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Abstract

This paper proposes a dating algorithm based on an appropriately defined Markov chain that

enforces alternation of peaks and troughs, and duration constraints concerning the phases and

the full cycle. The algorithm, which implements Harding and Pagan’s non-parametric dating

methodology, allows to assess the uncertainty of the estimated turning points due to filtering and

can be used to construct indices of business cycle diffusion, aiming at assessing how spread are

cyclical movements throughout the economy. Its adaptation to the notion of a deviation cycle and

the imposition of depth constraints are also discussed. We illustrate the algorithm with reference

to the issue of dating the Euro area business cycle and analyzing its characteristics, both from the

classical and the growth cycle perspectives.
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1 Introduction

The business cycle can be defined as a broadly-based movement of economic variables in a sequen-

tially oscillatory manner. The term ’cycle’ is a misnomer to the extent to which it suggests a regular

periodicity; one of its features is that the length and depth (duration and amplitude) of the cycle

seems to vary. Indeed one of the current preoccupations of US business cycle experts (e.g., Stock and

Watson, 2002) is to explain the apparent lengthening of the cycle there in recent history.

There are several reasons for taking an interest in the cycle. The evolution of the cycle carries

with it an evolution in variables of considerable consequence for policy-makers: indeed, policy-

makers are commonly depicted as endeavouring to reduce the extent of fluctuations by exercising

stabilization policy. A closely related interest has been in the use of business cycle evidence in the

context of optimal currency area theory and its indication for the optimality of monetary union. Other

things equal, business cycle symmetry is a positive indicator for monetary union as it indicates that a

single monetary policy will be broadly appropriate for all participants in the monetary union. On the

other side, an asymmetry of business cycle experience is usually treated as a negative indicator for

participation in monetary union.

The literature recognizes two broad definitions of the cycle, the so-called classical cycle and the

growth or deviation cycle. The difference between the two is conceptually simple: in the case of the

deviation cycle, turning points are defined with respect to deviations of the rate of growth of GDP

from an appropriately defined trend rate of growth. There is a large technical literature which is

concerned with the best method of extracting a trend from the data, and it turns out that the method

adopted may carry quite important implications for the subsequent dating of the turning points. The

classical cycle, by contrast, selects its turning points on the basis of an absolute decline (or rise) in

the value of GDP.

In early post-war decades, especially in Western Europe, growth was relatively persistent and

absolute declines in output were comparatively rare; the growth cycle then seemed to be of more

analytical value especially as inflexions in the rate of growth of output could reasonably be related to

fluctuations in the levels of employment and unemployment. In more recent decades, however, there

have been a number of instances of absolute decline in output, and popular description at any rate has

focussed more on the classical cycle (for example there is a widespread impression that a recession

defines itself as two consecutive quarters of absolute decline). In addition, the concern mentioned

above that de-trending methods can affect the information content of the series in unwanted ways,
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has reinforced the case for examining the classical cycle.

In this paper we propose a dating algorithm based on the theory of Markov chains that enforces

alternation of peaks and troughs and duration constraints, and discuss how it is adapted to a variety

of problems. Our approach is essentially non-parametric and adopts Pagan’s dating methodology,

(Harding and Pagan, 2001, Pagan, 2002), which in turn relates to the Bry-Boschan (1971) dating

procedure In our approach we extend these procedures to compute the probability of a phase switch,

to introduce depth or amplitude restrictions, and to construct diffusion indices. Our methodology is

presented in section2.

The empirical part of the paper reports on four analyses that we carried out with the support of

the dating methodology: the first concerns the characterisation of the aggregate Eurozone business

cycle (section3); in section4 we turn our attention to the country-specific cycles for the main Euro-

zone countries, for which we can obtain consistent output series. The third seeks to employ higher

frequency data, namely monthly industrial production data (section5); the advantage of concentrat-

ing on this series is that its higher frequency should enable a more precise dating of the cycle whilst

it is already known that the most cyclically-sensitive component of GDP is in fact industrial pro-

duction. Finally, in section6 we illustrate how our dating algorithm can be employed to construct

indices of business cycle diffusion, thereby providing a multivariate assessment of the cycle. Section

7 summarises and concludes.

2 The Dating Algorithm

This section lays out the methodology employed in the paper for dating the Euro area classical and

growth cycle. We start off by proposing an algorithm based on an appropriately defined Markov chain

that automatically enforces the alternation of peaks and troughs and the minimum duration constraints

concerning the full cycle and its phases. For the sake of exposition the dating algorithm will be

illustrated with reference to the quarterly case; details concerning the monthly case are deferred to

paragraph2.3.

The dating algorithm is described in separate paragraphs, the first concerning the definition of the

underlying Markov chain, and the second dealing with the scoring of its transition probabilities. We

then discuss enhancements that cope with the nature of the deviation cycle and amplitude restrictions.
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2.1 The underlying Markov Chain

At any timet the economy can be in either of two mutually esclusive states orphases: expansion,

denotedEt, or recession, denotedRt. We adopt the convention that a peak terminates an expansion,

whereas a trough terminates a recession. For the imposition of minimum duration constraint and to

enforce the alternation of peaks and troughs, it is useful to distinguish turning points within these

basic states, by posing:

Et ≡




ECt Expansion Continuation

Pt Peak

Rt ≡




RCt Recession Continuation

Tt Trough

¿FromECt we can make a transition toPt+1 or continue the expansion,(ECt → ECt+1), but not

viceversa, since onlyPt → RCt+1 is admissible. Analogously, fromRCt we can visit eitherRCt+1

or Tt+1, but fromTt we move toECt+1 with probability 1.

