −  

 
Without loss of generality and for notational convenience, let us assume 

)L()L( p*p φ=ψ  and p=2. Then, in the Trend plus Cycle decomposition (3.3), 


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t  and [ ]011H = . While in the Cyclical 

Trend decomposition (3.4), 

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[ ]001H = . Finally, in both decompositions,














µ

=δ
0
0 . 

 Under both decompositions we are interested in analyzing whether the 
parameters in the cycle equation are constant. If the cyclical component tC  were 
observable the solution would be straightforward by applying the sup statistic. The 
problem here is that tC  (or *

1tC −  in the Cyclical Trend decomposition without any 
substantial change in what follows) is unobserved and must be estimated firstly. Let us 
see a solution by means of the Kalman filter. 

Define )(Ê tttt ξ=ξ , )(Ê 1tt1tt −− ξ=ξ  and )y(Êy 1tt1tt −− = , where )t(Ê • means 

the linear projection on information set t. Define also the variance-covariance matrices 
)')((EP tttttttt ξ−ξξ−ξ= ; )')((EP 1ttt1ttt1tt −−− ξ−ξξ−ξ= and 2

1ttt1tt
2 )yy(E −−η −=σ . 

Then, the Kalman filter prediction equations are: 

1t1t1tt F −−− ξ+δ=ξ    

ε−−− Σ+= 'FFPP 1t1t1tt  

1tt1tt Hy −− ξ=  

1ttt1tt yy −− −=η  
2
e1tt

2 'HHP
1tt

σ+=σ −η −
 

while the updating equations are: 

1ttt1tttt k −− η+ξ=ξ  

where the matrix kt is: 
12

e1tt1ttt )'HHP('HPk −
−− σ+=  

and: 
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1tt
12

e1tt1tt1tttt HP)'HHP('HPPP −
−

−−− σ++=  

tttt Hy ξ=  

ttttt yy −=η  
2
ett

2 'HHP
tt

σ+=ση  

Notice that tk  is not the Kalman gain, although the two are related. 
  
The forecasting errors are: 

1ttt1tt

ttttt

−− ξ−ξ=α

ξ−ξ=α
 

where ttξ , 1tt −ξ , tty  and 1tty −  may be obtained from the Kalman filter. 

 
Define the selection vector [ ]010sC = . When substituting the unobserved 

cycle component tC  by its estimation ttC  and similarly with its lags, the resulting 

equation is estimable. Substituting ttCttt sCC α+= , in the state equation, we easily 

obtain: 
t2t2t21t1t1tt CCC ζ+φ+φ= −−−−  

with: 
)(s 2t2t21t1t1tttCt −−−− αφ+αφ+α−ε=ζ  

Now, ttα  is: 

( ) ( )1tttt1t1t1t1ttt1ttt1ttt k)(Fk)F( −−−−−−− η−ε+ξ−ξ=η+ξ−ε+ξ+δ=α  

Simplifying: 
( )1tttt1t1ttt kF −−− η−ε+α=α  

and selecting the second element for the cyclical component 
 

( )1tttCtC1t1tC
C

ttttC kssFss −−− η−ε+α=α=α  

[ ] 1tttCt2
C

2t2t

C
1t1t

T
1t1t

21
C

tt ks0 −

−−

−−

−−

η−ε+
















α
α

α

φφ=α  

or 

1tttCt2
C

2t2t1
C

1t1t1
C

tt ks −−−−− η−ε+αφ+αφ=α  

Therefore, the perturbation of the estimable equation for the cyclical component 
simplifies to: 

1tttCt ks −η=ζ  

and the estimable equation turns out to be: 

1tttC2t2t21t1t1tt ksCCC −−−−− η+φ+φ=  

Now, under the null, the prediction error 1tt −η , is uncorrelated with 1t1t −−ξ  and 

2t2t −−ξ , because the latter are linear combinations of the information sets up to t-1 and 
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t-2, say 1t−ψ  and 2t−ψ ; and 1tt −η  is orthogonal to 1t−ψ  and 2t−ψ . Therefore,  

