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Abstract

This paper discusses several issues related to trend-cycle decompositions with cor-
related components of macroeconomic time series, and illustrates them with reference
to the Euro area and the Italian gross domestic product. In particular, we address
the small sample properties of the estimated correlation of the trend and cycle distur-
bances, and review the interpretative issues raised by these decomposition.

The nature of inferences about trends and cycles, with reference to the real time
and final estimates, and the related topic of revision, is considered, along with the rela-
tionship with other popular results, such as the Beveridge and Nelson decomposition,
the Single Source of Error and the Innovation models.

We also look at the consequences of seasonal adjustment and temporal aggregation
on the empirical evidence for a negative correlation between the disturbances. Finally,
we illustrate that multivariate analysis can provide additional insight on this topic.
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1 Introduction

This paper is concerned with unobserved components (UC) models for the decomposition
of a macroeconomic aggregate into a trend component and a deviation cycle. Unobserved
components (UC) models assume that the components are driven by orthogonal distur-
bances (see, for instance, Clark, 1987, Harvey and Jäger, 1994) or perfectly correlated
ones; in the latter case there is a single source of disturbances and the sign of the correla-
tion is implied by the remaining parameter estimates. These restrictions are often enforced
to produce just-identified decompositions, but in some cases they are over-identifying.

When there are no degrees of freedom available for estimating the correlation between
the disturbances, and economic theory is uninformative about this parameter, we cannot
usually discriminate between different assumptions by the usual likelihood inferences, al-
though departures from the maintained model will show up in the several diagnostic tools
in the econometrician kit. The reduced form, i.e. the corresponding model in the ARIMA
class, will be of the same order, but models with orthogonal disturbances impose severe
restrictions on its parameter space.

To overcome the latter, models with correlated components have been considered by
Godolphin (1976) and Godolphin and Stone (1980), with the explicit intent of extending
the parameter range yielding decomposable models. Snyder (1985), Ord, Koehler and
Snyder (1997), and Hyndman et al. (2002) advocate state space models with only one
source of random disturbances, with the same intent, also arguing that inferences are sim-
plified. Another very popular result, the Beveridge and Nelson (BN, 1981) decomposition,
is formulated in terms of perfectly correlated disturbances, and is commonly viewed as
providing a structural interpretation to any ARIMA model. In the study of macroeco-
nomic time series (e.g. GDP at constant prices) the common disturbance has often been
associated with productivity, or real, shocks. The BN decomposition is actually a partic-
ular case of what is known as a formal decomposition of an ARIMA model; see Brewer et
al. (1975), Brewer (1979) and Piccolo (1982). Casals, Jerez and Sotoca (2002) have re-
cently advocated the use of the innovation form of a structural model for inference about
unobserved components. Their argument is that this representation yields an “exact”
decomposition, such that the model for the estimated component is congruent with the
theoretical one and the components are estimated in real time, i.e. using only current and
past information.

Models with perfectly correlated disturbances pay a price for their wider applicability:
at the outset there is no guarantee that the components will be sensible. For instance,
we must be willing to accept that trend growth has higher unconditional variance than
output growth, which may be regarded as quite implausible, under a weak smoothness
prior. Moreover, if main motivation for entertaining them was to enlarge the reduced
form decomposable parameter range, but they happened to select a point in that space
for which an orthogonal decomposition is admissible, the estimation of the components
could have been improved by using future observations; smoothing is however prevented
by the model specification itself.

In other words, the restrictions imposed by UC with uncorrelated components are often
reasonable, providing plausible ways of weighting the data and of avoiding, for instance,
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that the trend fluctuates more wildly than the observations. Harvey and Koopman (2000),
looking at the implications on the weighting patterns for signal extraction, cast some
doubts on the plausibility of models with correlated components.

These issues have been reflected in the forecasting literature. The “structural” inter-
pretation of the forecast function of any ARIMA model has been provided by Box, Pierce
and Newbold (1987), using a partial fraction expansion of the autoregressive polynomial;
by this approach, which is essentially the same as that at the foundation of the BN de-
composition, it is possible to derive updating equations for the components of the forecast
function that depend on the innovations. The fundamental question is whether the compo-
nents can be genuinely interpreted as trends, cycles, etc., especially when the innovations
are not discounted; see Proietti (2002a, sec. 5.10) for an illustration. On the other hand,
UC models with orthogonal disturbances impose some kind of discounting on the innova-
tions that is coincident with or in the same spirit of that arising in exponential smoothing
techniques. With reference to the latter, the related problem as to whether smoothing
constant greater than 1 are admissible has received some attention, and is reviewed in
Gardner (1985).

A different situation arises when the restrictions on the correlation are over-identifying.
This occurs if the representation chosen for the components is not “saturated”: usually, UC
models are a linear combinations of individual components, such that the i-th component
has a (possibly nonstationary) ARMA(pi, pi − 1) representation. For instance, a typical
trend-cycle decomposition features a random walk (RW) trend (p1 = 1) plus a stationary
ARMA(2,1) cycle (p2 = 2). If the parameters are unconstrained, the model is “saturated”
and we have to assume a particular value for the correlation of the disturbances driving
the components so as to achieve exact identification. If the cycle is specified as a pure
AR(2), instead, the reduced form has one more parameter than the UC model and this
extra degree of freedom can be used to estimate the correlation between the trend and
cycle disturbances.

Morley, Nelson and Zivot (2002, MNZ henceforth) have recently contributed to this
issue: they consider a class of UC decompositions of U.S. real gross domestic product
(GDP) into a random walk trend and a purely AR(2) cycle, that depends on the identifiable
correlation between the trend and cycle disturbances and that produces an ARIMA(2,1,2)
reduced form. Within this class, MNZ compare the fit and the components arising from the
UC model assuming orthogonal disturbances and the BN decomposition of the unrestricted
ARIMA model, which features perfectly and negatively correlated disturbances. The
resulting decompositions produce different stylised facts, and in particular the BN cycle
is characterised by a much smaller amplitude and a shorter periodicity.

Since a degree of freedom is allowed from the fact that the UC model has one parameter
less than the ARIMA reduced form, they estimate the correlation between the trend and
cycle disturbances and find out that the estimated value is negative, about -0.92, and
significantly different from zero. The resulting real time, or concurrent, estimates of the
trend and cycle in U.S. GDP closely resemble the BN components, which allows us to
reconcile the UC with the unrestricted reduced form.

They interpret this empirical evidence as an expression of the dominant role of real
shocks, which shift the long run path of output, whereas short term fluctuations reflect
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only the adjustment to the new path.
This paper will be concerned with the estimation and the interpretation of decomposi-

tion with correlated trend and cycle disturbances. We set up with the specification of the
benchmark UC model in section 2, which nests two leading cases of interest: the UC model
with correlated disturbances and the orthogonal decomposition with ARMA(2,1) cyclical
component. Section 3 reviews the BN decomposition of the ARIMA(2,1,2) reduced form
and its main properties, while section 4 presents the autocovariance and spectral generat-
ing functions of the various models.

In section 5 we illustrate and compare the fit of orthogonal and correlated UC models
to the Euro area and the Italian quarterly real gross domestic product. The evidence for
the Italian series mirrors quite closely the findings by MNZ, i.e. in favour of a strong and
negative correlation between the trend and cycle disturbances, although we argue that the
small sample distribution of the correlation coefficient raises some concern. For the Euro
area the findings are not conclusive.

Models with correlated components pose several interpretative issues since, under cer-
tain conditions, they are observationally equivalent to models that provide different expla-
nations of the nature of macroeconomic fluctuations (section 6). Strongly and negatively
correlated disturbances imply that the spectral density of the first differences of the series
is not a global minimum at the long run frequency. This feature is accommodated also by
the cyclical growth model, that can also be parameterised as a model featuring hysteresis
effects. The Italian case illustrates that the cyclical growth model and the hysteresis model
possess exactly the same explanatory power, yielding the same likelihood.

Inference about unobserved components in models with correlated components is dealt
with section 7, where we consider the state space representation, the treatment of initial
conditions, estimation of the components in real time and using the full sample, and some
of the ambiguities that arise for single source of error and innovation form representation
when they are considered as “models”. We also illustrate that a very peculiar trait of
models with highly and negatively correlated trend and cycle disturbances is that the
future is more informative than the past for signal extraction. As a result the cycle
estimates will be subject to large revisions and the final estimates will display greater
amplitude than the real time ones.

