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ABSTRACT: The chronology of cycle phases may be obtained from the
estimation of the cyclica components in Unobserved Component Models (UCM).
When instabilities are present in the coefficients of the cycle equation, the chronology
obtained may be spurious. These instabilities will be transmitted to the coefficients of
the ARMA reduced form models of the stationary observable variables under study.
Therefore, the ARMA model, or the cyclical equation of the UCM, should be tested for
instabilities before any use of the estimated cyclical component or the ARMA model is
made. In this paper, we test for parameter instability in the ARMA and Unobserved
Component Models of the Gross Domestic Product (GDP) and the Industrial Production
Index (IPI) of several European countries, making use of a recursive Wald type statistic
applicable to linear models. To do so, for the case of ARMA models we first linearise
the model and, for the case of UCM, we first obtain the Kalman filtered cyclical
component. After these initial steps, the recursive statistic may be applied. The
empirical size and the power of the resulting statistic are presented for ssmple models.
The final results show that the null hypothesis of constant coefficients cannot be
rejected in most of the models studied. An important exception is that of the IPl series
computed for the Eurozone. Slight differences in the implied dates of the business cycle
are found in the cyclical components uncorrected and corrected for parameter
instability.
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1. Introduction

Since the definition of business cycle given by Burns and Mitchell (1946), many
analytical approaches have been used to detect, and eventualy to date, the different
phases of the business cycle. Some very popular rules are roughly coherent with Burns
and Mitchell’s definition (e.g.: two consecutive declines in quarterly GDP to locate a
recession) but the complexity of business cycle dynamics and the desire for a richer
phase characterization compel to design more elaborate tools. With this purpose, time
domain and frequency domain filters are widely used to extract unobserved components
useful for business cycle analysis. The risk of spurious components due to the automatic
implementation of these methodologies has been extensively analyzed (Nelson and
Kang, 1981; Nelson, 1988; Harvey and Jaeger, 1993; Cogley and Nason, 1995).
Additionally, the literature has noted the subjectivity in trend cycle decompositions due
to the a priori considerations related, for example, to the degree of smoothness of the
trend component or the interval of frequencies selected as specifically cyclica (Garcia
Ferrer and Queralt, 1998).

Further considerations arise when trend cycle decomposition involves the
estimation of parameters. In such case, parameter instability could lead to severa
problems mentioned in business cycle analysis. In this context, testing for parameter
instability can be necessary to avoid spurious components or inappropriate business
cycle chronologies. Stock and Watson (1996) studied the stability of univariate and
bivariate autoregressive models associated to macroeconomic US time series and found
instabilities in many of the nodels considered. So, it could happen that models for
European GDPs and IPls may have aso non constant parameters.

When UCM are employed, the ARMA models directly obtained from the
stationary observed variables and those derived from the UCM (i.e.: the onstrained
reduced form) should be compatible (Nelson, 1988; Watson, 1986; and Harvey, 1989).
In practice, however, the unconstrained ARMA models seem to differ significantly from
the constrained ones. A possible explanation for these differences could be that the
ARMA or the UCM may have non constant parameters. It is well known that if atime
series has different autocorrelation functions (acf) in different subsamples, when
analysing the full sample, we will obtain an acf which will be a combination of the
different acf’s. In this case, the identification via the full sample acf will point towards
incorrect models that will be a mixing of the different models in each subsample.
Therefore, it seems important to test for parameter stability in the context of UCM,
specificaly in trend-cycle decompositions, as well as for the ARMA models associated
to the stationary observed time series. If breaks are present but ignored, the
interpretation and the chronology of the cycle phases, as well as the policy implications,
may be midleading.

Statistics based on recursive estimations for testing the existence of at least one
break in the parameters (with unknown location) are available. Barngjee, Lumsdaine
and Stock (1992) focus on linear models, while Andrews (1993) generalizes to non
linear models making use of the GMM estimators, and refers to the optimal properties
of the test in comparison to other aternatives.



For non linear models, Andrews tests may be quite involved and more
burdensome than for linear models®. Some apparently simple models, like ARMA, are
non linear, and therefore the tests devised for linear models to detect if a break has taken
place in any of the parameters, are not directly applicable. We will show how a Wald
type statistic for testing the existence of at least one break in linear models may be
applicable both to ARMA and to UC models by following two step procedures which
dightly differ when applied to ARMA and to UC models.

For ARMA models the two step procedure starts from the null hypothesis that
the entertained ARMA model is well specified and that their coefficients are constant
(del Hoyo and Llorente, 2000). Therefore, using Maximum Likelihood Estimation,
consistent estimates of the model parameters can be obtained. Next, by substituting the
perturbations by their consistent estimates in the origina ARMA model, we can obtain
an asymptotic equivalent model, which is linear and alows for the use of the recursive
Wald test available for linear models. As aresult of the linearisationprocess, the critical
points of the empirical distribution of the derived statistic (under the null of constant
coefficients) must be computed for different sample sizes and different location points
in the parameter space to know how the empirical critical points differ from the “true”
ones. The power of the resulting test will also be studied for some ssimple cases.

For UC models, the unobserved cyclical components are usually modelled as
stationary AR(p) equations. For these models, under the null of constant coefficients, it
is also possible to show that if in the equation for the cyclica component, the
unobserved component is substituted by its Kalman's filtered counterpart, the resulting
equation, apart from some heteroskedasticity, will provide a valid linear equation where
we can apply simple recursive tests for parameter instability.

This paper applies a recursive Wald type statistic to detect parameter instabilities
in the estimation of the cyclical equation of trend cycle decompositions, and in the
implied ARMA models for the UCM. We consider two decomposition approaches, first,
the classical trend plus cycle decomposition (e.g. Clark 1987) and second, the cyclical
trend decomposition (Harvey, 1985, 1989). The series under study are the GDPs and the
IPls of several European countries.

In the rest of the paper we proceed as follows. Section 2 briefly presents the
recursive Wald statistic for testing the existence of at least one break in the parameters
of a linear model. Section 3 presents the two step procedures to apply the Wald type
statistic to ARMA and UC models. Section 4 deas with the estimated models for
several European GDPs and IPIs series. When the recursive test detects substantial
parameter instability we model it with intervention aralysis. Finally, Section 5
concludes.

! For an a symmetric trimming, the number of evaluations to compute the Andrew’s
satistic for anon-linear mode is T(1- 2a) , with T the sample size.



2. Recursve Wald Test for parameter instability in Linear Models

The distribution of the recursive statistics considering the possibility of at least
one break with unknown a priori date, while not conventional is known (see Banerjee,
Lumsdaine and Stock (1992) for linear models and Andrews (1993) for non linear
models). For linear models, it is a Smple matter to compute recursive statistics using
subsamples of increasing size 1<t £t£t_, <T. The recursive estimates derived

from linear models alow an easy computation of the recursive statistics to detect break
points. Also, by plotting the recursive estimates of the coefficients, it can be obtained
valuable information on the stability of the coefficients and, in many cases, on the
nature of the intervention model to be used to achieve constancy.