Denoting bypEP = P (Pt+1|ECt) the probability of making a transition to a peak within an

expansionary phase,pEE = P (ECt+1|ECt) = 1 − pEP , and analogouslypRT = P (Tt+1|RCt), and

pRR = P (RCt+1|RCt) = 1 − pRT , we define a first order Markov chain (MC) with four states,

denotedSt, with transition matrix:

ECt+1 Pt+1 RCt+1 Tt+1

ECt pEE pEP 0 0

Pt 0 0 1 0

RCt 0 0 pRR pRT

Tt 1 0 0 0

The dating rules impose ties on the minimum duration of a phase, which amounts to two quarters,

and this is automatically enforced in the quarterly case by our four states characterisation (as a matter

of fact {ECt−1, Pt}, complies with this requirement, since both events belong to the expansionary

phase; similarly a trough cannot occur immediately after a peak), and on the minimum duration of a

full cycle. The latter is defined in terms of peak-to-peak or trough-to-trough patterns and amounts to

five quarters, as a direct transposition of the original (monthly) Bry and Boschan rule to the quarterly

case. In imposing this rule, it must be remembered that T (or P) cannot be counted both as the end

of recession (expansion) and as the beginning of expansion (recession): thus for instance, the pattern

{Tt−4, ECt−3, Pt−2, RCt−1, Tt} is not admissible as a full cycle. The minimum duration constraints
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are important for the characterisation of the chain, determining the order of the MC and the number

of admissible states.

The tie on the full cycle duration yields a 5th order MC that can be converted to a first order one

by combining elements of the original chain,St. The states of the derived MC are defined by the

collection:

S∗t = {St−4, St−3, St−2, St−1, St}.

The ties however reduce the number of states to 24. These are listed in table1: the first column labels

the states and the second spells out how they are formed by combining the elementary states of the

original MC. The last two columns indicate the states to which a transition is admissible (two at most)

and the associated transition probability. The transition matrix is thus immediately derived from the

above table. It should be noticed that all the states ending with a peak or a trough must visit certain

states with probability one.

[TABLE 1 about here]

The two parameterspEP pRT uniquely specify the Markov chain. In the next paragraph we show

how these are computed with the support of a time series or a stochastic process. As a matter of fact,

the dating algorithm is completed by establishing rules for scoring the transition probabilities. It is

perhaps useful at this point to discuss briefly how the features of the MC depend on those two elemen-

tary transition probabilities; this can be done by deriving the ergodic probabilities of expansions and

recessions and those of peaks and troughs, which are easily computed from the ergodic probabilities

of the 5th order MC, by marginalising previous states.

The following table provides the ergodic expansion probabilites for different values ofpRT and

pEP :

pRT

pEP 0.05 0.15 0.25 0.35

0.05 0.50 0.73 0.81 0.85

0.15 0.27 0.50 0.61 0.67

0.25 0.19 0.39 0.50 0.57

0.35 0.15 0.33 0.43 0.50

The ergodic recession probabilities concerned are obtained by transposing the table. WhenpRT =

pEP , these probabilities always equal1/2.
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The ergodic probabilities of a peak are presented in the table below. It should be noticed that the

table is symmetric, a fact that underlies a major implication of the chain, namely that the probability

of a peak is equal to that of a trough.

pRT

pEP 0.05 0.15 0.25 0.35

0.05 0.02 0.03 0.04 0.04

0.15 0.03 0.06 0.08 0.08

0.25 0.04 0.08 0.10 0.11

0.35 0.04 0.08 0.11 0.12

Also, these probabilities do not change sensibly as eitherpRT or pEP or both are increased: this

stems from the minimum duration constraints that limit the number of turning points.

The numbers reported in the two tables establish that if conditional probability of terminating an

expansion and a recession are respectively 5% and 25%, an average of 81 periods out of 100 will

be spent in expansion and 8 turning points will be experienced (four full cycles in 25 years, in the

quarterly case).

2.2 Scoring the transition probabilities

As seen previously, the characterisation of the phases of the business cycle and the duration constraints

define an underlying MC that is fully specified once the core parameters,pRT andpEP are known.

These can be estimated by maximum likelihood techniques from an observed time series in a model

based framework, if it is assumed that the latter is a realisation of a stochastic process that is dependent

upon the state of the economy as represented by the chain. This idea is at the foundation of the class

of Markov-Switching models, that postulate that the growth rate and/or the innovation variance and/or

the transmission mechanism vary according to recessions and expansions.

In this paper we adopt the alternative strategy of scoring the two parameters according to patterns

in the series,yt. Hence we follow Harding and Pagan’s non-parametric approach; see Harding and

Pagan (2003,a), for a comparison with the parametric one, and the interesting exchange with Hamilton

(2003, Harding and Pagan, 2003,b) it has originated.

In particular, we will concentrate on the BBQ rule by Harding and Pagan (2001), according to

which an expansion termination sequence,ETSt, and a recession terminating sequence,RTSt, are
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defined respectively as follows:

ETSt = {(∆yt+1 < 0) ∩ (∆2yt+2 < 0)}
RTSt = {(∆yt+1 > 0) ∩ (∆2yt+2 > 0)} (1)

The former defines a candidate point for a peak, which terminates the expansion, whereas the latter

defines a candidate for a trough. Here∆ is the backward difference operator,∆yt = yt − yt−1.

The joint distribution of the sequences{ETSt, RTSt, t = 1, . . . , T} depends on the stochastic

process generating the available series and is usually analytically intractable, due to the presence of

serial correlation and the nature of the termination sequences, which are not mutually exclusive. As

regards the latter, denoting byETSt the complementary event ofETSt, RTSt that of RTSt, and

definingP (ETS)

t = P (ETSt),P (RTS)

t = P (RTSt), the joint probability distribution of the possible

occurrences at timet is provided by the following table:

ETSt ETSt Marginal

RTSt 0 P (RTS)

t P (RTS)

t

ETSt P (ETS)

t 1− P (ETS)

t − P (RTS)

t 1− P (RTS)

t

Marginal P (ETS)

t 1− P (ETS)

t 1

whence it can be seen thatETSt andRTSt cannot both be true at the same time.

