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Abstract

Abstract
During the last years, there has been an increasing interest in providing uncertainty measures for poverty
indicators both at national and regional level. After reviewing the literature on the various method-
ological approaches for measuring uncertainty in poverty indicators, this report presents standard error
estimation results for official income-poverty and income-inequality poverty indicators by using 2018
European Union Statistics on Income and Living Conditions (EU-SILC) surveys. Eight European countries
are selected on the basis of the sample design structure, which varies from a simple random sampling in
one stage to a stratified two-stage random sampling. Both linearization and re-sampling methods, i.e.
bootstrap and jackknife techniques, are used with the aim of comparing the different uncertainty mea-
sures obtained. Overall, our analysis shows that there is not a unique variance estimation method that
performs well with any sampling design and any complex estimator. Yet, the general closeness of the
results from entirely different methodologies can be considered quite remarkable. Moreover, the issue
of communicating uncertainty of official poverty indicators is addressed by reviewing the current prac-
tice adopted by various National Statistical Institutes. Finally, we formulate some recommendations to
ameliorate the way in which uncertainty is communicated.
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1Introduction

1 Introduction

Over the last decades, there has been an increasing interest in identifying comparable indicators for
measuring poverty and social exclusion in the EU as well as in providing uncertainty measures both at
national and regional level. In the context of the Europe 2020 Strategy, poverty indicators play an es-
sential role in informing and supporting responsible evidence-based policies towards the Union’s key
goals which relate to inclusive and sustainable growth and reduction of poverty, inequalities and social
exclusion. In the framework of the OECD’s Better Life Initiative, the economic well-being (material liv-
ing condition) is identified as one of the pillars for understanding and measuring people’s well-being
following a multi-dimensional approach (OECD, 2013).

The EU Statistics on Income and Living Conditions (EU-SILC) survey, launched by Eurostat in 2004, con-
stitutes the main data source for constructing indicators of poverty and inequality, such as the at-risk-of-
poverty rate (AROP) and the Gini coefficient, in the multi-country comparative context of the EU. Given
that all the indicators based on EU‐SILC are sample estimates, they should be reported along with es-
timates of standard errors and confidence intervals. Given the key role played by poverty indicators in
designing and monitoring social progress in the EU, it is paramount to produce and communicate to
the public measures of the associated inherent and unavoidable uncertainty of point estimates. To this
respect, by referring to the content of intermediate and official EU-SILC Quality reports, the new EU reg-
ulation on Social Statistics (2019/1700), amending the Commission Regulation No. 28/2004, requires
that countries should provide estimates of standard error along with the EU-SILC main target indicators.
Therefore, it is essential that the indicators used for measuring poverty have the necessary high qual-
ity, especially in terms of their accuracy as well as reliability, timeliness and usability. In this framework,
a crucial role is played by estimates of poverty and social policy indicators at regional or sub-national
level (NUTS2 and NUTS1) to be used for bench-marking and assessing the efficiency of regional poli-
cies (Betti et al., 2012 and Piacentini, 2014). To this respect, Eurostat and a number of stakeholders are
exploring various methodological approaches for improving the quality of statistics on income and liv-
ing conditions based on the EU-SILC survey, especially regarding their accuracy (Atkinson et al., 2017).
Measuring uncertainty is a complex and challenging task, which can involve the use of sophisticated sta-
tistical methods and econometric techniques as well as the adoption of subjective judgment to quantify
indicators’ uncertainties.

The present document focuses on estimating standard errors for poverty indicators at national and re-
gional level. Among the various official poverty indicators used at EU level, we selected income-poverty
measures which belong to the class of the well-known Foster-Greer-Thorbecke (FGT) measures, that is
the at-risk-of-poverty rate and the relative median at-risk-of-poverty gap and income-inequality mea-
sures (quintile share ratio and the Gini coefficient). Section 2 illustrates the main characteristics of these
indicators. Section 3 reviews the different approaches for estimating the variance of the official poverty
indicators. These methods can be classified into two approaches: ‘direct’ methods, which rely on ana-
lytic variance formulas through linearization (Alper and Berger, 2015) and ‘resampling’ methods, such as
the Jackknife Repeated Replication and Boostrap, which consist of resampling a high number of ‘repli-
cations’ from the original sample in order to empirically derive a sampling distribution (Davidson and
Flachaire, 2007 and Verma and Betti, 2010). Section 4 describes the EU-SILC survey by considering its
main characteristics, including the different sampling designs adopted by countries. Previous projects
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2Introduction

focused on uncertainty estimation of EU-SILC indicators are illustrated. In Section 5 computational as-
pects and estimation results of standard error both at national and sub-national level are described with
a discussion of the main findings. In this report we considered eight countries according to their EU-SILC
sampling designs. More specifically, we selected five countries using the two-stage stratified sampling
design, that is Italy, the United Kingdom, Portugal, Belgium and Ireland; two countries using the one-
stage sampling design (Germany and Sweden) and the Norway which adopts a simple sampling design
without stratification. Focusing on the computing standard errors for regional indicators, we selected
those countries for which NUTS1 and NUTS2 are considered as planned domains in the sample design.
Nevertheless, in a few cases, standard errors are particularly high due to the reduced number of sec-
ondary sampling units (SSUs). This suggests that the number of sampling units in each region should be
increased or other methods should be used for improving the accuracy of point estimates. After a brief
review of the current practices adopted by NSIs in communicating uncertainty for official estimates, in
Section 6 suggestions for communicating uncertainty in the national quality reports are provided. Fi-
nally, in Section 7 we draw some conclusions and suggest lines of research and future developments.
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2Estimating uncertainty measures for official poverty indicators