Assume that the observations are generated by the following model:
Yy, =X B +e ; t=23,---T
and aso that the moddl is well specified with 3, =3 a (kx1) vector of constants. The
perturbations? (e,) are assumed to be a martingale difference sequence with respect to
the s-fields generated by f{e_,,X.,.€_,.X,,. -}, where X, is a (1xk) vector of
regressors. The regressors are constant and/or 1(0) with E(X,X,) =S, . Usudly, by

defining ? :$, Of£l ;. £l £1 ., £1, we limit the analysis of distributions to the

Bl
interval [0,1]. It is also assumed that V(1) =T'3 XX, #® | S, uniformly in |
t=2
[TI

]
for 17[01];EE€)=s2"1t; and v ()= 1/_aXetDsS”ZWk(I) where

S, =SY?SV?, W, (1) isa k-dimensional vector of independent Wiener or Brownian
motion process, and P denotes weak convergence on D[O,l]. X1 can include lagged

dependent variables as long as they are 1(0) under the null (see Stock (1994)). Finally,
[-] is the integer part of the value inside brackets. The recursive OLS coefficients can
be written as random elements of D[0,1]:

oy 6 oty

b(l)= gaxtlxtl_ gaxtlyt_ ;01 L El L EL (2.1
Notice that b(1) is the vector with the full sample OLS estimates.
The Wald type statistic used in this paper to test H,: Rb(I)=r, where R is a

non stochastic matrix of rank m, r =R b(1), and m the number of coefficients to be
tested, is:

? e, can be conditionaly (on lagged e,and X, ) homoskedastic and the results do not
change.
4



(Rb(l') - r)gRégIglw thH; R'E (Rb(l')- 1)

g (2.2)

I-O

N

Fr(l) =

ms?(l)
where s?(l ) isthe recusive estimate of the residual variance.

The asymptotic behaviour of this statistic is derived applying the Functional
Central Limit Theorem and the Central Mapping Theorem. The form of the find
distributions will depend on R and r. In what follows, the subscripts and superscripts
refer to the particular null hypothesis to be tested. In particular, if we want to test for
stability along the sample with respect to m £ k of the final estimates b(1) , we represent

the statistic by F(I )g‘(l) . Following Stock (1994), it may be shown that:

» o B.() SR [Rs/R)'RS}'B, (1)
FT(l )b(l) P i

where B, (1)=W,(l)- I W, (1) is a kdimensional Brownian bridge. Therefore, for
testing all the coefficients recursively along the sample against the full sample
estimators, i.e. R=1, and r =b(1) , we will obtain that:

R BOBL oy

(2.3)

By defining (I )iy :ﬁﬁ(l Do P W the Andrews (1993) statistic is
obtained. The statistic to be tabulated is:
B.(1) By(l)
max F(l up Sk 25
| T ED e (Do P |mm£|gm ki ©3)
It is easy to show that for the case of testing only m £ k coefficients, the statistic is:
B,() B,
max F(l)g, P sup B,() B,(1) (2.6)

I min £ £l a I minEl £ max ml
In Table 2.1, the critical values for the size of the statistic are presented. They
have been computed using a 15 percent trimming as it is usual in this kind of work. The
approximate critical values for this sequentia statistic, that we call sup F(l )bm(l), were

computed as the syp values of the functionals of Brownian processes using 10000
replications with T=3600. These critical values are directly applicable for asymptotic
sample sizes. For other sample sizes the critical values should be adjusted.

Table 2.1: Critical valuesfor the statistic sup F(l );,
Percentile k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

0.75 28088 2.2295 1.9666 1.77/59 1.6550 1.5695 1.5045 1.4613 1.4172 1.3967
0.80 31724 24475 2.1194 1.9199 1.7796 1.6717 1.5942 1.5407 1.5004 1.4611
0.85 35573 2.7013 2.3164 2.0755 1.9261 1.7984 1.7126 1.6537 1.5882 1.5469
0.90 44013 3.1631 2.6265 2.3128 2.1511 1.9921 1.8881 1.8210 1.7485 1.6998
0.95 5.5368 3.7825 3.0944 2.6896 2.4585 2.2710 2.1316 2.0234 1.9591 1.9019
099  7.9646 5.1483 4.2098 3.6146 3.1835 2.9418 2.6524 2.5430 2.3886 2.2765

Entries are the sup values of the functionals of Brownian processes. All the critical values have been computed by
10000 Monte Carlo replications and T=3600. Sup F(l )E@ is the sup Wald type statistic to test the recursive

estimations against the full sample estimations. The recursive statistic has been computed with symmetric 15%
trimming.
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3. A Sequential Test for parameter instability in ARMA and UC
models

3.1. ARMA models

The application of (2.5) a (2.6) to AR(p) models is straightforward, but for
ARMA models the moving average part induces nonlinearities that prevent the direct
use of this sequential test. An easy solution® to this problem makes use of a two-step
procedure to obtain linearity. The first stage assumes the null hypothesis of correct
specification of the model and, in particular, that the model coefficients are constant.
Under this null, consistent estimates of the model parameters and perturbations can be
obtained. Next, a pseudolinear regression model is obtained* by substituting the
unknown perturbations by their consistent estimates. Finally, once the model is linear,
the recursive Wald test for the detection of breaks may be applied.

Without loss of generdlity, let y, follow an ARMA(1,1) model:
ye=m+fiy , +qe,+e 31
If & isaconsistent estimation of e, and n, = ¢, - ¢, then:
y,=m+fiy., +qe ,+(e +qn.)=m+fy , +qe,+(e+ Op(l))
sincev, =0,(1), then:
yo=m+fiy , +qe, +e 32
Model (3.2) is linear and asymptotically equivalent to model (3.1). Moreover, it
can be shown (Del Hoyo, Llorente and Rivero 2003), that the asymptotic distribution of
the statistic (2.5) applied to model (3.2), where the unknown perturbatione, , has been
substituted by its consistent estimation e, ;, converges to the same distribution of the

statistic (2.5) applied to mode (3.1). This convergence to the same asymptotic
distribution is a particular case of a more general result vaid for ARMA models in
which the lagged unknown perturbations are substituted by consistent estimates. In
proving this result the same hypothesis assumed in obtaining (2.4) plus an additional
one are stated. This new assumption states that if T is the full sample size, then for each

T, the estimated parameters are uniformly consistent in T. That is, if X[, is the
consistent estimate of the regressors X, ,, given the sample size T, then:

max |X - X, | %4® 0
t=2,---T T® ¥
Under these conditions, we can apply the recursive Wald type test to (3.2).

However, using the recursive test in (3.2) may distort the size and power of the
test. In particular, while the critica points will coincide asymptotically, the
approximation to the “true” ones in Table 2.1 will depend on the particular location in
the parameter space as well as the actual sample size considered in estimating the

® Other solutions also applicable to more complex models, i.e. Transfer Function
models, may be seen in Del Hoyo and Llorente, 2000.

* We have estimated the ARMA models using the armax.m sentence from Matlab 6.5p
and obtained the empirical distributions of (2.6) under the null and alternative hypothesis to
compute the size and power presented in Tables B.1 to B.8.

6



coefficients’. To illustrate this, we can compare the critical points of the sup test when
applied for ARMA models. To facilitate comparisons we have simulated AR(1), MA(1)
and ARMA(1,1) models, whose size and power are presented in Tables B.1 to B.8. As
can be seen, the size of the two-step statistic is quite good but the power depends on the
sample size as well as on the distance between the null and the alternative hypothesis.

3.2. UC modds

In unobserved component models a two-step procedure may also be used to
decide whether the parameters are constant in a similar way as in ARMA models. The
procedure first estimates the model parameters consistently, under the null hypothesis of
no structural change using the whole sample. Then, by applying the Kalman filter
estimable linear equations for the cyclica components are obtained. Once they have
been written as linear estimable equations, it will be possible to test for stability of the
parameters conditional on the first stage consistent estimates.

