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Abstract

In time series analysis, latent factors are often introduced to model the heterogeneous time

evolution of the observed process. The presence of unobserved components makes the

maximum likelihood estimation method more difficult to apply. Thus a Bayesian approach

is sometimes preferable since it allows to treat general state space models and makes easier

the simulation based approach to parameters estimation and latent factors filtering. The

paper examines economic time series models in a Bayesian perspective focusing, through

some examples, on the extraction of the Business Cycle components like cycle and trend. We

briefly review some general univariate and multivariate Bayesian dynamic models and discuss

the simulation based techniques, such as Gibbs sampling, adaptive importance sampling and

particle filter, useful for parameter estimation and latent factor extraction.

Keywords: Bayesian Dynamic Models, Simulation Based Inference, Particle Filters, Latent

Factors, Business Cycle.

1 Introduction

The analysis of dynamic phenomena, which evolve over time is a common problem to many fields

like engineering, physics, biology, statistics, economics and finance. A time varying system can

‡Corresponding author.
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be represented through a dynamic model, which is constituted by an observable component and

an unobservable internal state. The hidden state vector represents the desired information that

we want to extrapolate from the observations.

Several kinds of dynamic models have been proposed in the literature for time series analysis

and many approaches have been used for the estimation of these models. The seminal work of

Kalman [24] and Kalman and Bucy [25] introduces filtering techniques (Kalman-Bucy filter) for

continuous valued, linear and Gaussian dynamic systems. Another relevant work on dynamic

model analysis is due to Maybeck [36], [37], [38]. He motivates the use of stochastic dynamic

systems in engineering and examines filtering, smoothing and estimation problems for continuous

state space models, in both a continuous and a discrete time framework. Moreover Harvey [22]

extensively studies state space representation of dynamic models for time series analysis and

treats the use of Kalman filter for states and parameters estimation, in continuous state space

setting. Hamilton [21] analyzes several kinds of time series models and in particular introduces

a filter (Hamilton-Kitagawa filter) for discrete time and discrete valued dynamic system. This

filter can be used for dynamic models with a finite number of state values.

Bauwens, Lubrano and Richard [2] compare maximum likelihood inference with Bayesian

inference on static and dynamic econometric models. Harrison and West [23] treat the problem

of the dynamic model estimation in a Bayesian perspective. They give standard filtering and

smoothing equations for Gaussian linear models and investigate the estimation problem for

conditionally Gaussian linear models and for general nonlinear and non-Gaussian models. They

review some Markov Chain Monte Carlo simulation techniques for filtering and smoothing the

state vector and for estimating parameters. Moreover, also the problem of processing data

sequentially has been examined through the use of the adaptive importance sampling algorithm.

Kim and Nelson [27] analyze Monte Carlo simulation methods for non-linear discrete valued

model (switching regimes models). Recently, Durbin and Koopman [16] propose an updated

review on Markov Chain Monte Carlo methods for estimation of general dynamic models, with

both a Bayesian and a maximum likelihood approach.

Sequential simulation methods for filtering and smoothing in general dynamic models have

been recently developed to overcome some problems of the traditional MCMC methods. As

pointed out by Liu and Chen [32] Gibbs sampler is less attractive when we consider on-line

data processing. Furthermore Gibbs sampler may be inefficient when simulated states are very

sticky and the sampler has difficulties to move in the state space. In these situations, the use of

sequential Monte Carlo techniques and in particular of particle filter algorithms may result more

efficient. Doucet, Freitas and Gordon [13] provide the state of the art on sequential Monte Carlo

methods. They discuss both applications and theoretical convergence results for these algorithms,

with special attention to particle filters.
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In the literature on Business cycle analysis, dynamic models are used to capture two

well known features of the economic cycle: comovement and asymmetry. Comovement of

economic variables can be modelled by means of dynamic factor models. Asymmetry denotes

an heterogeneous dynamics of the economic variable. If the behavior of the economic time

series depends on the phase of the economic cycle, then asymmetry arises. In order to capture

asymmetry Goldfeld and Quandt [18] introduced Markov Switching (MS) models for serially

uncorrelated data, while Hamilton [20] applies MS to serially correlated time series. In their

models parameter are allowed to depend on the hidden state of the economic cycle. This state

may assume only two values, which are interpreted as: positive growth trend and negative growth

trend.

A different way to model asymmetry in time series can be found in Tong [50] and Potter [42].

They introduce threshold autoregressive models (TAR). In this class of model, the phase of the

economic cycle is determined by means of a threshold on the level of the observable variable.

Parameters depend on the phase of the cycle.

All above cited approaches and in particular the original work due to Hamilton [20], have been

successively extended in many directions. Kim [26] applies Markov Switching to dynamic linear

model in a Bayesian approach. Kim and Nelson [27] analyze general Markov Switching dynamic

models and provide Bayesian inference tools together with MCMC simulation techniques. In

his switching model Hamilton [20] assumes that the growth rate of real output depend by an

unobserved Markov switching variable. This variable can assume only states accordingly to

the two phases of the business cycle: positive trend growth and negative trend growth. This

hypothesis seems to be too restrictive when looking at data. In particular transitory and

permanent components characterize recession phases. Thus Kim and Murray [28] and Kim

and Piger [29] divide business cycle in three phases: recession, high-growth and normal-growth.

Another kind of extension to the basic model of Hamilton [20] concerns the duration of the

phases of the business cycle. Sichel [46], Durland and McCurdy [15], Watson [51] and Diebold

and Rudebusch [12] assume that the transition probability of the Markov switching problem

depend on the duration of the current phase of the cycle.

Finally, multivariate extensions to the Hamilton [20] univariate MS model have been suggested

by Diebold and Rudebusch [12] and Krolzig [31].

The paper is structured as follows. Section 2 introduces the general representation of a

dynamic model in a Bayesian framework and deals with conditionally normal linear models, which

do not admit analytical filtering and smoothing densities. Section 3 reviews simulation based

methods for inference. In particular section 3.1 review MCMC methods, section 3.2 presents an

adaptive importance sampling algorithm. Section 3.3 discusses particle filter algorithms. Section

4 provides an example of application of the particle filter to business cycle models. Section 5
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concludes.

2 Bayesian Dynamic Models

In the following we give a quite general formulation of a probabilistic dynamic model and we

obtain some fundamental relations for Bayesian inference on it. This definition of dynamic model

would be general enough to include time series models analyzed in Kalman [24], Hamilton [21],

Harrison and West [23] and in Doucet, Freitas and Gordon [13].