1tt2t2t1t1t CandC −−−−− η⊥ . Moreover, while tς  is heteroskedastic because 

[ ] '
C

'
t

2
e1tttC

2 sk'HHPks
t

σ+=σ −ς  

it is not correlated, because st,0)'(E 1ss1tt ≠=ηη −−  (Harvey, 1989, p. 112). Therefore, 

1tttCt ks −η=ζ  is also uncorrelated. So the only remaining problem to obtain efficient 

OLS estimations is to correct for the heteroskedasticity. To do so, given that 
[ ] '

C
'
t

2
e1tttC

2

t
sk'HHPks σ+=σ

−ς , we define 

[ ] Ct
2
e1tttC 's'k'HHPks

t
σ+=σ −ς  

and denoting 

t/t
1

t/t CC~
t

−
ζσ=  

the final equation to be estimated recursively will be: 
t2t2t21t1t1t/t C~C~C~ ω+φ+φ= −−−−  

with t
1

t t
ζσ=ω −

ς . This final equation is ready to be recursively estimated and tested for 
the existence of at least one break along the sample. 
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Appendix B 
  

Table B.1: Critical values for the k
)1()(Fsup βλ  

of an AR(1) model 
 

5.0−=φ  7−=φ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.70 2.67 2.88 0.75 2.77 2.68 2.73 
0.80 3.05 3.15 3.22 0.80 3.15 3.03 3.21 
0.85 3.58 3.72 3.72 0.85 3.68 3.66 3.70 
0.90 4.42 4.33 4.23 0.90 4.50 4.37 4.34 
0.95 5.73 5.49 5.38 0.95 6.03 5.30 5.35 
0.99 11.17 8.50 7.77 0.99 9.85 7.58 8.07 

9.0−=φ  95.0−=φ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.72 2.70 2.77 0.75 2.54 2.53 2.70 
0.80 3.06 3.09 3.10 0.80 2.97 2.84 3.11 
0.85 3.61 3.55 3.65 0.85 3.44 3.29 3.44 
0.90 4.26 4.31 4.27 0.90 4.09 3.97 4.02 
0.95 5.66 5.47 5.46 0.95 5.48 5.71 5.37 
0.99 9.23 7.95 8.71 0.99 9.64 7.92 9.31 

 
The critical values have been computed by 1000 Monte Carlo replications and different T’s. k

)1()(Fsup βλ  is the 

Wald type statistic to test the recursive estimations against the full sample estimations. The recursive statistic has 
been computed with symmetric 15% trimming. Models have been simulated and estimated using the filter.m and 
armax.m sentences from Matlab 6.5p. 
 

Table B.2: Power of the k
)1()(Fsup βλ  

for an AR(1) model with varying φ  
 

Critical 
values (k=1) 

T1=50 
T=100 

T1=75 
T=150 

T1=100 
T=200 

T1=250 
T=500 

T1=500 
T=1000 

Case 1: 1≤ t ≤ T1, φ = -0.5;   T1+1≤ t≤ T, φ = -0.7 
4.40 24.9 31.4 37.0 67.9 94.5 

Case 2: 1≤ t ≤ T1, φ = -0.5;   T1+1≤ t≤ T, φ = -0.9 
4.40 77.8 91.5 97.2 100.0 100.0 

Case 3: 1≤ t ≤ T1, φ = -0.5;   T1+1≤ t≤ T, φ = -0.95 
4.40 89.4 97.1 99.2 100.0 100.0 

 
Entries are the percent rejections based on 10% critical values from Table 2.1. The coefficients are assumed to 
experiment a change in the middle of the sample. Numerical calculations are computed by Monte Carlo simulations 
based on 1000 replications. k is the number of regressors. The recursive statistic has been computed with symmetric 
15% trimming. Models have been simulated and estimated using the filter.m and armax.m sentences from Matlab 
6.5p. 
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Table B.3: Critical values for the  

k
)1()(Fsup βλ  

of a MA(1) model 
 

5.0=θ  7.0=θ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.68 2.81 2.77 0.75 2.76 2.73 2.77 
0.80 3.08 3.16 3.09 0.80 3.11 3.07 3.06 
0.85 3.51 3.65 3.51 0.85 3.60 3.54 3.50 
0.90 4.48 4.53 4.22 0.90 4.34 4.25 4.10 
0.95 5.80 5.72 5.50 0.95 5.58 5.62 4.93 
0.99 10.74 8.11 8.44 0.99 9.58 9.07 7.85 