2 Estimatinguncertainty
measuresforofficialpoverty
indicators

2.1 Choosingpoverty indicators forvarianceestimation
Over the last years, the interest in statistical inference for inequality and poverty measures has been in-
creased. The notion of poverty in the European Union, initially proposed by the Council of the European
Communities in 1975 refers to “individuals or families whose resources are so small as to exclude them from
the minimum acceptable way of life of the member state in which they live”. Regarding the conceptualisa-
tion of poverty, the EU Commission follows the social inclusion approach with the aim of monitoring
progress towards a set of EU objectives for social protection and social inclusion which have been jointly
defined with the EU Member States. After the Lisbon Council of March 2000, social cohesion became
the most challenging responsibility for the European Union. In order to monitor the progress towards
the reduction of poverty a first set of indicators, called the Laeken Indicators, was set up at the Laeken
Council in December 2001 by following the methodological principles defined by the Laeken Council
and the Social Protection Committee Indicators Sub-Group (ISG)(3) . These indicators are key in the Eu-
rope 2020 strategy and are considered consistent indicators based on harmonized definition of income,
thus allowing international comparisons and reliable measurements of social cohesion. Moreover, they
are considered as a reliable source on which policy makers can base their decisions.

In income analyses it is often assumed that precision is not a serious issue since these analyses are based
on very large samples. However, various empirical studies have shown that this may not be true in some
cases (see for example Maasoumi (1997)). The issue of uncertainty measurement is crucial since we
are often interested in knowing whether poverty has increased or decreased over time or in compar-
ing poverty differences among geographical areas or among various socio-economic groups. In these
cases, it is essential to have information about the sampling variability of the estimates. The formulae
for calculating standard errors for poverty measures depends on the statistic to be computed. Many
poverty indicators consist of headcounts with a fixed poverty threshold. Standard errors for all poverty
measures of the well-known Foster-Greer-Thorbecke (FGT) class (Foster et al., 1984), may be estimated
by using similar formulae to those used for proportion or mean. Kakwani (1993) provided distribution-
free asymptotic confidence intervals and statistical inference for poverty measures that are applied to
analyse poverty in Cote d’Ivoire. The author found that observed differences in values of poverty mea-
sures may lead to misleading conclusions without carrying out statistical tests. An indicator that has
been widely used when comparing poverty is the proportion of population falling below a fraction α of
the β − th quantile of a distribution. However, the estimation of standard errors for such proportions
is a challenging task since the quantile must first be estimated before estimating the proportion falling

(3) The Social Protection Committee (SPC) is an EU advisory policy committee for Employment and Social Affairs Ministers in the
Employment and Social Affairs Council (EPSCO). It monitors social conditions in the EU and the development of social protection
policies in Member States and promotes discussion and coordination of policy approaches among national governments and
the Commission. In 2001 the SPC established the Indicators’ Sub-Group (ISG) of the SPC to support its activities, in particular
by providing technical and analytical support, especially with regard to indicators. The role of the ISG is to develop and define
EU social indicators to monitor member countries’ progress towards the commonly agreed EU objectives for Social Protection
and Social Inclusion, to carry out analytical work based on agreed indicators and develop analytical frameworks to support
policy reviews conducted by the SPC, and to contribute to the improvement of social statistics at EU level, particularly through
development of the EU-SILC.

Measuring and communicating uncertainty of poverty indicators at regional level 7

https://eur-lex.europa.eu/eli/dec/1975/458/oj
https://eur-lex.europa.eu/eli/dec/1975/458/oj
https://www.europarl.europa.eu/summits/lis1_en.htm
https://ec.europa.eu/dorie/fileDownload.do;jsessionid=BfT1JXCLqsj0GqG1GmTSb6PW0fPlZyQq7k7z2hxnqtQ8xJmJZJQP!-172979321?docId=344249&cardId=344249
https://ec.europa.eu/dorie/fileDownload.do;jsessionid=BfT1JXCLqsj0GqG1GmTSb6PW0fPlZyQq7k7z2hxnqtQ8xJmJZJQP!-172979321?docId=344249&cardId=344249
https://ec.europa.eu/social/main.jsp?catId=758&langId=en


2Estimating uncertainty measures for official poverty indicators

below a share of this estimated quantile (Berger and Skinner, 2003). Therefore, in the case of complex
statistics, such as the at-risk-of-poverty rate, where the poverty threshold is estimated on the basis of
the survey data, the computation of standard errors is confronted with many difficulties. Indeed, in this
case there are two main sources of variability: one is due to the estimated threshold and the other one
comes from the estimated proportion given the estimated threshold (Verma and Betti, 2011).

Several authors have derived formulae for standard errors in the case that the poverty line is estimated
as a share of average or median income (for example Preston (1995)) while others have introduced alter-
native considerations such as stochastic dominance over a range of poverty lines (Davidson and Duclos,
2000) and the need to treat household size as a random variable (Thuysbaert, 2008). More specifically,
when indices are used in comparing poverty among regions or over time, it should be recognized that
each index establishes a particular ordering over income distributions, thus the ordering of a given set
of distributions may depend on the choice of the index. The use of poverty dominance criteria allows
making poverty comparisons in a more robust way since dominance ensures that all indices of some
well-defined class unanimously prefer one distribution to another. For example, the popular FGT class
of additive poverty indices are clearly related to the criteria of stochastic dominance, as was noted by
Foster and Shorrocks (1988).