We employ two UC models: the Trend plus Cycle Model and the Cyclical Trend
Model. The Trend plus Cycle model decomposes y: (commonly the logarithmic
transformed of the seriesin levels) as:

Yi=Ti+Cte (3.39)
where T; is the trend component, C; isthe cyclica component, and & is the noise series. A
commonly used decomposition consists on atrend “viewed as a nonstationary stochastic
process, generally a random walk with drift”, and a cycle viewed as “a stationary
process, generally an autoregression” (Nelson, 1988). Following this specification:

Ti=m+ Ti.1+ey (3.3b)
f p(L)Cr=ex (3.30)
where mis the drift® and ey; ~ iid N(O, s?). C, isthe autoregressive cyclica component,

which follows f p(L)Ci=ex, with ez ~iid N(0, s 5) and the roots of f (L) lying outside the
unit circle’. Additional assumptions in the decomposition (3.1a) to (3.1c) are the
following orthogonality conditions between components. E(e e15)=0, E(a e5)=0, and
E(ey e9=0 for all pair (t,5) 8.

The specification (3.3a) to (3.3c) can be modified to allow for a non-constant drift
(Clark, 1987; Harvey, 1985; Young, 1994). For example, specifying a random walk for
the drift, we obtain the local linear trend model:
Tt :m+Tt_1+e]_t (33b’ )
M =M + ey (3.3d)
where e ~ iid N(0, s 2) and it is uncorrelated with &, ey and ex.

® When the coefficients are close to the non-stationary region or the sample size is not
very large, better size and power may be obtained if more efficient initial conditions are used to
estimate the perturbations, i.e. backforecasting.

® In some models we will include this term in the cyclical equation

" The method may be extended to the autoregressive coefficients of a stationary ARMA
modd.

® Orthogonality restrictions are also necessary for identification (Nelson, 1988; Harvey,
1989).

7



In empirical estimations (Harvey 1985, Clark, 1987) it is often found that s3 is

very small, reducing the random walk drift component to a constant drift component.
The decomposition (3.3a) to (3.3c) is generaly considered as the standard Trend plus
Cycle decomposition’.

The second decomposition we consider is the Cyclical Trend model (Harvey,
1985). The main difference with respect to the Trend plus Cycle decomposition is that
the trend component is assumed to emerge from the accumulation of the cyclical
variation, so in (3.3a) the cyclica component must be eliminated. Consequently, in the
Cyclical Trend decomposition we have that

y, =T, +e (349)
T, =pu+T,,+C +e, (3.4b)
y . (L)C =&, (3.4c)

where we employ the asterisk to denote different components with respect to the Trend
plus Cycle decomposition™. Stationarity conditions'* on y (L) and orthogonality
restrictions also apply.

In both decompositions, a smooth trend component is obtained by assuming that
s?=0. In the estimated models, we impose this restriction given our interest on

cyclical behaviour. In the Trend plus Cycle model this restriction implies a linear
deterministic trend.

The State Space representations of the Trend plus Cycle and the Cyclica Trend
decompositions adlow Maximum Likelihood Estimation of the parameters and the
estimation of the filtered components Ty and Cy. The smoothed trend and cycle
components Tyt and Cyr are obtained conditional on full sample information by means of
a Fixed Interval Smoothing algorithm. The smoothed components may be used to date
business cycle phases, as we shall do later.

The State Space form (Hamilton, 1994) is
X, =d+Fx._, +e,

35
yt = HXt + et ( )

® We have added the noise term g for comparative purposes with the Cyclical Trend
model that we also consider. In our empirical applications, we have aso tried a random walk

drift component, obtaining in most cases that s 2=0. When this was not the case (in 3 of the 13

series considered), the drift component m followed a cyclical pattern and, instead, the estimated
cyclical parameters of f (L) were nearly zero.
Y7o simplify notation, we assume the series noise g, the trend noise ey, and the drift nr

remain the same in both decompositions, (3.3) and (3.4).

1 1n Trend plus Cycle decompositions stationary restrictions must be imposed on f o(L)
by bounding the parameter search space. In its absence, the search algorithm tends to violate the
stationarity conditions. When imposing these restrictions the estimated roots are close to unity.

8



Without loss of generdlity and for notational convenience, let us assume

éT, u
Y (L) =f,(L) and p=2. Then, in the Trend plus Cycle decomposition X, :gCt 3
g:t-lé
gl 0 Ou €y, U
F=9 1, 1,0 e=%, ad H=[1 1 0. While in the Cydlical Trend
O 1 0§ g0 ¢
T U g 1 0u  ee
decomposition, xt:ng_lg, F:gO f, fzg, et:ge;t_lg and H=[1 0 0.
&C... 4 @0 1 04 eog
énu
Finally, for both decompositions, d = 203.
€0

Under both decompositions we are interested in analyzing whether the
parameters in the cycle equation are constant. If the cyclical component C, were
observable the solution would be straightforward. The problem here isthat C, (or C,,

in the Cyclical Trend decomposition) is unobserved and must be estimated firstly. In the
Appendix A it is shown a solution by means of the Kalman filter:

c, =f,C +f,C +s:.k.h (3.6)
where the unobserved cycle component C, is substituted by its filtered estimationC

[t t-qt-1 t-2Jt-2 tt-1

{0
Sc =[O 1 0] is a selection vector; K, isrelated to the Kalman gain and is defined |in
the Appendix A; and ht|t—l =Y Yyeu is the prediction error. In Appendix A, it is aso
shown that the error term z, =sck;h, , is heteroskedastic but uncorrelated. So the
only remaning problem to obtain efficient OLS estimations is to correct the
heteroskedasticity. To do so, if sft isthe variance of z,, define:
ét/t :S_zllct/t

and the final equation to be estimated recursively turns out to be:

Cor =f1 Cyr 2 C g W, (3.7)
with w, :s;,tlzt. This final equation is ready to be recursively estimated and tested for

the existence of at least one break in the parameters along the sample. This is so
because it can be shown (Del Hoyo, Llorente y Rivero, 2003) that the recursive
statistics (2.5) or (2.6) applied to (3.3c) or (3.4c), with p=2, and to (3.7) have the same
asymptotic distributions. This result can be proved assuming that we can obtain
consistent estimates, uniformly in T, for the model parameters (mf,,f,,s2,s7,s2)and

assuming that the largest eigenvalue of the transition matrix F, is unity; then, if qt is

the filtered cyclical component corrected for heteroskedasticity obtained with the
Kaman filter, being T the full sample size:
c- ¢

ft ([

¥#® 0

Te®Y

max

t=2,--T




which is a similar situation to the case of estimating the unknown regressors
(1€ p)-

Again, the size and power of the statistic will depend of the sample size and on
the particular region of the parametric space under study, in particular, for parameter
vaues near the nondtationary boundary like the obtained in Trend plus Cycle
decomposition.

4. Testing for parameter stability for selected European GDPs and
IPls

In this section we first follow the procedure discussed above to detect parameter
instabilities in the cyclical components of severa European GDPs and IPIs, and then in
their implied ARMA models. We start by estimating UCM for the two decompositions
analyzed in the previous section. The estimation results and the sup Wald type statistic
(2.6) for parameter stability in the autoregressive polynomials are presented in Tables
4.1 and 4.2. The estimated parameters correspond to a constant drift, the variance of the
cyclical component and the autoregressive parameters. In the Appendix C, the graphs
of some smoothed cyclical components have been plotted2.