Sections 9 and 10 investigate respectively whether seasonal adjustment and temporal
aggregation can affect the empirical evidence about the sign and the magnitude of the
correlation coefficient. Finally, we address the issue as to whether multivariate UC models
can cast some light on correlated disturbances (section 11). Section 12 draws the main
conclusions.

2 Trend-Cycle decomposition with Correlated Components

The basic univariate representation for an output series, yt, deals with the decomposition
into a random walk trend component, denoted µt, and a stationary ARMA(2,1) stochastic
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cycle, denoted ψt:

yt = µt + ψt t = 1, 2, . . . , T,

µt = µt−1 + β + ηt,
ψt = φ1ψt−1 + φ2ψt−2 + κt + θκt−1,

(
ηt

κt

)
∼ NID

[(
0
0

)
,

(
σ2

η σηκ

σηκ σ2
κ

)]
, σηκ = rσησκ.

(1)

The trend and cycle disturbances are allowed to be contemporaneously correlated, with
r being the correlation coefficient; NID denotes normally and independently distributed
random variables. Complex stationary autoregressive roots can be imposed expressing
φ1 = 2ρ cosλc and φ2 = −ρ2, where ρ and λc (representing the modulus and the phase of
the roots of the AR characteristic equation), lie respectively in [0, 1) and [0, π].

Model (1) will be labelled UC(r, θ) to stress the dependence on the two “conflicting”
parameters. Its reduced form is the ARIMA(2,1,2) process:

∆yt = β +
θ(L)
φ(L)

ξt, ξt ∼ WN(0, σ2), t = 2, ..., T, (2)

where θ(L) = 1+ θ1L+ θ2L
2 and φ(L) = 1−φ1L−φ2L

2 are respectively the MA and AR
polynomials in the lag operator, L, and ∆ = 1− L.

The reduced form has six parameters, whereas UC(r, θ) has seven. Hence, the latter is
not identified and one has to restrict either r or θ. The orthogonal trend cycle decompo-
sition considered by Clark (1987) imposes r = θ = 0, and thus will be denoted UC(0,0).
MNZ entertain UC(r, 0) and compare it with UC(0, 0). Harvey and Jäger (1994), al-
though they entertain I(2) - local linear - trends, consider UC(0, θ), with a restricted θ,
which functionally depends on ρ and λc.

It should be noticed that UC(r, 0) is not identifiable if φ2 = 0; the parameterisation
in terms of the modulus and phase of the AR process avoids this lack of identification if
0 < ρ < 1.

3 The Beveridge-Nelson Decomposition

The Beveridge and Nelson (1981) decomposition hinges upon the definition of the trend
in terms of prediction as the value at time t of the eventual forecast function. When
yt is difference stationary, we can uniquely decompose the series process into a random
walk trend and a stationary transitory component. The decomposition has been deemed
to provide a structural interpretation to any ARIMA(p, 1, q) reduced form model fitted
according to the traditional Box-Jenkins methodology, with the characterising property
that the components are driven by perfectly correlated disturbances, that are linear in the
innovations, ξt.

With respect to the ARIMA(2,1,2) model (2), the BN decomposition specialises as
follows:

yt = mt + ct, t = 1, ..., T. (3)
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where the trend, mt, has the random walk representation:

mt = mt−1 + β +
θ(1)
φ(1)

ξt. (4)

and the cycle, ct, has the ARMA(2,1) representation:

φ(L)ct = (1 + ϑ∗L)
[
1− θ(1)

φ(1)

]
ξt, ϑ∗ = −φ2θ(1) + θ2φ(1)

φ(1)− θ(1)
. (5)

These results follow straightforwardly from Proietti (1995) and Proietti and Harvey (2000).
It is apparent from (4) and (5) that the two components are driven by the innovations,

ξt; the fraction θ(1)/φ(1), known as persistence, is integrated in the trend, and its com-
plement to 1 drives the cycle. The sign of the correlation between the trend and the cycle
disturbances is provided by the sign of φ(1)− θ(1); when persistence is less (greater) than
one then trend and cycle disturbances are positively (negatively) and perfectly correlated.

The BN cycle has always an MA feature, unless φ2θ(1) + θ2φ(1) = 0. The MA poly-
nomial can be non invertible, i.e. |ϑ∗1| can be greater than 1; this will be the case for the
ARIMA(2,1,2) models estimated in section 5 for the Euro Area and the Italian GDP.

As shown by Watson (1989) the BN components, defined on the reduced form of UC
models, are always coincident with the filtered, or real time time, estimates arising from
the UC(r, θ) model, whatever restriction we impose to make it identifiable. The filtered
components of identified UC(r, θ) models are however estimated with non zero mean square
error even in the case r = −1, θ = 0. Hence, it would not be correct to regard the BN
trend and cycle as the estimates of the components arising from UC(−1,0), as future
observations reduce the estimation error. This point has often been overlooked in the
literature and we return to it in section 8, where we show that the only case in which ψt

is actually an observed component in real time arises for r = 1.
When the BN decomposition is interpreted as a model, the components are estimated in

real time with zero mean square error, after processing a suitable number of observations so
that the effect of initial conditions is marginalised, this being the only source of uncertainty
(assuming known parameters). We discuss this further in section 7.

4 Autocovariance Generating Functions

The properties of any linear time series model of economic fluctuations are uniquely char-
acterised by its autocovariance generating function (ACGF). The ACGF also provides a
valuable tool to address the equivalence issues that arise in the interpretation of models
with correlated disturbances (see section 6). Moreover, its frequency domain counterpart,
the spectral generating function (SGF), will be used for estimating the parameters of the
model by maximum likelihood.

The ACGF of the reduced form model for ∆yt, denoted g(L), is g(L) = σ2|θ(L)|2/|φ(L)|2,
where |θ(L)|2 = θ(L)θ(L−1) and |φ(L)|2 = φ(L)φ(L−1). The various UC model that result
by constraining (1) are restricted versions of g(L). For the UC(r,0) model considered by
MNZ the ACGF, denoted gr(L), can be written as follows (Proietti, 2002):

|φ(L)|2gr(L) = |φ(L)|2σ2
η + |1− L|2[σ2

κ + rσησκ(1 + φ1 + φ2 + φ2(L + L−1))]. (6)

6



Equating g(L) to gr(L) provides the way of deriving the reduced form parameters (θ1, θ2, σ
2)

from (ση, σκ, r) and of assessing the restrictions imposed by the UC model on the reduced
form. For instance, g(1) = gr(1) implies σ2

η = σ2[θ(1)/φ(1)]2.
For the UC(0, θ) model we have

|φ(L)|2gθ(L) = |φ(L)|2σ2
η∗ + |1− L|2|1 + θL|2σ2

κ∗ (7)

where, with a change of notation that will be useful in the sequel, σ2
η∗ and σ2

κ∗ denote the
variance of the trend and cycle disturbances when we assume in (1) that they are mutually
uncorrelated at all leads and lags.

The ACGF of the Clark model, UC(0,0), is obtained by setting r = 0 in (6) or θ = 0
in (7). Replacing L with the complex exponential e−ıλ = cosλ − ı sinλ, where ı is the
imaginary unit, gives the spectral generating function, that provides a decomposition of
the variance of ∆yt into the contribution of changes in the trend, in the cycle and, in the
case of UC(r,0), the covariation (cross spectral density) between the two.

5 Two Illustrative Examples

This section illustrates the fit of the unrestricted ARIMA(2,1,2) and three different trend-
cycle decompositions that result from (1), UC(0,0), UC(r, 0) and UC(0, θ), with respect
to Euro Area (EA) and the Italian Gross Domestic Product (GDP) at constant prices.
Both series are quarterly and are available for the sample period 1970:1-2002.2. The EA
series is an update of the one constructed for the Area Wide Model by Fagan, Henry and
Mestre (2001), and the Italian series is made available electronically at www.istat.it.

