
E U R O P E A N
C O M M I S S I O N

2
0

0
3

 E
D

IT
IO

N

Finite
Approximations to
Linear Filters and the

Monitoring of

Revisions in
Seasonally Adjusted
Series



A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server (http://europa.eu.int).

Luxembourg: Office for Official Publications of the European Communities, 2003

ISBN 92-894-5348-6
ISSN 1725-4825

© European Communities, 2003

Europe Direct is a service to help you find answers to your questions about the European Union

New freephone number:

00 800 6 7 8 9 10 11



TABLE OF CONTENTS

1. Introduction.......................................................................................................... 3

2. Model-Based Signal Extraction Filters ................................................................ 4

3. Errors in Preliminary Estimates ............................................................................ 6

4. Finite Approximation to Model-Based Infinite Filters ......................................... 9

5. Monitoring the Revision Period ........................................................................... 11

6. Finite Model-Based Approximations to X11 Filters ............................................ 16

Conclusion ........................................................................................................... 20

References............................................................................................................ 21

Appendix 1........................................................................................................... 24

Appendix 2........................................................................................................... 25



Finite Approximations to Linear

Filters and the Monitoring of

Revisions in Seasonally Adjusted

Series

Raoul Depoutot� Christophe Planas ��

April 1999

�
Eurostat, Luxembourg

��Institute for Systems, Informatics and Safety, Joint Research Centre of European Commission,

TP361, Via E.Fermi, 1, I-21020 Ispra, Italy, email: christophe.planas@jrc.it. Please send corre-

spondence to second author. This paper was written within the framework of a study on Seasonal

Adjustment methods, conducted for Eurostat (contract nr. 8221011/6-Lot 3 to the second author).

The ideas expressed here are the authors' and do not necessarily re
ect the positions of Euro-

stat and of Jrc. Thanks are due to the Members of Eurostat's internal task-force on Seasonal

Adjustment for their remarks and suggestions.



Abstract

Statistical o�ces involved in the production of seasonally adjusted series face the

problem of revising preliminary �gures. The process of revising until historical

estimators are obtained can last relatively long, and, in general, the number of

periods needed to obtain a �nal estimator cannot be controlled by the analyst.

The length of the revision period is closely related to the estimation method; we

shall focus on the model-based signal extraction approach (see for example Box,

Hillmer and Tiao, 1978, and Burman, 1980). In this paper, we show how in�nite

seasonal adjustment �lters can be optimally approximated by �nite ones, and we

apply this result to the problem of controlling the length of the revision period. We

also show how considering �nite versions of the signal extraction �lters improves the

interpretation of the X11 �lters in the model-based framework.
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1 Introduction

Statistical o�ces involved in the production of seasonally adjusted series face the

problem of revising preliminary �gures. The process of revising until historical

estimators are obtained can last relatively long, and, in general, the number of

periods needed to obtain a �nal estimator cannot be controlled by the analyst. The

length of the revision period is closely related to the estimation method; we shall

focus on the model-based signal extraction approach (see for example Box, Hillmer

and Tiao, 1978, and Burman, 1980). Optimal model-based decompositions via

Wiener-Kolmogorov (WK) �ltering generally involve in�nite �lters, and the number

of periods needed to obtain a �nal estimator is related to the convergence properties

of the �lter: trivially, the faster the convergence, the shorter the revision period.

In this paper, we develop a procedure which allows practitioners to control the

length of the revision period. It is based on �nite approximations to linear �lters.

Given an observed series, a stochastic linear model describing its second moments,

and the speci�cation of the length of the revision period found acceptable, an optimal

model-based decomposition is derived. We discuss this procedure on the basis of an

application to two monthly economic time series.

Second, we bring some insights into the understanding of the links between the

signal extraction and the X11 �lters (see Dagum, 1988; Findley and al., 1998), which

are still widely used by o�cial statisticians. Such a question has been the subject

of attention in the statistical literature: Cleveland and Tiao (1976) and Burridge

and Wallis (1984) showed that there exist unobserved components models for which

the X11's estimators are very close to the model-based ones. That question has

also some applied interest. For instance, the Statistical O�ce of the European

Community (Eurostat) currently uses both approaches for seasonally adjusting

macroeconomic indicators through the implementations of the packages X12 (see

Findley and al., 1998) and Tramo-Seats (see Gomez and Maravall, 1996), and
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in front of this duality it is important to understand the di�erences between the

two methodologies. [Eurostat has developed since 1996 an in-depth comparison

program]. We show that X11 �lters are better interpreted as �nite approximations

to optimal WK �lters, so that their major di�erence can be attributed to their

respective dimension, i.e. �nite versus in�nite.