We denote by {xt; t ∈ N}, xt ∈ X , the hidden state vectors of the system, by {yt; t ∈ N0},
yt ∈ Y, the observable variables and by θ ∈ Θ the parameter vector of the model. We assume

that state space, observation space and parameter space respectively are X ⊂ R
nx , Y ⊂ R

ny and

Θ ⊂ R
nθ . nx, ny and nθ represent the dimensions of the state vector, of the observable variable

and of the parameter vector respectively.

The general Bayesian state space representation of a dynamic model, accounts also for

nonlinear and non-Gaussian models and is given by an initial distribution p(x0|θ), a measurement

density p(yt|xt,y1:t−1, θ) and a transition density p(xt|x0:t−1,y1:t−1, θ). The dynamic model is

yt ∼ p(yt|xt,y1:t−1, θ) (1)

xt ∼ p(xt|x0:t−1,y1:t−1, θ) (2)

x0 ∼ p(x0|θ) , with t = 1, . . . , T (3)

where p(x0|θ) can be interpreted as the prior distribution on the initial state of the system.

By x0:t
∆
= (x0, . . . ,xt) and by y1:t

∆
= (y1, . . . ,yt) we denote respectively the collection of state

vectors and of observable vectors, up to time t. We denote by x−t
∆
= (x0, . . . ,xt−1,xt+1, . . . ,xT )

the collection of all the state vectors without the t-th element. The same notation is used also

for the observable variable and for the parameter vectors.

If the transition density depends on the past, only through the last value of the hidden state

vector, the dynamic model is defined first-order Markovian. In this case the system becomes

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (4)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (5)

x0 ∼ p(x0|θ) , with t = 1, . . . , T. (6)

Assuming that the first-order Markov property holds is not restrictive because a Markov

model of order p can always be rewritten as a first-order Markovian model.
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In the following we discuss the three main issues which arise when making inference on a

dynamic model, i.e.: filtering, predicting and smoothing. We present general solutions to these

problems, but note that, without further assumptions on the densities, which characterize the

dynamic model, these solutions are not yet analytical.

2.1 State Estimation

We treat here the problem of estimation of the hidden state vector when parameters are known.

We are interested in estimating the density p(xt|y1:s, θ). If t = s the density of interest is called

filtering density, if t < s it is called smoothing density, finally if t > s it is called prediction

density.

For the dynamic model given in equations (4), (5) and (6) we assume that at time t the

density p(xt−1|y1:t−1, θ) is known. Observe that if t = 1 the density p(x0|y0, θ) = p(x0|θ) is the

initial distribution of the dynamic model.

Applying the Chapman-Kolmogorov transition density, we obtain the one step ahead

prediction density

p(xt|y1:t−1, θ) =

∫
X

p(xt|xt−1,y1:t−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (7)

As the new observation yt becomes available, it is possible, using the Bayes theorem, to update

the prediction density and to filter the current state of the system. The filtering density is

p(xt|y1:t, θ) =
p(yt,xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
=

p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
(8)

where p(xt|y1:t−1, θ) is the prediction density determined at the previous step and the density at

the denominator is the marginal of the current state and observable variable joint density

p(yt|y1:t−1, θ) =

∫
X

p(yt,xt|y1:t−1, θ)dxt =

∫
X

p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)dxt. (9)

At each date t, it is possible to determine the K-steps-ahead prediction density, conditional

on the available information y1:t. Given the dynamic model described by equations (4), (5) and

(6), the K-steps-ahead prediction density of the state vector xt can be evaluated iteratively. The

first step is

p(xt+1|y1:t, θ) =

∫
X

p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)dxt (10)

and the k-th step, with k = 1, . . . , K, is
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Figure 1: The causality structure of a Markov dynamic model with hidden states is represented

by means of a DAG. A box around the variable indicates the variable is known, while a circle

indicates a hidden variable.

p(xt+k|y1:t, θ) =

∫
X

p(xt+k|xt+k−1,y1:t, θ)p(xt+k−1|y1:t, θ)dxt+k−1 (11)

where

p(xt+k|xt+k−1,y1:t, θ) =

∫
Yk−1

p(xt+k|xt+k−1,y1:t+k−1, θ)p(dyt+1:t+k−1|y1:t, θ) (12)

where Yk = ⊗k
i=1Yi is the k-times Cartesian product of the state space. Similarly, the K-steps-

ahead prediction density of the observable variable yt+K conditional on the information available

at time t is determined as follow

p(yt+K |y1:t, θ) =

∫
Y

p(yt+K |xt+K ,y1:t+K−1, θ)p(dyt+1:t+K−1|y1:t, θ)p(dxt+K |y1:t, θ) (13)

Due to the high number of integrals that must be solved, previous densities may be difficult to

evaluate with general dynamics. From a numerical point of view simulation methods, like MCMC

algorithms or Particle Filters allow us to overcome these difficulties; while from an analytical

point of view to obtain simpler relations we need to introduce some simplifying hypothesis on

the dynamics of the model. For example if we assume that the evolution of the dynamic model

does not depend on the past values of the observable variable y1:t, then equations (3), (5) and

(6) become
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(yt|xt) ∼ p(yt|xt, θ) (14)

(xt|xt−1) ∼ p(xt|xt−1, θ) (15)

x0 ∼ p(x0|θ) , with t = 1, . . . , T . (16)

The causality structure of this model has been represented through the Directed Acyclic Graph

(DAG) exhibited in Fig. 1. Under previous assumptions the filtering and prediction densities

simplify as follows

p(xt|y1:t−1, θ) =

∫
X

p(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (17)

p(xt|y1:t, θ) =
p(yt|xt, θ)p(xt|y1:t−1, θ)

p(yt|y0:t−1, θ)
(18)

p(xt+K |y1:t, θ) =

∫
X

p(xt+K |xt+K−1, θ)p(xt+K−1|y1:t, θ)dxt+K−1 (19)

p(yt+K |y1:t, θ) =

∫
X

p(yt+K |xt+K , θ)p(xt+K |y1:t, θ)dxt+K . (20)

We conclude this section with two important recursive relations. Both these relations can

be proved starting from the definition of joint smoothing density and assuming that the Markov

property holds.

The first relation is the sequential filtering equation

p(x0:T |y1:T , θ) = p(x0:T−1|y1:T−1, θ)
p(yT |xT , θ)p(xT |xT−1, θ)

p(yT |y1:T−1, θ)
. (21)

which is particularly useful when processing data sequentially and it is fundamental in

implementing Particle Filter algorithms. A proof of this relation is given in Appendix A.