However, Thuysbaert (2008) stated that the limited empirical application of the theoretical results of
stochastic dominance may be a result of the fact that the application is not always straightforward due
to the presence of a stochastic weighting variable. This situation occurs when equivalent household in-
come is obtained by using a weighted measure based on the number of household members. Therefore,
by considering a bivariate distribution function defined over income and weight, Thuysbaert (2008) de-
rived the limiting distributions of the decomposable poverty measures and of the ordinates of stochastic
dominance curves. In this way, the poverty line may be allowed to depend on the income distribution.
The suggested procedure is also illustrated by using Belgian data. Preston (1995) derived exact small and
large sample distributions for proportions of a sample falling below given fractions of sample median in-
come (or other sample quantiles). The resulting standard error formulae are then used to assess the sta-
tistical significance over time in relative income poverty in the UK, using data close to those underlying
the statistics published by the Department of Social Security. Berger and Priam (2016) proposed the use
of direct variance estimators. The main assumption underlying such estimators is that sample units have
been selected with replacement, which considerably simplifies the estimation of the variances (Berger
and Skinner, 2003). The proposed variance estimators are simple and flexible and can accommodate a
wide class of sampling designs using standard statistical techniques.

However, in the framework of non-linear statistics, the variance of non-linear estimators cannot be given
in closed form in most cases. In addition, unbiased estimates of variances of non-linear estimators may
do not exist and therefore exact variance formulae cannot be estimated by conventional methods. In
these cases, it is necessary to rely on approximate variance estimation techniques, including the lin-
earization and resampling methods.

The FGT poverty measures Pα are calculated according to equation 1:

Pα (y, z) =
1

n

q∑
i=1

(
z − yi

z

)α

(1)

whereα is a real positive number, y =  (y1,  y2,  …,  yn) is a vector of properly defined income in increas-
ing order, z > 0 is a predefined poverty line, n is the total number of individuals under analysis, while
z−yi

z is the normalised income gap of individual i and q is the number of individuals having income not
greater than the poverty line z. The parameter α can be seen as a parameter of ‘poverty aversion’: the
higher α, the higher the relevance assigned to the poorest poor. Therefore, the FGT class is based on the
normalized gap gi =

z−yi

z of a poor person i, which is the income shortfall expressed as a share of the
poverty line. Viewing gαi as the measure of individual poverty for a poor person, and 0 as the respective
measure for non-poor persons, Pα is the average poverty in the given population.

The case α = 0 yields a distribution of individual poverty levels in which each poor person has poverty
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2Estimating uncertainty measures for official poverty indicators

level 1; the average across the entire population is simply the headcount ratio, denoted by P0 or H . The
case α = 1 uses the normalized gap gi as a poor person’s poverty level, thereby differentiating among
the poor; the average becomes the poverty gap measure P1. The FGT class has certain advantages due
to its simple structure—based on powers of normalized shortfalls—which facilitate communication with
policymakers. Its axiomatic properties are sound and include the helpful properties of additive decom-
posability and subgroup consistency, which allow poverty to be evaluated across population subgroups
in a coherent way (Foster et al., 2010).

The original FGT paper published in 1984 did not present the associated tools for formulating statisti-
cal tests and computing standard errors, but since then the literature has provided a steady stream of
inference-based research for poverty estimation. Xu (2007) suggested that the sample counterparts to
the FGT and other decomposable measures can be represented as a “U-statistic” (or some function of a
U-statistic). Since as already mentioned the FGT class of additive poverty indices are related to the crite-
ria of stochastic dominance, Davidson and Duclos (2000) derived the asymptotic sampling distribution
of various estimators frequently used to order distributions in terms of poverty, welfare and inequal-
ity, including estimators of most of the poverty indicators currently in use. Davidson and Duclos (2000)
also derived the sampling distribution of the maximal poverty lines up to which one may confidently
assert that poverty is greater in one distribution than another. Kakwani (1993) provided distribution-
free asymptotic confidence intervals and statistical inference for FGT poverty measures. Verma and Betti
(2011) developed formulae and algorithms for the Taylor linearization and Jackknife Repeated Replica-
tion (JRR) methods covering the FGT class of poverty measures. Davidson and Flachaire (2007) used
standard bootstrap methods funding that they perform very well with the FGT poverty measures and
give accurate inference in finite samples.

Considering the above-mentioned properties of the FGT measures, in this report, among the Laeken
indicators, we selected two income-poverty indicators that belongs to the FGT class and two income-
inequality measures. More specifically we will focus on:

• at-risk-of-poverty rate [ilc_li02]. This indicator shows the share of persons with an equivalised
disposable income below the risk-of-poverty threshold. This indicator is frequently disaggregated
by age and gender, by household type, by tenure status, and work intensity. The AROP is a com-
plex statistic since it is based on a poverty threshold computed from the median of the income
distribution, that is:

AROP = P (X < 0.6q0.5) (2)

Where q0.5 is the median equivalised disposable income. Therefore, the at-risk-of-poverty thresh-
old (ARPT) [ilc_li01] needs to be estimated first, which is set at 60% of the national median equiv-
alised disposable income(4) :

ARPT = 0.6q0.5 (3)

Then the AROP rate is defined as the proportion of persons with an equivalised disposable income
below the ARPT:

ÂROP =

∑
i∈I<ÂRPT

wi∑
i wi

(4)