In section 3, we brie
y review the analysis of revisions and introduce some tools

used in the applications. Section 4 develops a procedure for approximating in�nite

�lters by �nite ones, and section 5 discusses its application to the case of monitoring

revisions in the seasonal adjustment of two macroeconomic time series. In section

6, we investigate the links between X11's seasonal adjustment �lters and the �nite

approximations to some signal extraction �lters. We begin by introducing the overall

framework in section 2.

2 Model-Based Signal Extraction Filters

We consider the problem of decomposing an observed time series into orthogonal

unobserved components according to

xt = st + nt (2:1)

where st is a seasonal component and nt the nonseasonal part of the series. Both

are assumed to be well described by stochastic linear processes of the type

�s(B) st = �s(B) ast;

�n(B) nt = �n(B) ant; (2:2)

where ��(B) and ��(B) denote �nite polynomials in the lag operator B, having all

roots on or outside the unit circle. The variables ast and ant are independent white
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noise with variances Vs and Vn, respectively. The polynomials �s(B) and �n(B) are

prime, while theMa polynomials �s(B) and �n(B) share no unit roots. Further, the

polynomial �s(B) is assumed to be noninvertible, so that the spectrum of �s(B)st

takes a 0-value at some frequency. In the terminology of Hillmer and Tiao (1982),

the so-de�ned seasonal component is said canonical.

Equations (2.1) and (2.2) imply that the observed series xt follows an Arima

model of the type

�(B) xt = �(B) at; (2:3)

where at is a white noise with variance Va. Without loss of generality, we set Va = 1.

The polynomial �(B) can be obtained as the product �(B) = �s(B)�n(B). In the

Amb approach, the roots of the polynomial �(B) are allocated to the polynomials

�s(B) and �n(B) according to the patterns that the components are expected to

display. For instance, all positive roots of �(B) = 0 will be assigned to the trend

component since they imply a spectral peak at the zero-frequency which re
ects in-

�nite period oscillations typical of a long term evolution. The canonical hypothesis

on the seasonal component implies that for a given �(B) polynomial, the decom-

position (2.1)-(2.2) is unique (see Hillmer and Tiao 1982). Minimum mean square

error estimators (Mmse) can be built as

n̂t = �n(B)xt =
1X

i=�1

�nixt+i

= Vn
�n(B)�n(F )�s(B)�s(F )

�(B)�(F )
xt (2.4)

The �lter �n(B) is known as the Wiener-Kolmogorov �lter (see Whittle 1963). It has

been shown to give �nite error variance whether the observed series is stationary or
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not (see for example Bell 1984). The hypothesis that the polynomials �s(B), �n(B)

do not share unit roots imply that �(B) is invertible (see Maravall and Planas,

1998), and thus the �lter �n(B) is in�nite with converging weights �ni. Because of

this convergence, (2.4) is valid for signal estimation for periods around the center of

usual sample lengths. In �nite samples, preliminary estimates must be computed for

periods close to both ends of the sample. These preliminary estimates incorporate

an estimation error, termed revision error, that we discuss in the next section.

3 Errors in Preliminary Estimates

The classical analysis of revisions has been developed by Pierce (1980). We brie
y

review it here, concentrating on preliminary estimates computed close to the end of

the sample. Let n̂tjt+k denote the preliminary estimate of nt computed at time t+k,

k � 0. Assuming that Xt+k = fx1; � � � ; xt+kg is available, then

n̂tjt+k = E(n̂tjXt+k)

= E(
1X

i=�1

�nixt+ijXt+k) (3.1)

Let �(B) = � � � + ��nB
n + � � � + �0 + �1F + � � � + �mF

m + � � � denote the polyno-

mial obtained as �(B) = �n(B)�(B)=�(B), assuming �(B) satis�es the stationarity

constraint. Expressing the estimator (2.4) in fonction of the innovations at, it is

easily seen that n̂t = �(B)at, so that the revisions in the preliminary estimator of

nt computed at time t+ k are given by:

n̂t � n̂tjt+k =
1X

i=k+1

�iat+i (3:2)

with variance:
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V [n̂t � n̂tjt+k] =
1X

i=k+1

�
2

i
(3:3)

In Appendix, we show that expressions (3.2)-(3.3) are still valid in the nonstationary

case of autoregressive unit roots. The scheme of the proof was given in Pierce (1980,

p.104).