9.0=θ  95.0=θ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.76 2.73 2.77 0.75 2.38 2.62 2.59 
0.80 3.11 3.07 3.06 0.80 2.76 2.98 2.92 
0.85 3.60 3.54 3.50 0.85 3.44 3.41 3.34 
0.90 4.34 4.25 4.10 0.90 4.20 4.26 3.91 
0.95 5.58 5.62 4.93 0.95 5.81 5.78 5.00 
0.99 9.58 9.07 7.85 0.99 9.60 9.38 7.73 

 
See footnote of Table B.1. 

 
Table B.4: Power of the k

)1()(Fsup βλ  
for a pseudo-MA(1) model with varying θ  

 
Critical 

values (k=1) 
T1=50 
T=100 

T1=75 
T=150 

T1=100 
T=200 

T1=250 
T=500 

T1=500 
T=1000 

Case 1: 1≤ t ≤ T1, θ = 0.5;   T1+1≤ t≤ T, θ = 0.7 
4.40 17.4 20.1 25.5 43.6 73.9 

Case 2: 1≤ t ≤ T1, θ = 0.5;   T1+1≤ t≤ T, θ = 0.9 
4.40 28.1 43.5 53.3 90.0 99.7 

Case 3: 1≤ t ≤ T1, θ = 0.5;   T1+1≤ t≤ T, θ = 0.95 
4.40 34.5 46.5 60.1 94.6 100.0 

 
See footnote of Table B.2. 
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Table B.5: Critical values for the k
)1()(Fsup βλ  

of an ARMA(1,1) model 
 

5.0−=φ  and 5.0=θ  7.0−=φ  and 5.0=θ  
Percentile T=100 T=200 T=500 Percentile T=100 T=200 T=500 

0.75 2.11 2.09 2.13 0.75 2.06 2.24 2.22 
0.80 2.36 2.31 2.36 0.80 2.40 2.46 2.42 
0.85 2.63 2.56 2.66 0.85 2.80 2.65 2.72 
0.90 3.05 3.00 3.14 0.90 3.13 3.00 3.12 
0.95 3.93 3.53 3.78 0.95 4.06 3.65 3.96 
0.99 5.85 5.22 5.11 0.99 5.67 5.08 5.28 

9.0−=φ  and 5.0=θ  95.0−=φ  and 5.0=θ  
Percentile T=100 T=200 T=500 Percentile T=100 T=200 T=500 

0.75 1.96 2.19 2.27 0.75 1.92 2.28 2.51 
0.80 2.27 2.45 2.50 0.80 2.14 2.56 2.77 
0.85 2.62 2.76 2.80 0.85 2.43 2.87 3.08 
0.90 3.18 3.19 3.18 0.90 2.91 3.23 3.47 
0.95 4.31 3.80 3.83 0.95 3.69 4.11 4.25 
0.99 6.17 5.56 5.45 0.99 6.29 6.45 5.81 

 
See footnote of Table B.1. 
 
 

Table B.6: Power of the k
)1()(Fsup βλ  

for a pseudo-ARMA(1,1) model with varying φ  
 

Critical 
values (k=2) 

T1=50 
T=100 

T1=75 
T=150 

T1=100 
T=200 

T1=250 
T=500 

T1=500 
T=1000 

Case 1: 1≤ t ≤ T1, φ =- 0.5, θ = 0.5;   T1+1≤ t≤ T, φ = -0.7, θ = 0.5 
3.16 20.6 26.4 31.4 60.5 88.6 

Case 2: 1≤ t ≤ T1, φ = -0.5, θ = 0.5;   T1+1≤ t≤ T, φ = -0.9, θ = 0.5 
3.16 63.5 82.6 92.6 100.0 100.0 

