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Abstract

In simulated out-of-sample experiments to the Eurozone this paper finds that not
only are real-time point estimates of the output gap unreliable, but so are measures
of uncertainty associated with them. This provides a serious challenge to users of
output gap estimates.

1 Introduction

Policy makers require output gap estimates in real-time.1 They do not have the luxury
of being able to wait, say, to 2020 before deciding whether the economy is currently lying
above or below its trend level. They have to decide, without the benefit of hindsight,
whether a given change to output in the current period is temporary or permanent, that
is whether it is a cyclical or trend movement.2

As shown by Orphanides & van Norden (2002) in an important study for the US
economy, real time output gap estimates can be unreliable. The revisions associated
with end-of-sample or real-time estimates can be considerable; indeed for the US they
were found to be as large as the output gap estimates themselves. Clearly policy-makers
misjudging the position of the business cycle in real-time can lead to sub-optimal policy-
decisions; see Nelson & Nikolov (2001) and Ehrmann & Smets (2003). The findings of
Orphanides & van Norden (2002) for the US, therefore, are worrying.

∗Thanks to Martin Weale for helpful comments. This paper is part of a programme of work undertaken
at the National Institute of Economic and Social Research in London with the support of EUROSTAT.
Address for correspondence: James Mitchell, NIESR, 2 Dean Trench Street, Smith Square, London,
SW1P 3HE, UK. Tel: +44 (0)207 654 1926. E-Mail: j.mitchell@niesr.ac.uk.

1Since our focus is on the “growth” business cycle rather than the “classical” cycle the “business cycle”
and “output gap” are treated synonymously.

2In fact, in real time not only do policy makers apparently require current estimates of the output
gap but future or forecasted values; see Schumacher (2002). In this paper we concentrate on obtaining
in real-time current estimates of the output gap, and their uncertainty. In any case, as we argue below,
one can view obtaining real-time estimates of the (current) output gap as a forecasting exercise.
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This paper first considers a similar exercise to Orphanides & van Norden (2002) for
the Eurozone economy.3 Full sample or final estimates of the output gap are derived using
data available over the (full) sample-period, 1971q1-2003q1. Then real-time estimates are
computed recursively from 1981q1, in a simulated experiment designed to mimic real-
time measurement of the output gap. So-called data revisions, explained by revisions
to published GDP data, are not considered. Indeed this is expedient in an application
to the Eurozone where construction of a ‘real-time’ data set is not readily possible. In
any case, for the US Orphanides & van Norden (2002) find that these data revisions are
less important than so-called statistical revisions. Statistical revisions are explained by
the arrival of new data helping macroeconomists, with the advantage of hindsight, better
understand the position of the business cycle, and also perhaps revising what model they
use to identify and estimate the output gap.

Across a range of widely used univariate and multivariate estimators of the output gap
we find significant differences between real-time and final output gap estimates for the
Eurozone. As the future becomes the present output gap estimates are revised. It is not
just in the US that real-time measurement of the output gap is difficult. This begs the
question, should we be surprised by this unreliability? As forecasters know, the fact that
forecasts are wrong does not mean they are misleading or useless. If within the bounds
of what was expected the forecast can remain useful, similarly for output gap estimates
which we view analogously to a forecast. A user of output gap estimates requires not just
a real-time estimate, which we can view as analogous to a point forecast, but an indication
of the degree of uncertainty associated with the output gap estimate. We should expect
users of output gap estimates to care not just about one possible outcome but about the
range of likely outcomes. Even if the point estimate proves to be revised considerably
with the arrival of new data, estimates can still be useful to policy-makers if an accurate
measure of the uncertainty associated with real-time estimates is provided. Appropriate
contingency plans can be made if reliable measures of uncertainty are provided alongside
point estimates. In fact, measures of uncertainty may be useful in their own right when
analysing, for example, risk and volatility or the probability of a recession. Therefore,
it need not be the case that the lower the ex post statistical revision to the output gap
estimate the better the estimator, as is often implicit in studies evaluating alternative
output gap estimates. There is what amounts to a trade-off between bias and variance.

Therefore in the second part of the paper we take up the challenge of providing mea-
sures of uncertainty associated with real-time estimates of the output gap. We construct
both confidence intervals around the real-time estimates and density estimates.4 Two
measures of uncertainty are considered. The first, more traditional, approach relies on a
state-space representation for the output gap estimator, and uses the Kalman filter re-
cursions and an assumption of Gaussianity to estimate the covariance of the output gap.

3Related studies that examine real-time output gap estimates for the Eurozone are Runstler (2002)
and Camba-Mendez & Rodriguez-Palenzuela (2003).

4Although Orphanides & van Norden (2002), (pp. 578-582), provide measures of uncertainty associated
with their final (smoothed) and quasi-final (filtered) estimates they do not present them for real-time
estimates.
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The second quantifies the degree of uncertainty associated with the fact that future values
of the (log) level of output (and other variables in multivariate measures of the output
gap) are unknown but are known to affect real-time estimates. This is achieved simply
by trying to capture the uncertainty about future values of the (log) level of output by
forecasting the future repeatedly via simulation techniques. The cyclical component at
time t is then derived by de-trending the observed data in the (log) level of output up
to time t plus the forecasted future data. The dispersion of these estimates at time t
provides an indication of the range of likely outcomes for the final output gap estimates.
This approach not only provides one means of measuring the uncertainty associated with
real-time estimates but can also improve the actual performance of real-time estimates.
This is because the accuracy of real-time estimates is a function of how well future values
of the underlying series can be forecast.

Both of these measures are then evaluated to indicate whether they offer a reliable
indication of the degree of unreliability associated with output gap estimates. This is
important, as otherwise all that can be said is the bands are wider for, say, output
gap estimate A than estimate B. Nothing can be inferred about the appropriateness
of the bands per se. We find that the real-time measures of uncertainty do not offer
reliable indications of the degree of uncertainty associated with real-time estimates. This
provides a serious challenge to users of output gap estimates. They must decide what do
to given that there is mismeasurement not just of the output gap (point) estimates but
their uncertainty too.

The plan of this paper is as follows. In section 2 the estimators of the output gap used
in this paper are briefly described. The appendix provides further details of the precise
specifications used. Section 3 then examines the reliability of real-time (point) estimates
of the output gap in the Eurozone. To examine reliability twelve criteria, such as forecast
accuracy as measured by RMSE, are used as diagnostics. Section 4 then considers how
to measure the uncertainty associated with real-time estimates, and then evaluate them
similarly to how point estimates are evaluated on the basis of their RMSE. Section 5 then
re-visits the simulated real-time application to the Eurozone of Section 3. It indicates,
and then evaluates, the degree of uncertainty associated with output gap estimates in
real-time. Section 6 offers some concluding comments.

2 Alternative estimators of the output gap

The output gap, the difference between actual and potential output, is not observable.
Various estimators have been proposed. Gerlach & Smets (1999) make the distinction
between statistical, structural and mixed estimators. The statistical approach views
the estimation of the output gap as a statistical decomposition of actual output into
trend and cyclical components. This approach is univariate. The structural approach
exploits economic theory to estimate the output gap, typically by using a production
function to relate potential output to productivity and inputs of labour and capital; see
Barrell & Sefton (1995) and Economic models at the Bank of England (1999). The data
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requirements for this approach are, however, restrictive since, for example, estimates of
the capital shock are required. We consider the mixed approach.

2.1 A mixed approach to measuring the output gap: combining
statistics and economics

The mixed approach combines elements of the structural and statistical approaches. Time
series methods are used to study output data together with other data that economic
theory suggests are closely related to the output gap. The Phillips Curve, for example,
suggests that inflation data contain information about the output gap while Okun’s Law
suggests unemployment is important. These economic variables may contain useful infor-
mation about the supply side of the economy and the stage of the business cycle. Output
should not be detrended using output data alone.

Specifically we will consider the following class of multivariate estimators of the output
gap: (1) Unobserved components models; (2) Multivariate Hodrick-Prescott filters and
(3) Structural VAR models5. For details see Appendix A and Mitchell (2003).

3 Real-time analysis

The reliability of real-time output gap estimates for the Eurozone is examined by looking
at the extent to which output gap estimates are revised with the arrival of new data. The
real-time estimate of the output gap is constructed using data available only at the time
an estimate is required and is the latest available output gap estimate for each point in
time (in fact, given that we are not examining data revisions the real-time estimate, as
defined here, is equal to the quasi-real estimate as defined by Orphanides & van Norden
(2002)). That is, the real-time estimate at time t is calculated using observations 1 to
t.6 The final estimate of the output gap considers all available data (up to period T ,
where t = 1, ..., t, ..., T ) and de-trends it. The difference between the real time estimate
and the final estimate is the total revision to the output gap estimate at each point in
time. This revision may have several sources and these can be decomposed further for
unobserved-components models by defining the quasi-final estimate. This reflects the fact
that UC models use the data in two ways. First, they estimate the parameters of the
model, and secondly they use these estimates to obtain the smoothed estimates of the
output gap that are the final estimates of the output gap. The filtered estimate of the
cycle is called the quasi-final estimate. The difference between the quasi final and the real
estimates reflects the use of different parameter estimates; it reflects the importance of ex
post information in re-defining the values of the parameters. The difference between final
and quasi final estimates reflects the importance of ex post information.

5Related approaches are the multivariate Beveridge-Nelson decomposition and the Cochrane approach.
6Given that official estimates on GDP are published at a lag strictly the output gap estimate at

quarterly time period t is not available until period (t + 1). Moreover, official data on GDP are subject
to revisions.
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3.1 Data used in examining the reliability of real-time estimates

Official Eurozone data for GDP, published by EUROSTAT, are available only from 1991.
Unfortunately this does not offer a sufficiently long time-series for sensible business cycle
analysis. Therefore we take the data from the ECB’s Area Wide Model (AWM); see Fagan
et al. (2001).7 We use real GDP data (AWM code: YER). These data are available from
1970q1-2000q4. The data are then updated to 2003q1 using official data from EUROSTAT
(via New Cronos).8 All data are used in their seasonally adjusted form. This means the
data have in fact been seasonally adjusted using full-sample information, that of course
would not be available to policy-makers in real-time. So our results ignore this additional
source of uncertainty.

For the multivariate estimators of the output gap, price, unemployment, consump-
tion and investment data are required too. Revisions to these data are less important
than for GDP data. Price data are the harmonised index of consumer prices [HICP] .
Again data are updated from 2001q1 with data from New Cronos. Capacity utilisation
in manufacturing, a survey based estimate, is available from New Cronos from 1985q1.