It can be seen from (2.4) and from the de�nition of the polynomial �(B) that

the weights �i, i > 0, converge so that after a certain number of periods, say M ,

revisions become negligible: n̂tjt+M � n̂t.

Since n̂tjt+k+i � n̂tjt+k+i�1 = �k+iat+k+i, successive revisions are independent and

we get:

V [n̂t � n̂tjt+k] =
1X

i=1

V [n̂tjt+k+i � n̂tjt+k+i�1] (3:4)

In applications, we shall use this last expression when evaluating the total variance

of empirical revisions, with k set to 0 since we shall focus on total revisions in

concurrent estimates. Expression (3.4) will be evaluated on the M + 1 estimates

n̂tjt+i, i = 0; � � � ;M , which will be derived using the updated samples Xt+i.

The convergence rate of the theoretical concurrent estimator can be evaluated

using:

RC(m) = 100
V [n̂tjt+m � n̂tjt]

V [n̂t � n̂tjt]

= 100

P
m

i=1
�
2

iP
1

i=1
�
2

i

(3.5)

For the empirical analysis of the concurrent estimates convergence rate, we shall use
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RC(m) = 100

P
m

i=1
V [n̂tjt+i � n̂tjt+i�1]P

M

i=1
V [n̂tjt+i � n̂tjt+i�1]

: (3:6)

This analysis of revisions is still valid if the estimation is conducted with any linear

time-invariant adjustment �lter, say c(B), with the �i's weights derived from the

convolution c(B) (B). Since Geweke (1978) and Pierce (1980, p.102) showed that,

given any �lter, extending the series with minimum mean square error forecasts

minimises the total revision error in preliminary estimates, we shall not modify the

forecast function.

After convergence, the signal extraction procedure still yields an estimation error,

called �nal estimation error and de�ned as et = nt � n̂t. Assuming �rst observed

series stationarity, a frequency domain expression for the variance of the �nal error

in a estimator n̂t = c(B)xt is given by:

V [nt � n̂t] =
1

�

Z
�

0

gn(e
�iw)[1 � c(e�iw)]2 + gs(e

�iw)c(e�iw)2dw (3:7)

When c(B) is the WK �lter (2.4), the variance of the �nal estimation error turns

out to be the variance of the Arma process

�(B)zt = �n(B)�s(B)bt (3:8)

with V (bt) = VsVn. Bell's assumption A imply that (3.8) is still valid in the nonsta-

tionary case so that the �nal estimation error remains �nite (see Bell, 1984).

In the process of seasonally adjusting time series, the number of periods needed

for a concurrent estimate to become a �nal estimator can be relatively large. The

theoretical convergence rate (3.5) helps in anticipating that delay, but practitioners

have no direct control on the length of the revision period. According to (2.4), pure
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Ar models for observed series lead to signal extraction �lters of relatively short

length. An obvious possibility for reducing the length of the revision period could

then be to concentrate on pure Ar models for observed series, but such an approach

would limit the 
exibility of Arima modelling in describing economic time series

properties. We choose to approximate in�nite model-based �lters with �nite �lters.

The �nal estimator will then be slightly modi�ed, in such a way that the convergence

of preliminary estimates will be faster.