The second recursive relation provides factorization of the smoothing density of the state

vectors x0:T , given the information, y1:T , available at time T

p(x0:T |y1:T , θ) = p(xT |y1:T , θ)

T−1∏
t=0

p(xt|xt+1,y1:t, θ). (22)

See the proof in Appendix A. The proof differs from that one given in Carter and Köhn [6] because

we consider the general model in equations (4)-(6), with transition and measurement densities

depending on past values of yt. Note that the density p(xt|xt+1,y1:t, θ), which appears in the

joint smoothing density, can be represented through the filtering and the prediction densities

p(xt|xt+1,y1:t, θ) =
p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)

p(xt+1|y1:t, θ)
. (23)
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This factorization of the smoothing density is also relevant when inference is carried out

through simulation methods. See for example the multi-move Gibbs sampler of Carter and Köhn

[6] and the particle filter algorithms.

Only in some well known cases, these filtering densities admit an analytical form. For the

normal linear dynamic model, filtering and smoothing density are given by the Kalman filter.

See Harrison and West [23] for a Bayesian analysis of the Kalman filter. See Harvey [22] for a

frequentist approach to the Kalman filter.

In the next section we introduce an important class of dynamic models, which does not admit

a tractable analytical representation of the filtering, prediction and smoothing densities. These

are conditional normal linear models and are widely used in business cycle analysis (see Kim and

Nelson [27]).

2.2 Conditionally Gaussian Linear Models

A lot of models used in business cycle literature belong to the class of the conditionally normal

dynamic linear models. These are defined as follows

yt = F (st)xt + V (st)εt εt ∼ N(0, I)

xt+1 = G(st)xt + W (st)ηt ηt ∼ N(0, I)

(24)

where εt is independent of ηt and where st is a sequence of random variables. Harrison and

West [23] call this model multi-process model. In the classification proposed by these authors, if

st = st−1 = s, ∀t the model is a multi-process of the first kind, while if st is a stochastic process,

the model is a multi-process of second kind.

Note that if st is a discrete time and finite state Markov chain with known transition

probabilities, the model is called jump Markov linear system or Markov switching linear model

with parameters evolving over time. In the following we consider an example of Markov switching

normal linear model.

Example 1 - Stochastic latent factor model with Markov switching -

Many business cycle models can be represented as a Markov switching linear model. Let yt be

the observable variable and xt the latent factor, which has to be extracted. The switching model

is
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Figure 2: Simulation from the Markov switching stochastic trend model given in Example 2.2. We

set parameters to be α = 0.3, σε = 0.1,ρ = 0.8, µ0 = −2.5, µ1 = 0.5, ση = 0.1, p11 = 0.97, p22 =

0.99.

yt = αxt + σεεt εt ∼ N(0, 1) (25)

xt+1 = µ(st+1) + ρ xt + σηηt+1 ηt+1 ∼ N(0, 1) (26)

st ∼ Markov(P), with st ∈ {0, 1} (27)

where µ(st) = µ + νst and P is the transition matrix.

This kind of model can be found in Kim and Nelson [27]. The absence of analytical filtering

densities makes Bayesian simulation based inference a possible solution to the filtering problem.

We use parameters estimated in Kim and Nelson [27] to simulate the MS model. Fig. 2 exhibits

simulation paths of 1, 000 observations of the Markov switching process, the latent factor and the

observable variable, respectively.

3 Simulation Based Filtering

The main aim of this section is to review both some traditional and recently developed inference

methods for nonlinear and non-Gaussian models. We focus on the Bayesian approach and

on simulation based methods. First Markov Chain Monte Carlo methods are reviewed with
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particular attention to the single-move Gibbs sampler due to Carlin, Polson and Stoffer [5] and

to the multi-move Gibbs sampler due to Carter and Köhn [6] and Frühwirth-Schnatter [17].

Moreover some basic sequential Monte Carlo simulation methods are introduced. We examine

the adaptive importance sampling algorithm due to West [52], [53], the sequential importance

sampling algorithm and more advanced sequential Monte Carlo algorithms called Particle Filters

(see Doucet, Freitas and Gordon [13]).

Finally we investigate the problem of estimation of the parameter vector both in a Bayesian

MCMC based approach and in a sequential data-processing approach. Note that following the

engineering literature, a common way to solve the parameter estimation problem is to treat

parameters θ as hidden state of the system (see Berzuini et al. [3]). The model is restated

assuming time dependent parameter vectors θt, and imposing a constraint on the evolution:

θt = θt−1. The constraint can be expressed also in terms of transition probability as follows

θt ∼ δθt−1
(θt), t = 0, . . . , T (28)

where δx∗(x) denotes the Dirac delta function. The Bayesian model is then completed by assuming

a prior distribution p(θ0) on the parameter vector.

3.1 The Gibbs Sampler

In previous sections we examine some estimation algorithms for filtering, predicting and

smoothing the state vector of a quite general probabilistic dynamic model. In order to examine

Gibbs sampling methods, we consider the following dynamic model

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (29)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (30)

x0 ∼ p(x0|θ) (31)

θ ∼ p(θ) , with t = 1, . . . , T. (32)

The estimation problem is solved in a Bayesian perspective by evaluating the mean of the

joint posterior density of the state and parameter vectors p(x0:T , θ|y1:T ). Tanner and Wong [48]

motivates this solution by the data augmentation principle, which consists in considering the

hidden state vectors as nuisance parameters.

If an analytical evaluation of the posterior mean is not possible, then simulation methods and

in particular Monte Carlo Markov Chain apply. The most simple solution is to implement a single-

move Gibbs sampler (see Carlin, Polson and Stoffer [5] and Harrison and West [23]). This method

generates the states one at a time using the Markov property of the dynamic model to condition
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on the neighboring states. However the first order Markov dependence between adjacent states

induces a high correlation between outputs of the Gibbs sampler and causes a slow convergence

of the algorithm. To solve this problem Carter and Köhn [6] and Frühwirth-Schnatter [17]

simultaneously proposes multi-move Gibbs sampler. The main idea of this method is to generate

simultaneously all the state vectors using analytical filtering and smoothing relations.

Their approach is less general than that of Carlin, Polson and Stoffer [5], but for linear

dynamic models with Gaussian mixture innovations in the observation equation, their approach

is more efficient. In particular the multi-move Gibbs sampler has a faster convergence to the

posterior distribution and the posterior moment estimates have smaller variance. These results

are supported theoretically by Liu, Wong and Kong [34], [35] and Müller [39], who shows that

generating variables simultaneously produces faster convergence than generating them one at a

time.

The idea of grouping parameters (or hidden states) when simulating is now commonly in

Bayesian inference on stochastic models, with latent factors. For example, multi-move MCMC

algorithms have been used for stochastic volatility models by Kim, Shephard and Chib [30] and

extended to generalized stochastic volatility models by Chib, Nardari and Shephard [9]. Shephard

[43] and Shephard and Pitt [45] discussed multi-move MCMC algorithms to non-Gaussian time

series models . Finally, an alternative way of simulating from the smoothing density of the state

vectors is discussed in De Jong and Shephard [11].