• relativemedian at-risk-of-poverty gap [ilc_li11]. The indicator is calculated as the distance be-
tween the median equivalised total net income of persons below the at-risk-of-poverty thresh-
old and the at-risk-of-poverty threshold itself, expressed as a percentage of the at-risk-of-poverty
threshold;

• quintile share ratio(S80/S20) [ilc_di11]. This indicator is the ratio of total income received by
the 20% of the country’s population with the highest income (top quintile) to that received by the
20% of the country’s population with the lowest income (lowest quintile);

(4) For each person, the equivalised disposable income is defined as his/her total household disposable income divided by equiv-
alised household size. The equivalised household size is defined according to the ‘modified-OECD scale’, which gives a weight
of 1.0 to the first adult, 0.5 to other household members aged 14 or over and 0.3 to household members aged under 14. Each
person in the same household receives the same equivalised disposable income
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2Estimating uncertainty measures for official poverty indicators

• Gini coefficient [ilc_di12]. The Gini coefficient measures the extent to which the distribution of
income within a country deviates from a perfectly equal distribution. A coefficient of 0 expresses
perfect equality, where everyone has the same income, while a coefficient of 100 expresses full
inequality where only one person has all the income.

2.2 Issues inestimatingsamplingerrors for regional
poverty indicators

Even if there has been an increasing interest in the measurement of poverty and social exclusion across
European countries at national level, there is also an urgent need for regional indicators. National level
indicators are not necessarily appropriate or sufficient for regional analysis (Betti et al., 2012). Survey
estimates are required not only for the whole population but also separately for many subgroups in
the population. However, poverty information at detailed territorial levels comes at the cost of higher
uncertainty levels. Information on the magnitude of sampling errors is therefore essential in deciding
the degree of detail with which the survey data may be meaningfully tabulated and analysed.

In order to estimate regional indicators, it is essential to choose the type of units to serve as ‘regions’. To
this aim, the Nomenclature of Territorial Units of Statistics (NUTS) classification appears to be the most
appropriate choice for EU countries. The NUTS classification covers each country exhaustively, provid-
ing a hierarchical set of units (NUTS level 1, 2 and 3) for which data can be linked across different levels.
Countries are the highest classification units. Despite the fact that NUTS units are not defined exactly
the same way in different countries and may differ in size and homogeneity, the NUTS classification sys-
tem provides a widely used framework which allows us to improve the comparability of the resulting
statistical information.

Moreover, although EU-SILC uses harmonized methods and variable definitions, each country can choose
a specific sampling design according to the socio-economic and geographical structure of the country
and population. The sampling design most commonly used by EU countries is the two-stage stratified
sampling design. Stratifying a population means dividing it into non-overlapping subpopulations, called
strata. Independent samples are then selected within each stratum. Stratification serves the purpose of
increasing the representativeness of the sample and, at the same time, decreases the standard error.
Most of the EU-SILC samples have been stratified by geographical region, which generally improves the
accuracy of estimates. In addition, many of them have been clustered by, for instance, the so-called
“Census Areas”. Yet, as underlined by Osier (2009) although clustering reduces data-collection costs, it
also tends to decrease the precision of estimates because the population units in a cluster are likely to be
more homogeneous to each other than units of a simple random sample. In several countries, the EU-
SILC survey is designed to produce direct accurate estimates at the macro level (NUTS 1-2 levels). Spatial
variation is a relatively neglected dimension in poverty analysis both at the national and at the EU level.
Since high national poverty rates may be accompanied by concentration of poverty in specific regions
or, on the contrary, by widespread poverty across regions, it is paramount to estimate income-poverty
and income-inequality indicators at regional level. Yet, standard error and confidence intervals of re-
gional poverty indicators have been analysed only in a limited number of studies probably due to the
lack of full documentation of the sample design variables in the EU-SILC dataset (Verma and Betti, 2010,
Betti et al., 2012, Piacentini, 2014). In general terms, the relative magnitude of sampling error increases
as we move from estimates for the total population to estimates for individual subgroups such as territo-
rial regions. The quantification of these sampling errors is therefore essential in deciding the degree of
detail with which the survey data may be meaningfully tabulated and analysed. Various methods for im-
proving the precision of sampling error estimates of statistics based on small but complex samples, have
been discussed by Verma et al. (2017). Therefore, for the purpose of estimating reliable income-poverty
and income-inequality indicators at sub-national level, we focus on countries for which the geograph-
ical areas, represented by NUTS1 and NUTS2 levels, are considered as sample design domains. In this
case, the above-mentioned variance estimation techniques, such as linearization, bootstrap, JRR, can be
adapted for application at the sub-national level (Verma et al., 2017). Laureti and Rao (2019) and Biggeri
et al. (2017) presented an empirical evaluation of uncertainty in measuring well-being at local level by
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3Estimating uncertainty measures for official poverty indicators

focusing on the accuracy of the AROP and using the 2017 wave of EU-SILC for Italy in which detailed in-
formation on the sample design where provided by the Italian National Statistical Institute (ISTAT) thanks
to a collaboration with the Dagum Inter-University Center. The authors used a generalized linearization
method based on the concept of influence function (Deville, 1999) which allows to deal with non-linear
statistics for which the linearization method cannot be used. In this framework, an interesting line for
future research on the measurement of uncertainty in regional poverty indicators is the introduction of
spatial price statistics into the definition of poverty threshold. An accurate measurement of price level
differences across regions within a country is essential for a better assessment on regional disparities,
thus enabling policy makers to adequately identify and address areas of intervention. Indeed, regional
values of economic indicators such as Gross Domestic Product (GDP), income and poverty levels, should
be adjusted for regional price differences measured by spatial consumer price indexes, following the
same logic according to which the economic well-being of different countries is compared by taking
into account international purchasing power parities (Laureti and Rao, 2019).
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3 Methodologicalapproaches:
areview