4 Finite Approximation to Model-Based In�nite

Filters

Let a(B) denote an in�nite symmetric linear �lter such that

a(B) = a0 +
1X
k=1

1

2
ak(B

k + F k); (4:1)

where the weights ai are real, do not depend on time, and satisfy
P
ai = 1, ai = a�i,

and
P
a2
i
< 1. Symmetric �lters are preferred because they induce no phase shift

in output (see Priestley, 1981). Both WK and X11 historical �lters share that

property (see 2.4 and, for X11, Bell and Monsell, 1992). The frequency transfer

function of a(B) is given by a(e�iw) = a0 +
P1

k=1
ak cos kw, for w 2 [0; �]. We

consider the problem of �nding bm(B) de�ned as (4.1) with a given �nite length m,

such that bm(B) is the closest �nite approximation to a(B). For that concern, we

use a distance measure discussed in Depoutot and Planas (1998); in our case

d(a; bm) =
1

�

Z
�

0

j a(e�iw)� bm(e
�iw) j2 dw (4:2)

Hence we are interested in �nding bm0; � � � ; bmm minimizing d(a; bm). That opti-

mization problem is subject to several constraints which are related to the seasonal
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adjustment context. First, the resulting seasonal adjustment �lter must locally pre-

serve the mean of the input series; that is, bm(1) = 1. Second, the power of the

input series at the seasonal frequencies 2k�=s, k = 1; � � � ; s� 1, s denoting data pe-

riodicity, must be cancelled out. Thus bm(e
�i2k�=s) = 0. For monthly series s = 12,

so that this last equality de�nes 6 constraints bm(e�i2k�=12) = 0, k = 1; � � � ;6. The

problem can be written as :

min b
mk

;k=0;���;md(a; bm) with respect to

C:1 bm(1) = 1;

C:2 bm(e
�i2k�=12) = 0; k = 1; � � � ; 6:

Using the property that cos kw, k = 0; � � � ;1 are linearly independent functions, it

is easily seen that min d(a; bm) � min
P

m

k=0
(ak � bmk)2 (see Priestley, 1981). Hence

the minimisation problem turns out to be:

min b
k
;k=0;���;m

mX
k=0

(ak � bmk)
2 with respect to (4.3)

C:1 bm(1) = 1;

C:2 bm(e
�i2k�=12) = 0; k = 1; � � � ; 6:

Lagrange operators give straightforward solution to (4.3). Details are given in Ap-

pendix 2.

It is worth noticing that in this variance decomposition context, a third constraint

does actually exist: since we want the variance of the observed series to be splitted

at every frequency into orthogonal contributions, the frequency transfer function of

bm(B) should never exceed 1. We shall see in the next section that the solution to
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(4.3) does not necessarily satisfy that property. However, we found that imposing

that third constraint distorts very much the �lters' band-pass structure, in such a

way that the solution is qualitatively not satisfying with respect to the objective

of signal estimation. We thus decide to not impose that constraint (details are

available on request). Notice that historical WK �lters always have a frequency

transfer function into [0; 1], but all but one X11 historical adjustment �lters have

gains higher than 1 (see Bell and Monsell, 1992, and Planas, 1997).

We have designed an estimation procedure for seasonally adjusted series which

respects any requisite about the lasting of revisions. However, controlling the length

of the revision period implies a loss of accuracy in the �nal estimator. We believe

that it is important to closely monitor that loss in order to avoid large deviations

with respect to the optimal unconstrained �nal estimator. Two appropriate tool for

measuring these deviations are given by the �nal estimator accuracy (3.7) and by

the �lter distance (4.2). We discuss that point in the next section on the basis of

two applications.

Notice that since bm(B) is symmetric, the constraint C1 implies that [1� bm(B)]

has at least two unit roots at the zero frequency; similarly, C2 implies that bm(B)

has at least two unit roots at the seasonal frequencies. For the two applications

that we consider, these properties will be su�cient to insure that the integral (3.7)

is well-de�ned and that the �nal estimation error obtained with constrained �lters

is still �nite.

5 Monitoring the Revision Period

We apply the �nite approximation procedure to the Arima-model-based decom-

positions of two monthly macroeconomic series. Our objective is to show how the

convergence of the concurrent seasonally adjusted series towards the historical �g-

ure can be controlled, under a close monitoring of the deviations from the optimal
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unconstrained estimators.