In the following we briefly present how to implement the single-move Gibbs sampler for

parameters and states estimation. On the time interval {1, . . . , T}, the conditional posterior

distributions of the parameter vector and of the state vectors are

p(θ|x0:T ,y1:T ) ∝ p(θ)p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) (33)

p(x0:T |y1:T , θ) ∝ p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ). (34)

A basic Gibbs sampler is obtained by simulating sequentially from the parameter vector

posterior (parameter simulation step) in equation (33) and from the state vectors posterior (data

augmentation step) in equation (34) conditionally on the parameter vector simulated at the

previous step. When conditional distributions cannot be directly simulated, the corresponding

steps in the Gibbs algorithm can be replaced by Metropolis-Hastings steps. The resulting

algorithms are called hybrid sampling algorithms and they are validated in Tierney [49].

A generic Gibbs sampler can be used for simulating the posterior of the parameter vector

conditional on the simulated state vectors.
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The single-move Gibbs sampler for the state vectors, conditional on the simulated parameter

vector, is then obtained by drawing each state vector conditionally on the other simulated state

vectors.

Algorithm 1 - Gibbs sampler for the parameter vector

Given simulated vectors θ(i) and x
(i)
0:T , generate the parameter vector

1. θ
(i+1)
1 ∼ p(θ1|θ(i)

2 , . . . , θ
(i)
nθ

,x
(i)
0:T ,y1:T )

2. θ
(i+1)
2 ∼ p(θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
nθ

,x
(i)
0:T ,y1:T )

3. . . .

4. θ
(i+1)
k ∼ p(θk|θ(i+1)

1 , . . . , θ
(i+1)
k−1 , θ

(i)
k+1, . . . , θ

(i)
nθ

,x
(i)
0:t,y1:T )

5. . . .

6. θ
(i+1)
nθ

∼ p(θnθ
|θ(i+1)

1 , . . . , θ
(i+1)
nθ−1 ,x

(i)
0:T ,y1:T )

Algorithm 2 - Single-Move Gibbs Sampler -

(i) Simulate θ(i) through Algorithm 1;

(ii) Given θ(i) and x
(i)
0:T , simulate state vectors

7. x
(i+1)
0 ∼ p(x0|x(i)

2:T ,y1:T , θ(i+1))

8. x
(i+1)
1 ∼ p(x1|x(i+1)

0 ,x
(i)
2:T ,y1:T , θ(i+1))

9. . . .

10. x
(i+1)
t ∼ p(xt|x(i+1)

0:t−1,x
(i)
t+1:T ,y1:T , θ(i+1))

11. . . .

12. x
(i+1)
T ∼ p(xT |x(i+1)

0:T−1,y1:T , θ(i+1))

Single-move algorithm can be implemented for general dynamic models. Moreover, note that

the dynamic model given in equations (29)-(32) satisfies to the Markov property. In this case
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the full posterior density of the state vector, given in the single-move Gibbs sampler (see the

Algorithm 2), is

p(xt|x−t,y1:T , θ) ∝ p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ)p(xt+1|xt,y1:t, θ) (35)

and the implementation of the algorithm becomes easier.

For the general model described in Equations (29)-(32), with measurement and transition

densities depending on past values of the observable variable y1:t−1, the proof of Equation (35)

is given in Appendix B.

Although the simplification due to the Markov property of the dynamic model makes

the single-move Gibbs sampler easier to implement, some problems arise. In particular, the

Markovian dependence between neighboring states generates correlation between outputs of the

Gibbs sampler and origins slower convergence to the posterior distribution (see Carter and Köhn

[6]). A consequence is that if an adaptive importance sampling is carried out by running parallel

single-move Gibbs samplers, the number of replication before convergence of the parameter

estimates is high.

A general method to solve this autocorrelation problem in the output of the Gibbs sampler

is to group parameters (or states) and to simulate them simultaneously. This idea has been

independently applied by Carter and Köhn [6] and by Frühwirth-Schnatter [17] to dynamic models

and the resulting algorithm is the multi-move Gibbs sampler. Furthermore Frühwirth-Schnatter

[17] shows how the use of the multi-move Gibbs sampler improves the convergence rate of an

adaptive importance sampling algorithm and makes a comparison with a set of parallel single-

move Gibbs samplers. The implementation of the multi-move Gibbs sampler depends on the

availability of the analytical form of filtering and smoothing densities.

We give here a general representation of the algorithm, but its implementation is strictly

related to the specific dynamic model. Given the simulated parameter vector obtained through

the Gibbs sampler in the Algorithm 1, the multi-move Gibbs sampler is in Algorithm 3.

The algorithm has been derived trough the recursive smoothing relation given in equation (22).

Moreover, at each simulation step the posterior density is obtained by means of estimated

prediction and filtering densities. By applying the fundamental relation given in equation (23)

we obtain

p(xt|x(i+1)
t+1 ,y1:t, θ

(i+1)) =
p(x

(i+1)
t+1 |xt, θ

(i+1))p̂(xt|y1:t, θ
(i+1))

p̂(x
(i+1)
t+1 |y1:t, θ(i+1))

(36)

We stress once more that the multi-move Gibbs sampler does not easily apply to nonlinear and

non-Gaussian models. Thus in a MCMC approach, the single-move Gibbs sampler remains the

only numerical solution to the estimation problem. Sequential sampling algorithm represents a
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possible solution to this problem. Sequential Monte Carlo algorithm allow us to make inference

on general dynamic models.

Algorithm 3 - Multi-Move Gibbs Sampler -

(i) Simulate θ(i) through Algorithm 1;

(ii) Given θ(i) and x
(i)
0:T , run analytical filtering relations in order to estimate prediction and

filtering densities for each t = 0, . . . , T

7. p̂(xt|y1:t−1, θ
(i+1))

8. p̂(xt|y1:t, θ
(i+1))

(iii) Simulate state vectors by means of the recursive factorization of the smoothing density

9. x
(i+1)
T ∼ p(xT |y1:T , θ(i+1))

10. x
(i+1)
T−1 ∼ p(xT−1|x(i+1)

T ,y1:T−1, θ
(i+1))

11. . . .

12. x
(i+1)
t ∼ p(xt|x(i+1)

t+1 ,y1:t, θ
(i+1))

13. . . .

14. x
(i+1)
1 ∼ p(x1|x(i+1)

2 ,y1, θ
(i+1))

3.2 Adaptive Importance Sampling

The adaptive sequential importance sampling scheme is a sequential stochastic simulation method

which adapts progressively to the posterior distribution also by means of the information

contained in the samples, which are simulated at the previous steps. The adaptation mechanism

is based on the discrete posterior approximation and on the kernel density reconstruction of the

prior and posterior densities. West [52] proposed this technique in order to estimate parameters

of static models. West [53] and West and Harrison [23] successively extended the method in order

to estimate parameters and states of dynamic models.