Model estimation has been carried out in the frequency domain. The likelihood is
defined in terms of the stationary representation of the various models, that is in terms
of ∆yt, t = 1, . . . , T ∗ = (T − 1); see Nerlove, Grether and Carvalho (1995) and Harvey
(1989, sec. 4.3). While the time domain likelihood of UC models is based on a recursive
orthogonalisation, known as the prediction error decomposition, performed by the Kalman
filter (section 7), the frequency domain one is based on an alternative orthogonalisation,
achieved through a Fourier transform. Denoting the Fourier frequencies by λj = 2πj

T ∗ ,
j = 0, 1, . . . , (T ∗ − 1), the likelihood function is defined as follows:

loglik = −1
2



T ∗ log 2π +

T ∗−1∑

j=0

[
log gm(λj) + 2π

I(λj)
gm(λj)

]



where gm(λj) = gm(e−ıλj ) denote the spectral generating function of the m-th model
evaluated at frequency λj , and I(λj) is the periodogram:

I(λj) =
1
2π

[
c0 + 2

T ∗−1∑

τ=1

cτ cos(λjτ)

]

where cτ denotes the sample autocovariance at lag τ ,

cτ =
1
T ∗

T−τ∑

t=1

(∆yt − ∆̄y)(∆yt−τ − ∆̄y), ∆̄y =
1
T ∗

T ∗∑

t=1

∆yt.
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The index m refers alternatively to the ARIMA model, UC(0,0), UC(r, 0), and UC(0, θ).
The corresponding spectral generating functions are straightforwardly derived from the
ACGFs presented in section 41.

Table 1 presents the main estimation results along with some diagnostics: Q(12) denotes
the Ljung-Box portmanteau test statistic for residual autocorrelation based on the first 12
autocorrelations, and we also present the Doornik and Hansen (1994) test of normality.
Both are computed on the standardised Kalman filter innovations (see appendix 7).

Table 1: Parameter estimates and diagnostics for models of quarterly Euro Area and
Italian GDP, 1970.1-2002.2; (r) denotes a restricted parameter.

Euro Area Italy
ARIMA UC(0, 0) UC(r, 0) UC(0, θ) ARIMA UC(0, 0) UC(r, 0) UC(0, θ)

φ1 1.40 1.65 1.40 1.65 1.47 1.54 1.47 1.56
φ2 -0.69 -0.68 -0.69 -0.68 -0.77 -0.59 -0.77 -0.84
θ1 -1.17 -1.14
θ2 0.57 0.48
σ2 0.3443 0.5225
r 0(r) -0.95 0(r) 0(r) -0.82 0(r)

σ2
η (σ2

η∗) 0.2090 0.6473 0.2435 0.1475 0.6672 0.3957
σ2

κ (σ2
κ∗) 0.0975 0.2226 0.0350 0.3560 0.2539 0.0216

θ 0(r) 0(r) 0.64 0(r) 0(r) 1.00
loglik -114.28 -114.52 -114.28 -114.59 -141.17 -144.04 -141.17 -143.03
Q(12) 6.83 7.70 6.83 7.60 6.29 13.53 6.29 14.07

Normality 11.80 11.63 11.80 11.64 2.08 1.53 2.08 2.46

We observe that for both series the ARIMA model and UC(r, 0) provide exactly the
same likelihood inferences; hence the reduced form of the latter coincides with the unre-
stricted ARIMA(2,1,2) model fitted to the series. The persistence parameter is respectively
1.38 (EA) and 1.13 (Italy). The estimated correlation parameter is high and negative (-0.95
for EA and -0.82 for Italy), and the ratio ση/σκ is always greater that 1. The likelihood
ratio (LR) test of the restriction r = 0 is not significant for EA but it is highly so for Italy,
with a p-value 0.02, whereas the LR test of θ = 0 is never significant. It is noticeable that
for Italy the estimated cycle MA parameter lies on the boundary of the parameter space;
in general models with orthogonal disturbances yield worse Ljung-Box statistics.

The fit provided by the models to the periodogram (raw sample spectrum) emerges
from figure 1, which presents I(λj) along with the estimated spectral density functions
gr(λj)/(2π) and gθ(λj)/(2π). Obviously, gr(λj) = g(λj), that is the ARIMA spectrum is
identical to that implied by UC(r,0).

For EA the spectral density fitted by UC(0,θ) is characterised by a spectral peak taking
place at a lower frequency, and therefore the resulting cycle estimates are characterised by a
larger period (the estimated AR polynomial can actually be written as φ(L) = (1−0.82L)2

and thus features a stationary root with multiplicity 2 at the zero frequency - this is a
1All the computations were performed in Ox 3.2 (Doornik, 2001). Signal extraction was performed by

the Kalman filter and smoother using the library of state space function SsfPack 3.0 (beta) by Koopman
et al. (1999), linked to Ox 3.2.
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special case of a second order cycle, see Harvey and Trimbur, 2002); as expected, UC(r,
0), yields a much higher estimate at the zero frequency and it is not a minimum at that
frequency. We also notice a periodogram ordinate close to the Nyquist frequency that is
not fitted by any of the models: this corresponds to the effect of the calendar component
in GDP (number of working/trading days in the quarter).

For Italy, the cycle periods are not different (about 3 years), although gr(λj) and gθ(λj)
differ around the zero frequency and the spectral peak. For the latter we observe that θ = 1
implies gθ(0) = gθ(π) as the cycle is strictly non invertible at the π frequency. The richer
residual autocorrelation pattern characterising UC(0,θ) are likely to be a consequence of
underestimation of the zero frequency variance component.

For estimation purposes, we adopted the transformation r = r̄/
√

1 + r̄2, where r̄ is
estimated unrestrictedly and the transformation ensures that the correlation parameter is
constrained in the admissible range [-1,1]. The asymptotic standard error of r, estimated
by the Delta method, are 0.17 and 0.22, respectively for the EA and Italy. These, however,
provide only a very bad guidance over the sampling distribution of r. To illustrate this
point we generated 1000 bootstrap estimates of r; the distribution is plotted in figure 2. For
the implementation of the bootstrap we followed Stoffer and Wall (1991), generating 1000
series with the same sample size of the original ones by resampling without replacement the
standardised innovations arising from the fitted UC(r,0) model. The sampling distribution
is highly nonstandard as it suffers from a “pile-up” phenomenon at the extremes of the
sample range; if we consider that in the Italian case 27% and 6% are equal respectively
to -1 and +1, a boostrap confidence interval covers all the parameter range. The same
considerations apply to EA.

In conclusion, the results presented in this section confirm the MNZ findings, pointing
out that among the unobserved components models considered, the UC(r, 0) model is
the only one that can be reconciled with the unrestricted ARIMA(2,1,2) model of GDP.
However, only for Italy the correlation between trend and cycle disturbances resulted
significant using standard asymptotic inferences. The bootstrap characterisation of the
sampling distribution of the correlation parameter suggests that those inferences need to
be handled with great care.

6 Interpretative Issues

The evidence emerging from our empirical illustrations, would, with the caveats made
above, point out in the direction of selecting the UC(r, 0) specification, with a high and
negative correlation between the trend and cycle disturbances. This, along with the signal
ratio σ2

η/σ2
κ being relatively high, has been taken to support the notion of the prominence

of real shocks, ηt, as opposed to nominal ones, κt.
In this section we review some alternative ways of interpreting the correlation between

the disturbances, by establishing the conditions under which UC(r, 0) can be viewed as a
reparameterisation of an alternative decomposition with a very different meaning.
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6.1 The Equivalence of UC(r,0) and UC(0, θ)

The UC(r,0) model can be rewritten as an UC(0,θ) model if the quadratic equation,

θ

1 + θ2
= φ2r

ση

σκ

[
1 + r

ση

σκ
(1 + φ1 + φ2)

]−1

, (8)

admits a real and invertible solution (Proietti, 2002). The remaining parameters are then
obtained as follows: σ2

η∗ = σ2
η and σ2

κ∗ = φ2rσησκ/θ. These results are derived form the
ACGF identity, gθ(L) = gr(L), which amounts to equating the right hand sides in (6) and
(7).

The admissibility conditions can be shown to be exactly the same under which gr(e−ıλ)
is a global minimum at the zero frequency. This reflects the fundamental fact that the
orthogonal decomposition UC(0, θ) imposes that the spectral density of ∆yt is a minimum
at zero, a result already established in Lippi and Reichlin (1992).