3.1 Linearization approach

3.1.1 Common linearizationmethods
In order to estimate the variance of complex (non-linear) statistics, a long-established procedure, i.e. the
linearization approach, may be used (Deville, 1999, Demnati and Rao, 2004, Osier, 2009, Verma and Betti,
2011). The Taylor linearization method (TLM) for variance estimation leads to proper results for statis-
tics which can be expressed by functions which are continuously differentiable up to order two and are
asymptotically normal. Linearization methods approximate the non-linear estimator by a linear function
after which standard variance formulas for the given design can be applied to this linear approximation,
justified on the basis of asymptotic properties of large populations and samples. For each statistic of in-
terest, TLM seeks for each sample unit a linearized “indicative” variable, such that the variance of the total
of the variable in question approximates the variance of the complex statistic of interest. Therefore, this
method can handle all the non-linear statistics which can be expressed as a regular function of estimated
totals or ratios. More specifically, the idea underlying this method is to approximate a non-linear statis-
tic with a linear function of estimated totals. As a result, a variance estimator of the non-linear statistic
is specified by a variance estimator of its linear approximation, that can be easily calculated. Intuitively,
the linearization approach rests on the assumption that the sample-to-sample variation of a non-linear
statistic around its expected value is small enough to be considered linear. This assumption is particu-
larly correct when samples are large even if there is no definite evidence on how large a sample should
be for the linear approximation to be valid (Osier, 2009). However, the TL approach cannot deal with
all non-linear statistics and indicators based on EU-SILC due to the complex mathematical expressions
which characterized these indicators. As an example, the at-risk-of-poverty rate is calculated on the basis
of a poverty line which is estimated from sample observations, thus the indicators become more com-
plex than a mere proportion. Consequently, variance estimation for the at-risk-of-poverty rate should
take into account both the randomness which is brought by the at-risk-of-poverty threshold and that
of the estimated proportion of “poor” individuals given the poverty threshold. In addition, Osier (2009)
stated that there is some degree of covariance between the at-risk-of-poverty threshold and the at-risk-
of-poverty rate which should be accounted for. Therefore, for statistics which cannot be expressed as a
smooth function of estimated totals, other methods should be used for variance estimation.

3.1.2 The generalized linearization method based on influence
function

In the context of the linearization approach, one alternative method for variance estimation is based on
the concept of influence functions, introduced by Hampel (1974). An influence function measures the
asymptotic bias caused by contamination in the observations on whose basis the statistic is estimated.
In other words, it gives a picture of the infinitesimal behaviour of the asymptotic value of a statistic. Dev-
ille (1999) proposed that the precision of non-linear statistics in sampling designs be estimated using
the generalized linearization method based on the concept of influence function. In addition to encom-
passing more non-linear statistics than the TL method, the linearization based on influence functions
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does not involve more calculations since the derivation rules for influence functions are similar to the
rules for computing the derivative of a function in standard differential calculus. In order to define the
influence function, Deville (1999) used a measure M with unit mass for each point of the population T.
According to Deville’s definition, the measure M is positive, discrete, with a total mass N while the total
mass is equal to 1 for the influence function proposed by Hampel (1974). A function of interest θ can be
presented as a functional T (M) that associates for each measure a real number or a vector. More for-
mally, let U denote a population of size N and let M be the measure which allocates a unit mass to each of
the units xk in U. We seek to estimate a population parameter θ which can be expressed as a functional
T of the measure M:

θ = T (M) (5)

The specialization of the general measure M into a discrete measure turns the functional T, predefined
on a continuum, into a discrete functional, in the same way as the total Y is defined as the sum of all yk
over the given finite population. The influence function of a functional T, is defined as:

IT (M,k) = lim
t→0

T (M + tδk)− T (M)

t
(6)

where δk is the Dirac measure for unit k; δk(i) = 1 if and only if k = i

A natural way to estimate 6 from a sample S of the population consists of plugging an estimated measure
M̂ of M into 6:

M̂ = T (M̂) (7)

The estimated measure M̂ allocates the sample weight wi(s) for all units i in S, and 0 otherwise:

M̂(i) = M̂i =

{
wi(s) for i ∈ S

0 for i /∈ S
(8)

Deville (1999) showed that under broad assumptions, the substitution estimation of a functional T (M)
is linearizable. A linearized variable is vk = IT (M,xk) where IM is the influence function of T in M.

This influence function vk = IT (M,xk) is a linearized variable of T (M) in the sense that it allows for
the approximation of the function of interest.