Serial correlation complicates the computation ofP (ETS)

t andP (RTS)

t , since the terminating se-

quences are not independent of their past; furthermore, it must be stressed that the BBQ rule induces

autocorrelation itself, that is even if∆yt ∼ NID(µ, σ2), e.g.yt is a random walk,{ETSt, RTSt, t =

1, . . . , T}will be autocorrelated. Therefore it seems that the only way to go about the characterisation

of the business cycle for a particular stochastic process is stochastic simulation.

Let us return to the non parametric scoring of the transition probabilities according to the available

time series. If at timet the chainS∗t is in any of the expansionary states for which a transition to

a peak is possible and an expansion terminating sequence occurs at timet + 1, i.e ETSt+1 is true,

then we move to a new stateS∗t+1, such thatSt+1 = Pt+1 and the previous four elementary states are

common to the last four inS∗t .

It is useful at this point to classify the states ofS∗t by defining the sets:

SEP = {S∗3 , S∗4 , S∗5 , S∗9 , S∗19, S
∗
20, S

∗
22} defines the set of states featuring an expansionary state at

time t (St = ECt) and that are available for a transition to a peak.
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SP = {S∗6 , S∗10, S
∗
21, S

∗
23} defines the set of states featuring a peak at timet (St = Pt).

SRT = {S∗1 , S∗7 , S∗8 , S∗11, S
∗
12, S

∗
14, S

∗
17} defines the set of states featuring a recessionary state at time

t (St = RCt) and that are available for a transition to a trough.

ST = {S∗2 , S∗13, S
∗
15, S

∗
18} defines the set of states featuring a trough at timet (St = Tt).

The set of expansionary states,SE , results from the union of the setsSEP ,SP andS∗16; in symbols:

SE = SEP ∪ SP ∪ S∗16

The set of recessionary states,SR, is the union ofSRT ,ST andS∗24: SR = SRT ∪ ST ∪ S∗24

The scoring rules are then formalised in the following algorithm:

If {S∗t = sEP , sEP ∈ SEP } andETSt+1 is true, then{S∗t+1 = sP , sP ∈ SP }. Hence,

the transition probabilitypEP is computed as:

pEP = P ({S∗t = sEP , sEP ∈ SEP } ∩ ETSt+1)

= I(ETSt+1)
∑

s
EP

∈S
EP

P (S∗t = sEP ) ,
(2)

where I(·) is the indicator function. Else, ifETSt+1 is false then the expansion is

continued, that isS∗t+1 = sEP , sEP ∈ SEP ; the associated transition probability is

pEE = 1− pEP .

Else, if {S∗t = sRT , sRT ∈ SRT } andRTSt+1 is true, then{S∗t+1 = sT , sT ∈ ST }.
Hence, the transition probabilitypRT is computed as:

pRT = P ({S∗t = sRT , sRT ∈ SRT } ∩ RTSt+1)

= I(RTSt+1)
∑

s
RT
∈S

RT

P (S∗t = sRT ) ,
(3)

Else, ifRTSt+1 is false, then the recession is continued, that isS∗t+1 = sRT , sRT ∈ SRT ;

the associated transition probability ispRR = 1− pRT

The case whenETSt+1 andRTSt+1 are both false is implicitly covered by the above dating rule.

Probabilistic dating based on a maintained stochastic process replaces the indicator function,I(·),
with the probability of the terminating sequences,P (ETS)

t+1 ,P (RTS)

t+1 .

Let nowF t denote the collection ofI(ETSj), I(RTSj), j = 1, 2, . . . , t, and letP (S∗t |F t) denote

the probability of being in any particular state at timet conditional on this information set. Assuming

that this probability is known we can compute recursively the probability of the chain at subsequent

times by the following filter:
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i. Given the availability ofP (S∗t |F t) at timet, let us denote byπ∗t them×1 vector containing them,

with m = 24 in the quarterly case. Define the twom × 1 selection vectorsvEP , with ones

corresponding to the elements ofSEP and zero otherwise, andvRT , with ones corresponding to

the elements ofSRT and zero otherwise.

ii. Compute the transition probabilities of the chain according to (2) and (3), that ispEP = I(ETSt+1)v′EP
π∗t ,

pRT = I(RTSt+1)v′RT
π∗t , pEE = 1 − pEP , pRR = 1 − pRT and insert them in the transition

matrix of the chain, hereby denoted byT .

iii. Compute the probabilitiesP (S∗t+1|F t+1) belonging to the vectorπ∗t+1 as

π∗t+1 = T ′π∗t .

The algorithm is initialised by assigning values toπ∗1: if one knows that at the beginning of

the sample we are in expansion,π∗1 ∝ vE , wherevE is the selection vector corresponding toSE ,

whereas if we know that the system was in recession,π∗1 ∝ vR , wherevR selects the elements ofSR .

Otherwise, we can learn from the first observations about the initial probability vector, and in the case

these are ambiguous use a uniform prior, which amounts to setting the elements ofπ∗1 equal to1/m.

The algorithm recursively producesP (S∗t |F t), for all t = 1, . . . , T , and hence, marginalis-

ing previous statesSt−j , j = 1, 2, 3, 4, the probabilities of each elementary event,P (St|F t), and

P (Et|F t) = P (ECt|F t) + P (Pt|F t), P (Rt|F t) = P (RCt|F t) + P (Tt|F t), can be obtained. For

instance,

P (Et|F t) =
∑

s
E
∈S

E

P (S∗t = sE ) .

2.3 Dating monthly time series

The dating algorithm is readily adapted to the monthly frequency. The minimum durations are re-

spectively 6 months for each phase and 15 months for full cycles. This yields a 15th order MC that

can be represented as a first order MC withm = 122 states. As far as the scoring of the transition

probabilities is concerned, the terminating sequences are defined as follows:

ETSt = {⋂5
j=1(∆jyt+j < 0)}

RTSt = {⋂5
j=1(∆jyt+j > 0)}

where∆j = 1− Lj .
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2.4 Dating unobserved components and filtering

In real applications it is usually the case that we date the business cycle on a signal extracted from a

time series, rather then on the original series itself. For instance, all the series considered in this paper

are seasonally adjusted.