Calculations were performed using the GAUSS and Ox [see Doornik (1998)] program-
ming languages. Use was made of the SsfPack module for Ox to perform many of the
calculations concerning UC models; see Koopman et al. (1999). Application of a nonpara-
metric dating rule to identify the classical business cycle found peaks at 1974q3, 1980q1,
1982q2 and 1992q1, and troughs at 1975q1, 1981q1, 1982q4 and 1993q1.9

3.2 Evaluating the reliability alternative output gap point esti-
mates: the check-list

The reliability of output gap estimates is assessed against a check-list of ‘economic’ and
‘statistical’ criteria. It is has become increasingly common to seek benchmark against
which alternative estimates of the output gap can be compared; see Orphanides & van
Norden (2002), Camba-Mendez & Rodriguez-Palenzuela (2003) and Runstler (2002). It
provides a means of objectively distinguishing between alternative estimates. One crite-
rion not considered in this paper is the ability of output gap estimators to help forecast
inflation.10 The check-list consists of the following criteria:

7These data have been used in other studies of the output gap in the Eurozone such as Runstler (2002)
and Camba-Mendez & Rodriguez-Palenzuela (2003).

8For robustness we did also consider Beyer-Doornik-Hendry [BDH] data from 1979q4-1999q3 for real
GDP and inflation; see Beyer et al. (2001). Results were qualitatively similar to those reported.

9These results are unsurprisingly identical to those of Artis et al. (2003).
10The relationship between inflation and the output gap, commonly referred to as the Phillips Curve, is

the basis for many models that characterise countercyclical stabilisation policy. The output gap measures
the degree of excess demand in the economy; there is excess demand when the output gap is greater than
zero. When the output gap is positive inflation is expected to rise. When the output gap is negative
inflation is expected to fall. The monetary authorities can then set their policy instrument, typically the
interest rate, in light of the latest output gap estimates. According to this theory output gap estimates,
therefore, should have forecasting power over inflation. However, the degree of predictive power is an
empirical issue. Indeed the relative ability of alternative output gap estimates to help forecast inflation
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1. Basic summary statistics such as the mean, minimum, maximum and standard
deviation for the final, quasi-final and real time estimates of the output gap. It
is instructive to examine the ratio of the standard deviation of the real-time to
final estimates. If the real-time data are an efficient forecast of the final data they
should have a lower standard deviation than the final data; optimal forecasts are
less variable than the item forecasted. Indeed, by construction for UC measures of
the output gap this ratio should be less than unity in large-samples.

2. The correlation of the quasi-final and real time estimates with the final estimates.

3. Relation to known cyclical indicators. We would hope that good estimates of
the output gap are well correlated with known cyclical indicators, such as the
OECD’s survey-based measure of capacity utilisation. Following Camba-Mendez
& Rodriguez-Palenzuela (2003), we examine the correlation between our estimates
of the output gap and capacity utilisation from 1985q1.

4. Properties of output gap estimates in the frequency domain. In the frequency do-
main we can isolate the relative importance of different frequency components. Good
estimates of the output gap should exhibit cycles of duration between 6 and 32 quar-
ters, in line with the conventional view of how long business cycles last. We compute
the period (in quarters) at which the spectral density of the output gap exhibits a
peak.

5. The persistence of the output gap is examined further by computing the autocorre-
lation coefficient (ACF) at lag one.

6. The output gap should be stationary. To test this hypothesis we consider KPSS
tests in the level of the output gap; there is no reason to expect the output gap to
be trending; see Kwiatkowski et al. (1992). The approximate asymptotic critical
values are at the 10%, 5% and 1% levels, respectively, 0.347, 0.463 and 0.739.

7. As argued above, we can view the problem of obtaining real-time estimates of the
output gap as a forecasting problem, since it is only with the arrival of new data that
estimates of the output gap converge to their final values. Good real-time estimates
should predict accurately the final value of the output gap. We measure the accuracy
of the quasi-final and real time point estimates relative to the final estimates by
their root mean squared error (RMSE). RMSE complements inference from the
correlation coefficient calculated above; RMSE is sensitive to scale in contrast to
correlation.

has proved a popular way to evaluate and rank alternative output gap estimates; e.g. see Camba-Mendez
& Rodriguez-Palenzuela (2003). Results in Mitchell (2003) suggest that the worse performance of real-
time estimates is primarily due to the difficulty of forecasting inflation, and not the unreliability of output
gap estimates. This is consistent with the findings of Orphanides & van Norden (2003) for the US and
Canova (2002) for the G-7 that it is the instability of the parameters of Phillips Curve equations that
helps explain their poor performance relative to simple AR alternatives.
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8. The proportion of times the real-time estimate predicts the sign of the final esti-
mate correctly. We formally test for equality of the signs in both measures using
the Pesaran-Timmermann test for directional change; see Pesaran & Timmermann
(1992). This is a nonparametric test based on the number of correct predicted signs.
The proportion of times the sign of the real-time series is the same as the final series
we denote the hit-rate. The null hypothesis of the Pesaran-Timmermann test is that
the forecast values (in our case the real-time estimates) have no ability to predict
the sign of the outturn (in our case the final series). We report the p-value for this
test.

9. Given the importance of correctly predicting turning points we will consider how
well the real-time output gap estimates do at picking up business cycle turning
points. Business cycle turning points are identified using a non-parametric dating
rule; see Harding & Pagan (2002) and Artis et al. (2003). Application of the dating
rule to the estimated output gap series yields a binary series with unity indicating a
state of expansion, and zero a state of contraction.11 Following Artis et al. (2003)
when dating the deviation or growth business cycle, turning points are constrained
so that peaks occur only when output is above trend, and troughs when output is
below trend. We compute the correlation between the turning points of the final
output gap and real-time output gap estimates.

10. The rationality of real-time estimates; see section B.3.

11. The total revision, i.e. the difference between the final and real-time estimates,
is decomposed into parameter and data revision. Parameter revision is the differ-
ence between the filtered and real-time estimates, and data revision is the difference
between the final and filtered estimates. Note that total revision is the sum of pa-
rameter and data revision. Summary statistics for the total revision, and its com-
ponents, are computed such as the mean, minimum, maximum, standard deviation,
first-order auto-correlation coefficient and the RMSE. We also compute the noise
to signal ratio (NS), i.e. the ratio of the standard deviation of the total revision to
the standard deviation of the final estimate.12 If NS is greater than one then the
revision process is deemed noisy.

12. The evolution of real-time estimates: how long do they take to converge to their final
values? Orphanides & van Norden (2002) showed that the filtered and smoothed
estimates differ in the middle of the sample. But we know that they will be increas-
ingly similar, and eventually the same, as we get closer to, and eventually reach, the
end of the sample. So although Orphanides & van Norden’s (2002) result is useful in
highlighting that we should expect considerable uncertainty (revision) in our end-of-
sample (real-time) estimates, as there are important differences between real-time

11We would like to thank Don Harding for sending us GAUSS files to implement the Harding-Pagan
rule and Tommaso Proietti for Ox files.

12Alternatively the RMSE could be considered.
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and final estimates, it does not indicate how quickly this uncertainty should die out
with the arrival of new data. Once we know this we can begin to quantify our degree
of uncertainty with end-of-sample estimates that is due to the fact that future data
are unknown. This issue relates to the two-sided nature of most cyclical estimators.
We analyse this evolution by both simply plotting the output gap for each recursive
sample and using the metric considered in Mitchell (2003) that indicates how long
it takes, on average, for real-time estimates of the output gap to settle down at their
“final” values.

Let us now examine in a simulated out-of-sample experiment how well the estimators
reviewed in Section 2 perform on the basis of these 12 criteria.

3.3 The reliability of real-time estimates: results for the Euro-
zone

Full-sample, or final, estimates of the output gap are derived using data available over
the full-sample period, 1971q1-2003q1. Real-time output gap estimates are computed
recursively from 1981q1. This involves using data from 1971q1-1981q1, to provide an
initial estimation period of 10 years to compute the real time estimate for 1981q1.13

Then data for 1971q1-1981q2 are used to re-estimate the output gap (that involves re-
estimation of the parameters of the models used to measure the output gap) and obtain
real-time estimates for 1981q2. This recursive exercise, designed to simulate real-time
measurement of the output gap, is carried on until data for the period 1971q1-2000q1
are used to estimate the real-time output gap for 2000q1. The last 3 years are excluded
from the real-time simulation to allow for the fact that real-time estimates take time to
converge to their ‘final’ values. This then lets us compare the real-time estimates with
the final estimates that use information available over these, at least, three extra years.

To help render our results robust to the measure of the output gap chosen, as well as
some representative mixed estimators of the output gap [see Section 2], we consider two
univariate statistical measures. Seven alternative estimators are considered in total: (i)
a Hodrick-Prescott filter (calculated by exploiting its state-space representation); (ii), a
Harvey-Trimbur unobserved components cycle; (iii) a bivariate UC model; (iv) a bivariate
HP filter; (v) a trivariate UC model; (vi) a trivariate SVAR model without cointegration;
(vii) a trivariate SVAR model with cointegration. The first two measures are considered
to provide univariate comparisons. The Hodrick-Prescott filter is perhaps the most widely
used statistical approach for de-trending a time-series; we fix λ at 1600 as is common for
quarterly data. Results for this filter provide an important benchmark. The Harvey-
Trimbur cycle is an UC cycle, that is a generalisation of the class of Butterworth filters
that have the attractive property of allowing smooth cycles to be extracted from economic
time series - indeed ideal band pass filters emerge as a limiting case; see Harvey & Trimbur
(2003).14 The bivariate and trivariate estimators are discussed in Appendix A. For further

13As mentioned above we ignore the fact that GDP data are published with a one quarter lag.
14In the notation of Harvey & Trimbur (2003) we set m = n = 2.
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discussion of the robustness of results to the chosen specification see Mitchell (2003).
Tables 1-5 summarise the real-time performance of the various UC measures of the

output gap, while Tables 6-8 consider the SVAR based measures. As discussed, for the
UC measures one can distinguish the filtered from the smoothed, and real-time estimates;
this lets us examine the impact of parameter uncertainty on real-time estimates. The
last row of the Tables, entitled “forecasted”, is not discussed in this section; see Section
4.2.1 for details. Tables 9-16 then summarise some additional aspects of the revision
to the real-time estimates. For the UC measures the source of revisions is decomposed
into data and parameter revision. For the univariate HP filter, as the only parameter is
chosen a priori, clearly there is no parameter uncertainty meaning that the filtered and
real-time estimates are equivalent. Figures 1-10 then plot for each of the four measures of
the output gap two graphs: (i) the real-time estimates alongside the final estimates and
(ii) the evolution of the real-time estimates - the output gap is plotted for each recursive
sample to indicate the changing view of the output gap. At this stage, it is instructive to
focus on the first set of graphs to contrast the real-time and final output gap estimates.

