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1 Introduction

Some units of the Statistical O�ce of the European Community (Eurostat) use

the ARIMA-model-based approach (see for example Box, Hillmer and Tiao, 1978;

�This paper was written within the framework of a study on Seasonal Adjustment methods,

conducted for Eurostat by the Jrc. The ideas expressed here are the authors' and do not

necessarily re
ect the positions of Eurostat and of the Jrc. Thanks are due to the Members of

Eurostat's internal task-force on Seasonal Adjustment for their remarks and suggestions.
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Burman, 1980) for seasonally adjusting macroeconomic indicators through the im-

plementations of the program Tramo-Seats (see Gomez and Maravall, 1996). Like

every method involving double-sided moving average �lters, as new observations be-

come available, seasonally adjusted �gures close to the end of the sample need to

be revised. An appealing feature of the model-based decompositions is that the

variance of the revision process is can be obtained (see Maravall 1996). That mea-

sure has great applied interest since it enables practitioners �rst to anticipate the

incoming change in the recent seasonally adjusted �gures, and second to perform

a validation check of the new data when the revision is recorded. That measure is

made available in the program Seats. Its computation generally involves a polyno-

mial inversion and typically implies a truncation (see Maravall, 1999). Because of

the truncation, the resulting measure can be seen as approximated. Of course the

higher the truncation level the more accurate the approximation. However, when

seasonal roots of the inverted polynomial are close to the unit circle in modulus,

large truncation levels may be required for the approximation to be reasonable. Be-

sides, the higher the truncation level, the longer the computing time. This note

develops a simple algorithm for the exact computation of the model-based variance

of the revision process. The procedure does not require any polynomial inversion.

We use the result to check the accuracy of the approximation used in the program

Seats.

2 Problem speci�cation

Let an observed time series be made up of orthogonal unobserved components ac-

cording to

xt = st + nt (2:1)

where st is a seasonal component and nt the nonseasonal part of the series. Both
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are assumed to be well described by stochastic linear processes of the type

�s(B) st = �s(B) ast;

�n(B) nt = �n(B) ant; (2:2)

where ��(B) and ��(B) denote �nite polynomials in the lag operator B, having all

roots on or outside the unit circle. The variables ast and ant are independent white

noise with variances Vs and Vn, respectively. The polynomials �s(B) and �n(B) are

prime, while theMa polynomials �s(B) and �n(B) share no unit roots. Further, the

polynomial �s(B) is assumed to be noninvertible, so that the spectrum of �s(B)st

takes a 0-value at some frequency. In the terminology of Hillmer and Tiao (1982),

the so-de�ned seasonal component is said canonical.

Equations (2.1) and (2.2) imply that the observed series xt follows an Arima

model of the type

�(B) xt = �(B) at; (2:3)

where at is a white noise with variance Va. Without loss of generality, we set Va = 1.

The polynomial �(B) can be obtained as the product �(B) = �s(B)�n(B). The

canonical hypothesis on the seasonal component implies that for a given �(B) poly-

nomial, the decomposition (2.1)-(2.2) is unique (see Hillmer and Tiao 1982). Mini-

mum mean square error estimators (Mmse) can be built as

n̂t = �n(B)xt =
1X

i=�1

�nixt+i

= Vn

�n(B)�n(F )�s(B)�s(F )

�(B)�(F )
xt (2.4)
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The �lter �n(B) is known as the Wiener-Kolmogorov �lter (see Whittle 1963). The

hypothesis that the polynomials �s(B), �n(B) do not share unit roots imply that

�(B) is invertible (see Maravall and Planas, 1998), and thus the �lter �n(B) is in�nite

with converging weigths �ni. Hence (2.4) is valid for signal estimation for periods

around the center of usual sample lengths. In �nite samples, preliminary estimates

must be computed for periods close to the sample ends. I focus on the concurrent

estimate case which is by far the most interesting one. Unknown future observations

are replaced by their forecasts, and as new observations become available, correcting

for the forecast error yields revisions in the preliminary estimates.