If the unobserved component, here denoted byςt, arises from a model-based signal extraction

technique, then, apart from the obvious option of dating the sequenceς̃t|T , which denotes some in-

ference (usually the expectation) on the signal conditional on the full available sample, we can score

the transition probabilities using the probability of the terminating sequencesP (ETS)

t+1 andP (RTS)

t+1 ,

referred toςt, rather than the indicator function. These probabilities can be estimated via the simula-

tion smoother proposed by de Jong and Shephard (1995), which repeatedly draws simulated samples

from the posterior distributioñς(i)
t ∼ ςt|y1, . . . , yT , so that repeating the draws a sufficient number

of times we can get Monte Carlo estimates of different aspects of the marginal and joint distribution

of the terminating sequences. The virtue of this strategy is that we can be aware of the uncertainty

surrounding the estimated turning points.

There are other plausible reasons for dating unobserved components rather than the original series

itself: the first is to render the dating procedure more resistant to outlier contamination; the second

is to censor variability that is not relevant to the analysis of business cycle fluctuations, such as high

frequency noise. The need especially arises with reference to monthly industrial production, which

displays relevant high frequency components even after a working days adjustment. This motivated

us to employ in specific cases low pass filters defined on the basis of the popular Hodrick and Prescott

(1997, HP henceforth) filter. The latter is the minimum mean square estimator of the signal for the

model:
yt = ςt + εt, t = 1, 2, . . . , T,

∆2ςt ∼ NID(0, σ2
ς ), εt ∼ NID(0, λσ2

ς ),

whereλ is the smoothness parameter. Using frequency domain arguments it can be shown that the

HP filter can be interpreted as a low-pass filter (Gómez, 2001) with implicit cut-off frequency,ωc,

that is related to the smoothness parameterλ by: ωc = arccos(1− 0.5λ−1/2). As such, the HP filter

with parameterλ will significantly reduce the amplitude of high frequency components, characterised

by a periodicity smaller thanp = 2π/ωc; the latter is the period in time units corresponding to the

cut-off frequency. If we lets denote the number of observations in a year, in the sequel we shall write

HP(p/s) to denote a low-pass filter that retains to a large extent those components with period greater
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thanp/s years. For instance, HP(1.25) aims at dampening all the fluctuations with a periodicity less

than the minimum cycle duration, i.e. five quarters or 15 months.

2.5 Dating the deviation cycle

Dating the deviation cycle raises a very controversial measurement issues, with respect to which we

take a rather eclectic view. This led us to experiment various nonparametric and parametric measures,

among which the Baxter and King (BK, 1999) filter, the HP detrended series, and an HP band-pass

filter for business cycle extraction designed from the difference of two HP detrending filters, the first

with cut-off frequencyωc = 2π/(1.25s), corresponding to a period of 1.25 years and the second for

ωc = 2π/(8s), corresponding to a period of 8 years. The corresponding measure aims at retaining to

a given extent those fluctuations whose period is comprised between these two thresholds.

The dating algorithm needs also to be adapted to the notion of a deviation cycle. For instance,

we want to avoid identifying a peak when output is below its trend level. We can impose that is so

by requiring that an expansion must have brought output above trend. Therefore, for a zero mean

deviation cycle, we may want to redefine the terminating sequences as follows:

ETSt = {(yt > 0) ∩ (∆yt+1 < 0) ∩ (∆2yt+2 < 0)}
RTSt = {(yt < 0) ∩ (∆yt+1 > 0) ∩ (∆2yt+2 > 0)} (4)

The algorithm scores the cycle in real time; thus, nothing prevents that, within a period in which

yt < 0, the first local minimum is flagged as a trough and that this is above the global minimum. A

solution would be to run the algorithm on the reversed series, but this strategy is effective only if just

two minima occur within that period. Our experience is that multiple minima are a likely occurrence,

and thus our preferred alternative strategy works out as follows:

• Run the dating algorithm on the cumulatedyt series,c(y)t. The turning points detected by this

procedure correspond to the crossing of the zero line. For instance a peak inc(y)t coincides

with the latestyt > 0; all subsequent values will be below zero until a trough is found, which

is the last point such thatyt < 0. Minimum duration constraints continue to operate, although

they relate to successive crossing of zero.

• Locate the maximum ofyt between a trough and a peak, which corresponds to the global peak

of yt; locate the minimum ofyt between a peak and the next trough, which corresponds to the

global trough ofyt.
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2.6 Depth (amplitude) restrictions

Amplitude restrictions aim at isolating major fluctuations, thereby robustifying the dating process.

They inevitably introduce a judgemental element, but they enforcedepth, that together withdiffusion

andduration, makes up the three “D”s, that represent key features for the qualification of economic

fluctuations as business cycles.

The algorithms presented above can be readily modified to enhance depth or amplitude restrictions

on the definition of expansion- and recession- terminating sequences.

Given a thresholdc > 0, for the quarterly case we can define:

ETSt = {(∆yt+1 < −c) ∩ (∆2yt+2 < −2c)}
RTSt = {(∆yt+1 > c) ∩ (∆2yt+2 > 2c)}

In the classical case the amplitude constraints need not be symmetric, due to the fact that expansions

are longer but less steep, which suggests that thatc could vary according to the phase.

An alternative strategy is to employ signal extraction techniques, e.g. low-pass filters, to isolate

the most relevant fluctuations. While this strategy comes at the cost of abandoning sharp turning point

identification, because the probability of peaks and troughs is smeared onto adjacent sample points, it

certainly offers an alternative way of making the dating algorithm more resistant to outliers and high

frequency dynamics, that do not pertain to the business cycle.

3 The aggregate Euro area cycle

This section analyses aggregate time series data available for the Eurozone, both from the classical

and deviation cycle perspectives. The emphasis is on Euro area real GDP, but we also consider its

decomposition into expenditure components and the labour market1.