Tables 1-8 reveal that the choice of which de-trending method we use does matter.
There are differences between alternative measures of the output gap. The discrepancies
show up especially in real-time. Model uncertainty, therefore, is an additional source of
uncertainty associated with real-time estimates of the output gap. In fact, model uncer-
tainty, in addition to parameter and data uncertainty, are the three sources of uncertainty
affecting output gap estimates distinguished by the ECB in its October 2000 bulletin.15

However, across the measures the output gap estimates are highly persistent, as one
should expect. This is reflected in first order autocorrelation coefficients often around 0.9
and the KPSS test sometimes indicating nonstationarity. We take this as a reflection of
the power properties of unit root (and stationarity) tests, rather than an indication of
genuine nonstationarity of the business cycle. Further evidence of considerable persistence
is provided by the period of the business cycle, as estimated via the spectrum. Note that
this measure of the length of a business cycle bears no theoretical relationship to measures
based on the distance in quarters between cyclical turning points.

The correlation of the real-time estimates with the final estimates ranges from 0.2
for the univariate measures to around 0.5 for most of the multivariate measures. Only
for the SVAR estimates (BQ and p = 1) is there a high correlation coefficient of 0.9;
although in line with Camba-Mendez & Rodriguez-Palenzuela (2003), we believe this
result is misleading being based on an implausible business cycle as shown by the summary
statistics in Tables 6 and 14 that indicate, for example, cycle’s with an amplitude in
the range -0.7% to 0.5%, rather than around -2.5% to 2.5% as is typical for the other

15There is not a consensus on the appropriate specification of a model to identify the output gap.
One simple way of optimally weighting or “pooling” alternative output gap estimates according to their
reliability is to weight the alternative estimators according to the use to which the output gap estimates
will be put. If one is interested in using the estimates for anticipating inflationary movements, then the
weights are chosen such that the weighted output gap estimate offers the optimal forecast of inflation, in
terms of RMSE. If one is interested in the fiscal balance, then the weights are chosen according to their
predictive performance in this context. See Mitchell (2003) for details.
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estimators.16

Tables 1-8 thus reveal that the real-time estimates can be quite misleading about the
actual state of the economy. It is only with hindsight that a clear view about the state
of the economy emerges. This picture is confirmed when one examines the graphs; see
Figures 1-10. The real-time estimates had difficulty in correctly picking up the boom of
the early 1990s. It is this inability, in real-time, to pick up booms and troughs that renders
the job of policy makers especially difficult! Consistent evidence is provided by consulting
the final column of Tables 1-8. The real-time estimates offer little or no explanatory power
for turning points in the final series.

Nevertheless, it is encouraging that the move from univariate to multivariate measures
of the output gap does lead to real time estimates better correlated with the final esti-
mates. Adding ‘economic information’ appears to help. The univariate measures have
correlation coefficients of 0.27 and 0.19, compared with coefficients of 0.46 and 0.69 for
the bivariate UC models, 0.58 for the KPSW cycle and 0.46 for the trivariate UC model.
The lower correlation, of 0.15, for the BQ cycle with p = 16 is attributable to the greater
parameter uncertainty.

Parameter uncertainty, as mentioned, is an important source of the unreliability of
real-time estimates. This shows up both in the higher correlation of the filtered estimates
with the final estimates than the real-time estimates, and in Tables 9-16. These tables
show that parameter revision systematically revises estimates of potential output. The
filtered estimates often have correlation coefficients against the final estimates of around
0.9, much higher than those of the real-time estimates. This is particularly so for the
multivariate measures of the output gap; e.g. while the filtered univariate HP estimate
has a correlation of only 0.27 with the final estimates, the trivariate UC has a correlation
coefficient of 0.91. Therefore, the problem for policy-makers is not so much not knowing
the future values of the (log) level of output but not knowing what parameters to use
when de-trending.

Further evidence of the unreliability of real-time output gap estimates is seen when one
examines the revisions to real-time estimates. Consistent with the findings of Orphanides
& van Norden (2002) for the US, revisions to the real-time output gap estimates are
of the same order of magnitude as the estimated output gaps. Revisions are persistent
and large. The standard deviation of the total revision is greater than that of the final
estimates, i.e. NS > 1, except for some of the SVAR measures. A more favourable
picture is painted about the reliability of the real-time estimates when one focuses on
how well the real-time estimates do at picking up the sign of the final series, i.e. whether
the economy was above or below its trend level. The real-time estimates have a ‘hit-rate’
reaching 80% for some measures. Apart from the SVAR estimates for BQ with p = 16, the
multivariate measures of the output deliver more reliable real-time estimates of the sign

16SVAR estimates were found to be sensitive to the lag order chosen. For BQ for low lag orders the
cycle has too small an amplitude and exhibits too little persistence. It is noteworthy that previous SVAR
estimates of the output gap for the Eurozone are consistent with our results; e.g. see Camba-Mendez &
Rodriguez-Palenzuela (2003). They use the SBC to choose the preferred lag length of the VAR model.
In our experience a low value is selected, usually just one or two lags.
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of the final estimates than the univariate measures. This comparison is strongest when
comparing against the univariate HP filter, rather than the Harvey-Trimbur UC cycle.
This improved performance for the multivariate measures is reflected by a higher hit-rate
and more evidence, using the Pesaran-Timmermann tests, that the real-time estimates
do have the ability to predict correctly the sign of the final estimates. These results
are in line with Orphanides & van Norden (2002) for the US and Runstler (2002) for the
Eurozone. They can be contrasted with the more positive results found by Camba-Mendez
& Rodriguez-Palenzuela (2003) for the Eurozone.

The Mincer-Zarnowitz tests (column rat) suggest that revisions reflect news that is
available at the time the real-time estimate is produced; the preliminary, or real-time,
estimate can help predict the subsequent revision. This suggests that real time estimates
are not rational expectations of the final estimates. This finding is also supported by the
fact that the standard deviation of the real-time estimates is not always less than the
standard deviation to the final estimates. The filtered estimates also are not rational; this
is perhaps indicative of a small-sample problem.

We probe further at this revision by examining the evolution of the output gap esti-
mates. Figures 2, 4, 6, 8 and 10 examine the changing views about the output gap by
plotting for each recursive sample the output gap estimates. Focus on the panel entitled
“smoothed” that plots the recursively computed smoothed estimates. This lets us see how
quickly this revision occurs. The figures show that the revision can take some time. The
dispersion of the estimates is greatest around the trough of the mid 1980s and the peak
of the early 1990s; whether one thought the output gap was at a peak or trough changes
considerably with the passage of time. We see, in particular for the Harvey-Trimbur cycle
[see Fig. 4] that it is only around 3 years after the boom of the early 1990s that the boom
is correctly identified. Indeed, see Figure 4, in mid 1992 the output gap still appears nega-
tive, rather than close to a peak of 2.5% as the final estimates indicate. The slow speed of
convergence to the final estimate is seen further when one considers the metric considered
in Mitchell (2003) that indicates how long it takes, on average, for real-time estimates of
the output gap to settle down at their “final” values. For the Harvey-Trimbur cycle, for
example, while 50% of the total revision is completed in 10 quarters, it takes 40 quarters
to complete 90%. The picture is similar for the other measures of the output gap. Even
10 years after the event there is still some revision to output gap estimates, although the
figures referred to earlier indicate that this may not prove qualitatively important in the
sense that after about 3 years the general shape of the final output gap series becomes
apparent. Certainly for all measures, the trough of the mid 1980s does not become appar-
ent until a few years after the event and the peak of the early 1990s although detected by
some of the multivariate measures fairly quickly is over-estimated by, say, the trivariate
UC measure; in 1992-3 a peak in 1991 of 8%-10% is suggested, although it later proves
to be only 2%; see Figure 10.

Real-time point estimates of the output gap in the Eurozone, as in the US, therefore
appear unreliable, in the sense that there is a large and significant revision error. But
could we have anticipated this error? In real-time was the revision error to the real-time
estimate within the bounds of what we could have predicted? To address these questions
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we require measures of uncertainty associated with the real-time output gap estimates.

4 Uncertainty associated with output gap estimates:

density estimates of the output gap

To capture fully the uncertainty associated with the real-time estimates, or forecasts, of
the output gap, we construct density forecasts. Density forecasts of the realisation of
a random variable at some future point in time provide an estimate of the probability
distribution of the possible future values of that variable. In contrast, so-called “interval”
and “event” forecasts provide specific information on forecast uncertainty that can be
derived from the density forecast; interval forecasts specify the probability that the actual
outcome will fall within a given interval while event forecasts focus on the probabilities
of certain events, such as the probability of recession. Density forecasts of inflation in the
U.K., for example, are now provided each quarter both by the Bank of England in its “fan”
chart and the National Institute of Economic and Social Research (NIESR) in its quarterly
forecast. Density forecasts inform the user of the forecast about the risks involved in
using the forecast for decision making. Indeed, interest may lie in the dispersion or tails
of the density itself; for example inflation targets often focus the attention of monetary
authorities to the probability of future inflation falling outside some pre-defined target
range while users of growth forecasts may be concerned about the probability of recession.
Moreover, volatility forecasts, as measured by the variance, and other measures of risk
and uncertainty, can be extracted from the density forecast; see Tay & Wallis (2000) for
a review.

Questions then arise over how the density forecasts should be constructed. We con-
sider two approaches. The first relies on a state-space representation for the output gap
estimator while the second quantifies the degree of uncertainty through forecasting. Let
us consider each of these measures in turn before in Section 4.3 considering how one can
evaluate them.

4.1 Measuring uncertainty using the Kalman filter

Traditionally when using unobserved-components based measures of the output gap two
measures of uncertainty associated with the cyclical component of output are distin-
guished: filter and parameter uncertainty. Conditional on Gaussianity (of the distur-
bances driving the components of the state vector) confidence intervals around the out-
put gap then can be presented given knowledge of the covariance matrix of the estimated
state vector.17 This is the approach followed, for example, by Orphanides & van Norden
(2002). For a review see Appendix B. As Orphanides & van Norden (2002) acknowledge
these measures of uncertainty do not capture the effects of data revision nor the greater

17The Kalman filter recursions automatically return estimates of the covariance matrix of the state
vector; see Harvey (1989). The diagonal elements of these matrices then can be used to construct the
confidence intervals and density estimates.
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parameter uncertainty associated with estimation in real-time using shorter samples.18

Nevertheless, it is important to evaluate how well the implied interval and density fore-
casts perform relative to the outturn (i.e. the final estimate). Using the notation of
Appendix B, let Pt|t denote the covariance matrix of the output gap at time t, (yt|t− y∗t|t),

calculated at time t (the output gap is one of the elements of the state vector). Then
conditional on Gaussianity confidence intervals can be derived, as can density estimates.
The Gaussian density is N((yt|t − y∗t|t), Pt|t). In Section 4.3 we examine how to evaluate

these interval and density forecasts once the final output gap estimate, (yt|T − y∗t|T ) where

T →∞, has become available.19

4.2 Measuring uncertainty by repeatedly forecasting the future

We quantify the degree of uncertainty associated with the fact that future values of the
(log) level of output (and other variables in multivariate measures of the output gap) are
unknown but are known to affect real-time estimates. Quantification is achieved simply
by trying to capture the uncertainty about future values of the (log) level of output by
forecasting the future repeatedly, say R times, via a bootstrap procedure that allows for
parameter uncertainty in real-time estimates. The cyclical component at time t is then
derived by de-trending the observed data in the (log) level of output up to time t plus the
forecasted data for periods (t + 1), (t + 2), ..., (t + h). Given the R set of forecasts from
(t+1) to (t+h), R estimates of the output gap at time t can be computed. The dispersion
of these estimates at time t provides an indication of the range of likely outcomes for the
final output gap estimates, (yt|T − y∗t|T ), that can be computed once actual data from

period (t + 1) to T are published. The R estimates of the output gap can be used to
construct confidence intervals (around say the median estimate) and density estimates.