The �rst series describes the French total production (Frtp) with 162 observa-

tions between 1985-1 and 1998-6. This series is plotted in �gure 1 (in logs), where

it can be seen that it displays a somewhat unstable seasonal pattern, the seasonal

dips related to August decreasing in the last third of the sample. Fitting the airline

model to the series log-transformation, maximum likelihood estimation yields:

��12xt = (1� :62B) (1 � :28B12)at (5.1)

(.09) (.12)

with residual standard deviation V 1=2

a
= :016. Port-manteau correlation tests do

not show any signi�cant departure of the residuals properties from the white noise

hypothesis: the Ljung-Box on the �rst 24 lags and the Box-Pierce tests on the

�rst two seasonal lags take the values Q24 = 24:92 and Qs2 = 1:23 (see Ljung and

Box, 1978, and Pierce, 1978). The third and fourth moments of the residuals seem in

agreement with those of the normal distribution: the skewness and kurtosis statistics

take values of .38 (.29) and 3.52 (.59). A further check of residual independence

was performed by computing the Ljung-Box statistics on 24 squared residuals �rst

autocorrelations (see McLeod and Li, 1983): the result, Q24(a2t ) = 10:43, does not

suggest a signi�cative nonlinear structure in the residuals.

We �rst consider the 12 concurrent seasonally adjusted estimates in the year 1992

(t = 85; � � � ; 96). Completing the sample from t = 85 until the last observation and

updating the preliminary seasonally adjusted estimates n̂tjt+i, i = 1; � � � ; 78, provides

us with a series of preliminary estimates for every month. We then use (3.4) to

compute the empirical variance of the total revisions in the 12 concurrent seasonally

adjusted �gures. The results, shown in �gure 2, are in agreement with the theoretical

variance of the total revision error, .107. The most revised months are December,
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May and October, with variance .29, .17 and .14, respectively. We concentrate the

analysis on these three months. Their empirical revisions convergence rates are

displayed in �gure 3 together with the theoretical convergence path, respectively

computed as in (3.6) and in (3.5). It can be seen that observations occuring 12

and 24 months ahead are those implying the largest revisions. We consider the

truncation lengths 36, 24, and 18; as we shall see, shorter lengths would not be

appropriate.

Figure 4 displays the frequency transfer function of the historical WK �lter (2.4)

and of the approximations with length m = 18; 24; 36. As discussed in section 3,

gains of �nite �lters can be higher than 1. Clearly, the larger the truncation point,

the closer the approximations to the in�nite WK �lter. Figures 5a-5c show the

seasonally adjusted series obtained with bm(B), m = 36; 24; 18, together with the

WK estimator. For m = 36, both estimators are very close. Small discrepancies

are slightly visible with m = 24, but they are more important with m = 18. These

observations are con�rmed by table 1 which displays the distance between WK and

the truncated �lters, the �nal estimation error variance (3.7) and the theoretical

revision variance (3.3). It is seen that d(�n; bm) lies between 10�4 for m = 36 and

.0172 for m = 18, and that truncating the �lters increases the �nal estimation error

variance by 2% with m = 36 and by 10% with m = 18. Figure 6 shows that

the approximations do not yield much larger variances of the total revisions in the

concurrent estimates. Finally, �gures 7a-7c show that the convergence rates of the

preliminary �gures is now completely under control, since the estimators get into

their �nal �gures as, respectively, 36, 24, and 18 observations are added.

In this �rst example, the truncation point m = 18 seems too high: it leads to a

constrained �lter which is a bit too far away from WK, a �nal estimation error too

high relatively to the minimum, and as a consequence the seasonally adjusted series

with b18(B) is too much di�erent from the unconstrained seasonally adjusted series.

The lengths m = 24 and m = 36 yield much more acceptable results.
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Table 1

Finite Approx. vs WK Estimator

Frtp

Filter d(bm; �n) V [nt � n̂t] V [n̂t � n̂tjt]

WK | .111 .107

m = 36 .0001 .113 .115

m = 24 .0013 .116 .131

m = 18 .0172 .124 .101

Dpcg

Filter d(bm; �n) V [nt � n̂t] V [n̂t � n̂tjt]

WK | .073 .073

m = 60 .0054 .087 .126

m = 48 .0114 .094 .150

m = 36 .0253 .109 .182

The second series describes the German production of capital goods (Dpcg) be-

tween 1980-1 and 1997-8, that is a sample of 212 observations. That series is plotted

in �gure 8, where it can be seen that the most noticeable seasonal patterns are related

the dips in August and December. As in the previous example, the airline model

gives a satisfying description of the correlation structure of the log-tranformed series,

with maximum likelihood paramaters estimates:

��12xt = (1� :51B) (1 � :73B12)at (5.2)

(.10) (.12)

The residual standard deviation is V 1=2

a
= :023. No residual correlation is signi�cant

sinceQ24 = 24:85 and Qs2 = 4:77. Furthermore, the skewness and kurtosis statistics,
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with respective values -.04 (.29) and 3.04 (.59), do not show any signi�cant departure

of the residual distribution for the normal distribution. No evidence of correlation

could be found in the squared residuals: Q24(a
2

t
) = 20:09.