Any study of the Eurozone economy faces a problem of data availability. The Eurozone only

came into being on the 1st of January 1999, and the study of business cycles needs a larger sample

than three-and-a-half years. To extend the data back in time encounters the problem of aggregation

when exchange rates are prone to change: in these circumstances there is no ”perfect” method of

aggregation. We have employed, for the most part, the data that have been constructed for the ECB’s

1All the computations in the paper were performed using the object oriented matrix programming language Ox 3.0 by

Doornik (2001), and the library of state space function SsfPack 2.3 by Koopman et al. (1999).
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Area-wide model (AWM, Fagan, Henry and Mestre, 2001), conducting a check against the series

produced by Beyer, Doornik and Hendry (BDH, 2001).

3.1 Classical cycle

Our classical business cycle chronology is presented compactly in figure1 with reference to two al-

ternative GDP measures: the “AWM series” and the ”BDH” series. The former has a longer sample

period (1970-2001) than the latter (1980-2001) and is able to reveal an additional cycle. Otherwise,

the three cycles identified in the shorter data period overlap almost exactly, the only difference being

in the location of the last trough, which is anticipated by one quarter if one takes the BDH mea-

sure, and the three decades from 1970 comprise four cycles altogether. The chronology of turning

points, not surprisingly, is also exactly as in Harding and Pagan (2001). Figure1 also presents the

expansion/recession classification based on GDP growth rates.

Table2 displays some descriptive statistics measuring some basic business cycle features for a

set of Eurozone time series available from the ECB’s Area-wide model database. Those pertaining

to GDP (denoted YER in the table) highlight a notable asymmetry between the average length of

expansions and recessions, the former being much longer (28 quarters) than the latter (3 quarters),

which is to be expected of classical cycles in a growing economy. The probabilities of being in one or

other phase reflect the relative values of these phase lengths (about 90% versus 10%). The amplitudes

of the expansion periods are also much bigger than those of the recession periods. Expansions last

longer, and are steeper than recessions, which are quite brief and yet more gently sloped.

Table2 also displays comparable information for a number of other series - notably the national

accounts categories pertaining to private and government consumption (PCR and GCR), fixed capital

formation (ITR), imports and exports of goods and srvices, and net exports (MTR, XTR, Net Imp) and

inventory change (SCR), together with employment (LNN), productivity (LPROD), unemployment

(URX) and unit labour costs (ULC). Standard theory would suggest that investment and inventories

are likely to be the most cyclical components of GDP, and this expectation is borne out in the data:

more cycles are identified, the recession and expansion probabilities are more nearly equal and the

steepness of the phases is more nearly equal. It is not surprising perhaps to find, on the other hand,

that the cyclical behaviour of private consumption is much in line with that of GDP as a whole,

whilst government consumption is the smoothest component of all. Exports and imports of goods and

services, and even more, the net of the two, seem to be highly cylical in their behaviour. Employment

and unemployment exhibit more cycles than GDP, which might seem surprising.
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[Figure 1 about here]

3.2 Deviation Cycles

The deviation or growth cycle typically represents an unobserved component and we have experi-

mented with various methods and filters to extract it, both in the model-based and the nonparametric

frameworks. In the sequel we shall denote the deviation cycle byψt.

Figure2 presents several measures of the deviation cycle in the Euro area GDP, with the associated

turning points detected by the dating algorithm outlined in paragraph2.5, with restrictions on the size

of the fluctuations that will be discussed shortly. The first measure is the Baxter and King cycle,

that is available for the central part of the sample excluding the first and last 12 quarters; the second,

displayed on the upper right panel, is the HP band-pass cycle, that results from subtracting the HP

trend with smoothing parameterλ = 0.52, which defines a low-pass filter dampening the fluctuations

with a period smaller than 5 quarters (1.25 years), from the HP trend with smoothing parameter

λ = 677, which in turn defines a low-pass filter cutting off the fluctuations with a period smaller than

8 years. The resulting component retains to a given extent the fluctuations with a period between

5 quarters and 8 years, and in this respect produces estimates of the cycle that are comparable to,

although slightly noisier than the BK cycle, without suffering from unavailability of the end of sample

estimates.

The bottom panels display parametric measures of the output gap derived respectively from a bi-

variate model of GDP and CPI inflation and a multivariate model based on total factor productivity,

labour force participation rates, the unemployment rate, capacity utilisation and CPI inflation, imple-

menting the production function approach, see Proietti, Musso and Westermann (2002) for details.

The notion of an output gap is more specialised than the deviation cycle in output, since it provides a

measure of inflationary pressures. This poses a new issue to the dating of the gaps: one possibility is

to scoreψt > 0 andψt < 0, as the interest lies in dating periods in which the inflationary pressures

are positive or negative. However, as the evidence reported in Proietti, Musso and Westermann (2002)

clearly points out, and in line with the suggestions by Harding and Pagan, it is the change effect as-

sociated to∆ψt that is more relevant than the level effect exerted by the output gap, which brings us

back to the problem of dating expansions and recessions in the level ofψt. We also notice in passing

that the scoring of the gap according to whether it is positive or negative is a by-product of the dating

algorithm.

Figure2 shows a broad agreement in the identified turning points: the 74.1 and 80.1 peaks are
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common to the four representations. The location of the start of the 90s recession is more uncertain

since there are two neighbouring local maxima at the beginning of 1990 and 1992, which is featured

by the expenditure components and the GDP of individual countries. Also the beginning of the ’80s

expansion is scored differently by the different methods.

[Figure 2 about here]

As stated above, the dating algorithm featured restrictions on the amplitude of fluctuations: in its

first stage, by which change of sign inψt are identified by running the usual dating algorithm on the

cumulated cycle, amending the definition of the expansions and terminating sequences as in paragraph

2.6 by settingc = 0.005, which amounts to censoring fluctuations around zero with amplitude less

than 0.5% of total GDP.