Questions then arise over how the density forecasts should be constructed via forecast-
ing. What forecasting model should be used, should this model change over time, how
should we account for uncertainty, how far ahead should we forecast etc.? We do not take
a comprehensive look at these important questions here; we focus on particular models
and ways of deriving the density forecasts that are merely illustrative. Uncertainty about
the parameter estimates, stemming from the knowledge that with the arrival of new data
the parameters will change, is quantified by in each case generating repeated forecasts
from the model using a bootstrap approach. Alternatives are to look at the past revision
error variance.

Specifically, for univariate measures of the output gap we use the bootstrap proce-

18An alternative approach is adopted by Fabiani & Mestre (2001). Their measure of uncertainty is based
on the use of stochastic simulation. Although they provide confidence intervals they are not evaluated in
any way making it difficult to know what they measure and how they should be used.

19We do not present measures of uncertainty associated with SVAR estimates. Note that since SVAR
models can be interpreted within a state-space set-up it should prove possible to define similar measures
of uncertainty for the SVAR models, as the UC models considered in this paper. An alternative means
of quantifying the uncertainty associated with SVAR output gap estimates would be to undertake a
stochastic simulaton. Experience suggests that this would deliver very wide confidence bands.
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dure of Pascual et al. (2001) to study the impact of parameter uncertainty on prediction
densities; see Mitchell (2003) for more details. Parameter uncertainty is expected to con-
tribute significantly to any unreliability that may be associated with real-time estimates.
Structural changes in the economy, for example, will cause parameter uncertainty. As
structural changes often cannot be detected until some time afterwards, it is only with
the arrival of additional data that parameter uncertainty is expected to decrease. Fore-
casts are produced from ARMA models. Although the parametric methods of measuring
the output gap could themselves be used directly for forecasting, the motivation for con-
sidering ARMA models is that they can be rationalised as the reduced form of unobserved
components models. For example, an ARIMA(0,2,2) model in the log-level of GDP cor-
responds to the reduced form of a local linear trend UC model; see Harvey (1989), p.
180. Forecasting via the reduced form, rather than structural model, is more agnostic;
indeed, forecasts from atheoretical models have been found often to outperform those
from structural models; e.g. see Clements & Hendry (1999).

We focus on ARMA models estimated in the second difference of the log-level of
output, say yt. We experiment both forecasting from ARMA models where the number
of lags is chosen recursively using some information criterion and using fixed lags chosen
a priori. Results below are presented for an ARMA(0,2) model in the second differences
of output. For muultivariate models of the output gap we require forecasts not just of the
log-level of output (GDP) but the additional economic variables. The same procedure as
documented for univariate models is followed except that a VAR(p) model is considered.
A VAR(p) model, with large p, can be seen as an approximation to an underlying VARMA
process. In fact, we chose p using the Bayesian information criterion, that is known to
select a parsimonious model. However, parsimonious models are potentially more robust
to unforeseen structural breaks; e.g. see Clements & Hendry (1999). Future work will
consider alternative forecasting models.

Even having decided upon a forecasting model, or perhaps a collection of models,
how far ahead should one forecast? Results, undoubtedly, will be sensitive. If one was
concerned in only forecasting, or perhaps we should say “now”casting, current GDP, since
it is available at a one quarter lag, so-called FLASH estimators could be used that exploit,
for example, industrial production data since they are published within the quarter. We,
however, consider forecasting further ahead. We limit discussion to forecasts four quarters
ahead. An alternative is to choose the forecast horizon with reference to how far ahead
the chosen filter looks so that a two-sided filter can be applied even at the end of the
sample of ‘hard’ data; see Harvey & Koopman (2000) and Koopman & Harvey (2003).

4.2.1 Can forecasting also deliver improved real-time (point) estimates?

Forecasting not only provides one means of measuring the uncertainty associated with
real-time estimates but may help us improve the accuracy of our real-time point estimates.
This is because the accuracy of real-time estimates is a function of how well future values
of the underlying series can be forecast; see Appendix B.2 for details. The better one can
forecast (in real-time) the future values of the (log) level of output (and other variables
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in multivariate measures of the output gap) the less the revision. Indeed, if one could
forecast perfectly there would, of course, be no revision at all.

The potential advantages of forecasting can be appreciated in another, related, way.
Forecasting future values prior to de-trending facilitates use of a less one-sided de-trending
filter. De-trending filters, whether parametric or nonparametric, can be seen to involve
application of a moving-average filter to the raw data; e.g. see Harvey & Koopman (2000)
and Koopman & Harvey (2003) who present algorithms for deriving the weights for UC
models. Most de-trending filters, such as the HP filter, imply a smooth two-sided moving
average in the middle of the sample with no time-series observation receiving a large
weight relative to its close neighbours. However, at the end of the sample the moving
average becomes one-sided. It is well known that application of a one-sided filter will lead
to more volatile estimates at the end of the sample as the weight on the last observation
will be much higher than any of the weights associated with application of the filter in the
middle of the sample; e.g. see van Norden (1997). Forecasting prior to de-trending can
reduce the impact of the last observation. Naturally, if the future is forecast incorrectly
this may not deliver more reliable output gap estimates. However, as shown in a stylised
univariate framework by van Norden (1997), (section 1.5), even under the assumption
that past output growth does not help predict present and future output growth, when
the output gap does not Granger-cause output, forecasted values receive no weight. In
such a case the one-sided filter will be reliable. Extending van Norden’s (1997) argument,
if output does not Granger-cause the output gap then real-time, or one-sided, output gaps
will be unreliable as in real-time our only way of trying to guess what will happen (in the
future) to the output gap is to look at past output growth. If this offers no information
about the output gap then we should expect real-time estimates to be unreliable.

Re-visiting the real-time experiment of Section 3.3 the final row of Tables 1-7 indicates
whether forecasting prior to de-trending can help deliver more accurate estimates in real-
time. We focus on the behaviour of the median estimate across 99 bootstrap replications.
We also report the forecast revision; see Tables 9-16. The forecast revision is the difference
between the final and the median of the forecasted real-time estimates. The tables indi-
cate that forecasting ahead in real-time, prior to de-trending, can help. The correlation
against the final estimates is often higher, and RMSE lower, for the forecasted output gap
estimates than the real-time estimates. Clearly these results are merely suggestive since
they are sensitive to choices about the forecasting model, forecast horizon etc.20 However,
they suggest that there is some value to trying to forecast ahead prior to de-trending.

20For the HP filter we did experiment with forecasting 25 periods ahead based on the view that this is
roughly the length of the filter implied by HP. The correlation of the real-time and final estimates fell to
0.230.
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4.3 Evaluation of interval and density forecasts of the output
gap

4.3.1 Evaluation of interval forecasts

Interval forecasts are evaluated following Christoffersen (1998).21 A ‘good’ interval fore-
cast should have correct conditional coverage, so that in volatile periods the interval is
wider than in less volatile periods. Define It as an indicator variable that takes the value
1 if the outcome falls within the interval forecast at time t, and the value 0 otherwise.
Consider an interval forecast for coverage probability p. Then Christoffersen (1998) de-
fines a set of ex ante forecasts as being “efficient” with respect to the information set (say,
Ωt−1) if E(It | Ωt−1) = p. If Ωt−1 = {It−1, It−2, ...} then this implies {It} is i.i.d. Bernoulli
with parameter p.

Then a test for unconditional coverage, ignoring independence, is defined as the test
for whether actual coverage equals nominal: i.e. E(It) = p. A LR test is then defined:

LRuc = −2 log
(1− p)n0pn1

(1− π̂)n0πn1
∼ χ2(1), (1)

where n1 =
∑n

j=1
Ij, n0 = n− n1 and π̂ = n1/(n0 + n1) is the proportion of successes in

the sample and π̂
p→ π.

(1) tests whether the coverage is correct but does not have power against the alterna-
tive that the 0’s and 1’s come clustered together in a time-dependent fashion. To remedy
this omission, (1) is supplemented with a test for independence.

Define the first order Markov chain:

Π1 =

[
1− π01 π01

1− π11 π11

]
, (2)

where πij = P (It = j | It−1 = i). Under independence (2) equals

Π1 =

[
1− π1 π1

1− π1 π1

]
. (3)

A LR test for independence (note that in fact only second moments are being consid-
ered) is then given by:

LRind = −2 log
(1− π̂1)

(n00+n10)π̂1
(n01+n11)

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂11

n11
∼ χ2(1), (4)

where nij is the number of times event i is followed by event j.
A joint test for correct conditional coverage can then be defined as LRcc = LRuc +

LRind.

21An alternative regression based approach for evaluating interval forecasts is proposed by Clements &
Taylor (2003). This approach allows for more general dependence structures than the first order Markov
chain process considered below.
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4.3.2 Evaluation of density forecasts

Density forecasts are evaluated ex post using the probability integral transform; see
Diebold. et al. (1998).22 They popularised the idea of evaluating a sample of density
forecasts based on the idea that a density forecast can be considered “optimal” if the
model for the density is correctly specified. One can then evaluate forecasts without the
need to specify a loss function. This is attractive as it is often hard to define an appropri-
ate general (economic) loss function. These tests evaluate the whole densities. Sometimes
interest may lie in a particular region of the density, such as the probability of a recession.
In these cases it is sensible to evaluate just the event of concern rather than the whole
density; for an application see Clements (2002b).