The first key idea is to use importance sampling (see Casella and Robert [8]) in order to obtain

a weighted random grid of evaluation points in the state space. Let {xi
t, w

i
t}nt

t=1 be a sample drawn

from the posterior p(xt|y1:t, θ) through an importance density gt. The prediction density, given

in equation (17), can be approximated as follow

14



p(xt+1|y1:t, θ) ≈
nt∑
i=1

wi
tp(xt+1|xi

t, θ) (37)

The second key idea, implemented in the adaptive importance sampling algorithm of West

[53], is to propagate points of the stochastic grid by means of the transition density and to

build a smoothed approximation of the prior density. This approximation is obtained through a

kernel density estimation. West [53] suggested to use Gaussian or Student-t kernels due to their

flexibility in approximating other densities. For example, the Gaussian kernel reconstruction is

p(xt+1|y1:t, θ) ≈
nt∑
i=1

wi
tN(xt+1|mta + xi

t(1 − a), h2Vt) (38)

The final step of the algorithm consists in updating the prior density and in producing a

random sample, {xi
t+1, w

i
t+1}

nt+1

i=1 , from the resulting posterior density. The sample is obtained

by using the kernel density estimate as importance density. The algorithm is

The main advantage of this algorithms relies in the smoothed reconstruction of the prior density.

This kernel density estimate of the prior allows to obtain adapting importance densities and to

avoid the information loss, which comes from cumulating numerical approximation over time.

Furthermore this technique can be easily extended to account for a sequential estimation of the

parameter (see the recent work due to Liu and West [33]).

However adaptive importance sampling requires the calibration of parameters a and h, which

determines the behavior of the kernel density estimate. The choice of that shrinkage parameters

influences the convergence of the algorithm and heavily depends on the complexity of the model

studied.

Algorithm 4 - Adaptive Sequential Importance Sampling -

Given a weighted random sample {xi
t, w

i
t}nt

t=1, for i = 1, . . . , nt

1. Simulate x̃i
t+1 ∼ p(xt+1|xi

t, θ)

2. Calculate mt =
∑nt

i=1 wi
tx̃

i
t+1, Vt =

∑nt

i=1 wi
t(x̃

i
t+1 − mt)

′(x̃i
t+1 − mt)

3. Generate from the Gaussian kernel xi
t+1 ∼ ∑nt

i=1 wi
tN(xt+1|(mta + xi

t(1 − a)), h2Vt)

4. Update the weights wi
t+1 ∝ wi

t

p(yt+1|xi
t+1

)p(xi
t+1

|xi
t)

N(xi
t+1

|(mta+(1−a)xi
t),h

2Vt)

Finally, adaptive importance sampling belongs to a more general class of sequential simulation

algorithms, which are particulary efficient for on-line data processing and which have some
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common problems like sensitivity to outliers and degeneracy. In next paragraph we review some

general particle filters.

3.3 Particle Filters

In the following we focus on Particle filters, also referred in the literature as Bootstrap filters,

Interacting particle filters, Condensation algorithms, Monte Carlo filters and on the estimation

of the states of the dynamic model. See also Doucet, Freitas and Gordon [13] for an updated

review on the particle filter techniques, on their applications and on the main convergence results

for this kind of algorithms.

Assume that the parameter vector θ of the dynamic model given in equations (14), (15)

and (16) is known. Different versions of the particle filter exist in the literature and different

simulation approaches like rejection sampling, MCMC and importance sampling, can be used

for the construction of a particle filter. We introduce particle filters applying the importance

sampling reasoning.

At each time step t + 1, as a new observation yt+1 arrives, we are interested in predicting and

filtering the hidden variables and the parameters of a general dynamic model. In particular we

search how to approximate prediction an filtering densities given in Equations (17) and (18) by

means of sequential Monte Carlo methods.

Assume that a weighted sample {xi
t, w

i
t}N

i=1 has been drawn from the filtering density at time t

p̂(xt|y1:t, θ) =
N∑

i=1

wi
tδ{xi

t}
(dxt) (39)

Each simulated value xi
t is called particle and the particles set, {xi

t, w
i
t}N

i=1, can be viewed as a

random discretization of the state space X , with associated probabilities the weights wi
t. It is

possible to approximate, by means of this particle set, the prediction density given in Eq. (18)

as follows

p(xt+1|y1:t, θ) =

∫
X

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt '
N∑

i=1

wi
tp(xt+1|xi

t, θ) (40)

which is called empirical prediction density and is denoted by p̂(xt+1|y1:t, θ). By applying the

Chapman-Kolmogorov equation it is also possible to obtain an approximation of the filtering

density given in Eq. (18)

p(xt+1|y1:t+1, θ) ∝ p(yt+1|xt+1, θ)p(xt+1|y1:t, θ) '
N∑

i=1

p(yt+1|xt+1, θ)p(xt+1|xi
t, θ)w

i
t (41)
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Figure 3: Particles evolution in the SIS particle filter.

which is called empirical filtering density and is denoted by p̂(xt+1|y1:t+1, θ).

Assume now that the quantity E(f(xt+1)|y1:t+1) is of interest. It can be evaluated numerically

by a Monte Carlo sample {xi
t+1, w

i
t+1}N

i=1, simulated from the filtering distribution

E(f(xt+1)|y1:t+1) '
1
N

∑N
i=1 f(xi

t+1)w
i
t+1

1
N

∑N
i=1 wi

t+1

. (42)

A simple way to obtain a weighted sample from the filtering density at time t + 1 is to

apply importance sampling to the empirical filtering density given in equation (41). This step

corresponds to propagate the initial particle set (see Fig. 3) through the importance density

q(xt+1|xi
t,yt+1, θ). Moreover if we propagate each particle of the set through the transition

density p(xt|xi
t−1, θ) of the dynamic model, then particle weights update as follows

wi
t+1 ∝ p(yt+1|xt+1, θ)p(xt+1|y1:t, θ)w

i
t

q(xt+1|xi
t,yt+1, θ)

= wi
t p(yt+1|xi

t+1, θ) (43)

This is the natural choice for the importance density, because the transition density represents

a sort of prior at time t for the state xt+1. However, as underlined in Pitt and Shephard [41] this
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strategy is sensitive to outliers. See also Crisan and Doucet [10], for a discussion on the choice of

the importance densities. They focused on the properties of the importance density, which are

necessary for the a.s. convergence of the sequential Monte Carlo algorithm.

The basic particle filter developed through previous equations is called Sequential Importance

Sampling (SIS). In Algorithm 5, we give a pseudo-code representation of this method.