Table3 presents some characteristics of the HP band-pass deviation cycles, this time not using

any censoring rule on the amplitude of the fluctuations. This results in a relatively large number of

turning points, and affects the duration and the amplitude statistics. A stylised fact that is however

robust to the choice of censoring rules is that the average amplitude of recessions and expansions is

about the same, as implied by the symmetry of the cyclical model or signal extraction filter. Table3

confirms that investment (ITR) is one of the most cyclically variable expenditure component of GDP,

featuring an average amplitude of 5% for both phases. Employment and unemployment are now less

cyclical than GDP.

[Tables 2 and 3 about here]

4 Country specific cycles

Our analysis of country specific cycles focuses on two data sets, the first relating to GDP at constant

prices for five countries, Germany, France, Italy, UK and the USA, starting from 1970 and avail-

able from various sources, among them the OECD Main Economic Indicators and the US Bureau of

Economic Analysis. The German series, made available by the IFO, has been seasonally adjusted,

corrected for working days and for the level shift due to reunification, using the basic structural model

with regression effects (Harvey, 1989). The Eurozone series is used for comparison. The second set

is produced by Eurostat and provides a highly comparable set of statistics about real GDP based on

the new system of national accounts (ESA95), but for a shorter sample.
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Figure3 presents the turning points of the classical BC for the Euro Area, Germany, France, Italy,

UK and the USA, identified using the HP(1.25) filtered series on the the first data set. We recall that

this is a low-pass filter dampening the fluctuations with a period less than five quarters, which strictly

do not pertain to the business cycle.

[Figure 3 about here]

We next address the issue of synchronisation and concordance among the country specific classical

business cycles. The dating algorithm, applied to the HP(1.25) filtered GDP series furnishes the

indicator variables of the state of the economy,Rt andEt (recession and expansion, respectively).

The index of concordance between the classical BC for the individual countries and the Euro Area

aggregate cycle,Iij , is simply the percentage of time units spent in the same phase, also known as

the simple matching similarity coefficient. The mean corrected concordance index, isI∗ij = Iij − Īij ,

whereĪij is the estimate of the expected value of the index under the assumption of independence,

which represents the fraction to be expected if there were no relationship between the cycle in the two

countries. Finally, dividingI∗ij by its asymptotic standard error estimated nonparametrically using

a Newey-West estimator, we get the standardized index, which is reported in Table4 and can be

interpreted as a t-statistic for the null hypothesis of independence of the cycles (see the Appendix for

details).

[Table4 about here]

Looking at the Euro area as a whole, the concordance is lowest with the UK, though still statisti-

cally different from zero, highest with the countries within the Euro area, as expected, and interme-

diate with the US. Germany, France and Italy are also the group of countries with the highest cross

concordances. The highest concordance for the UK is with the US.

Harding and Pagan (2001, 2002, Pagan, 2002) also propose to regress the recession indicator for

one country on the same indicator for another country, and evaluate BC independence using the t-

statistic for the significance of the parameters, computed using HAC standard errors. The results of

running such a regression, reported in table5, now suggest that the UK cycle is even independent of

that of the EA, Germany and France, whereas there is a significant association with Italy and the US;

independence across the Euro area countries is strongly rejected.

[Table5 about here]
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The analysis of the Eurostat series, not reported here for brevity, is useful in pinpointing an

additional peak that was not identified from the other Eurozone series considered before, taking

place in the second quarter of 2001. This is mainly due to Germany, but is also anticipated in the

series for Finland, Belgium, the Netherlands and Austria.

As far as the deviation cycles are concerned, the standardised concordance index (table6) and the

robust test for cycle independence (table7), computed on the HP bandpass cycles, largely confirm

the previous outcome: there is a high degree of synchronisation within the Euro area, with the lowest

concordance for the US and intermediate for the UK; in all cases the hypothesis of business cycle

independence is rejected.

[ Tables6 and7 about here]

5 Monthly indicators

This section focuses on the analysis of business cycles in monthly industrial production series for

most European countries and the U.S. The series, seasonally adjusted, are drawn from the OECD

Main Economic Indicators and cover a sample period that differs for the individual countries, but is

usually rather long.

We started our investigation with the identification of outlying observations; the strategy was to fit

a structural time series model (Harvey, 1989) and to add pulse intervention variables one at a time in

correspondence with the sample observation that were characterised by an irregular auxiliary residual

greater than 4 in absolute value; see Harvey and Koopman (1992) for the definition of auxiliary

residuals and their use for outlier and structural break detection.

Despite the outlier correction, too many turning points were identified due to the presence of high

frequency components that may result from intrinsic volatility, underadjustment of working days

variation and other events such as moving festivals and strikes. This problem may be tackled either

by setting up amplitude restrictions or by smoothing the series.

Figure4 illustrates the impact of using different filters on dating the classical business cycle. The

plots on the left hand side refer to the signalςt, introduced in section2.4, produced by HP(1.25),

which is tailored to dampen out the fluctuations with a period less than 15 months, whereas those on

the right refer to the smoother signal extracted by HP(4), that, broadly speaking, passes the fluctua-

tions with period greater that four years (48 months). We employ the simulation smoother to estimate

the probability of recessions and of a turning point; as expected HP(1.25) produces a relatively large
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number of cycles. However, some stylised facts are common. The turning points are not particularly

sharp as their probabilities are smeared over adjacent data points, but the recession and expansion

probabilities are rather sharp. This is due to the uncertainty surrounding the signal estimates in an

environment where noise contamination is high. The time series pattern of the probabilities high-

lights some interesting features, among which it is remarkable that expansion and recession proba-

bilities behave asymmetrically (expansion termination is usually quicker than recession termination).

Moreover, when average growth is reduced, as occurs in France in the second half of the 70s, the

probability of recession is higher. For Germany, France and Italy the plots display a high degree of

synchronisation.

As for concordance analysis, table8 reports the standardized concordance index for all the avail-

able chronologies. The coefficients are in general all rather high for the countries in the Euro area,

whose business cycles turn out to be also not independent from those of the UK and US. Similar

results, not reported here on account of space constraints,are obtained for the HP band-pass deviation

cycles.