A sequence of estimated density forecasts, {pt(yt)}T
t=1, for the realisations of the pro-

cess {yt}T
t=1, coincides with the true densities {ft(yt)}T

t=1 when the sequence of zt is inde-
pendently and identically distributed (i.i.d.) with a uniform distribution, U(0,1), where,

zt =

yt∫
−∞

pt(u)du, , t = 1, ..., T (5)

Therefore, to test whether the density forecasts are optimal and do capture all as-
pects of the distribution of yt one must test whether the zt are both i.i.d. and U(0,1).
Departures from i.i.d. U(0,1) reveal useful information about model failures. Deviations
from uniform i.i.d. indicate that the forecasts have failed to capture some aspect of the
underlying data generating process. For example, serial correlation in the z-sequence (in
the first moment, squares, third powers etc.) would indicate poorly modelled dynamics,
whereas non-uniformity indicates improper distributional assumptions or poorly modelled
dynamics, or both.

By taking the inverse normal CDF transformation of the {zt} to give, say, {z∗t }
the test for uniformity can be considered equivalent to one for normality on {z∗t }; see
Berkowitz (2001). This is useful as normality tests are widely seen to be more power-
ful than uniformity tests. However, testing is complicated by the fact that the impact
of dependence on the tests for uniformity/normality is unknown, as is the impact of
non-uniformity/normality on tests for dependence. For example, consider the Gaussian
density N(ct|t, Pt|t). The probability integral transforms are zt = Φ((ct|T

T→∞
− ct|t),

√
Pt|t),

i.e. zt = Φ((ct|T
T→∞

− ct|t)/
√

Pt|t). The Berkovitz series {z∗t } are then the scaled revision

errors, (ct|T
T→∞

− ct|t)/
√

Pt|t that are N(0, 1) under the null.

To test for normality of the {z∗t } series we employ the Doornik-Hansen test; see Doornik
& Hansen (1994). To test for independence of the {z∗t } series we use the Ljung-Box test

22This methodology seeks to obtain the most “accurate” density forecast, in a statistical sense. It can
be contrasted with economic approaches to evaluating forecasts that evaluate forecasts in terms of their
implied economic value, which derives from postulating a specific (economic) loss function; see Granger
& Pesaran (2000) and Clements (2002a).
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for auto-correlation; see Harvey (1989), p. 259. Since dependence may occur in higher
moments we consider (z∗t − z∗)j for j = 1, 2, 3.23

5 The uncertainty of real-time estimates in the Eu-

rozone

To illustrate what degree of uncertainty traditional measures indicate about the final out-
put gap estimates, Figure 11 plots the smoothed Harvey-Trimbur output gap estimates,
plus 95% confidence intervals allowing for filter and parameter uncertainty. Figure 11
illustrates that allowing for both parameter and filter uncertainty is important. When
allowing for both sources of uncertainty there is considerable uncertainty about the out-
put gap; we can rarely say the output gap estimates, at a 95% significance level, are
statistically different from zero.

Consider now the two proposed measures of uncertainty, computed in real-time, associ-
ated with the real-time point estimates, based upon the density N((yt|t−y∗t|t), Pt|t) and the
simulated density derived from forecasting four quarters ahead 99 times for each recursive
sample. Note in the former case we allow for only filter uncertainty; parameter uncer-
tainty could be added in too. We should expect this to matter most for those measures
of the output gap which estimate most parameters, namely the multivariate measures.
Figures 12-16 provide an indication of the degree of estimated real-time uncertainty for
the UC based measures of the output gap by computing 95% confidence intervals based
upon the two alternative methods of computing the density (forecast) of the real-time
output gap estimates. The confidence bands are wider for the Gaussian bands derived
from the Kalman filter recursions than those derived via simulation. Indeed, the Gaussian
bands are rarely significantly different from zero; policy-makers on this basis could never
be sure about the position of the business cycle. The simulated confidence intervals are
narrower, and sometimes do suggest that the output gap is statistically significant.

Given these differences between the two alternative estimates of real-time uncertainty
it is important to ask, which measure of uncertainty, if any, is best? Is the finding that
the Gaussian bands nearly always cover zero in fact correctly quantifying the degree
of uncertainty associated with real-time estimates. We analyse this formally using the
statistical tests considered in Section 4.3. First, however, it is useful to simply contrast
the confidence bands for each measure with the actual outturn (printed in bold face).
Apart from the Harvey-Trimbur measure, the Gaussian bands always ‘cover’ the final
estimate while the simulated bands do not. For the Gaussian bands this comes at the
expense of often very wide intervals. The simulated bands tend to fail to cover the boom

23Alternatively use could be made of recently proposed joint tests for uniformity and independence;
see Hong (2002). Care should be exercised in interpreting results from density evaluation tests. Clements
et al. (2003) have found, using Monte-Carlo experiments, that traditional density evaluation tests are not
useful in sample sizes typical to macroeconomics; specifically, they found that the tests failed to detect
non-linearities present under the data-generation-process. Graphical analysis, using P and Q plots, can
also be useful in explaining why density forecasts have failed.
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of the early 1990s; in real-time they under-estimate, in a statistically significant manner,
the degree of the upturn to economic activity. This is an important failing. But, at other
times, they perform quite well. Contrast the two measures of real-time uncertainty in
Figure 15. While both bands cover the final estimate, the simulated bands do so keeping
the bands much narrower. The uncertainty associated with the bivariate HP filter is,
in fact, also relatively large. Also looking at the Harvey-Trimbur cycle, Figure 13, the
simulated bands actually do a better job at picking up the boom of the early 1990s than
the Gaussian bands by indicating a greater degree of uncertainty, particularly on the
upside.

Tables 17-26 then formally evaluate the measures of uncertainty computed for each
output gap estimator by testing the interval and density estimates. Density estimates
of the output gap are evaluated both over the full period, 1981q1-2000q1, and over a
restricted period 1991q1-2000q1. Results are discouraging, in the sense that the inter-
val and density estimates, in general, are rejected in both the simulated and Gaussian
cases. There appears to be no common cause for these failures. The density estimates
are sometimes rejected on the basis of the independence test and sometimes due to the
normality test. Equally, sometimes the interval estimates fail the unconditional test, and
sometimes the independence test. It is of interest to note that the wide confidence bands
implied by the bivariate HP filter in the Gaussian case, Figure 15, do appear to offer
a worse characterisation of the uncertainty than the simulated measure; see the density
evaluation results in Table 23.

These results suggest that the real-time measures of uncertainty considered in this
paper do not prove to offer reliable indications of the degree of uncertainty associated
with real-time estimates. However, this is not to say alternative measures of uncertainty
may not do better. This is an area for research. We could further analyse the reasons for
these failures through graphical analysis of the probability integral transform.

6 Concluding comments

This paper stresses the distinction between point estimates of the output gap, and mea-
sures of uncertainty associated with them. In an application to the Eurozone results
indicate that not only are real-time estimates of the output gap unreliable, but so are
their measures of uncertainty. This provides a serious challenge to users of output gap
estimates. They must decide what do to given that there is mismeasurement not just of
the output gap (point) estimates but their uncertainty too. However, in related research
we find that although real-time output gap estimates often have little forecasting power
over inflation relative to simple autoregressive alternatives this does not appear to be
due to the unreliability of output gap estimates but rather the difficulties of forecasting
inflation per se; see Mitchell (2003).
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A Appendix. Alternative output gap estimators

A.1 Multivariate Unobserved Components filters

We consider two representative multivariate unosbserved components (UC) or state space
models. The first is along the lines of Gerlach & Smets (1999) and Runstler (2002) and
uses information on output and inflation. The second also considers unemployment; see
Apel & Jansson (1999) and Fabiani & Mestre (2001).

To avoid having to fix the signal to noise ratio [see Gordon (1997) and Economic models
at the Bank of England (1999)] assumptions can be made about the nature of the cyclical
process for unemployment or output; see also Gerlach & Smets (1999), Fabiani & Mestre
(2001) and Runstler (2002). This typically takes the form of assuming a stationary cyclical
process. Without such an assumption, the trend component typically accounts for all the
variation in the level of the variable and soaks up all residual variation. Alternatively, as
with the multivariate HP filter, a priori restrictions are placed on the variances with the
aim of obtaining plausible looking cycles. This approach has been adopted, for example,
by Chagny & Lemoine (2002).

A.1.1 A bivariate UC model of output and inflation

To give the output gap a more economic interpretation than in univariate unobserved
components models, it is related to data on inflation. This is sensible as the causal
relationship between the output gap and inflation is central to the Phillips Curve and the
conduct of monetary policy.

We consider general models of the form:

yt = y∗t + yC
t (6)

Θ(L)yC
t = εy

t (7)

Γ(L)∆πt = λyC
t−1 + επ

t (8)

y∗t = y∗t−1 + βt−1 + εy∗

t (9)

βt = βt−1 + εβ
t (10)

where yt is the log of actual output, y∗t is its trend level, yC
t is the output gap, πt is quarterly

inflation in percentage points measured at an annual rate and ε are the disturbances. All
disturbances are assumed i.i.d. Gaussian.

The Phillips Curve equation, (8), provides a link between inflation and aggregate
demand (measured here by the output gap). Since inflation is commonly assumed to
depend only on nominal factors in the long-run we can see (8) to be imposing a long
run homogeneity restriction. This can be seen by appreciating that underlying (8) is the
following equation, Γ∗(L)πt = λ(L)yC

t−1 + επ
t expressed in the level of inflation. Long run

homogeneity requires Γ∗(1) = 0, implying Γ∗(L) = Γ(L)(1 − L), meaning the Phillips
Curve relationship is expressed in the first differences of inflation, ∆πt.
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We allow for the lag polynomial Θ(L) to be second order. The roots are constrained
to be stationary, but importantly we do allow for complex roots; see Morley (1999) for
an account of how the roots can be constrained through a simple re-parameterisation.
Experimentation suggested that restricting attention to a first order polynomial led to
less sensible looking cycles. Γ(L) is assumed to be first order. We consider a smooth
trend specification where σ2

εy∗
t

= 0.24

A.1.2 A trivariate UC model of output, inflation and unemployment

It is also common to consider as an additional economic variable, unemployment; see Apel
& Jansson (1999) and Fabiani & Mestre (2001). This is based on the view that the output
and unemployment gaps are closely related. Inflation is likely to contain information about
the size of both gaps. Restrictions can then be imposed in an unobserved components
model that identify not just the Phillips Curve, linking measures of excess demand to
inflation, but Okun’s Law, that relates the unemployment and output gaps.