The equivalence is always feasible if r is positive, but, we can allow for negative corre-
lation provided that the ratio ση/σκ is small, i.e. the trend disturbance is a minor source
of variation. In conclusion, when the spectral density of ∆yt is a minimum at zero, the
cross spectrum between the components absorbs part of the cyclical variability; this can
be reallocated to the cyclical component, which is underestimated by the UC(r,0) model,
by allowing it to display a moving average feature.

6.2 Cyclical Growth and Hysteresis

Consider now the following UC model that postulates that ∆yt can be additively decom-
posed into a cyclical component and orthogonal noise:

∆yt = β + ψt + η∗t , η∗t ∼ WN(0, σ2
η∗),

ψt = φ1ψt−1 + φ2ψt−2 + κ∗t + θκ∗t−1, κ∗t ∼ WN(0, σ2
κ∗),

E(η∗t κ∗t ) = 0.
(9)

The idea is that of representing underlying growth as a smooth cyclical process.
Model (9) has again an ARIMA(2,1,2) reduced form, and six parameters, but differ-

ent implications. In its original specification, it simply produces estimates of underlying
growth that are smoother than the original observations; it can also be interpreted as a
cyclical trend model, as in Harvey (1989, p. 46), such that the trend is coincident with the
observations, i.e. yt = µt and µt = µt−1 + β + ψt + η∗t .

It is also observationally equivalent to the Jäger and Parkinson (1994) hysteresis model,
which is such that a deviation cycle can still be defined, but the cycle modifies also
permanently the trend. The hysteresis model is specified as follows:

yt = µt + ψt, t = 1, 2, . . . , T,

µt = µt−1 + (1 + θ)ψ∗t−1 + η∗t , η∗t ∼ WN(0, σ2
η∗),

ψ∗t = φ1ψ
∗
t−1 + φ2ψ

∗
t−2 + κ∗t , κ∗t ∼ WN(0, σ2

κ∗)

(10)

and E(η∗t κ∗t ) = 0. Notice that the cycle, ψ∗t , is redefined as a pure second order AR process;
(1 + θ) represents the hysteresis parameter, i.e. the fraction of the cycle that is integrated
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in the trend. Obviously, θ = −1 yields again the additive decomposition into orthogonal
trend and cycle that corresponds to the Clark model UC(0, 0).

Using the same expedient of equating the ACGFs, we establish a set of conditions under
which (9) can provide a trend - cycle decomposition with correlated disturbances, i.e. can
be written as an UC(r, 0) process. These are met if we can uniquely determine the cycle
MA parameter θ in (9) for given values of the correlation parameter r and the ratio ση/σκ

in UC(r, 0), as the admissible invertible solution of the quadratic equation:

(1 + θ)2

(1 + θ)2 [φ1(1− φ2) + 2φ2] + θφ(1)2
=

r(ση/σκ)
1 + r(ση/σκ)(1 + φ1 + φ2)

. (11)

If this is possible, then, the remaining parameters are obtained from:

σ2
κ∗ = −rσησκ

φ(1)2

(1 + θ)2
; σ2

η∗ = σ2
η −

(1 + θ)2

φ(1)2
σ2

κ∗ .

These results make clear that the equivalence is admissible only for negative values of
r. When r = 0 the solution θ = −1 arises for any value of the ratio ση/σκ, in which
case the hysteresis parameter is zero and the model can be orthogonally decomposed into
a RW trend and a purely AR(2) cycle. No admissible solutions exists for a positive r
and in general an UC trend-cycle decomposition with positively correlated disturbances
cannot be isomorphic to a cyclical growth model or a model with hysteresis effects. This
is so since model (9) implies a spectral density for ∆yt that has a local, but not a global,
minimum at the zero frequency.

6.3 Permanent-Transitory Decomposition

A negative r is often interpreted in terms of ηt → κt; e.g. positive trend disturbances
induce negative cyclical shocks. Of course, we could invert the direction of the causality,
as in statistics correlation does not necessarily imply causation. Yet another interpretation
can be derived using the orthogonalisation

κt = κ∗t + ωηt, ω = r
σκ

ση
, E(κ∗t , ηt) = 0;

replacing into (1), with θ = 0, and rearranging, we achieve the following orthogonal
decomposition of yt into a permanent component, y

(P)
t , and a transitory component, y

(T)
t :

yt = y
(P)
t + y

(T)
t , t = 1, 2, . . . , T,

φ(L)∆y
(P)
t = b + [φ(L) + ω∆]ηt ηt ∼ NID(0, σ2

η)
φ(L)y(T)

t = κ∗t , κ∗t ∼ NID(0, σ2
κ∗)

(12)

with σ2
κ∗ = σ2

κ(1 − ω2), b = φ(1)β. The permanent component is generated by an
ARIMA(2,1,2) process, since the term in square brackets on the right hand side is an
MA(2) polynomial. MNZ seem to refer to this decomposition when they speak of nom-
inal shocks that do not affect the trend (κ∗t ) and of a new economy shock that induces
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a negative output gap: the latter can be associated to the transitory effects of ηt, that
amount to ωηt/φ(L) (notice that r < 0 implies ω < 0). The term “permanent-transitory”
decomposition arises by analogy with the Blanchard and Quah (1981) decomposition.

6.4 Illustrative Examples (cont.)

The parameter estimates reported in table 1 rule out the equivalence of the estimated
UC(r, 0) model with UC(0,θ): for both EA and Italy 8 has no admissible solution. As a
matter of fact, the spectral density estimated by the former is not a global minimum at
the zero frequency.

As far as the equivalence with the cyclical growth - hysteresis model is concerned, for
the Euro Area GDP equation (11) has complex roots. However, for the Italian GDP case
a real invertible solution is admissible as θ = −0.41; the remaining implied parameter
values are σ2

η∗ = 0.3260 and σ2
κ∗ = 0.0869; These values are fully coincident with those

estimated by maximum likelihood. Hence the Italian GDP provides a case in which the
cyclical growth model and the trend cycle decomposition with correlated disturbances
provide exactly the same inferences, that are in turn coincident with those arising for the
unrestricted ARIMA(2,1,2) model. As a result, alternative explanations of the nature of
macroeconomic fluctuations arise with exactly the same likelihood. Finally, the option
of deriving a permanent-transitory decomposition from UC(r,0) is open for both series,
yielding yet another interpretation.

7 State Space Representation and the Estimation of Unob-
served Components

In this section we discuss several facts concerning the real time and smoothed estimates of
trends and cycles arising from the various models considered in the previous sections. To
accomplish this, we need first to review the state space representation, and the associated
algorithms for filtering and smoothing.

7.1 State Space representation

The UC models considered so far admit the time-invariant state space representation:

yt = z′αt, t = 1, 2, . . . , T,
αt = Tαt−1 + c + Rεt,

(13)

with εt ∼ NID(0, Q) and α0 ∼ NID(α̃0, P 0), independently of εt, ∀t. The treatment of
initial conditions is discussed in section 7.2. The state vector has three elements, αt =
[µt, ψt, ψ

∗
t ], and the drift β is considered as a constant effect. Alternatively, we may include

β in the state vector using the transition equations for the trend µt = µt−1 + βt−1 + ηt,
βt = βt−1.
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For instance, the system matrices for the UC(r, 0) model are:

z =




1
1
0


 , T =




1 0 0
0 φ1 1
0 φ2 0


 , c =




β
0
0


 , R =




1 0
0 1
0 0


 , Q =

[
σ2

η σηκ

σηκ σ2
κ

]

For the Beveridge-Nelson decomposition, considered as a model, the system matrices are
the same except for R and Q, which are 3× 1 and scalar, respectively:

R =




%
1− %

−(θ2 + φ2%)


 , Q = σ2,

where % = θ(1)/φ(1) is the persistence parameter. On the other hand, for UC(0,θ) we
need to replace R and Q by:

R =




1 0
0 1
0 θ


 , Q =

[
σ2

η∗ 0
0 σ2

κ∗

]
;

finally, the state space representation for the cyclical growth model is obtained also re-
placing z and T by:

z =




1
0
0


 , T =




1 1 0
0 φ1 1
0 φ2 0


 .