Let us �rst concentrate the analysis on the 12 concurrent seasonally adjusted

estimates computed in the year 1987 (t = 85; � � � ; 96), which are updated until the

last observation is available (k = 1; � � � ; 127). Figure 2 displays the variances (3.4) of

the total empirical revisions for these 12 estimates. They are in agreement with the

theoretical revision variance .073 that (3.3) yields. Since June, July and August are

the more revised months, we focus the analysis on these 3 months. Figure 9 shows

the empirical convergence rates (3.6) for their concurrent estimators, which are

seen to behave actually better than what the theoretical convergence path suggests.

Four years of new observations are anyway needed for a 90% convergence rate, �ve

for a 95% convergence rate. Nearly all the revisions are due to the observations

occuring every 12 periods beyond the date of the concurrent estimate. Given the

slow convergence patterns, we decided to truncate the optimal WK �lter at lengths

60, 48 and 36.

It can be seen on table 1 that the distances between the �nite �lters and WK

lie between .0054 for m = 60 and .0253 for m = 36, with an intermediate value at

.0114 for m = 48. With respect to the �nal error in the WK estimator, the loss in

accuracy in �nal estimators lies between 20% form = 60 and 50% with m = 36. The

frequency transfer functions of the four �lters are shown on �gure 10: for m = 60

and m = 48, the discrepancies with WK are not very large. As expected, the

seasonally adjusted series are very close to each other, only slight di�erences could

be seen for the estimator obtained with b48(B); see �gures 11a-11b. Regarding the

estimator obtained with m = 36 and displayed on �gure 11c, more discrepancies

with respect to the unconstrained estimator are noticed. Figure 12 shows that the

constraints about the convergence period did not result in much larger empirical

revisions. Finally, �gure 13 illustrates the improvement in the convergence of the
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concurrent estimates towards their �nal values.

In this second example, m = 60 and m = 48 are acceptable truncation values,

whilem = 36 is a bit too low and leads to relatively large deviations from the histori-

cal WK estimators. Again, care must be taken that imposing the lasting of revisions

does not distort too much the decomposition. We can see that acceptable cutting

points depend on the stochastic properties of the series. These two examples suggest

a reasonable maximum �lter distance of about .01 and a reasonable maximum loss

in accuracy of order 20% with respect to the accuracy of the WK �nal estimator.

Notice however that if we use V [nt � n̂t] to build a 5% con�dence interval around

the WK �nal estimator n̂t, then for the two examples the discrepancies observed

when the WK �lter is approximated by shorter ones are never signi�cant.

6 Finite Model-Based Approximations to X11

Filters

The problem of giving a signal extraction interpretation to X11 �lters has been the

subject of discussions in the statistical literature. For instance, Burridge and Wallis

(1984) derived Arima models for unobserved components leading to seasonal ad-

justment signal extraction �lters very close to the X11 default adjustment �lter. We

show in this section that the X11 �lters are actually closer to the �nite approxima-

tions of the optimal signal extraction �lters than to the unconstrained WK �lter.

Regarding historical estimation, the model speci�cation proposed by Burridge and

Wallis (1984) was:

(1 +B + � � �+B11)st = (1 + :71B12 +B24)ast

�2nt = (1� 1:59B + :86B2)ant

Vs=Vn = :017 (6.1)
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Denoting �X(B) the X11 default adjustment �lter, this decomposition leads to the

distance d(�n; �X) = :0036, which was a minimum in Burridge and Wallis' model

speci�cation search.