As indicated, once we dispose of the cyclical filtered components with the
heteroskedasticity correction presented in the previous section, it is possible to calculate

the sup F(l );, to test for the stability of the autoregressive parameters. To test for

parameter stability, the values presented in Tables 4.1 and 4.2 should not be compared
directly with those of Table 2.1 because the latter are asymptotic and we dispose of
reduced sample sizes. Instead, under the null hypothesis of no structura change, it is
convenient to calculate the empirica distributions of statistic (2.5) for the size and
parameters values shown in Tables 4.1 and 4.2. This has been done for 1000
replications in each one of the estimated models. The critical values are tabulated in the
Tables B.9 and B.10 of the Appendix.

By comparing the calculated sup F(I )Ew for each of the models with the

tabulated values, we deduce that we cannot reject the null hypothesis of no structura
change in most of the cases™. There are few exceptions like the Spanish GDP, and the
Eurozone IPI in the Trend plus Cycle model, and, again, Spanish GDP and Spanish and
Eurozone IPIs in the Cyclical Trend model**.

2 When necessary, intervention analysis was performed modifying appropriately the
UCM in order to avoid the possible distorting effects of outliers on stability analysis. Their
presence is evident in some of the IPIs.

* The graphs of the recursive estimates of the autoregressive coefficients show some

instability but not statistically significant according to the sup F(l )Ew statistic.
1 According to Tables B.9 and B.10 the rejection levels of the null hypothesis of no
structural change for the five cases mentioned are at least of 10% . The information provided by

these tests should be completed with power analysis as we indicated in relation to ARMA
models.
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If instability in the parameters of the UCM is confirmed, their implied reduced
form may also be affected by parameter variation. As mentioned in Section 2, ARMA
models are non linear and the sequential tests must be performed after obtaining
consistent estimates of both the parameters and the perturbations.

From (3.3) and (3.4), the reduced brms corresponding to the Trend plus Cycle
and the Cyclica Trend decompositions can be obtained. When no common factors are
present in the AR and MA parts, the reduced form of the first decomposition is a
restricted ARIMA(p,1,p+1):

fo(L)Dy, =f ,Mm+f (L)e, +De, +f (L)De,
Applying the restriction that the variance of the trend component is zero (s? =0) this
expression smplifiesto

f(LDy, =f,(Qm+De, +f (L)De, (41
The reduced form of the Cyclical Trend decomposition (3.4) corresponds to the restricted
ARIMA(p ,1p +1)

Y o (LDY, =Y, My (L), +€,, +Y , (L)De,
andwhen s? =0,

Y (L)Dy =y @Dmte, , +y . (L)De (4.2

The ARMA models of Table 4.3 have been estimated with the series in
deviations from their means given our interest in the autoregressive parameters. The
estimations have been performed with a general parametric specification roughly
coherent with the two UCM analysed. Again, the sup statistics in Table 4.3 must be
evaluated by comparing their values with those presented in Table B.11. As for UC
models, the null hypothesis of no structural change could not be rejected for most of the
cases™ (except for Spanish GDP and Euro4 GDP). The discrepancies in the rejection of
the null hypothesis of parameter stability in the UCM and the compatible ARMA
models for the analysed series can be attributed to the low power of the test for small
sample sizes and the proximity between the null and the alternative hypothesis as we
indicated in Section 3.1.

In absence of a power analysis of the sup F(l )Ew test in UCM, visual inspection

of the recursive parameters may offer complementary information to the sup statistic.
We have plotted the recursive estimates of the autoregressive parameters of some of the
UCM in the Appendix C (Graph C.5). These graphs aso contain additional information
about how to model parameter instability. The recession periods'® in these graphs are
shaded and the correspondence between recessions and changes in the autoregressive
parameters is clear. Although the parameter variations are not substantial in most of the
cases, as indicated by the sup F(l )E(D, some stability gains would be possible if we

model the most important changes in a convenient way (i.e. by means of regime
switching or with intervention analysis).

' According to Table B.11, the rgjection levels are less than 10%.
'® The criteria used to date recession periods are exposed in the Tables B.12 and B.13 of
the Appendix B.
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Table4.1: Estimation results of the Trend plus Cycle model (3.3)

sF(l )5y m s? f, f, f,
UK GDP 0.8188 05539 01351 14263 -0.1133 -0.3527
701-03.1 (0.0140) (0.0530) (0.0524) (0.0071) (0.0397)
Germany 1.7743 05721 02231 12644 00371 -0.3336
GDP 70.I- (0.0161) (0.0570) (0.0095) (0.0062) (0.0007)
03.1
France GDP  0.3021 05998 0.1441 16864 -09591 0.2727
701-03.l (0.0521) (0.0283) (0.0112) (0.0119) (0.0005)
Italy GDP 0.4537 06041 03722 13924 -0.3985
701-03.1 (0.0412) (0.0829) (0.0162) (0.0099)
Spain GDP 2.7475 06499 00659 1.8874 -1.0855 0.1898
80.1-03.1 (0.0403) (0.0192) (0.0253) (0.0221) (0.0044)
Eurozone 0.1543 04386 00421 18155 -09547 0.1138
GDP 91— (0.0327) (0.0203) (0.0958) (0.0912) (0.0115)
03.1
Euro-4 1.0560 04938 00681 17146 -08669 0.1367
Gbp” (0.0248) (0.0189) (0.0239) (0.0150) (0.0024)
80.1-03.1
UK IPI 1.0347 01112 00408 18723 -0.8820
70.01-03.04 (0.0058) (0.0125) (0.0359) (0.0353)
Germany IPl 1.4030 01281 00809 15651 -0.3797 -0.1965
70.01-03.04 (0.0061) (0.0168) (0.0452) (0.1108) (0.0626)
France Pl 0.4009 01316 00448 18619 -0.8811 0.0098
72.01-03.04 (0.0059) (0.0149) (0.0560) (0.0666) (0.0118)
Italy IPI 0.9306 0626 01173 16338 -04501 -0.1978
70.01-03.03 (0.0080) (0.0374) (0.0358) (0.0319) (0.0050)
Spain IPI 1.9140 01616 02217 14129 -0.4242
75.01-03.04 (0.0107) (0.0473) (0.0115) (0.0052)
EurozonelPl  6.7900 01627 00330 12236 04109 -0.6466
85.01-03.03 (0.0088) (0.0089) (0.0023) (0.0018) (0.0008)

Each series corresponds to y =100* 1og(GDP) or y =100*log(I Pl,).
The standard deviations are present in parenthesis.
) Sum of the GDPs of Germany, France, Italy and Spain in Euros.