Case 3: 1≤ t ≤ T1, φ = -0.5,  θ = 0.5;   T1+1≤ t ≤ T, φ = -0.95, θ = 0.5 
3.16 80.9 93.6 97.9 100.0 100.0 

 
See footnote of Table B.2. 
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Table B.7: Critical values for the k
)1()(Fsup βλ  

of an ARMA(1,1) model 
 

5.0−=φ  and 5.0=θ  5.0−=φ  and 7.0=θ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.11 2.09 2.13 0.75 2.14 2.11 2.22 
0.80 2.36 2.31 2.36 0.80 2.39 2.36 2.44 
0.85 2.63 2.56 2.66 0.85 2.73 2.66 2.69 
0.90 3.05 3.00 3.14 0.90 3.19 3.06 3.01 
0.95 3.93 3.53 3.78 0.95 3.88 3.80 3.89 
0.99 5.85 5.22 5.11 0.99 5.85 5.46 5.26 

5.0−=φ  and 9.0=θ  5.0−=φ  and 95.0=θ  
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500 

0.75 2.03 2.14 2.25 0.75 2.09 2.19 2.13 
0.80 2.24 2.35 2.47 0.80 2.34 2.41 2.36 
0.85 2.59 2.67 2.83 0.85 2.68 2.71 2.67 
0.90 3.06 3.17 3.24 0.90 3.15 3.04 2.97 
0.95 3.77 3.94 3.93 0.95 4.07 3.90 3.60 
0.99 6.15 5.72 5.74 0.99 6.97 5.86 4.85 

 
See footnote of Table B.1. 
 
 

Table B.8: Power of the k
)1()(Fsup βλ  

for a pseudo-ARMA(1,1) model with varying θ  
 

Critical 
values (k=2) 

T1=50 
T=100 

T1=75 
T=150 

T1=100 
T=200 

T1=250 
T=500 

T1=500 
T=1000 

Case 1: 1≤ t ≤ T1, φ =- 0.5, θ = 0.5;   T1+1≤ t≤ T, φ = -0.5, θ = 0.7 
3.16 14.8 16.7 19.5 39.8 69.3 

Case 2: 1≤ t ≤ T1, φ = -0.5, θ = 0.5;   T1+1≤ t≤ T, φ = -0.5, θ = 0.9 
3.16 25.8 33.9 44.4 88.6 99.7 

Case 3: 1≤ t ≤ T1, φ = -0.5,  θ = 0.5;   T1+1≤ t ≤ T, φ = -0.5, θ = 0.95 
3.16 27.2 39.2 51.3 92.6 99.9 

 
See footnote of Table B.2. 
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Table B.9: Empirical distributions of the k
)1()(Fsup βλ  

for the Trend plus Cycle UCM of Table 4.1 
 

Percentile UK 
GDP 

T=133 

Germany 
GDP 

T=133 

France 
GDP 

T=133 

Italy 
GDP 

T=133 

Spain 
GDP 
T=93 

Eurozone 
GDP 
T=49 

Euro-4 
GDP(*) 

T=93 
0.75 2.1573 2.0285 1.8904 2.1973 1.9863 2.2498 2.0402 
0.80 2.3573 2.2393 2.0543 2.5176 2.2057 2.6302 2.2575 
0.85 2.7107 2.5555 2.2855 2.8616 2.4943 3.1114 2.6118 
0.90 3.1980 3.0191 2.6262 3.4396 2.7598 3.6726 2.9809 
0.95 4.0500 3.6118 3.1463 4.2454 3.6534 5.5359 3.7116 
0.99 5.6730 5.7750 4.6026 6.1257 6.6353 9.5509 6.8035 

 UK IPI 
 

T=400 

Germany 
IPI 

T=400 

France 
IPI 

T=376 

Italy IPI 
 

T=399 

Spain IPI 
 

T=340 

Eurozone 
IPI 

T=219 

0.75 2.9362 1.9112   2.0003 2.0334 2.3089 2.4280 
0.80 3.1452 2.1070   2.2308 2.2676 2.5674 2.7878 
0.85 3.4659 2.3253   2.5279 2.5422 2.8222 3.1505 
0.90 3.9546 2.6835   2.8745 2.7713 3.3334 3.6647 
0.95 5.0148 3.2499   3.6335 3.4135 3.9264 4.4763 
0.99 7.3014 4.7132   5.8579 4.7325 5.5893 6.7788 

 
The critical values have been computed by 1000 Monte Carlo replications. k

)1()(Fsup βλ is the Wald type statistic 

to test the recursive estimations against the full sample estimations. The recursive statistic has been computed with 
symmetric 15% trimming.  