Using (6.1), we compute for m = 24; � � � ; 100 the �lters bm(B) as optimal approx-

imations to �n(B) according to (4.3). We then checked the distance between bm(B)

and �X(B) for each value of m. The ratio rm de�ned as

rm = 100 �
d(bm; �X)

d(�n; �X)
(6:2)

is reported on �gure 14 for m = 24; � � � ; 100. It shows that an improvement of order

40% in the approximation of the X11 default �lter can be obtained by truncating

the WK �lter at length m=43. Figure 15 shows that this improvement is related

to the capacity of truncated �lters to have gains higher than 1. That result sug-

gests that ad-hoc �lters like the X11's ones are better interpreted as �nite versions

of some signal extraction �lters. Moreover, if X11 �lters are to be seen as �nite

approximations to in�nite signal extraction �lters, then these approximations could

be further improved as they would not be the optimal ones.

In order to generalise this result, we have considered all the seasonal adjustment

�lters that recent releases of X11 like in particular X12 incorporates. The combina-

tion of 3�3, 3�5, 3�9, and 3�15 seasonal moving average lengths with Henderson

trends of length 9, 13, 17, 23 o�ers in practice 16 possibilities. We have developed

the previous experiment by considering all these possibilities. Instead of looking

for the model leading to signal extraction as close as possible to the X11 �lters, we

restraint our search by focusing on the airline model speci�ed as:

��12xt = (1 + �1B)(1 + �12B)at

and we compute the parameter values (��
1
; �

�

12
) which minimise the distance between
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X11 and the signal extraction seasonal adjustment �lters. We then derive bm(B) as

�nite approximation to WK for m ranged between 24 and 120. Finally, we get m�,

the m-value which minimizes the ratio (6.2) at r�
m
.

For every X11 historical adjustment �lter, table 2 reports (�1; �12), m
� and rm�

eventually found, and the length of every X11 �lter which is denoted mX . First,

it can be seen that airline model leads to signal extraction �lters very close to the

X11's ones, since d(�n; �X) is always less than .015. The parameter �1 takes a very

limited range of values, while the range of variation of �12 is much larger: it is

the parameter which controls the width of the power-vanishing band around the

seasonal harmonics in the WK �lter adjustment �lter. The most striking result of

this experiment is that in all the 16 cases, restricting the length of the Wiener-

Kolmogorov �lter decreases the distance approximation to the X11 �lters. That

reduction can be from 25% to 60% of the initial distance, with a remarkably stable

ratio m�
=mX around, roughly, .45. This experiment tends to show that the main

di�erence between signal extraction and X11 �lters is related to their respective

lengths, i.e. in�nite versus �nite.
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Table 2 Seasonal Adjustment Filters

WK Filters Closest to X11 Filters in Airline Model

X11 �lters Hend. Ma 9-term 13-term 17-term 23-term

Seas. Ma

3� 3 (��1; �
�

12) (-.599,-.400) (-.597,-.384) (-.594,-.375) (-.589,-.364)

d(�n); �X) .008 .008 .007 .006

mX 71 73 75 78

m
� 33 31 31 30

rm� 74.85 66.14 60.62 54.57

3� 5 (��1; �
�

12) (-.583,-.563) (-.583,-.553) (-.583,-.548) (-.583,-.543)

d(�n; �X) .009 .009 .010 .010

mX 95 97 99 102

m
� 45 44 43 42

rm� 69.15 64.02 60.97 57.75

3� 9 (��
1
; �

�

12
) (-.583,-.732) (-.583,-.728) (-.583,-.726) (-.583,-.723)

d(�n; �X) .012 .013 .013 .014

mX 143 145 147 150

m
� 69 68 67 67

rm� 56.61 53.22 51.65 50.51

3� 15 (�1;
�
�
�

12)) (-.583,-.828) (-.583,-.826) (-.583,-.825) (-.583,-.824)

d(�n; �X) .013 .014 .014 .015

mX 215 217 219 222

m
� 105 104 103 103

rm� 40.83 39.17 38.23 37.10
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Conclusion

In this paper, we have built �nite approximations to in�nite �lters and we have

applied these approximations to the control of the revision period in the seasonal

adjustment problem. Given a model for an observed series and any length of the

revision period found acceptable, an optimal decomposition has been found. How-

ever, as truncating �lters implies that the historical estimators eventually obtained

deviate from the optimal WK ones, we believe that it is important to monitor

these deviations and to select a truncation level which keeps them reasonably low.

Trivially, there is a trade-o� between closeness to the original estimator and the

convergence time of the modi�ed estimate.