The main result of this generalised linearization theory is that the variance of the so-called plug in esti-
mator 6 can be approximated with a linear statistics:

V ar[T (M̂)] ≈ var

[∑
i∈S

wk(s)vk

]
(9)

Osier (2009) explained the main features of the linearization approach based on influence functions and
derived estimated standard errors, confidence intervals and design effect coefficients for the main target
indicators (i.e. Laeken indicators) based on the EU-SILC. However, as underlined by Graf and Tillé (2014)
the starting point of the approach suggested by Deville (1999) is the population parameter and not
the estimator to be used for the evaluation using the sample. When the estimator being used follows
naturally from the population parameter expression, as in the case of the total Y approached by the
Horvitz-Thompson estimator, the procedure is unambiguous. Yet, inaccuracy may arise if the total Y is
estimated using the ratio estimator with an auxiliary variable x. In this case, the approach proposed by
Deville (1999) will yield a constant influence function equal to 1 since it does not specify the form of the
total estimator to use.
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Demnati and Rao (2004) suggested an alternative method that may avoid these problems for deriving
Taylor linearization variance estimators that is based on representing Taylor linearization in terms of par-
tial derivatives with respect to design weights. This method leads to variance estimators with good con-
ditional properties (Antal et al., 2011). In the context of cross-sectional samples of complex design and of
reasonably large size, Verma and Betti (2011) obtained linearized variables for estimating sampling errors
of complex non-linear statistics involved in the analysis of poverty and income inequality by extending
the use of standard variance estimation formulae (developed for linear statistics such as sample aggre-
gates) to non-linear statistics. For any complex statistic, Verma and Betti (2011) developed a linearized
variable λi such that the simple expression for its variance approximates the variance of the complex
statistic. More specifically, the linearized variables for poverty measures involve reference to the density
function at various points in income distribution, such as at the median or at the poverty line. Therefore,
the derivative of the distribution function at a certain point yα, fα = f(yα) = (dF/dy)yα can be esti-
mated by means of density estimation techniques, such as the kernel estimator. Verma and Betti (2011)
also compared the performance of the linearization technique with that of the Jackknife repeated repli-
cation method because of its widespread use and especially because the procedure has been officially
adopted by Eurostat for the EU Statistics on Income and Living Conditions survey. Graf and Tillé (2014)
used the generalized linearization technique based on the concept of influence function, following Osier
(2009), to estimate the variance of complex statistics such as the Laeken indicators. By carrying out sim-
ulations, using the R language, Graf and Tillé (2014) showed that the use of Gaussian kernel estimation
method for estimating an income density function results in a strongly biased variance estimate. There-
fore, the authors proposed two other density estimation methods that significantly reduce the observed
bias.

The linearization of the AROP rate based on the influence function is also provided by Münnich and Zins
(2011). Many parameters can be expressed in the form of equation 6, for instance:

• the population total Y of a variable y:

Y =
∑
i∈U

yi =
∑
i∈U

yi ×M (i) =

∫
ydM = T (M) (10)

• the ratio R of two population totals X and Y :

R =
Y

X
=

∫
ydM∫
xdM

= T (M) (11)

• the cumulative distribution function. Let inci be an income distribution over the population U.
The cumulative distribution function F at x is the share of population elements whose income is
lower than x:

F (x) =

∑
i∈U 1 (inci ≤ x)

N
=

∫
1 (inc ≤ x) dM∫

dM
= T (M) (12)

where the function 1 (inc• ≤ x) is equal to 1 for all i whose inci is lower than x and 0 otherwise.

• the ARPT, that is 60% of the median income MED(M̂)): ARPT = 0.6 × MED(M) = T (M) ,
where the median incomeMED(M) splits the income distribution into halves: F [M,MED, (M)] =
0.5, where F (M, .) designates the cumulative income distribution function.

If we consider the population total of a variable y, the so-called plug-in estimator can be written as:

Ŷ = T (M̂) =

∫
ydM̂ =

∑
i∈s

wi(s)yi (13)

Likewise, if we consider the ratio 11 of two population totals X and Y, we get:

R̂ = T (M̂) =

∫
ydM̂∫
xdM̂

=

∑
i∈s wi(s)y1∑
i∈s wi(s)x1

(14)
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Concerning to the cumulative income distribution, we obtain:

F̂ = T (M̂) =

∫
1(inc ≤ x)dM̂∫

dM̂
=

∑
i∈s wi(s)1(inci ≤ x)∑

i∈s wi(s)
(15)

Finally, regarding the ARPT, we have the following estimator:

ÂRPT = T (M̂) = 0.6×MED(M̂) (16)

where the estimated median income MED(M̂) satisfies F
[
M̂,MED, M̂

]
= 0.5 and:

F
(
M̂, x

)
=

∑
i∈s wi(s)× 1(inci ≤ x)∑

i∈s wi(s)
(17)

By following the rule of derivation stated in Deville (1999), the influence function for the AROP at k is
derived by Osier (2009):

IARPRk(M) =
1

N
[inck ≤ ARPT (M)−ARPT (M)]−

0.6

N
×

˜F ′[ARPT (M)]

˜F ′[MED(M)]
× [1(inck ≤ MED(M))− 0.5] (18)

Where ˜F ′[ARPT (M)] and ˜F ′[MED(M)] are the values of the derivative of the cumulative income
distribution function F̃ at the points ARPT (M) and MED(M) (median income), respectively. These
two quantities can be interpreted as the income densities at ARPT (M) and MED(M).

The influence function 18 can be regarded as a sum of two terms: the first term is the influence function
that would be obtained assuming the ARPT (M) is constant, while the second term is a “correction” which
takes into account the fact that the ARPT threshold is estimated from sample observations.