Table 4.2: Estimation results of the Cyclical Trend model (3.4)

sup F(1 )3 m s? f fa fa
UK GDP 05865 05722 00118 16565 -0.7571
70.-03.1 (0.0961) (0.0093) (0.1489) (0.1262)
Germany 16039 05475 00086 19948 -14301 0.3430
GDP 70.1- (0.0860) (0.0088) (0.4336) (0.7433) (0.3702)
03.1
France GDP 0.3649 0.5820 0.0019 24138 -21851 0.7336
70.-03.1 (0.1081) (0.0006) (0.0481) (0.0562) (0.0387)
ltaly GDP 22046 05958 00473 14710 -0.7503
70.-03.1 (0.0781) (0.0149) (0.0380) (0.0085)
SpanGDP 31467 06083 00138 08507 06816 -0549
80.1-03.I (0.1414) (0.0063) (0.0092) (0.0531) (0.0403)
Eurozone 00566 04439 00068 18202 -12216 02625
GDP (0.0834) (0.0077) (0.3971) (05015) (0.1587)
91.1-03.1
Euro-4 13916 04777 00042 19713 -14369 0.3936
GbpP” (0.0906) (0.0038) (0.3320) (0.5528) (0.2704)
80.1-03.1
UK IPI 09850 00937/ 00041 1.7000 -0.7651
70.01-03.04 (0.0603) (0.0015) (0.0306) (0.0255)
Germany IPl 11794 01311 00037 10200 06436 -0.7256
70.01-03.04 (0.0503) (0.0011) (0.0605) (0.1299) (0.0709)
France IPI 16051 01291 00039 11227 04461 -0.6434
72.01-03.04 (0.0451) (0.0012) (0.0076) (0.0060) (0.0013)
Italy 1P 09040 01502 00042 09707 08274 -0.8655
70.01-03.03 (0.0525) (0.0014) (0.0056) (0.0126) (0.0144)
Spain 1P 40036 01595 00007 18469 -0.8770
75.01-03.04 (0.0499) (0.0004) (0.0593) (0.0541)
EurozonelPl 51546 01525 00017 0894 09139 -0.8654
85.01-03.03 (0.0538) (0.0008) (0.0065) (0.0656) (0.0634)

Each series correspondsto y =100* log(GDP,) or y =100*log(I Ply).
The standard deviations are present in parenthesis.
) Sum of the GDPs of Germany, France, Italy and Spain in Euros.

13



Table 4.3: Estimation results of the ARMA Models

2

a'lpl:(l ):;(1) Sa fl f 2 f3 ql q2 q3
UK GDP 0.3103 0.7391 00374 -02046  -0.3764 0.3002 -02397  -0.2031
70.1-03.1 (02034) (0.1845) (0.1460) (0.2259) (0.2452)  (0.1897)
Germany GDP 1.8873 0.7724  -0.2856 0.6570 -05353  -0.2559 0.7439 -0.3772
70.1-03.1 (03850) (0.1430) (0.3373) (04203) (0.1368) (0.3914)
France GDP 0.2067 0.2593 10177 -0.3609  -0.5578 1.3747 0.1697 -0.2629
70.1-03.1 (02028) (02889) (0.1554) (0.2340) (0.3913) (0.2223)
Italy GDP 1.3783 0.6072  -1.4996 0.8708 -1.1842 0.5211 0.1285
701-03.1 (0.1244)  (0.1243) (01577) (0.1546) (0.1142)
Spain GDP 2.8948 03141 04979 -05608 -0.4564 0.6230 -0.3551
80.1-03.1 (01873) (0.1420) (01033) (0.2147) (0.2154)
Eurozone GDP 0.1757 -0.5338 06429 -0.3528 -0.0322 0.8150
91103, 01726 (03247) (0.3452) (0.2465) (0.2723) (0.2340)
Euro-4 GDP"” 3.0227 02396 -1.5863 1.4694 -05552  -1.4324 1.3667 -0.3412
80.1-03.1 (03139) (0.3386) (0.2627) (0.3500) (0.3885) (0.3493)
UK IPI 1.7404 11289 -0.1114  -0.0400 -0.2027  -0.0392 0.1277
70.01-03.04 (0.0608)  (0.0568) (0.0805) (0.0778) (0.0526)
Germany |PI 0.6239 18633 0.0841 -0.0431 0.0413 -0.2359  -0.0566 0.1552
70.01- 03.04 (01164) (01192) (0.0942) (0.1273) (0.1144) (0.0922)
France | PI 1.6829 13863 -008%8 -01210 -0.309%  -0.3667 0.0183 -0.1869
72.01-03.04 (01633) (0.1562) (0.1334) (0.1735) (0.1521) (0.1315)
Italy IPI 1.0075 50048 0.0589 0.1555 0.1665 -0.3868 0.1797 0.1666
70.01-03.03 (0.0896) (0.0863) (0.0746) (0.1041) (0.1016) (0.0819)
Spain IPI 15211 28882 04145 0.2874 -0.1047 0.2000 -0.0856
75.01-03.04 (02538)  (0.2273) (02621) (0.2085)  (0.1201)
Eurozone | Pl 1.5087 04801 -0.1968  -0.5982 0.0191 -05785  -0.6704 0.6706
85.01-03.03 (0.0913) (0.0659) (0.0908) (0.0747) (0.0690) (0.0746)

Each series corresponds to y =100* Diog(GDP,) or y=100* Diog(IP!l,) in deviations from the mean.

The standard deviations are present in parenthesis. The signs of the autoregressive parameters follow the notational
convention of the estimation command armax.m of Matlab, so, to compare with those of Tables 4.1 and 4.2 must be

changed.

) Sum of the GDPs of Germany, France, Italy and Spain in Euros.
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5. Someillustrative examples of parameter instability

The computed values of the supF(I );, for UCM and ARMA reduced forms do

not reject the null hypothesis of constant coefficients in most of the series modelled.
Nevertheless, Spanish GDP and the Industrial Production Index of the Eurozone show
high values for this datistic both in Trend plus Cycle and Cyclica Trend
decompositions. The graphs of the recursive coefficients (Graph C.5 in the Appendix C)
seem to confirm this result.

To achieve parameter stability we have severa modelling strategies that
consider parameter variation as Markov Switching models or SETAR models.
Intervention analysis can also be useful in some cases. For illustrative purposes we have
modelled the Eurozone IPl with a simple intervention model that allows for variation in
the autoregressive parameters from 1991.11 until the end of the sample. This date
coincides with the beginning of a recession period located using the smoothed cyclical
component of the Eurozone IPI. For the case of the Spanish GDP, the second sample
period begins after 1991.1 in which the graph of Dlog(y,) clearly shows a different

behaviour. The supF(l )E(D statistic in the ARMA model confirms parameter
instabilities.

Table 5.1: Estimation results with varying autor egressive parameters of the
Eurozone I Pl and the Spanish GDP

m s’ f, f, fq

Eurozone Pl 01525 00017 08964 00139 -0.8654
85.01-03.03 (0.0538) (0.0008) (0.0065) (0.0656) (0.0634)

85.01-91.10 03016 06579  0.0402
0.1598” 0.0038” (0.0058) (0.0026) (0.0030)

(0.0689) (0.0014)
91.11-03.03 0.8894 08690 -0.8213
(0.0253) (0.0739) (0.0516)

Span GDP 06083 00138 08507 06816 -0549%
80.-031  (0.1414) (0.0063) (0.0092) (0.0531) (0.0403)

80.1-90.1V 08946 04440 -0.3526
05976 0.0142" (0.0872) (0.1199) (0.0731)

(0.3813)  (0.0063)
91.1-03.l 10846 02583 -0.3680
(0.2792) (0.4860) (0.2621)

Standard deviations in parenthesis.
) These parameters have been assumed constant in both subperiods.

Table 5.1 shows that, in both cases, the parameter variations seems substantial.
The plotted filtered components of the Spanish GDP and the Eurozone IPI obtained
from these new estimations show only slight differences, but the smoothed component
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of the Eurozone IPI (Graph 5.1) experiments enough variation to change the dating
obtained when the parameter variation in the coefficients is not modelled.

Graph 5.1: Smoothed cyclical components of the Eurozone I Pl with and Without
parameter s variation modelled (Trend Cycle decomposition (3.4) )"

_'8 L L L D N B P L DL B B B DL L AL LR B B |

86 88 920 o2 94 96 o8 0]0) 02

— Cycle, constant parameters -———-- Cycle, varying parameters|

)shadowed areas: recession periods from the constant parameter UC model.