The state space model (13) is in contemporaneous form. The future form, that is
sometimes used to specify the model, differs for the timing of the transition equation,
which is written αt+1 = Tαt+c+Rεt. Due to the absence of measurement noise and time
invariance of the system matrices, if the measurement equation is unaltered, that is yt =
z′αt, the two representations differ only for the (arbitrary) timing of the disturbances. A
slightly different representation is obtained if the maintained model is in contemporaneous
form and we express it to the future form: this can be done by replacing αt in the
measurement equation with the right hand side of the transition equation and redefining
α∗t = αt−1, so as to write:

yt = z′α∗t + z′Rεt, t = 1, 2, . . . , T,
α∗t+1 = Tα∗t + c + Rεt.

(14)

It should be noticed the appearance of measurement noise in the first equation that is
correlated with the transition noise. There is nothing “structural” about this component,
which appears as a consequence of the operation of forcing the contemporaneous represen-
tation into the future form, according to which a “shock” at time t affects the components
at time t + 1.
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7.2 Initialisation

Initialisation deals with the specification of the mean and the covariance matrix of the
initial state vector, α0. If we assume that the process αt has applied since time immemorial
(t → −∞), and if we partition T = diag(1, T ψ) and R = [R′

µ, R′
ψ]′, then ã0 = 0 and

P 0 = e1e
′
1δ +

[
0 d
d′ M

]

where δ →∞, e′1 = [1, 0, 0], d = RµQR′
ψ(I − T ′

ψ)−1, and M solves the matrix equation
M = T ψMT ′

ψ + RψQR′
ψ. UC models with uncorrelated components have d = 0′,

whereas, for UC(r,0), d = rσησκφ(1)−1 · [1, φ2]. However, working out the exact initial
KF by letting δ →∞, as in (Koopman, 1997) and Durbin and Koopman (2001), it can be
checked that the elements of d are wiped away by the limiting operations and thus play
no role for inferences. The same result is obtained if one uses the augmentation approach,
and in particular the theory in De Jong and Chu-Chun-Lin (1994).

7.3 Kalman Filter

The Kalman filter (Anderson and Moore, 1979), is the well-known recursive algorithm for
computing the minimum mean square estimator of αt and its mean square error (MSE)
matrix conditional on Yt−1 = {y1, y2, . . . , yt−1}. Defining α̃t|t−1 = E(αt|Yt−1), P t|t−1 =
E[(αt − α̃t|t−1)(αt − α̃t|t−1)′|Yt−1], it is given by the set of recursions:

ξt = yt − z′α̃t|t−1, ft = z′P t|t−1z

kt = TP t|t−1zf−1
t

α̃t+1|t = T α̃t|t−1 + c + ktξt, P t+1|t = TP t|t−1T
′ + RQR′ − ktk

′
tft

(15)

ξt = yt − E(yt|Yt−1) are the filter innovations or one-step-ahead prediction errors, with
variance ft.

Steady State The innovations and the state one-step-ahead prediction error, xt =
αt − α̃t|t−1, can be written as

ξt = z′xt, xt+1 = Ltxt + Rεt+1, (16)

where Lt = T−ktz
′. Thus, xt follows a VAR(1) process that is (asymptotically) stationary

if the autoregressive matrix Lt, known as the closed loop matrix in system theory, converges
to a matrix L = T − kz′, whose eigenvalues lie all inside the unit circle.

The basic properties that ensure convergence to such stabilising solution are detectabil-
ity and stabilisability (see Burridge and Wallis, 1988). For the trend-cycle decompositions
considered in this paper they are met if φ(L) does not display explosive roots or unit roots
at the zero frequency. The two conditions imply that, independently of initial conditions,
P t+1|t converges at an exponential rate to a steady state solution P , satisfying the Riccati
equation P = TPT ′+RQR′−kk′f, with k = TPzf−1 and f = z′Pz, and the Kalman
gain vector k is such that L has all its eigenvalues inside the unit circle.

14



7.4 Real time estimates

The real time or concurrent estimates of the states and the estimation error covariance
matrix are given respectively by:

α̃t|t = α̃t|t−1 + P t|t−1zf−1
t ξt, P t|t = P t|t−1 − P t|t−1zz′P t|t−1f

−1
t . (17)

The estimated unobserved components in α̃t|t are the same as those arising from the BN
decomposition of the implied ARIMA reduced form representation. The MA parameters
of the reduced form representation can be uniquely derived from the steady state using
Pzf−1, whose first element is the persistence parameter. Notice, however, that in the
steady state we need zz′f−1 to be equal to the pseudo-inverse of P for the components to
be estimated with zero error, i.e. observable with respect to current and past information.
For the BN model f = σ2 = Q, Pzf−1 = R and P = RQR′, k = TR, which ensures
that when the system has reached a steady state, the components are estimated in real
time with zero mean square error.

7.5 Single Source of Error and Innovation State Space Models

The BN decomposition can be viewed as the “structural” representation of Single Source
of Error (SSE, Snyder, 1985, Hyndman et al., 2002) and Steady State Innovation Models
(SSIM, Casals, Jerez and Sotoca, 2002). In this section we establish the connection among
these alternative representations of the same underlying model.

Recalling the state space representation of the BN decomposition, which is (13) with
scalar εt = ξt and R = [%, (1−%),−(θ2+φ2%)], we use manipulations similar to those which
led to (14) in two steps: we first replace αt in the measurement equation by the right hand
side of the transition equation to obtain the single source of error representation:

yt = z′Tαt−1 + ξt, αt = Tαt−1 + c + Rξt,

the new measurement equation features ξt since z′R = z′r = 1.
Next, we posit α∗t = Tαt−1 and on premultiplying both sides of the transition equation

by T , we write:
yt = z′α∗t + ξt, t = 1, 2, . . . , T,

α∗t+1 = Tα∗t + c + kξt,
(18)

with k = TR. This is the innovation form of the model in the steady state, as can be
seen by comparing (18) with the first and the last row of the KF equations in (15). The
Kalman gain identity is k = TR.

We stress that both forms are available for any UC model, and in fact the SSIM arises
from the filtering operation, and the SSE from the updating equations, but only for the
BN model a one to one correspondence holds. If SSIM or SSE are estimated as a model
there is no way of recovering information on multiple source of errors.

The emphasis on the “exact” nature of inference for SSE and SSIM models is misplaced:
the property that components are estimated in real time, state Casals, Jerez and Sotoca
(2002) in their concluding remarks (p. 563),
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“ensures coherence between the properties of the theoretical and empirical
components, provides a rigorous statistical foundation for using the empirical
components as observable and mutually independent time series, and guaran-
tees that these components will not change as the sample increases”.

First and foremost, the BN illustration shows that both SSIM and SSE representations
feature (perfectly correlated) measurement noise that is not present in the BN model,
and thus are not coherent in this respect with the maintained model. As a matter of
fact, Casals, Jerez and Sotoca interpret the one-step-ahead forecast error as an estimate
of the irregular component. Moreover, the timing of the disturbances is not the same
as the original model, when the latter is expressed in contemporaneous form. Secondly,
the empirical components cannot be mutually independent, being driven by the same
disturbance. Finally, their observability in real time, and thus the absence of revision is
simply a consequence of the model formulation, i.e. a property and non necessarily an
advantage.

We do not need much theory to show that when (18) is interpreted as a model, and the
system is stabilisable and detectable, the states are observed: substituting the expression
for ξt in the measurement equation into the transition equation, yields α∗t+1 = Lα∗t + c +
kyt, that is

α∗t+1 = kyt + Lkyt−1 + L2kyt−2 + · · · .
This expression makes it apparent that the states are a linear combination of past obser-
vations. This is so since the “states” are in fact one-step-ahead predictions.

In conclusions, SSIM and SSE are useful for prediction, but when they are used for
estimation of unobserved components they are prone to a number of inconsistencies and
a variety of interpretative issues.

7.6 Smoothing and Final Estimates

We can keep track of revisions, due to the accrual of further observations, by using a fixed-
point smoothing algorithm. Elaborating results in de Jong (1989), and assuming that the
system has reached a steady state, we have, for a fixed t and for l ≥ 0, the following
smoothing recursions:

α̃t|t+l = α̃t|t + PL′rt|t+l, P t|t+l = P̄ t|t − PL′N t|t+lLP ,

rj|t+l = L′rj+1|t+l + zf−1ξj+1, N j|t+l = L′N j+1|t+lL + zz′f−1,
(19)

j = t + l, t + l − 1, . . . , t, where P̄ t|t = P − Pzz′P f−1 and the backwards recursions are
initialised rt+l|t+l = 0, N t+l|t+l = 0.