Define ut and u∗t as unemployment and trend unemployment, respectively. We consider
the following model, based on Apel & Jansson (1999) and Fabiani & Mestre (2001):

∆πt = Γ(L)∆πt−1 + Ψ(L)(ut−1 − u∗t−1) + επ
t (11)

yt − y∗t = γ(L)(ut−1 − u∗t−1) + εqgap
t (12)

where

y∗t = y∗t−1 + m1
t−1 + εy∗

t (13)

u∗t = u∗t−1 + m2
t−1 + εu∗

t (14)

and

m1
t = m1

t−1 + εm1

t (15)

m2
t = m2

t−1 + εm2

t (16)

The unemployment gap is modelled as an autoregressive process:

(ut − u∗t ) = δ(L)(ut−1 − u∗t−1) + εugap
t (17)

24Other options are to allow the disturbances to follow moving average processes; e.g. if we let επ
t follow

a MA process then a far richer dynamic process is possible than with a purely auto-regressive specification;
such an approach is followed by Runstler (2002). We also address the issue of whether inflation should
depend on lagged, but not current, or current as well as lagged, output (or unemployment) gap. Gerlach &
Smets (1999) and Staiger et al. (1997), for example, consider lagged values only. However, current values
are also considered, see for example Gordon (1997). This means that inflation and the output gap can be
affected by shocks simultaneously, which appears reasonable; see, for example, Astley & Yates (1999) for
further discussion of why it is important to allow for such endogeneity. Experimentation revealed that
in practice although this assumption affects the timing of the cycles by one period, the shape is largely
unaffected.
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Equation (11) is a version of Gordon’s triangle Phillips Curve model; it relates infla-
tion to movements in the unemployment gap. Expectations are implicit in the inflation
dynamics. Equation (12) is an Okun’s Law relationship, relating cyclical unemployment
and output movements.

Equations (13) and (14) are assumed to follow a local linear trend model. This rep-
resentation was used with success by Fabiani & Mestre (2001) in an application to the
Eurozone. It implies that the trend of output and unemployment (the NAIRU) are I(2)
processes. We consider a first order polynomial for γ(L) . δ(L) is second order and
constrained to be stationary but allowed to be complex (this constraint is empirically
important). Ψ(L) is first order. Γ(L) is second order. Again we consider a smooth trend
specification where σ2

εy∗
t

= 0.

It should be noted that the above system does not allow for full endogeneity between
real disequilibria and inflation, that would involve neither real disequilibria causing infla-
tion nor vice-versa. A restrictive path for the transmission of demand shocks is implied
as demand shocks lead to inflation via the unemployment gap, and then and from the
unemployment gap to the output gap; see Astley & Yates (1999).

A.1.3 Estimation of multivariate UC models

The parameters of the univariate and multivariate unobserved components models are
estimated by maximum likelihood exploiting their state-space form. Computations are
performed using the beta version of SsfPack 3 for Ox; see Koopman et al. (1999) for
a discussion of the earlier version of SsfPack. Importantly, in contrast to Fabiani &
Mestre (2001), for example, all observable variables are put in the state vector to ensure
parameter uncertainty is fully accounted for; see Harvey (1989), pp. 366-368. In the
context of Fabiani & Mestre (2001), see their Appendix, this means that inflation is also
placed in the state vector rather than left in the measurement equation. See Mitchell
(2003) for details of how this is achieved.

A.2 Multivariate Hodrick Prescott filters

Laxton & Tatlow (1992) proposed an extension to the Hodrick-Prescott (HP) filter which
incorporates economic information. Additional, so-called economic, constraints are im-
posed on the minimisation from which the HP filter is defined. The residuals from a
structural equation, such as the Phillips Curve or Okun’s Law, are added to the min-
imisation problem that the univariate HP filter seeks to solve. Just as the univariate
or traditional HP filter can be interpreted within an unobserved components framework
[see Harvey & Jaeger (1993)], so can the multivariate HP filter; see Boone (2000). This
facilitates estimation by maximum likelihood and inference since confidence bands around
the estimates can be derived from the Kalman filter recursions.
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A.2.1 A bivariate HP model of output and inflation

If one does not assume a particular parametric process for the cyclical component, as
is commonly done with the UC models, to obtain plausible looking cycles typically one
will need to constrain the variance of the disturbances driving the elements of the state
vector. This is the approach taken by the HP filter, albeit implicitly when the filter is
interpreted as a nonparametric filter.25 To illustrate, consider the following UC model
where potential output is assumed to follow, say, a smooth trend representation [see
Harvey & Jaeger (1993)] and the economic constraint is based on the Phillips Curve:

yt = y∗t + yC
t (18)

Γ(L)∆πt = λyC
t−1 + επ

t (19)

y∗t = y∗t−1 + βt−1 (20)

βt = βt−1 + εy∗

t (21)

where all disturbances are i.i.d. Gaussian. Alternatives representations for potential out-
put such as the local linear trend and the random walk representation can be considered.

Writing (18) in its state-space form, the transition equation for the state-vector (for
expositional ease only making some specific assumptions about the form of the lag poly-
nomials in (18)) is given by:

∆πt

y∗t
y∗t−1

yC
t

 =


∗ 0 0 ∗
0 2 −1 0
0 1 0 0
0 0 0 0




∆πt−1

y∗t−1

y∗t−2

yC
t−1

 +


επ

t

εy∗

t

0

εyC

t

 (22)

Consistent with how for the univariate HP filter the signal to noise ratio determines
the smoothness of the trend series (σ2

y∗/σ
2
yC ) [see Harvey & Jaeger (1993) and Kaiser &

Maravall (2001)], the relative variance of the disturbances in (22) controls the smoothness
of the cycle and the fit of the economic relationship (the second equation in (18)). As σ2

y∗

tends to infinity the more explanatory power is given to the unobserved variable and the
less the importance of the cycle.

Let λ1 and λ2 denote these relative variances, that control the problem, where

λ1 = σ2
yC/σ2

y∗ (23)

λ2 = σ2
yC/σ2

π. (24)

25The variances of the disturbances, of course, can be estimated by maximum likelihood. It is the
decision not to estimate them, but assume a priori values, that we take to be the defining characteristic
of the multivariate HP approach. This contrasts the multivariate UC approach where these variances are
estimated.
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Set, without loss of generality, σ2
yC = 1, then

λ1 = 1/σ2
y∗ (25)

λ2 = 1/σ2
π (26)

Then λ1 controls the smoothness of the trend component of output. As λ1 → 0 the
trend becomes very volatile and can soak up all cyclical variation. As λ1 →∞ the trend
trends to a deterministic (smooth) trend. Traditionally, as with the univariate HP filter,
σ2

y∗ = 1/1600 ⇔ λ1 = 1600.
λ2 controls the fit of the Phillips Curve relationship. As λ2 → 0 (σ2

π → ∞) the
worse the fit of the the economic relationship, implying less information provided by the
economic relationship. Traditionally σ2

π ' 1/25 ⇔ λ2 = 25 or σ2
π ' 1 ⇔ λ2 = 1; see

Boone (2000) and Chagny & Lemoine (2002). Note that the better the fit of the economic
relationship the better the explanatory power lagged values of the output gap have over
inflation.

A.3 Structural VAR (SVAR) models

Following the seminal paper by Blanchard & Quah (1989), VAR models with economic
restrictions imposed on the long-run have been used to estimate output gaps; see Bullard
& Keating (1995) and Camba-Mendez & Rodriguez-Palenzuela (2003), and for a related
exercise Quah & Vahey (1995).26 A perceived advantage of SVAR models, relative to
UC models, is that SVAR models can be viewed as one-sided filters; in this sense they
overcome the end-point problem associated with UC model that can be seen to involve
application of a two-sided filter.

In the SVAR approach restrictions are imposed on the matrix of long-run multipliers
so that demand (or transitory) shocks can be distinguished from supply (or permanent
shocks). Transitory shocks are identified by imposing the restriction that they have no
long-run effect on the level of the variable of concern. The output gap is the cumulative
sum of the transitory shocks to output. Potential output is then the cumulative sum of
the permanent shocks.

In contrast to the other multivariate methods of estimating the output gap, the SVAR
approach gives the components of output an economic interpretation. Potential output is
not assumed to follow a random walk as in UC models. Furthermore, both real disequi-
libria and inflation are modelled as endogenous variables.

We distinguish two broad types of SVAR model: those with and without cointegration.
Specifically, we consider models of the type proposed by Blanchard & Quah (1989) and
King et al. (1991) that deal with the case of no cointegration and cointegration, respec-
tively. In cointegrating VAR models there is an additional identification problem taking
two related forms: (i) identification of the cointegrating vectors and (ii) identification of

26There are related multivariate approaches to estimating output gap based on the multivariate
Beveridge-Nelson decomposition and the Cochrane approach; e.g. see Dupasquier et al. (1999).
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the common stochastic trends. Both the cointegrating vectors and the common stochas-
tic trends offer characterisations of the “long run” in a VAR model. A popular approach
to identification in the presence of cointegration is King et al. (1991). Cointegration
provides information on the number of permanent and transitory shocks. Atheoretical
alternatives to the identification strategy of King et al. (1991) have been considered also;
for an application to the Eurozone see Schumacher (2002).

A.3.1 Blanchard-Quah SVAR models

We consider SVAR models in line with and Astley & Yates (1999) and Camba-Mendez
& Rodriguez-Palenzuela (2003). We will consider trivariate VAR models of output, infla-
tion and unemployment; see Camba-Mendez & Rodriguez-Palenzuela (2003). Restrictions
then can be imposed on the matrix of long-run multipliers so that inflation is determined
in the long-run by only one structural shock (the inflation shock), whereas output is
determined by two structural shocks (the inflation shock plus a supply shock), and unem-
ployment is determined by three structural shocks (the inflation shock, the supply shock
and a demand shock). The output gap is then the cumulative sum of the demand shocks
to output.

It is important that the estimated (reduced-form) VAR model, that provides the basis
for the identification of the output gap, is stationary. This requires the variables in the
VAR to be appropriately transformed prior to estimation. Following Camba-Mendez &
Rodriguez-Palenzuela (2003) in their application to the Eurozone we consider the first
differences of inflation, GDP and unemployment. We did, however, experiment with
representations in the level of inflation and unemployment.

A.3.2 King-Plosser-Stock-Watson SVAR models

Rather than estimating a stationary (perhaps first-differenced) VAR model a cointegrating
VAR model is considered. We follow King et al. (1991) and consider a three variable
system of GDP, consumption and investment. There are two cointegrating vectors: the
ratios of consumption and investment to GDP are stationary. Therefore, there is one
permanent shock and two transitory shocks. The output gap is the cumulative sum of
the two transitory shocks to output.

A.3.3 The importance of lag length

The long-run restrictions implicit to identification require estimation of the matrix of long
run responses (the sum of the lag polynomial in the moving-average representation cor-
responding to the VAR model). This is based on estimation of the sum of the coefficients
in the VAR model. Therefore the reliability of SVAR estimates of the output gap rests
on reliable estimation of the AR coefficients; see Faust & Leeper (1997) for details. A key
issue then is selection of lag order in the VAR model. Using too small a lag order can
lead to significant biases in estimation of the permanent and transitory components; see
DeSerres & Guay (1995). DeSerres & Guay (1995) found that use of information criteria
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leads to too low an estimated lag order. This is consistent with our findings in the sense
that the BIC tended to select a lag order of one, but it was only with much larger lag
orders that sensible looking output gap estimates were generated.