In the case of the Eurozone IPI, the changes in the dating of the business cycle
anticipate at least one month the inflexion points (beginnings and endings of recessions)
and also signal a possible recession period at the end of the sample. The confirmation of
this period as really recessive depends on the data available in the following months
(the sample period ends in 2003.03) due to the conditioning of the smoothed component
on future information'’.

6. Conclusions

When using UCM, the dating of the cycle phases departs from the estimation of
the cyclica unobserved components. When the UCM specified to estimate these
components have parameter instability, the estimated cyclical components may be
misleading. If instabilities are present in the UCM parameters these may be trandated to
the parameters of the ARMA model of the corresponding observed stationary variable.
To detect the presence of instabilities in the UCM and ARMA modéls, first we have
obtained linear models and then computed a recursive Wald type test. Since the results
are asymptotic, the combined effect of samples of moderate size and parameters values
near nonstationarity may distort the size and power of the recursive Wald tests. To
illustrate this point, the empirical size and power of the test have been presented for
some selected examples, showing reasonable val ues.

" The data |ater available confirm a good portion of the year 2003 as recessive.
16



When the recursive statistics have been computed for the UC and ARMA
models of selected GDPs and IPIs, we have found stability in most of the models
analysed. The main exceptions are Spain’s GDP and the Eurozone IPI. Once corrected
for the instabilities, the chronology of the cycle phases of the Eurozone IPI, as given by
the smoothed cyclical component, shows small changes that indicate a systematic
anticipation for al the phases when comparing to the chronology obtained with the
uncorrected cyclical component.
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Appendix A: Heter oskedasticity correction in the cyclical equation

A genera State Space form (Hamilton, 1994) is

X, =d+Fx,;+e,
Y, = Hx, +¢,

Without loss of generality and for notational convenience, let us assume
y(L)=f, (L) and p=2. Then, in the Trend plus Cycle decomposition (3.3),

eTt u él 0 0u e, U
_Ac;t H F:g) . zu’ et:gezﬂand H=[1 1 0]. While in the Cyclical
€. & 1 04 g0 ¢
€T, d e 1 0u €€ U
Trend decomposition (3.4), xt:ng_lﬂ, F=g) f fzﬂ, et:ge*z,t-lg and
&4 @ 1 0F  goj

D %\
o\

H=[1 0 0].Finaly, in both decompositions, d = £0y;.
€0
Under both decompositions we are interested in analyzing whether the
parameters in the cycle equation are constant. If the cyclical component C, were
observable the solution would be straightforward by applying the sup statistic. The
problem here is that C, (or C,, in the Cyclical Trend decomposition without any

substantial change in what follows) is unobserved and must be estimated firstly. Let us
see a solution by means of the Kalman filter.

Definex,, = E(x|.), Xqi1 = E(x,.,) ad Yier = E(y..,), where E(|t) means
the linear projection on information set t. Define aso the variance-covariance metrices
Pt|t =E(x, - tht)(X tht) e =E(X; - Xt|t_1)(xt - Xt|t.1)land52ht|t—l = E(y, - yt|t.1)2-
Then, the Kalman filter prediction equations are:

X1 = d+ FXt.qt.l
PtIt ,=FP. Jlt F+S,
yt|t-1 - qt-l
h1|t.1 =Y Yy
Sty = HPye H* s
while the updating equations are:
Xy = Xy k’[ht|t—1
where the matrix k; is:
Ky =Py H'(HPy jH'+s2) ™!

and:
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Pt|t :Pt|t 1 t|t 1H (HPy H' +Se) "HP,

ft-1 ft-1
yt|t = HXt|t
hq =Y Yy
ST, =HPyH s

Notice that k, isnot the Kaman gain, although the two are related.

The forecasting errors are:

atlt :Xt - th,[

Ay =X - X

where X, Xy..;» ¥y, @d y,,, may be obtained from the Kalman filter.

ft-1

Define the slection vector s = [0 1 0]. When substituting the unobserved
cycle component C, by its esti mationCtIt and similarly with its lags, the resulting

equation is estimable. SubstitutingC, :th +s.a,,, in the state equation, we easily

ft?

obtain:
Ct|t zflct-1|t-1+f 2 Ct-2|t-2 tz,
with:
Z, :SC(et - at|t +f1at-11t-1 +f Zat—2|t—2 )
Now, a,, is:

Ay = (d+Fx ., +&)- (Xt|t-1 + ktht|t—1): FX¢q - Xt-qt-l) +e - (kthtlt—l)
Simplifying:
at|t =Fa t-qt-1 te - (kthtlt 1)
and selecting the second element for the cyclical component

c —
S at|t atlt _SCFat-th-l +Sc€ (ktht|t 1)
AnT
?at-]|t-lu
€ c
tt [0 f, f ]eat ]|tlu+e2t S ktht|t1
c
edt At 2u
or
t|t =f at 1t- 1+f at 3t- 2 T€x-S kthtlt 1

Therefore, the perturbation of the estimable equation for the cyclical component
simplifies to:
z, =sckh
and the estimable equation turns out to be:
Ctlt =f 1Ct.qt.1 +f,C

Now, under the null, the prediction error h

tt-1

+s:k.h

t-2Jt-2 i1

{10 is uncorrelated with X g1 and

X because the latter are linear combinations of the information sets up to t-1 and

t-2t- 27
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t-2, sy y,, ad y ,; and ht|t-l is orthogonal to y,, and y,,. Therefore,
Ci e ad ~ hy, ,. Moreover, while V, is heteroskedastic because

3\24 =s.th[HPtlt_lH'+s§Jk'ts'C
it is not correlated, because E(hdt-lhls|s-l) =0, t! s (Harvey, 1989, p. 112). Therefore,
z, =sckihy, , isalso uncorrelated. So the only remaining problem to obtain efficient
OLS estimations is to correct for the heteroskedasticity. To do so, given that
Sy :sckt[HP H'+S§Jk's' we define

qt-1 toc?

Sy = \/sckt [HPtlt_lH'+s ﬁjk't S

t-4t-2 tt-1

and denoting
Cii=s _zllct/t
the final equation to be estimated recursively will be:
Cy=fy Ciga +f, Cigia™W

with w, :s;,tlzt. This final equation is ready to be recursively estimated and tested for
the existence of at least one break along the sample.
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Appendix B

TableB.1: Critical valuesfor the sup F(l ),
of an AR(1) model

f=-05 f=-7
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
075 270 267 288 0.75 277 268 273
080 305 315 322 0.80 315 303 321
085 358 372 372 0.85 368 366 370
090 442 433 423 090 450 437 434
095 573 549 538 0.95 603 530 535
099 1117 850 7.77 0.99 985 758 807

f=-09 f=-095
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
075 272 270 277 0.75 254 253 270
080 306 309 3.10 0.80 297 284 311
085 361 355 365 0.85 344 329 344
090 426 431 427 090 409 397 402
095 566 547 546 0.95 548 571 537
009 923 795 871 0.99 964 792 931

The critical values have been computed by 1000 Monte Carlo replications and different T's. SUp F(I ) :)((1) is the

Wald type statistic to test the recursive estimations against the full sample estimations. The recursive statistic has
been computed with symmetric 15% trimming. Models have been smulated and estimated using the filter.m and
armax.m sentences from Matlab 6.5p.