Now, as l → ∞ (i.e. assuming a doubly infinite sample), rj|t+l is a backward first
order stationary vector autoregression, and N j|t+l is its covariance matrix. The final state
estimation error covariance matrix, denoted P t|∞, solves P t|∞ = P −PNP , where N is
the steady state solution of the backward smoothing equation, N j|t+l = L′N j+1|t+lL +
zz′f−1, j = t + l, . . . , t, as l → ∞; a unique stable solution for N exists provided the
characteristic roots of L are less than unity in modulus, which is already the condition for
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a steady state solution. The elements of the solution are obtained from

vec(N) = (I −L′ ⊗L′)−1vec(zz′f−1).

Hence, P t|∞ contains the final estimation error covariance matrix, and can be written:

P t|∞ = P̄ t|t − P (zz′f−1 −N)P .

The second term on the right hand side, which is obviously positive semi-definite, measures
the total reduction in the estimation uncertainty as we go from the real time to the final
estimates.

8 Illustrative Examples (cont.)

Figure 3 displays the smoothed estimates of the components of the EA GDP arising from
the UC(r, 0) and UC(0,θ) models estimated in section 5. We also present the real time
estimates, ψ̃t|t, in the bottom panels along with their 95% confidence interval.

According to the trend estimates for UC(r,0), trend output is above actual output at
the beginning of the 70ies; it peaks at 1973.3 and starts declining until it reaches a trough
in 1974.2. During this decline we observe a positive and high cycle, as implied by the strong
and negative correlation between the two. A similar behaviour is found around 1979 and
1991. On the other hand, the final trend estimates for UC(0,θ) are less “volatile” and
less related to the cyclical component; we adopt this terminology since even in a doubly
infinite sample the estimates of the components will be correlated - the correlation can be
computed from the elements of the matrix P t|∞.

The two models produce very different smoothed cycle estimates: the estimates of
the AR parameters in the UC(0,θ) case imply a stationary root at the zero frequency
with multiplicity 2, whereas those for UC(r,0) imply a short run cycle with a period of
about three years. It is also remarkable the difference between the real time, ψ̃t|t, and
final estimates of the cycle, ψ̃t|T , especially for the model with correlated components.
When the cycle is estimated in real time (bottom left panel), UC(r,0) lends support to
the notion that this component represents a minor source of variation; we recall that
the real time estimates cycle ψ̃t|t arising from UC(r, 0) is coincident with the BN cycle
extracted from the unrestricted ARIMA(2,1,2). The latter is characterised by a perfect
negative correlation (persistence is greater than 1) and has a non invertible ARMA(2,1)
representation; as matter of fact, the parameter values reported in table 1 for EA imply a
value for the ϑ∗ coefficient in (5) that is equal to -1.02.

However, for UC(r,0) the cycle is estimated in real time with non zero mean square
error and the picture changes radically as we proceed to construct the final estimates
using also future observations. These contradict the assertion that the cycle has a small
amplitude, as it ranges from about -2.4% to +4.0%, as a percentage of GDP. Moreover,
the final estimates have a much reduced standard error as compared to the real time ones.
In particular, the increase in the reliability of the cycle estimates using a doubly infinite
sample is as large as 88%. This quantity is defined as the percentage reduction in the

17



estimation error variance when we compare the real time estimates with the final ones
and is computed as: 100[P̄ (ψ)

t|t − P
(ψ)
t|∞]/P̄

(ψ)
t|t , where, using results presented in section 7,

and in particular (19), P̄
(ψ)
t|t is the steady state estimation error variance of the real time

cyclical component and P
(ψ)
t|∞ is that of the corresponding final estimates, using a doubly

infinite sample.
If the BN decomposition is estimated as a model, that is we set up a state space model

consisting of equations (3)-(5), after processing a suitable small number of observations
the real time and final estimates are fully coincident. On the other hand, the estimates
arising from UC(r,0) are subject to large revisions as new observations become available:
indeed, for the estimated variance ratio σ2

η/σ2
κ and AR parameters, a negative r implies

that the distribution of the weights for extraction of the cycle, based on a doubly infinite
sample, are highly skewed towards the future.

It is remarkable that in the more extreme case, when r = −1, the cycle is estimated
with zero mean square error using a doubly infinite sample, but the real time estimates are
characterised by high uncertainty, and we get a 100% increase in reliability from processing
future observations. The model has a single source of disturbances, but it implies a non
invertible ARIMA(2,1,2) representation, and thus the latter is not an innovation, but can
be written as a linear combination of the current and future values of ∆yt.

On the contrary, when r = 1, the single source of disturbances is an innovation in a
strict sense; it can be checked that the ACGF identity gr(L) = g(L) admits the solution
r = 1, ση = σθ(1)/φ(1), σκ = σ[1 − θ(1)/φ(1)], which implies φ2θ(1) + θ2φ(1) = 0.
Thus, the real time estimates have the same AR(2) representation as the true component
(ϑ∗ = 0); the process generating them is coincident with the maintained model for the
unobserved component, so that current and past (i.e. real time) information is all we need
to form this estimate.

In conclusion, if we accept that trend and cyclical disturbances are negatively corre-
lated, then we must be willing to accept also that essential information for assessing the
cyclical pattern lies in future observations and thus that our signals are prone to high
revisions.

Figure 4 presents the estimated components of Italian GDP. The overall comments are
unchanged except for the fact that the cycles extracted by UC(r,0) and UC(0,θ) have in
this case about the same periodicity. We also present two alternative characterisations of
macroeconomic fluctuations arising from the cyclical growth model, which is observation-
ally equivalent to UC(r,0) and to the unrestricted ARIMA model. The first is the deviation
cycle extracted under the hysteresis hypothesis (see model (10)); the latter modifies the
trend permanently since it is integrated in the trend with a weight of 0.59. The second
is the smoothed cycle in ∆yt based on (9). We can only resort to our prior to attach a
preference to these alternative representations.

9 The Role of Seasonal Adjustment

The analysis of macroeconomic fluctuations usually relies on quarterly seasonally adjusted
series. This raises the obvious issue as to whether seasonal adjustment can be considered
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as a neutral operation, in the sense that it does not alter the main stylised facts. The
presence of a correlation between trend and cycle disturbances is one of those facts, given
the relevance that the literature attaches to it.

To investigate this issue we perform a very simple Monte Carlo experiment, by which
1000 series of length T = 140 are generated according to yt = µt+ψt+γt, with independent
trends and cycles, represented as UC(0,0) in (1); γt is a quarterly seasonal component,
with trigonometric representation: γt = γ1t + γ2t, resulting from the sum of an annual
non stationary cycle (1 + L2)γ1t = $1t and a biannual one, (1 + L)γ2t = $2t, with
$1t ∼ NID(0, σ2

ω) and $2t ∼ NID(0, 0.5σ2
ω), independently of each other and of ηt and κt.

The cycle autoregressive parameters are written as φ1 = −2 cos λc, φ2 = ρ2, where
ρ = 0.9 and λc can take the two values 2π/12 and 2π/32 corresponding to a period of 3
(12 quarters) and 8 years (32 quarters), respectively. The trend-seasonal signal ratio is
always kept at σ2

η/σ2
ω = 20, whereas for σ2

η/σ2
κ we consider three values, Low: σ2

η/σ2
κ = 1/3;

Medium: σ2
η/σ2

κ = 3; High: σ2
η/σ2

κ = 30. The combination of these values with the two
cycle periods gives 6 data generating processes in total.

For each simulation we fit the true model model and construct a seasonally adjusted
(SA) series by removing from the simulated series the smoothed estimates of the seasonal
component; the UC(r,0) is the fitted to the series. In the presentation of the results we label
this experiment as SA-UC(r,0). Moreover, to characterise the small sample distribution
of the correlation coefficient when the true value is r = 0, we estimate model a trend plus
cycle plus seasonal model with correlated trend and cycle disturbances, that is UC(r, 0)
plus an orthogonal seasonal component. We shall refer to this experiment with TCS(r,
0).