(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
 

Table B.10: Empirical distributions of the k
)1()(Fsup βλ  

for the Cyclical Trend UCM of Table 4.2 
 

Percentile UK 
GDP 

T=133 

Germany 
GDP 

T=133 

France 
GDP 

T=133 

Italy 
GDP 

T=133 

Spain 
GDP 
T=93 

Eurozone 
GDP 
T=49 

Euro-4 
GDP(*) 

T=93 
0.75 2.4122     1.9862 2.2962 2.7558 2.0485 2.2593 2.0880 
0.80 2.7289     2.1964 2.5266 3.1537 2.3155 2.7002 2.4497 
0.85 3.2126     2.4541 2.8024 3.5608 2.6174 3.1337 2.8234 
0.90 3.8133     2.9081 3.2454 4.4057 3.0040 3.8276 3.4050 
0.95 4.8675     3.8784 4.0639 5.6218 3.6709 5.3221 4.1919 
0.99 7.8998     6.0793 8.2065 9.0936 7.0053 11.1172 6.2328 

 UK IPI 
 

T=400 

Germany 
IPI 

T=400 

France 
IPI 

T=376 

Italy IPI 
 

T=399 

Spain IPI 
 

T=340 

Eurozone 
IPI 

T=219 

0.75 2.2319 2.0747 2.1147 2.5265 2.4084 2.1033 
0.80 2.4644 2.3090 2.3442 2.8585 2.7057 2.3378 
0.85 2.7604 2.5715 2.6259 3.2468 3.0649 2.7052 
0.90 3.2133 2.8981 3.0025 3.8819 3.6833 3.3183 
0.95 3.8870 3.5990 4.0310 5.0490 4.6788 4.1845 
0.99 6.3655 5.1800 6.4884 8.6995 7.1584 6.3569 

 
See footnote of Table B.9. 
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Table B.11: Empirical distributions of the k

)1()(Fsup βλ  
for the ARMA models of Table 4.3 

 
Percentile UK 

GDP 
T=133 

Germany 
GDP 

T=133 

France 
GDP 

T=133 

Italy 
GDP 

T=133 

Spain 
GDP 
T=93 

Eurozone 
GDP 
T=49 

Euro-4 
GDP(*) 

T=93 
0.75 1.5938 1.6826 1.6809 1.7436 1.7412 2.5129 1.8028 
0.80 1.7505 1.8461 1.7954 1.9011 1.8778 2.9415 1.9947 
0.85 1.9138 1.9521 1.9594 2.1139 2.0653 3.4948 2.2151 
0.90 2.0867 2.2143 2.2711 2.3671 2.4137 4.4967 2.4728 
0.95 2.5170 2.5882 2.7432 2.8080 2.8867 7.3732 3.1284 
0.99 3.5059 3.5799 4.3039 3.7015 4.2177 21.1274 5.3628 

 UK IPI 
 

T=400 

Germany 
IPI 

T=400 

France 
IPI 

T=376 

Italy IPI 
 

T=399 

Spain IPI 
 

T=340 

Eurozone 
IPI 

T=219 

0.75 1.6160 1.6419 1.5919 1.5585 1.6177 1.5483 
0.80 1.7749 1.7724 1.7161 1.6802 1.7409 1.6656 
0.85 1.9227 1.9307 1.8499 1.8525 1.9308 1.7990 
0.90 2.1395 2.0900 2.1328 2.0342 2.1526 1.9985 
0.95 2.5852 2.3983 2.4091 2.3721 2.4820 2.3589 
0.99 3.6221 3.1301 3.0539 3.1331 3.3124 3.1595 

 
The critical values have been computed by 1000 Monte Carlo replications. k

)1()(Fsup βλ  is the Wald type statistic 

to test the recursive estimations against the full sample estimations. The recursive statistic has been computed with 
symmetric 15% trimming.  