TableB.2: Power of the sup F(l )y,
for an AR(1) model with varying f

Critical T,1=50 T1=75 T,=100 T1=250 T,=500
values (k=1) T=100 T=150 T=200 T=500 T=1000
Casel: 1£t£Ty, f =-05;, T(+1£tET, f =-0.7
4.40 24.9 314 37.0 67.9 94.5
Case2: 1£t£Ty, f =-05;, T(+1£tET, f =-0.9
4.40 77.8 91.5 97.2 100.0 100.0
Case3: 1£t£Ty, f =-05; T(+1£t£T, f =-0.95
4.40 89.4 97.1 99.2 100.0 100.0

Entries are the percent rejections based on 10% critical values from Table 2.1. The coefficients are assumed to
experiment a change in the middle of the sample. Numerical calculations are computed by Monte Carlo simulations
based on 1000 replications. k is the number of regressors. The recursive statistic has been computed with symmetric
15% trimming. Models have been simulated and estimated using the filter.m and armax.m sentences from Matlab
6.5p.
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TableB.3: Critical valuesfor the sup F(l ),

of aMA(1) model

g=05 g=0.7
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
0.75 2.68 2.81 2.77 0.75 2.76 2.73 2.77
0.80 3.08 3.16 3.09 0.80 3.11 3.07 3.06
0.85 3.51 3.65 3.51 0.85 3.60 3.54 3.50
0.90 4.48 453 4.22 0.90 4.34 4.25 4.10
0.95 5.80 572 5.50 0.95 5.58 5.62 493
0.99 10.74 8.11 8.44 0.99 9.58 9.07 7.85
g=0.9 g =0.95
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
0.75 2.76 2.73 2.77 0.75 2.38 2.62 2.59
0.80 3.11 3.07 3.06 0.80 2.76 2.98 2.92
0.85 3.60 3.54 3.50 0.85 3.44 341 3.34
0.90 4.34 4.25 4.10 0.90 4.20 4.26 391
0.95 5.58 5.62 4.93 0.95 581 5.78 5.00
0.99 9.58 9.07 7.85 0.99 9.60 9.38 7.73
See footnote of Table B.1.
Table B.4: Power of the sup F(l )y,
for a pseudo-MA(1) model with varying q
Critical T1=50 T1=75 T,=100 T1=250 T,=500
values (k=1) T=100 T=150 T=200 T=500 T=1000
Casel: 1£t£T1, q=05 Ti+1£t£T, g=0.7
4.40 17.4 20.1 25.5 43.6 73.9
Case2: 1£t£T1, q=0.5 T;+1£t£T, q=0.9
4.40 28.1 43.5 53.3 90.0 99.7
Case3: 1£t£T1, q=0.5; T,+1£t£T, g=0.95
4.40 345 46.5 60.1 94.6 100.0
See footnote of Table B.2.
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TableB.5: Critical valuesfor the sup F(l ); .,
of an ARMA(1,1) model

f=-05and q=05 f=-07and q=05
Percentile T=100 T=200 T=500 Percentile T=100 T=200 T=500
0.75 211 2.09 2.13 0.75 2.06 2.24 2.22
0.80 2.36 2.31 2.36 0.80 2.40 2.46 2.42
0.85 2.63 2.56 2.66 0.85 2.80 2.65 2.72
0.90 3.05 3.00 3.14 0.90 3.13 3.00 3.12
0.95 3.93 3.53 3.78 0.95 4.06 3.65 3.96
0.99 5.85 5.22 511 0.99 5.67 5.08 5.28
f=-09and q=05 f =-095and =05
Percentile T=100 T=200 T=500 Percentile T=100 T=200 T=500
0.75 1.96 2.19 2.27 0.75 1.92 2.28 251
0.80 2.27 2.45 2.50 0.80 2.14 2.56 2.77
0.85 2.62 2.76 2.80 0.85 2.43 2.87 3.08
0.90 3.18 3.19 3.18 0.90 2.91 3.23 3.47
0.95 4.31 3.80 3.83 0.95 3.69 411 4,25
0.99 6.17 5.56 5.45 0.99 6.29 6.45 5.81

See footnote of Table B.1.

Table B.6: Power of the sup F(l )y,
for a pseudo-ARMA(1,1) model with varying f

Critical T,1=50 T1=75 T,=100 T1=250 T1=500
values (k=2) T=100 T=150 T=200 T=500 T=1000
Casel: 1£t£Ty, f =-05, =05 T+1E£tET, f=-07,9g=05
3.16 20.6 26.4 314 60.5 88.6
Case2: 1£t£Ty, f =05 9=05 T+1EtET, f=-09,9=05
3.16 63.5 82.6 92.6 100.0 100.0
Case3: 1£t£Ty, f =05 =05, T,+1£t£T, f =-095 g=0.5
3.16 80.9 93.6 97.9 100.0 100.0

See footnote of Table B.2.



TableB.7: Critical valuesfor the sup F(l );,,
of an ARMA(1,1) model

f=-05and q=05 f=-05and q=0.7
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
0.75 211 2.09 2.13 0.75 2.14 211 2.22
0.80 2.36 2.31 2.36 0.80 2.39 2.36 2.44
0.85 2.63 2.56 2.66 0.85 2.73 2.66 2.69
0.90 3.05 3.00 3.14 0.90 3.19 3.06 3.01
0.95 3.93 3.53 3.78 0.95 3.88 3.80 3.89
0.99 5.85 5.22 511 0.99 5.85 5.46 5.26
f=-05and q=0.9 f =-05and q=0.95
Percentile T=100 T=250 T=500 Percentile T=100 T=250 T=500
0.75 2.03 2.14 2.25 0.75 2.09 2.19 2.13
0.80 2.24 2.35 2.47 0.80 2.34 241 2.36
0.85 2.59 2.67 2.83 0.85 2.68 2.71 2.67
0.90 3.06 3.17 3.24 0.90 3.15 3.04 2.97
0.95 3.77 3.94 3.93 0.95 4.07 3.90 3.60
0.99 6.15 5.72 5.74 0.99 6.97 5.86 4.85

See footnote of Table B.1.

Table B.8: Power of the sup F(l )y,
for a pseudo-ARMA(1,1) model with varying q

Critical T1=50 T.=75 T1=100 T1=250 T1=500
vaues(k=2)  T=100 T=150 T=200 T=500 T=1000
Case L 1Et£ Ty, f =-05, =05, T+1ELET, f =05, q=0.7
3.16 14.8 16.7 195 39.8 69.3
Case2: 1£t£T4, f =05, =05, T+1ELET, f =05, q=0.9
3.16 25.8 33.9 44.4 88.6 99.7
Case3: 1Et£ T4, f =05, =05, T+1ELET, f =-05, =095
3.16 27.2 39.2 51.3 92.6 99.9

See footnote of Table B.2.



TableB.9: Empirical distributions of the sup F(I ),
for the Trend plus Cycle UCM of Table 4.1

Percentile UK Germany  France Italy Spain Eurozone Euro4
GDP GDP GDP GDP GDP GDP GDP(*)
T=133 T=133 T=133 T=133 T=93 T=49 T=93
0.75 21573 2.0285 18904 21973 1.9863 2.2498 2.0402
0.80 2.3573 2.2393 20543 25176 22057 2.6302 2.2575
0.85 2.7107 2.5555 22855 28616 24943 31114 26118
0.90 3.1980 3.0191 26262 34396 2.7598 3.6726 2.9809
0.95 4.0500 3.6118 31463 42454 3.6534 5.5359 3.7116
0.99 5.6730 57750 46026 6.1257 6.6353 9.5509 6.8035
UK IPI Germany France Italy IPI Spain IPI  Eurozone
1Pl 1Pl IPI
T=400 T=400 T=376 T=399 T=340 T=219
0.75 2.9362 19112 2.0003 20334 2.3089 24280
0.80 3.1452 2.1070 2.2308 2.2676 2.5674 2.7878
0.85 3.4659 2.3253 25279 2.5422 2.8222 3.1505
0.90 3.9546 2.6835 2.8745 27713 33334 3.6647
0.95 5.0148 3.2499 3.6335 34135 3.9264 4.4763
0.99 7.3014 4.7132 5.8579 4.7325 5.5893 6.7788

The critical values have been computed by 1000 Monte Carlo replications. SUP F(I )E(l) is the Wald type statistic

to test the recursive estimations against the full sample estimations. The recursive statistic has been computed with
symmetric 15% trimming.
) Sum of the GDPs of Germany, France, Italy and Spain in Euros.