Algorithm 5 - SIS Particle Filter -

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: wi
t+1 ∝ wi

t

p(yt+1|xi
t+1

,θ) p(xt+1|xi
t;θ)

q(xt+1|xi
t,yt+1,θ)

The Sequential importance sampling permits to obtain recursive updating of the particles

weights and is based on the sequential decomposition of the joint filtering density and on a

particular choice of the importance density. To evidence these aspects we consider the following

smoothing problem.

We want to approximate the smoothing density p(x0:t+1|y1:t+1, θ), of the state vectors as

follows

p(x0:t+1|y1:t+1, θ) '
N∑

i=1

w̃i
t+1δ{xi

0:t+1
}(dx0:t+1) (44)

by simulating {xi
0:t+1}N

i=1 from a proposal distribution q(x0:t|y1:t, θ) and by correcting the weights

of the resulting empirical density. The correction step comes from an importance sampling

argument, thus the unnormalized particles weights1 are defined as follows

wi
t+1

∆
=

p(xi
0:t+1|y1:t+1, θ)

q(xi
0:t+1|y1:t+1, θ)

. (45)

1Note that importance sampling requires to know the importance and the target distributions up to a

proportionality constant, thus the unnormalized weights may not sum to one. However normalized importance

sampling weights can be easily obtained as follows

w̃
i
t =

wi
t∑N

j=1
w

j
t

i = 1, . . . , N and t = 1, . . . , T.

The normalization procedure causes the loss of the unbiasness property.
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The key idea used in SIS consists in obtaining a recursive relation for the weights updating. This

property makes them particulary appealing for on-line applications. Assume that the dynamic

model of interest is the one described by equations (14), (15) and (16) and choose the importance

density to factorize as follows: q(x0:t+1|y1:t+1, θ) = q(x0:t|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ), then the

weights can be rewritten in a recursive form

wi
t+1 = wi

t

p(yt+1|xi
t+1, θ)p(xi

t+1|xi
t, θ)

q(xi
t+1|xi

t+1,yt+1, θ)
(46)

This relation can be proved by using the Bayes rule and the Markov property of the system

(see the proof in Appendix B).

It is well known in the literature (see for example Arulampalam, Maskell, Gordon and Clapp

[1]), that basic SIS algorithms have a degeneracy problem. After some iterations the empirical

distribution degenerates into a single particle, because the variance of the importance weights is

non-decreasing over time (see Doucet et al. [14]). In order to solve the degeneracy problem, the

Sampling Importance Resampling (SIR) algorithm has been introduced by Gordon, Salmond and

Smith [19].

This algorithm belongs to a wider class of bootstrap filters, which use a re-sampling step to

generate a new set of particles with uniform weights. This step introduces diversity in particle

set, avoiding degeneracy. In Algorithm 6, we give a pseudo-code representation of this method.

Algorithm 6 - SIR Particle Filter -

Given the initial set of particles {xi
t, w

i
t}N

i=1, for i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: w̃i
t+1 ∝ p(yt+1|xi

t+1, θ)

3. Normalize the weights: w̄i
t+1 = w̃i

t+1 (
∑N

j=1 w̃j
t+1)

−1, for i = 1, . . . , N .

4. Simulate {xi
t+1}N

i=1 from the empirical density {xi
t, w̄

i
t}N

i=1

5. Assign wi
t+1 = 1/N , for i = 1, . . . , N .

Note that in the SIR particle filter, we assumed q(xt+1|xi
t,yt+1, θ) = p(xt+1|xi

t, θ). Moreover,

due to the resampling step, the weights are uniformly distributed over the particle set: wi
t = 1/N ,

thus the weights updating relation becomes: w̃i
t+1 ∝ wi

t p(yt+1|xi
t+1, θ) ∝ p(yt+1|xi

t+1, θ).
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However, the basic SIR algorithm produces a progressive impoverishment of the information

contained in the particle set, because of the resampling step and of the fact that particles do not

change over filter iterations.

Many solutions have been proposed in literature. We recall the Regularised Particle Filter

proposed by Musso, Oudjane and LeGland [40], which is based on a discretisation of the

continuous state space. Gilks and Berzuini [4] propose the SIR-Move algorithm, which moves

particles after the re-sampling step. Thus, particle value changes and the impoverishment is

partially avoided. Finally, Pitt and Shephard [41] introduce the Auxiliary Particle Filter (APF)

and applied it to a Gaussian ARCH-type stochastic volatility model. They find that the auxiliary

particle filter works well and that the sensibility to outliers is lower than in the basic filters. In

the following we focus on the APF algorithm.

In order to avoid re-sampling, the APF algorithm uses an auxiliary variable to select most

representative particles and to mutate them through a simulation step. Then weights of the

regenerated particles are updated through an importance sampling argument. In this way

particles with low probability do not survive to the selection and the information contained

in the particle set is not wasted. In particular the auxiliary variable µi
t contains and resumes

the information on the previous particle set and it is used in the selection step to sample the

random particle index. Note that the empirical filtering density given in Eq. (41) is a mixture of

distributions, which can be reparameterised by introducing an auxiliary variable i ∈ {1, . . . , N},
which indicates the component of the mixture. The joint distribution of the hidden state and of

the index i is

p(xt+1, i|y1:t+1, θ) =
p(yt+1|y1:t,xt+1, i)

p(yt+1|y1:t, θ)
p(xt+1, i|y1:t, θ) = (47)

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|i,y1:t, θ)p(i|y1:t, θ) =

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|xi

t, θ)w
i
t.

The basic idea of the APF is to refresh the particle set while reducing the loss of information

due to this operation. Thus, the algorithm generates a new set of particles by jointly simulating

the particle index i (selection step) and the selected particle value xt+1 (mutation step) from the

reparameterised empirical filtering density, according to the following importance density

q(xj
t+1, i

j |y1:t+1, θ) = q(xj
t+1|y1:t+1, θ)q(i

j |y1:t+1, θ)

= p(xj
t+1|xij , θ)(p(yt+1|µij

t+1, θ)w
ij

t ) (48)
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for j = 1, . . . , N . Note that the index is sampled using weights which are proportional to the

observation density conditional on a summary statistics on the initial particle set. In this way,

less informative particles are discarded. The information contained in each particle is evaluated

with respect to both the observable variable and the initial particle set. By following the usual

importance sampling argument, the updating relation for the particle weights is

wj
t+1

∆
=

p(xj
t+1, i

j |y1:t+1, θ)

q(xj
t+1, i

j |y1:t+1, θ)

=
p(xj

t+1|xij , θ)p(yt+1|xj
t+1, θ)w

ij

t

p(xj
t+1|xij , θ)p(yt+1|µij

t+1, θ)w
ij
t

(49)

=
p(yt+1|xj

t+1, θ)

p(yt+1|µij
t+1, θ)

Algorithm 7 - Auxiliary Particle Filter -

Given the initial set of particles {xj
t , w

j
t}N

j=1, for j = 1, . . . , N :

1. Calculate µj
t+1 = E(xt+1|xj

t , θ)

2. Simulate ij ∼ q(i|y1:t+1, θ) ∝ wi
t p(yt+1|µi

t+1, θ) with i ∈ {1, . . . , N}

3. Simulate x
j
t+1 ∼ p(xt+1|xij

t , θ)

4. Update particles weights: w̃j
t+1 ∝ p(yt+1|x

j
t+1

,θ)

p(yt+1|µij

t+1
,θ)

.