A.3.4 Uncertainty associated with SVAR estimates

SVAR models require estimation of a large number of parameters. This is expected to
give rise to considerable uncertainty about the estimates, as in a changing world we expect
considerable parameter uncertainty. One interesting approach to reduce this uncertainty
is to impose rank restrictions on the estimated VAR model that reduce the number of
estimated parameters; see Camba-Mendez & Rodriguez-Palenzuela (2003). One means
of quantifying the uncertainty associated with SVAR estimates of the output gap is to
undertake a series of stochastic simulation. An alternative is to appreciate that underlying
the SVAR model is a state-space representation; e.g. DeSerres & Guay (1995) exploit a
state-space representation that is close in spirit to the BQ approach to investigate the
importance of lag order on output gap estimation via Monte-Carlo simulation.

B Appendix. Uncertainty and UC models

B.1 Confidence bands

Let at|T = E(αt|ΩT ) and at|t = E(αt|Ωt) denote the optimal (minimum mean squared error
[MSE]) estimators of the state vector of the UC model, αt, based on observations (or more
generally information set Ω) up to and including T and t, respectively, conditional on the
parameter vector Θ that is estimated by maximum likelihood. Then let Pt|t = V (at|t−αt)
and Pt|T = V (at|T − αt) denote their covariance matrices. Then, assuming covariances
between at|t and at|T are zero, we know

Pt|t = V (at|t − αt) = V (at|t − at|T + at|T − αt) = Pt|T + V (at|T − at|t) (27)

Pt|t = Pt|T + V (at|T − at|t) (28)

so the MSE of the filtered (or one-sided) estimates is greater than that of the smoothed (or
two-sided) estimates by a positive semidefinite matrix, V (at|T −at|t). This MSE decreases
as t increases.

If Θ were known Pt|t and Pt|T would indicate the uncertainty in the Kalman-filter
recursions. We call this uncertainty, filter uncertainty. However, there is an additional
source of uncertainty if Θ is estimated, say by Θ̂; i.e. Pt|t(Θ̂) > Pt|t(Θ) and Pt|T (Θ̂) >
Pt|T (Θ). We account for both of these types of uncertainty following Hamilton (1986).27

27An alternative approach is to use analytical approximations to capture the parameter uncertainty
like Orphanides & van Norden (2002).
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B.2 Revisions

Define the revision Rt|T as Rt|T = at|T − at|t. Then we may re-write (27) as:

Pt|t = Pt|T + V (Rt|T ). (29)

The MSE of the revisions is a lower bound for the MSE of Pt|t. This, as stressed
by Runstler (2002), is useful as it provides an indication of the MSE for estimators that
cannot be cast in the state-space form. The variance of the revision allowing for parameter
uncertainty as well as filter uncertainty is:

V (Rt|T )(Θ̂) = Pt|t(Θ̂)− Pt|T (Θ̂). (30)

We can compute the variance of the revision as a function of the distance between t
and T:

V (Rt|t+1) = Pt|t − Pt|t+1, (31)

V (Rt|t+2) = Pt|t − Pt|t+2, (32)

V (Rt|t+3) = Pt|t − Pt|t+3. (33)

B.2.1 Relating revisions to forecast errors

The revisions can be related to the forecast error. Since [see Hamilton (1994), p.396]:

at|T = at|t + Pt|tT
′P−1

t+1|t
[
at+1|T − at+1|t

]
(34)

Rt|T = Pt|tT
′P−1

t+1|t
[
at+1|T − at+1|t

]
(35)

where T is the matrix in the transition equation of the state vector, the revision is a
function of the forecast error at+1|t. The closer at+1|t is to the final estimate at+1|T the
smaller the revision and the less the difference between the filtered and smoothed esti-
mates. Therefore, the better the one-step ahead forecasts of the state vector the less the
revision.

We can see this in another way.28 Consider the final estimate of the output gap as
a known weighted linear function, that is say centered and symmetric, of the underlying
data, say xt:

at|T = C(L, F )xt (36)

where C(L, F ) = c0 +
∞∑

j=1

cj(L
j + F j) and Lxt = xt−1 and Fxt = xt+1. Then the final

estimate of the output gap is given by:

at|T = C(L, F )xt = c0 +
∞∑

j=1

cjxt−j +
∞∑

j=1

cjxt+j. (37)

28See also Kaiser & Maravall (2001), p. 118.
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But in real-time the future values of xt, namely xt+1, xt+2... are unknown. To apply the
two-sided filter future values need to be forecasted. Denote the forecasts of xt+1, xt+2...
made at time t by E(xt+j|Ωt). Then we may define the real-time estimate as:

at|t = c0 +
∞∑

j=1

cjxt−j +
∞∑

j=1

cjE(xt+j|Ωt). (38)

Subtracting (38) from (37) the revision is obtained as a function of the forecasting
error, (xt+j − E(xt+j|Ωt)),

at|T − at|t = Rt|T =
∞∑

j=1

cj(xt+j − E(xt+j|Ωt)). (39)

It follows that if these forecast errors are reduced the revision will decrease.

B.3 Testing the “rationality” of real-time estimates

Expectations are rational if they are the same as the prediction of theory. More formally,
expectations of yt, y∗t , are rational if they are “optimal” predictions in the sense that they
are the best approximation of yt based upon the information set Ωt−1

29:

y∗t = ε(yt|Ωt−1). (40)

The optimal (linear) prediction of yt is the orthogonal projection of yt on Ωt−1. Therefore
the REH can alternatively be characterised by the orthogonality condition

E(yt − y∗t )y
∗
t = 0. (41)

If deterministic terms (in particular a constant) are allowed in Ωt−1 rational expectations
are also unbiased

E(yt − y∗t |Ωt−1) = 0. (42)

We know that at|t is the minimum MSE estimator of αt, and given that we have as-
sumed normality, these conditional expectations are equivalent to orthogonal projections.
Therefore, at|t is the orthogonal projection of αt on Ωt. Similarly at|T is the orthogonal
projection of αt on ΩT . Therefore, both at|t and at|T are orthogonal projections of αt, with
respect to the appropriate information set.

Via the law of iterated expectations

E(at|T | Ωt) = E(E(αt | ΩT ) | Ωt) = E(αt | Ωt) = at|t (43)

⇒ E(at|T − at|t | Ωt) = 0. (44)

29By using ε(y|Ψ) to denote the optimal prediction we distinguish it from the conditional expectation,
E(y|Ψ).
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So, at|t can be also seen as the orthogonal projection of at|T on Ωt. This means the
filtered estimates are rational expectations of the smoothed estimates at|T . This implies
both E(Rt|T | Ωt) = 0, i.e. the revisions are unbiased, and E(Rt|T at|t) = 0; i.e. the
revision is orthogonal to the real-time estimate at|t.

We can test this rationality implication by estimating the following regression, see also
Runstler (2002),

at|T = a0 + a1at|t + ut, (45)

and testing the joint null hypothesis that a0 = 0 and a1 = 1 via a Wald or F-test that is
robust to serial correlation and heteroscedastictiy. Equivalently, we can see the test to be
of the form:

Rt|T = b0 + b1at|t + ut, (46)

where the joint null hypothesis that b0 = 0 and b1 = 0 now should be tested.
Tests of these sort, so-called Mincer-Zarnowitz tests, have been used in the related

context of testing the rationality of the revision process to official releases of GDP data;
see Faust et al. (2000). If b0 = 0 and b1 = 0 then revisions reflect news not available at the
time the preliminary (or in our context real-time) estimate is produced; the preliminary,
or real-time, estimate cannot predict the revised or final estimate.
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Table 1: Output gap summary statistics for HP filter

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.001 -0.019 0.018 0.008 1.000 0.789 1.000 30.800 0.813 0.265 0.000 1.000 0.000 1.000
filtered -0.000 -0.033 0.015 0.011 0.273 0.523 0.000 ∞ 0.894 0.393 0.012 0.429 0.763 0.243
realtime -0.000 -0.033 0.015 0.011 0.273 0.523 0.000 ∞ 0.894 0.393 0.012 0.429 0.763 0.243
forecasted 0.001 -0.011 0.010 0.005 0.283 0.572 0.001 ∞ 0.930 0.404 0.009 0.442 0.608 0.141
Notes: mean, min, max and sd refer to the mean, minimum, maximum and
standard deviation of the estimated output gap. r final: correlation of output
gap against final estimate; r CAP: correlation against capacity utilisation;
rat: p-value of test for rationality; period: length in quarters of cycle derived
from spectrum; ACF: autocorrelation coefficient at lag one; KPSS: test for
stationarity, test statistic reported; RMSE: root mean squared error; PT:
Pesaran-Timmermann test; r tp: correlation of turning points against those
of final estimates

Table 2: Output gap summary statistics: Harvey Trimbur

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.003 -0.026 0.029 0.016 1.000 0.692 1.000 ∞ 0.960 0.609 0.000 1.000 0.000 1.000
filtered -0.009 -0.028 0.013 0.011 0.890 0.783 0.000 ∞ 0.966 1.101 0.010 0.883 0.000 0.649
realtime -0.003 -0.018 0.010 0.008 0.179 0.551 0.003 ∞ 0.928 0.769 0.017 0.623 0.040 -0.100
forecasted 0.001 -0.012 0.011 0.006 0.190 0.366 0.075 ∞ 0.825 0.769 0.017 0.675 0.000 0.423

Table 3: Output gap summary statistics: Bivariate UC model

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.008 -0.037 0.023 0.016 1.000 0.682 1.000 ∞ 0.929 0.768 0.000 1.000 0.000 1.000
filtered -0.010 -0.024 0.005 0.008 0.941 0.696 0.000 ∞ 0.937 1.188 0.009 0.870 0.000 0.596
realtime -0.018 -0.068 0.009 0.016 0.457 0.249 0.000 ∞ 0.388 0.913 0.019 0.714 0.076 0.111
forecasted -0.014 -0.054 0.005 0.010 0.462 0.110 0.065 ∞ 0.541 0.872 0.016 0.714 0.060 0.318
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Table 4: Output gap summary statistics: Bivariate HP filter

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.036 -0.127 0.036 0.049 1.000 0.726 1.000 ∞ 0.975 1.571 0.000 1.000 0.000 1.000
filtered -0.032 -0.221 0.167 0.092 0.727 0.543 0.000 ∞ 0.699 0.508 0.066 0.831 0.000 0.317
realtime -0.056 -0.434 0.391 0.190 0.688 0.485 0.000 ∞ 0.654 0.417 0.162 0.779 0.000 0.131
forecasted -0.039 -0.235 0.119 0.076 0.515 0.476 0.000 38.500 0.528 0.259 0.066 0.805 0.000 0.089