Figure 5 plots the distribution of the estimated r for SA-UC(r,0) and TCS(r,0) in the
six cases. The histograms clearly point out that seasonal adjustment biases the estimates
of the correlation coefficient, increasing the the evidence for a negative correlation. In
general, the problem is lessened as we move away from the fundamental seasonal frequency
(a yearly cycle), as the histograms for the 32 quarters cycle suggest.

Also, the panels in the second and the fourth columns highlight that the small sample
distribution of r estimated on the unadjusted data is highly nonstandard, suffering from
the same pile-up problem at ±1 that was observed for the bootstrap distribution in section
5. Experimentation suggests that we need a much larger sample size to have r distributed
symmetrically around its true zero value.

10 The Role of Temporal Aggregation

Violation of the conditions under which a series admits an orthogonal trend-cycle decom-
position may well be the consequence of temporally aggregating a flow variable. On the
other hand, the only way in which systematic can affect the decomposability of the model
into orthogonal components is via the small sample properties of the parameter estimates.

In this section we assume that observations are available on an aggregate series Yn, n =
1, 2, . . . , N , that is obtained either by systematically sampling a stock variable or by ag-
gregating a flow. Let s denote the aggregation period; if we denote the disaggregated
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series by yt, t = 1, 2, . . . , Ns, in the former case Yn = ysn; the latter can be viewed as a
systematic sample of Yn =

∑s−1
j=0 ysn−j = S(L)yt, S(L) = 1 + L + · · · + Ls−1, where the

sample is taken at times t = ns;
Let us consider systematic sampling first: since Yn − Yn−1 is a systematic sample of

∆syt, its SGF is related to that of ∆yt, g∆y(λ), via the expression (Harvey, sec. 6.3.5):

gSS(λ) =
1
s

s−1∑

j=0

|S(e−ıωj )|2g∆y(ωj), (20)

where ωj = s−1(λ + 2πj), and

|S(e−ıωj )|2 = S(e−ıωj )S(eıωj ) =

{
1−cos ω
1−cos ωj

, ωj 6= 0
s, ωj = 0

is the power transfer function of the filter S(L) evaluated at ωj . Result (20) follows from
application of the well known folding formula to the process S(L)yt.

If the disaggregated series follows an UC(0,θ) model, so that the SGF of ∆yt is g∆y(λ) =
σ2

η∗ + 2(1 − cosλ)gψ(λ), where gψ(λ) is the SGF of the cyclical component, then, using∑s−1
j=0 |S(e−ıωj )|2 = s2, (20) specialises as

gSS(λ) = s


σ2

η∗ + 2(1− cosλ)
1
s

s−1∑

j=0

gψ(ωj)


 (21)

and the aggregated series can still be decomposed into orthogonal trend and cycle, with
SGF s−1 ∑s−1

j=0 gψ(ωj).
In the case of temporal aggregation, Yn−Yn−1 is a systematic sample of ∆sS(L)yt and

thus the SGF of the aggregated series, gTA(λ), will be related to that of the disaggregated
process as follows:

gTA(λ) =
1
s

s−1∑

j=0

|S(e−ıωj )|4g∆y(ωj) (22)

When the disaggregated series is an UC(0,θ) process, (22) becomes:

gTA(λ) = s−1



s4σ2

η∗ + (1− cosλ)2
s−1∑

j=0

(1− cosωj)−2
[
σ2

η + 2(1− cosωj)gψ(ωj)
]


 (23)

Expression (23) has a complicated form and the decomposability into orthogonal com-
ponents will arise only under very special conditions. The reduced form will be, in general,
ARIMA(2,1,3) and will be decomposable into a RW trend plus ARMA(2,1) cycle plus
irregular with correlated disturbances or into a RW trend plus ARMA(2,2) cycle with
correlated components. Since temporal aggregation is a linear operation, another option
is to decompose Yn into an orthogonal IMA(1,1) trend and ARMA(2,2) cycle.
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The ambiguities that aggregation of flow variables creates can be seen by working out
the state space representation of Yn (see Harvey, 1989). When the disaggregated model is
(13), the state space model for the aggregate is (see Harvey, 1989):

Yn = z′(
∑s

j=1 T j)αn−1 + z′
[∑s−1

j=0

∑j
i=0 T i

]
c + ut, n = 1, 2, . . . , N,

αn = T sαn−1 + (
∑s−1

j=0 T j)c + ε̃n,
(24)

where

ut = z′
s−1∑

j=0

(
s−1∑

i=j

T i−j)Rεns−j , ε̃n =
s−1∑

j=0

T jRεns−j .

The representation (24) is already in the future state space form as can be seen on defining
α∗n = αn−1. The new feature is the presence of the disturbance ut in the measurement
equation, that is correlated with the state disturbances. Interpreting ut as correlated
measurement noise is possible, but arbitrary. Other options, such as incorporating ut into
one of the components are arbitrary as well. Also, the BN decomposition will always
estimate a RW trend, but the temporal aggregation of the trend component will give
and IMA(1,1) process. These indeterminacies are resolved if the model is specified at the
disaggregated frequency and estimated on the available series.

This leads us to the main point of this section. Suppose that the underlying model is
UC(0,0) at the monthly level, but observations are available on the quarterly aggregate
(s = 3). Can temporal aggregation explain the stylised fact that the spectral density of
Yn−Yn−1 is not a minimum at the zero frequency? For this purpose we consider the Italian
GDP and we fit (23) to the sample periodogram by maximum likelihood, as illustrated in
section 5.

The maximised likelihood is -140.38 and the parameter estimates are σ̂2
η∗ = 0.0246,

σ̂2
κ∗ = 0.0001, φ̂1 = 1.94, φ̂2 = −0.97, implying a period of about 3 years (11 quarters),

which amounts to the same period estimated by the quarterly UC(r,0). The model provides
a good fit Q(12) = 7.37 normality 2.78, and yields a slightly greater likelihood than
UC(r,0) (compare table 1). Figure 6 shows how the model fits the raw periodogram;
for comparison we report the parametric spectral density of UC(r,0). We notice that
the spectral density estimate at zero and the implied persistence is the same, but the
temporally aggregate UC(0,0) model (referred to as TA-UC(0,0)) has a sharper peak at
the cyclical frequency. The estimated cycle, resulting from the aggregation of the monthly
cycle, is plotted in the bottom panel and it is, roughly speaking, a compromise between
those estimated by the quarterly UC(r,0) and by UC(0,θ).

The empirical findings in Rossana and Seater (1995) illustrate that temporally aggre-
gated flows systematically show higher long run persistence with respect to the underlying
disaggregated data. These results are not only a reflection of the small sample proper-
ties of the estimates, but also a theoretical consequence of temporal aggregation of flows.
Persistence is the square root of the ratio g(0)/σ2, where

σ2 = exp
(

1
2π

∫ π

−π
g(λ)dλ

)
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is the prediction error variance (p.e.v.). Now, while it is straightforward to establish
gSS(0) = sg∆y(0) and gTA(0) = s3g∆y(0), it proves difficult to derive analytical results on
the effects of aggregation on persistence. However, we can easily prove that persistence of
an aggregated flow is no smaller than that of a systematic sample. Applying the Cauchy-
Schwartz inequality to the p.e.v. of an aggregated flow, it follows that σ2

TA ≤ s2σ2
SS ,

moreover, since gTA(0) = s−2gSS(0), we establish the result: gTA(0)/σ2
TA ≥ gSS(0)/σ2

SS .
In conclusion, temporal aggregation of flow variables is non neutral with respect to

the main stylised facts concerning macroeconomic fluctuations, such as persistence and
correlated disturbances.

11 Multivariate Analysis

The previous analyses have been typically univariate. The issue that needs to be addressed
at this stage is whether bringing in more information about the nature of economic fluc-
tuations using related series can cast some light on correlated disturbances.

We set off reviewing some previous empirical results. Clark (1989) estimated a bivariate
model of U.S. real output and unemployment grounded on the relationship between cyclical
movements in output and unemployment known as Okun’s law. The model for output is
UC(r,0), and the unemployment rate is decomposed into a (driftless) random walk trend,
unrelated to that in output, and a cyclical component that is a linear combination of the
current and past value of the cycle in output. Clark estimated the correlation coefficient
r to be equal to a nonsignificant -.12, with asymptotic 90% confidence interval (-0.4,0.3).