3.1.3 Estimating equations and other approaches
Another approach to linearization is based on the use of estimating equations. Estimating Equations
(EE) is a technique which can be applied to derive both point estimates and their corresponding lin-
earized values used for variance estimation (Binder, 1991). A general formulation of the EE approach
for large sample complex surveys is given in Binder and Patak (1994). More specifically, Kovacevic and
Yung (1997) applied the EE method for estimating the coefficient of variation and the exponential mea-
sure of inequality. The advantage of this approach when compared to other resampling alternatives is
that it can be used under a wide class of sampling designs and does not require intensive computations.
Betti and Gagliardi (2018) present a practical methodology for variance estimation for multidimensional
measures of poverty and deprivation of households and individuals, derived from sample surveys with
complex designs and large sample sizes. The authors applied this methodology in a multi-domain and
comparative context by considering measures based on fuzzy representation of individuals’ propensity
to deprivation in monetary and diverse non-monetary dimensions. The basic idea of the fuzzy approach
is to treat poverty and deprivation as a matter of degree, replacing the conventional poor/non-poor di-
chotomy. An individual degree of poverty is determined by the person’s place in the income distribution
(see Betti and Gagliardi (2018) for further details).
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3.2 Replicationmethods
An alternative approach to variance estimation of nonlinear statistics from complex samples is provided
by replication methods based on repeated resampling of the parent sample. This class of methods in-
cludes the Bootstrap, Jackknife Repeated Replication (JRR), and Balanced Repeated Replication (BRR)
and is based on measures of observed variability among replications of the full sample. The basic re-
quirement is that the full sample is composed of several subsamples or replications, each with the same
design and reflecting complexity of the full sample, numbered using the same procedures. Although
a replication differs from the full sample only in size, its own size should be large enough to reflect the
structure of the full sample and for any estimate based on a single replication to be close to the cor-
responding estimate based on the full sample. Simultaneously, the number of replications available
should be large enough so that the comparison among replications gives a stable estimate of the sam-
pling variability in practice. The various resampling procedures available differ in the manner in which
replications are generated from the parent sample and the corresponding variance estimation formulae
evoked (such as the Balanced Repeated Replication (BRR) and the bootstrap, apart from JRR).

Bootstrap inference for inequality measures have been carried by various researchers (Mills and Zand-
vakili, 1997, Biewen, 2002). The bootstrap is a method for recovering the distribution of a statistic by
employing Monte Carlo simulation methods to approximate the small sample distribution (see for ex-
ample Efron and Stein (1981), Tibshirani and Efron (1993) for detailed expositions of the bootstrap). This
method provides a numerical approximation to the distribution of interest, F , that is similar to a high-
order Edgeworth expansion which can represent considerable improvements over Normal approxima-
tions. In the context of inequality measurement, the bootstrap was first applied by Mills and Zandvakili
(1997) who considered the use of bootstrap for computing interval estimates and performing hypoth-
esis tests for decomposable measures of economic inequality. They provided two applications of the
suggested approach, using the Gini coefficient and Theil’s entropy measures of inequality based on the
data from the US Panel Study of Income Dynamics. Bootstrap intervals are computationally inexpensive
and easy to calculate, the same method applies to all the inequality measures used in the literature, and
the bootstrap method automatically considers any bounds that apply to a particular measure. Further,
since bootstrap intervals computed using the percentile method have a clear Bayesian interpretation,
they provide a straightforward solution to the Behrens-Fisher problem of comparing means from two
distributions. Given the potential advantages from bootstrapping, it appears worthwhile to consider its
use as a tool for statistical inference for inequality measures. Indeed, Biewen (2002) proved the validity
of the bootstrap method for various indicators used in the context of inequality, mobility and poverty
measurement.

Originally introduced as a technique of bias reduction (Durbin, 1959), the Jackknife method has by now
been widely tested and used for variance estimation (Verma and Betti, 2011). For a detailed description of
the Jackknife method see Efron and Stein (1981). Like other resampling procedures, the JRR method es-
timates the sampling error from comparisons among sample replications which are generated through
repeated resampling of the same parent sample. Each replication needs to be a representative sample
in itself and must reflect the full complexity of the parent sample. Nevertheless, as the replications are
generally not independent but are overlapping, special procedures are required for constructing repli-
cations in order to avoid bias in the resulting variance estimates. The JRR variance estimates take into
account the effect on variance of aspects of the estimation process which are allowed to vary from one
replication to another, including complex effects such as those of imputation and weighting.The JRR
method proved to give satisfactory results for means, ratios and functions of ratios, which are by far
the most commonly encountered statistics in survey analysis. Regarding more complex statistics, the
method can be safely used for indicators named as “U statistics”. The JRR procedure performs well when
the parameter of interest is a smooth function of sample aggregates while it may not provide a consis-
tent variance estimator for non-smooth statistics, such as the median or other quantiles of the income
distribution. Shao and Wu (1989) demonstrated that this drawback of the basic Jackknife method can
be corrected by using a more general form which involves the construction of replications by deleting
a number of observations simultaneously, the appropriate number to be deleted depending on the de-
gree of smoothness of the measure.
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3.3 Evaluatingtherelativeperformanceofdifferent
methods

For poverty indicators computed using the EU-SILC surveys, which are generally based on reasonably
large samples but with complex designs, Taylor linearization is well-established in the literature. How-
ever, the linearization method is not always the most practical procedure for variance estimation for the
type of statistics and samples being considered. Moreover, when non-linear statistics are involved, as
it is frequently the case in poverty analysis, it is difficult to identify a closed form for estimators of their
standard errors. In these cases, the class of methods based on the idea of resampling or replication, such
as the Bootstrap and Jackknife Repeated Replication (JRR), may provide an alternative.