The process followed by the revision errors can be described as follows. Let n̂tjt+k

denote the preliminary estimate of nt computed at time t + k, k � 0. Assuming

that Xt+k = fx1; � � � ; xt+kg is available, then

n̂tjt+k = E(n̂tjXt+k)

= E(
1X

i=�1

�nixt+ijXt+k) (2.5)

Let �(B) = � � �+ ��nB
n + � � �+ �0 + �1F + � � �+ �mF

m + � � � denote the polynomial

obtained as

�(B)�(B) = �n(B)�(B)

Expressing the estimator (2.4) in fonction of the innovations at, it is easily seen that

n̂t = �(B)at, so that the conditional expectation in (3.1) reduces to:

n̂tjt+k =
i=kX

�1

�iat+i

The revisions in the preliminary estimator of nt computed at time t + k are given

by:
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n̂t � n̂tjt+k =
1X

i=k+1

�iat+i (2:6)

with variance:

V [n̂t � n̂tjt+k] =
1X

i=1

�
2

k+i (2:7)

It can be seen from (2.4) and from the de�nition of the polynomial �(B) that the

weigths �i, i > 0, converge so that after a certain number of periods, sayM , revisions

become negligible: n̂tjt+M � n̂t. The program Seats uses M = 600, a safe value as

it is very large. This is however an approximation, and in the next section an exact

solution is proposed.

3 Exact computation of the revision variance

Given (2.1) and (2.4) the polynomial �(B) veri�es:

�(B) = Vn

�n(B)

�n(B)

�n(F )�s(F )

�(F )
(3:1)

By splitting the denominator of that last expression, �(B) can be re-written as:

�(B) =
NB(B)

�n(B)
+
NF (F )

�(F )
(3:2)

where NF (F ) is such that NF (F ) = n1F + :::+ nQF
Q. Let pn, ps, qn and q denote

the respective orders of the polynomials �n(B), �s(B), �n(B) and �n(B). The order

of the polynomial NF (F ) is such that Q = ps + qn. The revisions are seen to follow

the process
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�(F )rt = NF (F )bt (3:3)

In order to obtain the exact revision variance it is enough to obtain the polynomial

NF (F ) and to compute the variance of the process (3.3) using standard time series

techniques.

Let c(B) denote the polynomial convolution c(B;F ) = Vn�n(B)�n(F )�s(F ) =

c
�qnB

qn + � � �+ C1F + � � �+ cqn+psF
qn+ps. From (3.2) it is easily seen that

NB(B)�(F ) + �n(B)NF (F ) = c(B;F ) (3:4)

Equating coe�cients of F qn+ps; :::; F;B0; B; � � � ; Bpn,

NFqn+ps = cqn+ps

NF qn+ps�1 +NFqn+ps�n1 = cqn+ps�1

:::

NFq + �s1NFq+1 + � � �+ �npsNFqn + �qNB0 = cq

NFq�1 + �s1NF q + � � �+ �npsNFqn�1 + �qNB1 + �q�1NB2 = cq�1

:::

�s1NF 1 + � � �+ �npnNFpn +NB0 + �1NB1 + :::+ �qNBq = c0

:::

�npnNF1 + �pn+1�1NB1 + :::+ �qNBq+pn = c
�pn

:::

NB�qn = c
�qn (3.5)

The system (3.5) is made up of qn + pn + qs + 1 equations which identify the qn +
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pn + qs + 1 unknowns in NB(B) and in NF (F ). Inserting the polynomial NF (F ) in

(3.3) enables to �nd out the revision variance.

4 Evaluation of SEATS approximation

The Seats approximation can then evaluated using the exact algorithm. The eval-

uation is conducted on the airline model speci�ed as:

(1�B)(1 �B12)xt = (1 + �1B)(1 + �12B
12)at

over a range of values for the moving average parameters. The result is displayed

on Table 1 below.
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Table 1

Model-Based Variance of Revision Error

�1 -.2 -.4 -.6 -.8 -.9 -.95 -.98

�12

-.5 Seats .150 .127 .102 .072 .038 .020 .007

Exact .150 .127 .102 .072 .038 .020 .007

-.6 Seats .119 .103 .084 .061 .033 .017 .006

Exact .119 .103 .084 .061 .034 .018 .007

-.7 Seats .100 .090 .076 .057 .032 .017 .006

Exact .100 .090 .076 .057 .033 .017 .007

-.8 Seats .089 .085 .076 .059 .034 .018 .006

Exact .089 .085 .076 .059 .035 .019 .008

-.9 Seats .088 .087 .079 .062 .036 .019 .007

Exact .089 .087 .079 .063 .037 .0205 .009

-.95 Seats .089 .089 .081 .064 .038 .020 .007

Exact .089 .089 .082 .065 .039 .021 .010

-.98 Seats .090 .091 .083 .066 .039 .021 .007

Exact .090 .091 .084 .067 .040 .022 .010

Two messages can be get from that investigation:

1. The Seats approximation is in general quite accurate, in particular when the

Ma polynomial do not lie close to the unit circle;

2. Close to the non-invertibility region, a slight loss in accuracy in the Seats

approximation can be noticed: the revision error variance comes out as under-

evaluated.
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