5. Normalize the weights: wi
t+1 = w̃i

t+1 (
∑N

j=1 w̃j
t+1)

−1, for i = 1, . . . , N .

We conclude this section with a brief discussion of the problem of parameter estimation, for

dynamic models with hidden variables, in a sequential data-processing approach. In principle

parameter estimate and state filtering can be treated separately (see Storvik [47]). In many

applications of particle filter techniques, parameters are treated as known and MCMC parameter

estimates are used instead of the true parameter values. But in this way parameter estimate are

not continuously updated as the hidden states. MCMC is typically a off-line approach, it does

not allow the sequential updating of parameter estimates, as new observations arrive. Moreover,

when applied sequentially, MCMC estimation method is more time consuming than particle filter

algorithms.
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One of the main issue in researching on particle filter is the inclusion of the parameter

estimation procedure in the state filtering algorithm. Some studies have already extended

sequential Monte Carlo techniques in order to jointly estimate state vectors and parameter.

See Berzuini et al. [3] and Storvik [47] for a general discussion of the problem, Liu and West [33]

for the joint application of adaptive importance sampling for parameter estimation and auxiliary

particle filter for hidden state filtering and Casarin [7] for an updated review, with applications

to stochastic volatility models.

4 An Application to Business Cycle Models

The aim of this section is to show how particle filter algorithms apply to a widely used class

of Business Cycle models: Markov switching stochastic latent factor models. We apply APF

algorithm to synthetic data in order to verify the efficiency of the algorithm and to detect possible

degeneracy of the APF algorithm.

We refer to the Markov switching model given in Example 2.2 and apply the algorithm due

to Liu and West [33]. This algorithm combines adaptive importance sampling for sequentially

estimating the parameter vector with the auxiliary particle filter for filtering and predicting the

hidden state. Observe that the latent structure of the MS model in the example exhibits two

levels. The first one is given by the stochastic latent factor xt and the second one is given by the

regime switching process st. This stochastic structure makes the inference more difficult than in

the simpler Hamilton’s MS models.

We adapt the algorithm of Liu and West [33] to our MS model and obtain the following

Particle Filter algorithm.

Algorithm 8 Given an initial set of particles {xi
t, s

i
t, θ

i
t, w

i
t}N

i=1:

1. Compute Vt =
∑N

i=1(θ
i
t − θ̄t)(θ

i
t − θ̄t)

′wi
t and θ̄t =

∑N
i=1 θi

tw
i
t

2. For i = 1, . . . , N and with a and b well chosen tuning parameters, calculate the following

summarizing constant:

(a) S̃i
t+1 = arg max

l∈1,2
P(st+1 = l|st = si

t)

(b) X̃i
t+1 = µi

t + νi
t S̃

i
t+1 + ρi

tx
i
t

(c) θ̃i
t = aθi

t + (1 − a)θ̄t, where θ̃ = (α̃, σ̃ε, ρ̃, µ̃, ν̃, σ̃η, p̃11, p̃22)

3. For i = 1, . . . , N :

(a) Simulate ki ∝ q(k|y1:t+1, θ) = N(yt+1|α̃k
t X̃

k
t+1, σ̃

k
ε t)w

k
t , with k ∈ {1, . . . , N}
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(b) Simulate θi
t+1 from N(θ̃ki

t , b2Vt)

(c) Simulate si
t+1 ∈ {1, 2} from P(si

t+1 = i|ski

t )

(d) Simulate xi
t+1 from N(µi

t+1 + νi
t+1s

i
t+1 + ρi

t+1x
ki

t , σi
η t+1)

4. Update weights w̃i
t+1 ∝ N(yt+1|αi

t+1x
i
t+1, σ

i
ε t+1)/N(yt+1|α̃ki

t X̃ki

t+1, σ̃
ki

ε t)

5. Normalize weights wi
t+1 = w̃i

t+1 (
∑N

i=1 w̃i
t+1)

−1, for i = 1, . . . , N .

The tuning parameters a and b are equal to 3δ−1
2δ

and
√

1 − a2 respectively, where we chose

δ = 0.99 as suggested in West [53].

Figure 4 shows on-line estimation of parameters α, σε, ρ, µ0, µ1, ση, p11, p22 obtained by

running APF algorithm on the synthetic dataset exhibited in Fig. 2. We use a set of N = 1000

particles to obtain empirical filtering and prediction densities. All computation have been carried

out on a Pentium IV 2.4 Ghz, and the APF algorithm has been implemented in GAUSS 4.0.

Figure 5 shows on-line estimation of the latent factor xt.

In order to detect the absence of degeneracy in the output of the APF algorithm we evaluate

at each time step the Survival Rate. It is defined as the number of particles survived to the

selection step over the total number of particles. Particles set degenerates when persistently

exhibiting a high number of dead particles from a generation to the subsequent one. Survival

rate is calculated as follow

SRt = {N −
N∑

i=1

I{0}(Card(Ii,t))}N−1 (50)

where Ii,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values, which are selecting, at

time t, the i-th particle. If at time t the particle k does not survive to the selection step then the

set Ik,t becomes empty. Graph 6 shows the survival rate at each time step. The rate does not

decrease thus we conclude that the APF algorithm does not degenerate in our simulation study.

5 Conclusion

In this paper we describe the Bayesian approach to general dynamic models analysis. We briefly

review the literature on the business cycle modelling, focusing on the Bayesian approach and

recognizing the importance of simulation based methods in Bayesian inference.

To deeply review simulation based methods in business cycle analysis we analyze the problems

of state filtering and parameter estimation for quite general dynamic models used in time series

analysis. We discuss general filtering, predicting and smoothing relations and give a proof of

these realtions.
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Figure 4: On-line parameter estimates. Graphs exhibit at each date the empirical mean and the

quantiles at 0.275 and 0.925 for each parameter.
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Figure 5: Sequentially filtered latent factors, over T = 1, 000 observations.