[Figure4 and table8 about here]

6 Diffusion and Multivariate Business Cycle Assessment

An index of business cycle diffusion measures the percentage of economic time series in a certain

state, e.g. recession. It typically aims at assessing on a 0-1 continuous scale how business cycle

movements are spread throughout the economy, by looking at several phenomena that have know

nature, eg. coincident or leading.

There are two ways in which diffusion indexes can be constructed. The first amounts to scoring

each individual time series and then taking the cross-sectional average:

Dt =
1
N

N∑

i=1

Sit, t = 1, . . . , T

whereSit takes value 1 in recessions and zero otherwise, andN is the cross-sectional dimension.

It can be worth weighting the series according to their economic relevance and/or their proved effi-

cacy in signalling recessionary events. If a system of (possibly time-varying) weightswit is available

then

Dt =
N∑

i=1

witSit, t = 1, . . . , T,
∑

i

wit = 1.
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The underlying model is that the aggregate index,Dt, is a finite mixture of a Markov process with

two states, the mixture probabilities being given bywit. Suppose that the individual time series are

the components of an aggregateyt =
∑

i wiyit and that we score recessions according to the calculus

rule, that isSt = I(∆yt < 0), whereI(·) is the indicator function, then

E(St) = P (
∑

i

wi∆yit < 0) > E(Dt) =
N∑

i=1

witE(Sit),

so that the diffusion index does not measure the probability of a recession in the aggregate series;

rather it measures the proportion of the aggregate that is in a recession.

The second method to compute diffusion indexes exploits is based upon scoring the transition

probabilities of the Markov chain using the probability attached to expansion and recession terminat-

ing sequences, determined according to the following rules:

P (ETS)

t =
N∑

i=1

witI(ETSit), P (RTS)

t =
N∑

i=1

witI(RTSit).

Recalling that an expansion (recession) terminating sequence defines a candidate point for a peak

(trough), the dating rules set out in paragraph2.2imply that the transition probabilities depend on the

sum of the weights of the series that are in those two terminating sequences. Again, the underlying

assumption is that the aggregateETSt is a finite mixture of cross-sectionalETSit and the dating

algorithm furnishes probabilities that must be interpreted asP (Dt = 1), not asP (St = 1).

Assessing the diffusion of the business cycle in the Euro area requires the evaluation of sector

and country specific data, and many disaggregated time series, but given our data availability for the

present being we consider three sets of data that can be used to produce a multivariate assessment

of the classical cycle in the Euro area: the first is made up of the 5 expenditure components of GDP

(private consumption, government consumption, fixed capital formation, net exports and variation

in stocks) considered in section3.1. The set of weights is immediately available from the GDP

shares. The second set considers total factor productivity, as measured by Solow’s residual using the

time-averaged labour shareα = 0.35 and a constant returns to scale Cobb-Douglas technology, total

employment, and capital. This yields another decomposition of log output into components whose

weights are proportional to the Cobb-Douglas weights. The third set consists of the 12 industrial

production series for the Euro area countries; the weights were obtained from the total Gross Value

added at basic prices for the year 2001, available from the individual countries account (except for

Greece, Luxembourg and Ireland, for which it was interpolated from total GDP estimates).
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Figure5 presents the diffusion indices emerging from the three distinct sets. The plot reveals the

following: the diffusion of recessions is higher for industrial production and there is a tendency to

peaking with a short lead, usually one quarter. A recessionary pattern that is idiosyncratic to the

industrial sector can be found in 1987. Industrial production and the variables in the production func-

tion approach (PFA) signal entry to a recessionary state in 1990 and 1991 respectively, whereas the

index based on expenditure components peaks in 1992. For the PFA index an important contribution

is made by labour, which peaks before GDP. It is also worth noticing that the three indices behave

asymmetrically along the time axis; this feature stems from the fact that the proportion of time series

entering a recession is larger than that leaving it, which explains the positively skewed pattern.

The example also illustrates that weighting is a crucial issue: if we were to combine the three

diffusion indexes into an aggregate one by simple averaging, then we would presumably overstate the

diffusion, due to the influence of the industrial production diffusion index, that dominates the others.

[Figure5 about here]

7 Conclusions

This paper has proposed a new dating algorithm that automatically enforces alternation of turning

points and duration constraints; it has shown how it is adapted to the two main definitions of the

business cycle and illustrated its main uses with reference to the Eurozone business cycle and the

cycles of the main constituent economies.

A number of topics for further research are suggested by the preliminary identification of the

Euro area business cycle we have made. One is to examine further the issue of synchronicity or

coherence between cycles. In future research one would expect to be able to track movements in the

coherence of the cyclical experience of the Eurozone economies, whether in the direction of greater

convergence or not. Other topics can easily be suggested: thus, following identification of the cycle,

one would hope to be able to build leading indicators; and to be able to explain the main determinants

of cyclical experience and its evolution over time. And, with better high frequency data, it would

become possible to data the cycle more accurately.
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Appendix: the standardised concordance index

Given a panel of binary indicators of the state of the economy,Sit, t = 1, . . . , T, i = 1, . . . , N ,

available forN countries, a measure of business cycle concordance between the pair of countriesi

andj is the simple matching similarity coefficient:

Iij =
1
T

T∑

t=1

[SitSjt + (1− Sit)(1− Sjt)] .

Let S̄i = T−1 ∑
t Sit denote the estimated probability of being in state 1 (e.g. recession); then, under

the assumption thatSit andSjt are independent the estimate of the expected value of the concordance

index is2S̄iS̄j = 1− S̄i − S̄j . Subtracting this fromIij gives the mean corrected concordance index

(Harding and Pagan, 2001, 2002):

I∗ij = 2
1
T

T∑

t=1

(Sit − S̄i)(Sjt − S̄j).