Table B.10: Empirical distributions of the sup F(l ),
for the Cyclical Trend UCM of Table 4.2

Percentile UK Germany  France Italy Spain Eurozone Euro4
GDP GDP GDP GDP GDP GDP GDP(*)
T=133 T=133 T=133 T=133 T=93 T=49 T=93
0.75 24122 19862 22962 27558 2.0485 2.2593 2.0880
0.80 2.7289 21964 25266 31537 23155 2.7002 2.4497
0.85 3.2126 24541 28024 35608 2.6174 3.1337 2.8234
0.90 3.8133 29081 32454 44057 3.0040 3.8276 3.4050
0.95 4.8675 38784 40639 56218 3.6709 53221 41919
0.99 7.8998 6.0793 82065 90936 7.0053 11.1172 6.2328
UK IPI Germany France Italy 1Pl Spain IPI  Eurozone
IPI I1PI IPI
T=400 T=400 T=376 T=399 T=340 T=219
0.75 2.2319 2.0747 2.1147 2.5265 2.4084 2.1033
0.80 2.4644 2.3090 2.3442 2.8585 2.7057 2.3378
0.85 2.7604 25715 2.6259 3.2468 3.0649 2.7052
0.90 3.2133 2.8981 3.0025 3.8819 3.6833 3.3183
0.95 3.8870 3.5990 4.0310 5.0490 4.6788 4.1845
0.99 6.3655 5.1800 6.4884 8.6995 7.1584 6.3569
See footnote of Table B.9.
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Table B.11: Empirical distributions of the sup F(l ).,

for the ARMA modelsof Table 4.3

Percentile UK Germany  France Italy Spain Eurozone Euro4
GDP GDP GDP GDP GDP GDP GDP(*)
T=133 T=133 T=133 T=133 T=93 T=49 T=93
0.75 1.5938 1.6826 16809 17436 1.7412 25129 1.8028
0.80 1.7505 1.8461 17954 19011 18778 2.9415 1.9947
0.85 19138 19521 19594 21139 20653 3.4948 22151
0.90 2.0867 22143 22711 23671 24137 44967 24728
0.95 25170 25882 27432 28080 2.8867 7.3732 3.1284
0.99 3.5059 35799 43039 37015 42177 211274 53628
UK IPI Germany France Italy 1Pl Spain IPI  Eurozone
1Pl 1Pl IPI
T=400 T=400 T=376 T=399 T=340 T=219
0.75 1.6160 1.6419 15919 1.5585 16177 1.5483
0.80 17749 17724 17161 1.6802 1.7409 1.6656
0.85 1.9227 1.9307 1.8499 1.8525 1.9308 1.7990
0.90 21395 2.0900 2.1328 2.0342 2.1526 1.9985
0.95 2.5852 2.3983 24001 23721 2.4820 2.3589
0.99 3.6221 3.1301 3.0539 3.1331 3.3124 3.1595

The critical values have been computed by 1000 Monte Carlo replications. Sup F(l )5(1) isthe Wald type statistic

to test the recursive estimations against the full sample estimations. The recursive statistic has been computed with
symmetric 15% trimming.
) Sum of the GDPs of Germany, France, Italy and Spain in Euros.

27



Table B.12: Business cycle chronology (recession periods)
for several European GDPs

Germany France Eurozone Euro4
UK GDP GDP GDP Italy GDP  Spain GDP GDP GDP"
70.1-03.1 70.1-03.1 70.1-03.1 70.1-03.1 80.1-03.1 91.1-03.1 80.1-03.1
73.111-74.1 74.111-75.1 74.111-75.1  74.111-75.11

77.1-77.111

79.1v-81.1  81lI1I1-82.1V  80.1-80.1V  82.1-82.1lI 80.1-80.111 80.1-80.1V
84.1-84.111 85.111-86.1
90.11-92.11  91.1-91.111

921 -93.11  92.111-93.11 92.1-93.1 92.111-93.1 92.1-93.1 92.1-93.11

011-01.1v 01.1-01.111

02.111-

The criterion to date a recession period considers that a peak (the beginning of a recession) is located in quarter t
when {Dyt >0,Dy,,,; <0,Dy,,, < 0}; and a trough (the end of a recession) is located in quarter t when

{Dyt-l <0, Dyt <0, DYt+1 > O}'

) Sum of the GDPs of Germany, France, Italy and Spain in Euros.

Table B.13: Business cycle chronology (recession periods)
for several European IPIs

UK IPI Germany IPI France IPI Italy IPI Spain | PI Eurozone IPI
70.01-03.04  70.01-03.04 72.01-03.04 70.01-03.03 75.01-03.04 85.01-03.03
70.10-71.11 70.04-71.01
74.05-75.08 73.10-75.05 74.04-75.06 74.02-75.06
76.12-77.10 76.12-77.12
79.10-81.02
79.07-81.02 79.12-82.12 8111-82 12 80.05-83.05 80.03-82.03
83.11-84.08 86.05-87.01 86.03-86.09
90.03-91.09 90.07-91.05 89.12-91.04 89.11-91.02
91.07-93.07 92.01-93.08 92.01-93.07 91.10-93.05 91.11-93.07
95.01-95.12 95.04-95.11 95.08-96.09 95.05-96.04 95.06-96.02
98.06-98.12 <6months <6months  98.03-99.02 < 6 months
00.09- 00.12-02.02 01.03-02.04 00.11-02.08 00.08-02.01 00.12-02.01

The criterion to date a recession period in the Indexes of Industrial Production is the trandlation to monthly data of the
conventional criterion applied to GDP. Because of the IPIs series are very noisy we have employed as a cyclical

signal the smoothed cyclical component Ct ;1 Of the estimated Cyclical Trend UCM of Table 4.2. So, we have
consider that a peak (the beginning of a located in  month t when
{Ct/T >0,C.yr <0,...,C g7 < O}; and a trough (the end of a recession) is located in month t when

{Ct- 51 <0, Cyr <0,Ciyyr > 0}-

recession) is
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Appendix C

Graph C.1: Smoothed cyclical components of some of the GDPs
for the Trend plus Cycle decomposition (3.3)
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Graph C.2: Smoothed cyclical components of some of the IPIs
for the Trend plus Cycle decomposition (3.3)
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Graph C.3: Smoothed cyclical components of some of the GDPs
for the Cyclical Trend decomposition (3.4)
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Graph C.4: Smoothed cyclical components of some of the IPIs
for the Cyclical Trend decomposition (3.4)
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Graph C.5: Recursive coefficients of some of the UC models
of Tables4.1 and 4.2
Shadowed areas; recession periods according criteria of Tables B.12 and B.13
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Spain GDP, Cyclical Trend decomposition (3.4)
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