24



0 200 400 600 800 1000
0.0

0.2

0.4

0.6

S
ur

vi
va

l R
at

e

Observations

Figure 6: Survival Rate of the particle set at each time step.

In the last part of the paper, we provide a review of the Bayesian simulation based inference

and suggest the use of more advanced and efficient sequential simulation techniques for Bayesian

inference on business cycle models. Traditional MCMC methods, like single-move and multi-

move Gibbs sampler have been discussed. Moreover, sequential Monte Carlo methods have been

introduced by means of the adaptive importance sampling algorithm. Finally we analyze basic

sequential techniques and recently developed sequential techniques like particle filter algorithms.
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Appendix A - General Filtering

Proof - Recursive filtering relation given in Equation (21) -

Consider the joint posterior density of the state vectors, conditional on the information available

at time T

p(x0:T |y1:T , θ) =
p(x0:T ,yT |y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(xT ,yT |x0:T−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(yT |x0:T ,y1:T−1, θ)p(xT |x0:T−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
= (51)

= p(x0:T−1|y1:T−1, θ)
p(yT |xT ,y1:T−1, θ)p(xT |xT−1,y1:T−1, θ)

p(yT |y1:T−1, θ)
=

= p(x0:T−1|y1:T−1, θ)
p(yT |xT , θ)p(xT |xT−1, θ)

p(yT |y1:T−1, θ)
.

where the last line is due to the Markov property of the measurement and transition densities.

�

Proof - Recursive smoothing density given in Equation (22) -

Consider the joint posterior density of the state vectors, conditional on the available information

y1:T

p(x0:T |y1:T , θ) =

= p(xT |y1:T , θ)p(x0:T−1|xT ,y1:T , θ) =

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T , θ)p(x0:T−2|xT−1:T ,y1:T , θ) =

Bayes
= p(xT |y1:T , θ)

p(yT |xT−1:T ,y1:T−1, θ)p(xT−1|xT ,y1:T−1, θ)

p(yT |xT ,y1:T−1, θ)
p(x0:T−2|xT−1:T ,y1:T , θ) =

Markov
= p(xT |y1:T , θ)

p(yT |xT ,y1:T−1, θ)p(xT−1|xT ,y1:T−1, θ)

p(yT |xT ,y1:T−1, θ)
p(x0:T−2|xT−1:T ,y1:T , θ) = (52)

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)p(x0:T−2|xT−1,y1:T , θ).

By applying iteratively Bayes theorem and Markov property of the dynamic model we obtain the

recursive smoothing relation
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p(x0:T |y1:T , θ) =

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)
T−2∏
t=0

p(xt|xt+1,y1:T , θ)

= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)
T−2∏
t=0

p(xt|xt+1,y1:t,yt+1:T , θ) (53)

Bayes
= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)

T−2∏
t=0

p(yt+1:T |xt:t+1,y1:t, θ)p(xt|xt+1,y1:t, θ)

p(yt+1:T |xt+1,y1:t, θ)

Markov
= p(xT |y1:T , θ)p(xT−1|xT ,y1:T−1, θ)

T−2∏
t=0

p(yt+1:T |xt+1,y1:t, θ)p(xt|xt+1,y1:t, θ)

p(yt+1:T |xt+1,y1:t, θ)

= p(xT |y1:T , θ)
T−1∏
t=0

p(xt|xt+1,y1:t, θ).

�

27



Appendix B - Simulation Based Filtering

Proof - Single-Move Gibbs Sampler given in Equation (35) -

Consider the full posterior density of the t-th state vector and apply the independence assumption

between yt+1:T and xt

p(xt|x−t,y1:T , θ) = p(xt|x−t,y1:t,yt+1:T , θ)

=
p(xt,yt+1:T |x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

=
p(yt+1:T |x0:T ,y1:t, θ)p(xt|x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

=
p(yt+1:T |x−t,y1:t, θ)p(xt|x−t,y1:t, θ)

p(yt+1:T |x−t,y1:t, θ)
=

= p(xt|x−t,y1:t, θ).

We can simplify the last density as follow

p(xt|x−t,y1:t, θ) = p(xt|x0:t−1,xt+1:T ,y1:t, θ) =

=
p(xt:T ,yt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

=
p(xt+1:T ,yt|x0:t,y1:t−1, θ)p(xt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

=
p(xt+1:T |x0:t,y1:t, θ)p(yt|x0:t,y1:t−1, θ)p(xt|x0:t−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
=

Markov
=

p(xt+1:T |x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ)

p(xt+1:T ,yt|x0:t−1,y1:t−1, θ)
.

The full posterior density of the t-th state vector is thus proportional to

p(xt|x−t,y1:t, θ) ∝
p(xt+1:T |x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) =

= p(xt+2:T |x0:t+1,y1:t, θ)p(xt+1|x0:t,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) =
Markov

= p(xt+2:T |x0:t+1,y1:t, θ)p(xt+1|xt,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) ∝
∝ p(xt+1|xt,y1:t, θ)p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ).

�
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Proof - Recursive weights updating relation given in Equation (46) -

Starting from the definition of importance weights

wt+1
∆
=

p(x0:t+1|y1:t+1, θ)

q(x0:t+1|y1:t+1, θ)
=

Bayes
=

p(x0:t+1,yt+1|y1:t, θ)

q(x0:t+1|y1:t+1, θ)p(yt+1|y1:t, θ)
=

=
p(x0:t|y1:t, θ)p(xt+1,yt+1|y1:t,x0:t, θ)

q(x0:t+1|y1:t+1, θ)p(yt+1|y1:t, θ)
=

=
p(x0:t|y1:t, θ)

q(x0:t+1|y1:t+1, θ)

p(yt+1|x0:t+1,y1:t, θ)

p(yt+1|y1:t, θ)
p(xt+1|x0:t,y1:t, θ) = (54)

Markov
=

p(x0:t|y1:t, θ)

q(x0:t+1|y1:t+1, θ)

p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|xt, θ) =

=
p(x0:t|y1:t, θ)

q(x0:t|y1:t, θ)

p(yt+1|xt+1, θ)p(xt+1|xt, θ)

p(yt+1|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ)
=

= wt
p(yt+1|xt+1, θ)p(xt+1|xt, θ)

p(yt+1|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ)
.

Thus particle weights updating recursive relation is

wt+1 ∝ wt
p(yt+1|xt+1, θ)p(xt+1|xt, θ)

q(xt+1|xt,yt+1, θ)
. (55)

Moreover, if we assume that the importance density for the state xt+1 is the transition density:

q(xt+1|xt,yt+1, θ) = p(xt+1|xt, θ), then equation (55) simplifies to

wt+1 ∝ wt p(yt+1|xt+1, θ). (56)

�
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