Jäger and Parkinson (1994) estimated bivariate UC models of real GDP and unemploy-
ment to examine the presence of hysteresis, according to which cyclical unemployment has
an effect on the natural (trend) rate. They find that hysteresis effects are negligible in
explaning the dynamics of U.S. unemployment, but are substantial for the Canadian,
German and the U.K. unemployment rates.

Proietti, Musso and Westermann (2002) estimated a multivariate model made up of five
time series equations for the Euro area Solow’s residual, the labour force participation rate,
the unemployment rate, capacity utilisation and the consumer price index, implementing
the production function approach, augmented by a triangle model of inflation (see Gordon,
1997), to the measurement of potential output and the output gap for the Euro Area.
They entertain hysteresis models and find mixed evidence for the unemployment series.
They, however, prefer a specification featuring pseudo-integrated cycles that is at least as
effective in explaining the persistence of the labour market variables.

We now proceed to a bivariate illustration concerning the Euro area GDP and con-
sumer prices (pt, logarithms). Within this framework the cycle in output takes the more
specialised notion of an output gap, a measure of inflationary pressures, and the trend is
the level of output that is consistent with stable inflation (potential output). The model is
made up of the output equation, which is alternatively specified as UC(0,0) and UC(r,0),
as given in (1), and the price equation is a structural version of Gordon’s triangle model
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Table 2: Parameter estimates and diagnostics for bivariate models of quarterly euro area
log GDP (yt) and the logarithm of the consumer price index (pt), 1970.1-2002.2. Standard
errors in parenthesis.

UC(0,0) UC(r,0)
σ2

η (σ2
η∗) 0.2231 0.2546

σ2
κ (σ2

κ∗) 0.0713 0.0987
φ1 1.67 1.66
s.e (0.05) (0.05)
φ2 -0.71 -0.71
s.e (0.11) (0.10)
r 0(r) -0.26
s.e - (0.36)
σ2

ηπ 0.0476 0.0468
σ2

ζπ 0.0000 0.0000
σ2

ω 0.0000 0.0000
θπ0 0.22 0.20
s.e (0.04) (0.05)
θπ1 -0.20 -0.18
s.e (0.04) (0.04)

Diagnostics and goodness of fit
loglik -133.28 -133.04

Q(8) yt 10.70 11.33
Q(8) pt 6.43 6.99

Normality yt 9.18 9.51
Normality pt 5.91 5.34

of inflation, specified as follows:

pt = τt + γt +
∑

k δkxkt

τt = τt−1 + π∗t−1 + ηπt ηπt ∼ NID(0, σ2
ηπ),

π∗t = π∗t−1 + θπ(L)ψt + ζπt ζπt ∼ NID(0, σ2
ζπ).

where the regressors are commodity prices xkt and the nominal effective exchange rate of
the Euro, a level shift variable for 1974.1, and γt is a quarterly seasonal component, see
section 9. The only link between the prices and output equations is the presence of ψt as
a determinant of underlying inflation, π∗t , where θπ(L) = θπ0 + θπ1L.

Table 2 reports selected estimation results concerning the model assuming uncorrelated
disturbances (first column) and that with correlated ones (second column). The estimated
correlation coefficient is -0.26 and the likelihood ratio of the restriction r = 0 is not
significant. What is more, unlike the univariate case, the estimates of the trend and cycle
in output closely agree with those of the model with uncorrelated disturbances. These
are displayed in figure 7, along with estimates of underlying inflation, which is that part
of observed inflation, devoid of seasonal fluctuations, related to the output gap, which
is identified as the component π∗t in the price equation. The autoregressive parameter
estimates imply for both models a period of 10 years. It is also remarkable the reduction
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in the estimation error variance of the component ψt, compared to the univariate case (see
fig. 3).

12 Concluding Remarks

The main conclusions of this paper is that the characterisation of macroeconomic fluctua-
tions is by and large an open issue. On the one hand, models with correlated disturbances
seem to improve the fit of UC decompositions to macroeconomic time series; this is true
at least for the Italian GDP. This finding is in part self-evident, since we entertain a more
general model, and needs be interpreted with the following caveat : all our results are
conditional on a particular ARIMA reduced form, which is itself an additional source of
uncertainty in real life. For instance, Harvey and Jäger (1994) entertained an orthogonal
trend-cycle decomposition to the U.S. real GDP series, allowing for a stochastic slope in
the trend, so that the latter is an I(2) process. Discriminating among UC models uncon-
ditionally, i.e. without assuming a particular reduced form, is a far more complex issue,
due to the unavailability of a common estimable reduced form.

On the other hand, several additional points were raised and illustrated, that mitigate
this finding and are hereby summarised:

• Given the sample sizes typically available for macroeconomic time series the proper-
ties of the sampling distribution of the correlation parameter raise great concern. It
was shown that asymptotic inferences do not provide a reliable guidance over them.

• Models with correlated components raise several interpretative issues, as under cer-
tain conditions they result observationally equivalent to models that provide different
and equally plausible explanations of the nature of macroeconomic fluctuations. For
the Italian GDP, the cyclical growth model and the hysteresis model provide exactly
the same likelihood estimates.

• When we come to investigate the consequences of having highly and negatively
correlated disturbances for signal extraction, it turns out that similarity with the
BN decomposition does not carry over to the smoothed inferences, the estimated
models implying that most information about the components is carried by future
observations. Large revisions are thus to be expected.

• Seasonal adjustment and temporal aggregation can significantly affect the findings
about correlated disturbances. In particular, the estimates of the correlation between
trend and cycle disturbances are biased towards high and negative values.

• Univariate time series analysis cannot be demanded to solve such a controversial is-
sue. Multivariate analysis can help. Our illustration, concerning a bivariate model of
output and prices shows that the estimate of the correlation is substantially reduced
and that the cycle in output can be estimated with increased reliability.

• The statistical literature has attached much significance to the restrictive nature
of models with orthogonal components. However, when single source of errors and
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innovation representations are considered as a model, several inconsistencies arise.
The emphasis on the exact nature of the resulting decompositions and on the absence
of revision is misplaced and potentially misleading.
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Figure 1: Euro Area and Italian GDP, 1970.1-2002.2. Periodogram, I(λj), and paramet-
ric spectral densities of ∆yt, gm(λj)/(2π), estimated by the ARIMA(2,1,2) model, the
UC(r,0), UC(0,θ).
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Figure 2: Euro Area and Italian GDP, 1970.1-2002.2. Distribution of the correlation
parameter r in 1000 bootstrap samples.
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Figure 3: Euro Area GDP, 1970.1-2001.2. Smoothed estimates of trend, smoothed and
real time estimates of the cycle arising from the UC(r,0) model (left panels), UC(0,θ)
(right panels).
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Figure 4: Italian GDP, 1970.1-2001.2. Smoothed estimates of trend, smoothed and real
time estimates of the cycle arising from the UC(r,0) model (left panels), UC(0,θ) (centre
panels). For the CG-hysteresis model we present the smoothed estimates of the trend (top
right panel) and the cycle (middle right panel) and the smoothed estimates of underlying
growth (CG model), β + ψ̃t|T (bottom right panel).
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Figure 5: Distribution of the correlation coefficient, r, for the UC(r,0) model estimated
on seasonally adjusted data and on the raw simulated data by fitting TCS(r,0). 1000
quarterly series of length T = 140 are generated according to orthogonal trend plus cycle
plus seasonal models with low, medium and high signal ratios, and cycle periods equal to
12 and 32 quarters.
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Figure 6: Italian GDP, 1970.1-2002.2. Periodogram, I(λj), and parametric spectral densi-
ties of ∆yt, gm(λj)/(2π), estimated by the temporally aggregated TA-UC(0,0) model and
UC(r,0).
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Figure 7: Euro Area GDP and consumer prices (logarithms). Estimates of potential
output (µ̃t|T ), potential output growth (∆µ̃t|T ), the output gap (ψ̃t|T ), and underlying
inflation, (π̃∗t|T ), with 95% confidence intervals, resulting from the bivariate model with
correlated disturbances of section 11.
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