Table 5: Output gap summary statistics: Trivariate UC model

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.004 -0.021 0.022 0.012 1.000 0.545 1.000 ∞ 0.934 0.430 0.000 1.000 0.000 1.000
filtered 0.001 -0.015 0.026 0.010 0.906 0.336 0.039 ∞ 0.944 0.574 0.007 0.857 0.000 0.162
realtime 0.004 -0.025 0.070 0.019 0.455 -0.031 0.000 ∞ 0.623 0.718 0.019 0.597 0.005 0.066
forecasted -0.008 -0.050 0.016 0.016 0.537 0.552 0.000 ∞ 0.814 1.744 0.014 0.688 0.004 -0.303

Table 6: Output gap summary statistics: BQ model with p=1

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.001 -0.007 0.005 0.002 1.000 -0.343 1.000 ∞ 0.783 1.571 0.000 1.000 0.000 1.000
realtime -0.002 -0.008 0.004 0.003 0.901 -0.584 0.000 ∞ 0.786 0.722 0.002 0.896 0.000 0.795
forecasted -0.002 -0.009 0.005 0.003 0.910 -0.581 0.000 ∞ 0.785 0.767 0.002 0.896 0.000 0.732

Table 7: Output gap summary statistics: BQ model with p=16

output gap mean min max sd r final r CAP rat period ACF KPSS RMSE hit rate PT r tp

smoothed -0.001 -0.013 0.017 0.007 1.000 -0.274 1.000 18.500 0.819 0.472 0.000 1.000 0.000 1.000
realtime 0.002 -0.012 0.012 0.006 0.153 -0.529 0.000 14.800 0.569 0.253 0.009 0.459 0.590 0.238
forecasted 0.005 -0.005 0.014 0.005 0.232 -0.330 0.000 12.333 0.331 0.299 0.009 0.541 0.017 0.244
Notes: Results for p=16 are over the restricted period starting in 1991q1
rather than 1981q1

Table 8: Output gap summary statistics: KPSW model

output gap mean min max sd r final r CAP rat. period ACF KPSS RMSE hit rate PT r tp

smoothed -0.000 -0.025 0.019 0.011 1.000 0.098 1.000 99999.000 0.968 0.859 0.000 1.000 0.000 1.000
realtime 0.004 -0.034 0.030 0.012 0.575 -0.026 0.002 30.800 0.585 0.294 0.011 0.792 0.000 0.272
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Table 9: Revision summary statistics for HP filter

output gap revision mean min max sd ACF RMSE NS

total revision -0.001 -0.018 0.025 0.012 0.967 0.012 1.430
data revision -0.001 -0.018 0.025 0.012 0.967 0.012 0.000
parameter revision 0.000 0.000 0.000 0.000 0.000 0.000 0.000
forecast revision -0.003 -0.022 0.020 0.009 0.865 0.009 0.000

Table 10: Revision summary statistics: Harvey Trimbur
output gap revision mean min max sd ACF RMSE NS

total revision 0.000 -0.034 0.032 0.017 0.940 0.017 1.038
data revision 0.006 -0.015 0.026 0.008 0.881 0.010 0.000
parameter revision -0.006 -0.024 0.010 0.010 0.974 0.012 0.000
forecast revision -0.004 -0.032 0.027 0.016 0.934 0.017 0.000

Table 11: Revision summary statistics for Bivariate UC model
output gap revision mean min max sd ACF RMSE NS

total revision 0.010 -0.034 0.044 0.016 0.223 0.019 1.028
data revision 0.002 -0.021 0.022 0.009 0.799 0.009 0.000
parameter revision 0.008 -0.018 0.048 0.012 0.137 0.015 0.000
forecast revision 0.006 -0.033 0.032 0.014 0.612 0.016 0.000
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Table 12: Revision summary statistics: Bivariate HP filter

output gap revision mean min max sd ACF RMSE NS

total revision 0.020 -0.385 0.342 0.160 0.520 0.162 3.306
data revision -0.003 -0.198 0.139 0.066 0.430 0.066 0.000
parameter revision 0.024 -0.223 0.217 0.100 0.610 0.103 0.000
forecast revision 0.003 -0.147 0.155 0.066 0.374 0.066 0.000

Table 13: Revision summary statistics: Trivariate UC model
output gap revision mean min max sd ACF RMSE NS

total revision -0.008 -0.058 0.019 0.017 0.467 0.019 1.451
data revision -0.005 -0.018 0.006 0.005 0.715 0.007 0.000
parameter revision -0.003 -0.044 0.025 0.015 0.436 0.015 0.000
forecast revision 0.004 -0.017 0.045 0.014 0.727 0.014 0.000

Table 14: Revision summary statistics: BQ model with p=1
output gap revision mean min max sd ACF RMSE NS

total revision 0.002 -0.000 0.005 0.001 0.858 0.002 0.571
forecast revision 0.002 -0.001 0.005 0.001 0.855 0.002 0.000

Table 15: Revision summary statistics: BQ model with p=16
output gap revision mean min max sd ACF RMSE NS

total revision -0.003 -0.016 0.018 0.008 0.676 0.009 1.196
forecast revision -0.005 -0.018 0.012 0.007 0.652 0.009 0.000

Table 16: Revision summary statistics: KPSW model
output gap revision mean min max sd ACF RMSE NS

total revision -0.004 -0.036 0.048 0.011 0.436 0.011 0.943
data revision -0.004 -0.036 0.048 0.011 0.436 0.011 0.000
parameter revision -0.004 -0.036 0.048 0.011 0.436 0.011 0.000
forecast revision -0.004 -0.036 0.048 0.011 0.436 0.011 0.000
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Table 17: Density forecast evaluation for HP filter

LB(1) LB(2) LB(3) DH
boot: 81q1-00q1 1.01E-12 3.30E-07 8.72E-08 0.99605
boot: 91q1-00q1 1.24E-05 0.427327 0.58163 0.908341
norm: 81q1-00q1 2.22E-51 6.85E-35 1.05E-38 4.50E-06
norm: 91q1-00q1 1.21E-24 3.98E-16 6.04E-18 4.19E-07
Notes: p-values are reported. LB(j): Ljung-Box for j-th
order independence; DH: Doornik-Hansen test for nor-
mality; boot: simulated measure of uncertainty; norm:
measure of uncertainty derived from Kalman filter re-
cursions

Table 18: Interval forecast evaluation for HP filter

LRuc LRind LRcc

boot 1.99E-44 2.28E-08 5.79E-50
norm 4.95E-03 1.00E+00 0.019263

Table 19: Density forecast evaluation: Harvey Trimbur

LB(1) LB(2) LB(3) DH
boot: 81q1-00q1 5.22E-20 6.82E-07 1.08E-10 0.76397
boot: 91q1-00q1 2.58E-07 0.04881 0.000275 0.095061
norm: 81q1-00q1 4.31E-45 3.14E-23 1.33E-23 0.677475
norm: 91q1-00q1 5.58E-11 1.80E-05 0.000219 3.26E-11
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Table 20: Interval forecast evaluation: Harvey Trimbur

LRuc LRind LRcc

boot 5.23E-29 2.13E-09 1.21E-35
norm 9.66E-28 1.24E-16 1.74E-41

Table 21: Density forecast evaluation: Bivariate UC model
LB(1) LB(2) LB(3) DH

boot: 81q1-00q1 9.80E-15 5.40E-02 0.003324 4.44E-05
boot: 91q1-00q1 2.42E-07 0.015164 0.002204 0.000355
nor: 81q1-00q1 3.78E-02 0.999392 0.983388 2.47E-10
nor: 91q1-00q1 2.39E-06 4.04E-06 0.11093 0.641939

Table 22: Interval forecast evaluation: Bivariate UC model
LRuc LRind LRcc

boot 2.62E-15 1.47E-05 2.21E-18
norm 7.76E-02 8.70E-01 0.20803

Table 23: Density forecast evaluation: Bivariate HP filter
LB(1) LB(2) LB(3) DH

boot: 81q1-00q1 0.016819 0.212568 0.249791 0.030296
boot: 91q1-00q1 0.908287 0.386204 0.875054 0.453636
nor: 81q1-00q1 6.86E-09 0.061551 0.034555 0.354069
nor: 91q1-00q1 0.025885 0.005814 0.188037 0.266507

Table 24: Interval forecast evaluation: Bivariate HP filter
LRuc LRind LRcc

boot 3.15E-05 0.083247 3.86E-05
nor 0.004946 1 0.019263

Table 25: Density forecast evaluation: Trivariate UC model
LB(1) LB(2) LB(3) DH

boot: 81q1-00q1 1.92E-23 0.017166 6.67E-06 0.00183
boot: 91q1-00q1 9.92E-08 0.190281 0.006059 0.096363
nor: 81q1-00q1 3.05E-10 1.59E-10 0.00117 0.244611
nor: 91q1-00q1 0.274434 0.002689 0.313163 0.094095
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Table 26: Interval forecast evaluation: Trivariate UC model
LRuc LRind LRcc

boot 9.57E-22 3.81E-12 3.93E-31
nor 5.65E-01 0.401173 0.595523
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Figure 1: The real-time behaviour of the output gap using the HP filter
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Figure 2: The evolution of real-time estimates using the HP filter
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Figure 3: The real-time behaviour of the output gap using the Harvey-Trimbur filter
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Figure 4: The evolution of real-time estimates using the Harvey-Trimbur filter
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Figure 5: The real-time behaviour of the output gap using the bivariate UC filter
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Figure 6: The evolution of real-time estimates using the bivariate UC filter
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Figure 7: The real-time behaviour of the output gap using the bivariate Hodrick-Prescott
filter
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Figure 8: The evolution of real-time estimates using the bivariate Hodrick-Prescott filter
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Figure 9: The real-time behaviour of the output gap using the trivariate UC model
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Figure 10: The evolution of real-time estimates using the trivariate UC model
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Figure 11: Filter, parameter and total uncertainty associated with Harvey-Trimbur
smoothed estimates, 1971q1-2003q1: 95% confidence intervals
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Figure 12: Uncertainty associated with real-time estimates using the HP filter. Note:
final estimate in bold
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Figure 13: Uncertainty associated with real-time estimates using the Harvey-Trimbur
filter. Note: final estimate in bold
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Figure 14: Uncertainty associated with real-time estimates using the bivariate UC filter.
Note: final estimate in bold
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Figure 15: Uncertainty associated with real-time estimates using the bivariate Hodrick-
Prescott filter. Note: final estimate in bold
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Figure 16: Uncertainty associated with real-time estimates using the trivariate UC mode.
Note: final estimate in bold
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