We also have shown that X11 �lters are better approximated by signal extraction

�lters with length contraints than by in�nite ones. We have improved Burridge and

Wallis' approximation, and we have shown that this result concerns every X11 �l-

ter. We have established that the main di�erence between X11 and signal extraction

�lters can be attributed to their respective length, a result which brings an impor-

tant insight into the understanding of the X11 decompositions in the model-based

framework.
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Appendix 1

We show that result (3.2) still holds if the Ar polynomial �(B) embodies d unit

roots.

Let x� = (x1; � � � ; xd)
0 represent the process starting values. We shall consider that

they are driven by a vector of polynomials �(B); an explicit form of �(B) is given in

Bell (1984). Considering [ (B)]` = 1 +  1B + � � �+  `B
` the expansion �(B)=�(B)

truncated at the `-th term, then, following Bell, an innovation representation of xt

is given by

xt = �(B)0x� + [ (B)]t�d�1at: (6:1)

Writing �(B) = � � � + ��nB
n + � � � + �0 + �1F + � � � + �mF

m + � � � the polynomial

obtained as �(B) = �s(B)[ (B)]
t�d�1, the signal estimator can be obtained as:

n̂t = �n(B)�(B)
0
x� +

1X

i=�t+d+1

�iat+i (6:2)

A preliminary estimate of n̂t computed at time t+ k is then given by

n̂tjt+k = E(n̂tjXt+k)

= E(�n(B)xtjXt+k)

= �n(B)�(B)
0
x� +

kX

i=�t+d+1

�iat+i

so that

n̂t � n̂tjt+k =
1X

i=k+1

�iat+i
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which is the expected result. .

Appendix 2

Solution to (4.3)

Let us denote Q(b) =
P

m

k=0(ak � bk)
2, wk` = cos 2�`k=12, and L(b) the expression

de�ned by:

L(b) = Q(b) + �(
mX

k=0

bk � 1) +
6X

`=1

�`

mX

k=0

bkwk`

where � and �`, ` = 1; � � � ;6 are the usual Lagrange operators. The solution, b�, is

such that:

dL(b�)

dbk
= �2(ak � bk) + �+

6X

`=1

�k` = 0

dL(b�)

d�
= 0

dL(b�)

d�`

= 0 ` = 1; � � � ; 6:

The operators �;�`; ` = 1; � � � ; 6 can be derived by solving the system of 7 equations

yielded by
P

m

k=0
dL(b�)=dbk = 0 and

P
m

k=0
wk`dL(b

�)=dbk = 0, ` = 1; � � � ; 6. Inserting

the solutions in

bk = ak � (1=2)(� +
6X

`=1

�`wk`)

gives the coe�cients of the frequency transfer function bm(e
�iw) =

P
m

k=0
b
�

k
cos kw

which solves (4.3).
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Figure 1: Series Frtp (in logs)
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Figure 3: Frtp Rates of Convergence of Total Revisions
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Figure 4: Frtp Seasonal Adjustment Filter
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Figure 5a: Frtp Seasonally Adjusted Series
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Figure 5b: Frtp Seasonally Adjusted Series
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Figure 5c: Frtp Seasonally Adjusted Series
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Figure 6: Frtp Empirical Variance of Total Revision
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Figure 7a: Frtp Empirical Rates of Convergence
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Figure 7b: Frtp Empirical Rates of Convergence
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Figure 7c: Frtp Empirical Rates of Convergence
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Figure 8: Series Dpcg (in logs)
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Figure 9: Dpcg Rates of Convergence of Total Revisions
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Figure 10: Dpcg Seasonal Adjustment Filter
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Figure 11a: Dpcg Seasonally Adjusted Series
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Figure 11b: Dpcg Seasonally Adjusted Series
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Figure 11c: Dpcg Seasonally Adjusted Series
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Figure 12: Dpcg Empirical Variance of Total Revision
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Figure 13a: Dpcg Empirical Rates of Convergence
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Figure 13b: Dpcg Empirical Rates of Convergence
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Figure 13c: Dpcg Empirical Rates of Convergence
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Figure 14: Ratio of distance between Adjustment Filters
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Figure 15: Frequency Transfer Function of Seasonal Adjustment Filters
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