(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
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Table B.12: Business cycle chronology (recession periods) 
for several European GDPs  

 
 

UK GDP 
70.I–03.I 

Germany 
GDP 

70.I–03.I  

France 
GDP 

70.I–03.I 
Italy GDP 
70.I–03.I 

Spain GDP 
80.I–03.I 

Eurozone 
GDP 

91.I–03.I 

Euro-4 
GDP(*) 

80.I–03.I 
73.III-74.I 74.III-75.I 74.III-75.I 74.III-75.II    

   77.I-77.III    
79.IV-81.I 81III-82.IV 80.I-80.IV 82.I-82.III 80.I-80.III  80.I-80.IV 
84.I-84.III 85.III-86.I      
90.II–92.II 91.I-91.III      
 92.I - 93.II 92.III-93.II 92.I-93.I 92.III-93.I 92.I-93.I 92.I-93.II 
 01.I-01.IV  01.I-01.III    
 02.III-      

 
The criterion to date a recession period considers that a peak (the beginning of a recession) is located in quarter t 

when { }0y,0y,0y 2t1tt <∆<∆>∆ ++ ; and a trough (the end of a recession) is located in quarter t when 

{ }0y,0y,0y 1tt1t >∆<∆<∆ +− . 
(*) Sum of the GDPs of Germany, France, Italy and Spain in Euros. 
 

 
 

Table B.13: Business cycle chronology (recession periods) 
for several European IPIs 

 
 

UK IPI 
70.01-03.04 

Germany IPI 
70.01- 03.04 

France IPI 
72.01-03.04  

Ital y IPI 
70.01-03.03  

Spain IPI 
75.01-03.04  

Eurozone IPI 
85.01-03.03  

70.10-71.11   70.04-71.01   
74.05-75.08 73.10-75.05 74.04-75.06 74.02-75.06   

  76.12-77.10 76.12-77.12   
79.10-81.02  79.07-81.02 79.12-82.12 81.11-82.12 80.05-83.05 80.03-82.03  

83.11-84.08 86.05-87.01 86.03-86.09    
90.03-91.09  90.07-91.05 89.12-91.04 89.11-91.02  

 91.07-93.07 92.01-93.08 92.01-93.07 91.10-93.05 91.11-93.07 
 95.01-95.12 95.04-95.11 95.08-96.09 95.05-96.04 95.06-96.02 

98.06-98.12 < 6 months < 6 months 98.03-99.02  < 6 months 
00.09- 00.12-02.02 01.03-02.04 00.11-02.08 00.08-02.01 00.12-02.01 

  
The criterion to date a recession period in the Indexes of Industrial Production is the translation to monthly data of the 
conventional criterion applied to GDP. Because of the IPIs series are very noisy we have employed as a cyclical 

signal the smoothed cyclical component T/tC of the estimated Cyclical Trend UCM of Table 4.2. So, we have 
consider that a peak (the beginning of a recession) is located in month t when 

{ }0C,...,0C,0C T/6tT/1tT/t <<> ++ ; and a trough (the end of a recession) is located in month t when 

{ }0C,0C,...,0C T/1tT/tT/5t ><< +− . 
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Appendix C 
 
 

Graph C.1: Smoothed cyclical components of some of the GDPs  
for the Trend plus Cycle decomposition (3.3) 
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Graph C.2: Smoothed cyclical components of some of the IPIs 
for the Trend plus Cycle decomposition (3.3) 
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Graph C.3: Smoothed cyclical components of some of the GDPs  

for the Cyclical Trend decomposition (3.4) 
 

 
 

 
Graph C.4: Smoothed cyclical components of some of the IPIs 

for the Cyclical Trend decomposition (3.4) 
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Graph C.5: Recursive coefficients of some of the UC models 
of Tables 4.1 and 4.2 

Shadowed areas: recession periods according criteria of Tables B.12 and B.13 
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