The asymptotic test proposed in the paper is based on a standardised concordance index. For this

purpose we need to divideI∗ij by a consistent estimate of the standard error ofI∗ij under the null of

independence. Now, under the null

Var(Iij) = 4
T 2 E

[∑T
t=1(Sit −E(Sit)(Sjt − E(Sjt))

]2

= 4
T

[
γi(0)γj(0) + 2

∑T−1
τ=1

T−τ
T γi(τ)γj(τ)

]

whereγi(0) = E[(Sit − E(Sit))(Si,t−τ −E(Sit))].

Hence,

T 1/2I∗ij → N(0, 4σ2), σ2 = γi(0)γj(0) + 2
∞∑

τ=1

γi(τ)γj(τ),

and a consistent estimate ofσ2 is

σ̂2 = γ̂i(0)γ̂j(0) + 2
l∑

τ=1

(
1− τ

T

)
γ̂i(τ)γ̂j(τ),

wherel is the truncation parameter.
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Table 1:Description of the Markov chain generated by the quarterly dating rules.
States S∗t = {St−4, St−3, St−2, St−1, St} StatesS∗t+1 that can visited
S∗t St−4 St−3 St−2 St−1 St S∗t+1 Trans. Prob. S∗t+1 Trans. Prob.
S∗1 P RC RC RC RC S∗17 p

RR
S∗18 p

RT

S∗2 P RC RC RC T S∗19 1
S∗3 P RC RC T EC S∗20 p

EE
S∗21 p

EP

S∗4 P RC T EC EC S∗22 pEE S∗23 pEP

S∗5 T EC EC EC EC S∗9 p
EE

S∗10 p
EP

S∗6 T EC EC EC P S∗11 1
S∗7 T EC EC P RC S∗12 p

RR
S∗13 p

RT

S∗8 T EC P RC RC S∗14 p
RR

S∗15 p
RT

S∗9 EC EC EC EC EC S∗9 pEE S∗10 pEP

S∗10 EC EC EC EC P S∗11 1
S∗11 EC EC EC P RC S∗12 p

RR
S∗13 p

RT

S∗12 EC EC P RC RC S∗14 p
RR

S∗15 p
RT

S∗13 EC EC P RC T S∗16 1
S∗14 EC P RC RC RC S∗1 pRR S∗2 pRT

S∗15 EC P RC RC T S∗3 1
S∗16 EC P RC T EC S∗4 1
S∗17 RC RC RC RC RC S∗17 p

RR
S∗18 p

RT

S∗18 RC RC RC RC T S∗19 1
S∗19 RC RC RC T EC S∗20 pEE S∗21 pEP

S∗20 RC RC T EC EC S∗22 pEE S∗23 pEP

S∗21 RC RC T EC P S∗24 1
S∗22 RC T EC EC EC S∗5 p

EE
S∗6 p

EP

S∗23 RC T EC EC P S∗7 1
S∗24 RC T EC P RC S∗8 1
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Table 4:Classical BC: Standardised Concordance Index.
EA D UK F I US

EA - 7.15 2.48 6.29 6.35 3.40
D 7.15 - 1.93 5.41 5.43 4.43
UK 2.48 1.93 - 3.00 2.33 3.50
F 6.29 5.41 3.00 - 4.59 1.92
I 6.35 5.43 2.33 4.59 - 3.20
US 3.40 4.43 3.50 1.92 3.20 -

Table 5:Test for BC independence using HAC standard errors (Newey-West estimator with truncation
parameter equal to 5).

EA D UK F I US
EA - 52.52 1.80 4.41 12.15 2.62
D 7.85 - 1.53 3.07 6.73 3.33
UK 1.87 1.66 - 1.90 2.37 4.25
F 10.47 9.02 1.89 - 5.49 1.51
I 4.86 4.79 1.82 2.94 - 2.57
US 3.02 4.02 2.65 1.52 3.70 -

Table 6:Deviation cycles: Standardised Concordance Index.
EA D UK F I US

EA - 4.83 3.42 4.71 5.77 2.75
D 4.83 - 2.95 2.66 3.48 2.53
UK 3.42 2.95 - 2.07 2.33 2.26
F 4.71 2.66 2.07 - 3.67 2.47
I 5.77 3.48 2.33 3.67 - 1.90
US 2.75 2.53 2.26 2.47 1.90 -

Table 7: Test for deviation cycle independence using HAC standard errors (Newey-West estimator
with truncation parameter equal to 5).

EA D UK F I US
EA - 15.27 4.96 12.93 11.12 4.45
D 8.89 - 2.06 4.53 4.49 2.75
UK 3.68 2.14 - 5.39 3.33 6.56
F 8.38 4.68 4.91 - 4.81 2.87
I 13.02 6.30 5.55 5.32 - 3.22
US 3.60 3.78 4.27 2.28 2.79 -
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Figure 1: Classical cycle turning points, expansions and recessions, in the Euro area quarterly real
GDP (seasonally adjusted, logarithms); ECB series and Beyer, Doornik and Hendry (2000) estimates.
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Figure 2:Turning points for four alternative measures of the Euro Area deviation cycle. An asterisk
(*) denotes a turning point that was censored according to amplitude considerations (see text for
details).
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Figure 4:Classical BC dating of monthly industrial production based on HP(1.25) (left) and HP(4)
(right); recession and turning points (reverse scale) probabilities.
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Figure 5:Three sets of diffusion indices for classical business cycles in the Euro area.

31


	DATING BUSINESS CYCLES: A METHODOLOGICAL CONTRIBUTION WITH AN APPLICATION TO THE EURO AREA
	Introduction
	The Dating Algorithm 
	The underlying Markov Chain
	Scoring the transition probabilities 
	Dating monthly time series 
	Dating unobserved components and filtering
	Dating the deviation cycle 
	Depth (amplitude) restrictions 

	The aggregate Euro area cycle 
	Classical cycle 
	Deviation Cycles

	Country specific cycles 
	Monthly indicators 
	Diffusion and Multivariate Business Cycle Assessment 
	Conclusions 
	Appendix: the standardised concordance index
	References


	Icono: 
	Copyright: 