The S80/S20 constitutes a very interesting class of inequality indices in their capacity to detect pertur-
bations at different levels of an income distribution. Yet, variance estimation is not straightforward,
especially when dealing with complex sampling designs (Langel and Tillé, 2011). Several studies use
variance estimators based on the linearization approach suggested by Deville (1999). Inference for the
S80/S20 using this approach has already been conducted by Osier (2006) and Osier (2009) while boot-
strap methods have been analysed by Antal et al. (2011). In a similar framework, Brzezinski (2014) studied
finite-sample performance of asymptotic inference for richness measures, suggesting that the asymp-
totic inference for the richness headcount ratio and the concave richness indices is satisfactory even for
samples of moderate size. In many cases, standard bootstrap inference gives a small improvement over
the asymptotic inference, but both approaches can be considered reliable for samples of 1000 or larger.
It is worth noting that the performance of the standard bootstrap can be improved in some cases us-
ing a semi-parametric bootstrap. The estimation of the variance of the Gini coefficient indicator can be
based both on linearization methods and resampling-based methods (Giorgi and Gigliarano, 2017, Lan-
gel and Tillé, 2013). Linearization techniques are aimed to obtain the asymptotic distribution of the Gini
index which, in the case of simple survey sample, was discussed in Hoeffding (1992) as an application
of his general results on U-statistics. Other approaches related to linearization methods for estimating
the standard error of the Gini estimator are based on the influence function of the Gini index (Cowell
and Victoria-Feser, 2003) and on estimating equations (Kovacevic and Yung, 1997). Since the Gini in-
dex is usually estimated through data from complex surveys, as in the case of EU-SILC surveys, several
works have focused on deriving an expression of the Gini index by also considering survey design in the
estimation process (Bhattacharya (2007); Langel and Tillé (2013)).

A systematic procedure for the derivation of linearized variables for the estimation of sampling errors of
income inequality measures, including Gini and S80/S20 was developed by Verma and Betti (2011). As
an alternative, estimation of the variance of the Gini index estimator can be based on re-sampling meth-
ods. Bootstrap techniques have been implemented for estimating the Gini variance in various studies
(see for example Palmitesta et al., 2000). In the context of inequality measurement, the bootstrap was
applied by Mills and Zandvakili (1997), Palmitesta et al. (2000), Palmitesta and Provasi (2006), Biewen
(2000) and Biewen (2002) who recommended its use rather than asymptotic methods especially in ap-
plications where the sample size is not large. The consistency of the bootstrap can be shown by using
general results on U-statistics (Xiquan, 1986). Several authors have suggested using the jackknife tech-
nique to approximate a standard error for the Gini coefficient. The jackknife approach was firstly used by
Manfredi (1974), who proved that applying this method could lead to getting less biased estimates than
those obtained with traditional methods (Giorgi and Gigliarano, 2017). Schechtman (1991) and Yitzhaki
(1991) suggested the use of jackknife estimators of the variance of the plug-in Gini estimator based on
the influence function while Ogwang (2000) proposed a fast algorithm for a jackknife estimation of the
Gini coefficient’s variance.

Since linearization, jackknife and bootstrap are estimating the same quantity, that is the variance of
income-poverty and income-inequality indicators, one may ask if it is possible to identify conditions
under which some estimators perform better than others. In this context, several comparisons, both
theoretical and empirical (by simulation), have been carried out in the literature. Rao and Wu (1985) and
Rao and Wu (1988) demonstrated that different Jackknife and Balanced Repeated Replication estimators
are very close to one another and that the jackknife is closest to the linearization estimator, followed by
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the bootstrap estimator. Overall, the jackknife and linearization methods tend to exhibit similar perfor-
mance. They are more stable for smooth functions but inconsistent for non-smooth functions. Bootstrap
is applicable for all statistics and can provide more-accurate one-sided confidence intervals and better
balance of the tail probabilities of two-sided confidence intervals. However, this versatility comes at the
price of lesser stability. Davidson and Flachaire (2007) studied finite-sample performance of asymptotic
and bootstrap inference for inequality and poverty measures founding that neither asymptotic nor stan-
dard bootstrap perform very well with inequality measures, even in very large samples. The reasons for
this poor performance are related to the fact that inference for inequality measures is very sensitive to
the exact nature of the upper tail of the income distribution. Indeed, an issue frequently encountered
with heavy-tailed distributions like Generalized Beta, Dagum and Pareto distributions, which describe
real-word income data, is that extreme observations are frequent in data sets, thus causing difficulties in
the bootstrap technique. Similarly, Cowell and Flachaire (2007) examined the statistical performance of
inequality measures in the presence of extreme values in the data showing that these indices are very
sensitive to the properties of the income distribution. In contrast, Davidson (2012) demonstrated that,
unless the tails are very heavy, or the Gini index itself is large, the bootstrap can yield acceptably reliable
inference. Linearisation is efficient in computation and may perform better in some cases. However,
the derivation of the computational forms is much more complex and in some cases may not be avail-
able in a form readily usable. Replication method can handle such complexity much more easily. Verma
and Betti (2011) stated that their simplified procedures for linearization and jackknife perform well when
the parameter of interest is a smooth function of sample aggregates, such as the class of FGT indicators
(Ravallion et al., 1994). Contrastingly, as in the case of bootstrap an often well-known drawback of the
jackknife method is that it may not provide a consistent variance estimator for non-smooth statistics,
such as the median or other quantiles of the income distribution.

The performance of the various estimation methods for the variance of income-poverty and income-
inequality measures is also strongly influenced by the type of sample design. Indeed, it has been found
that the jackknife method works satisfactorily for variance estimation in the case of Gini but not for all
sampling designs. The same consideration holds for the bootstrap approach. Berger (2008) compared
numerically the jackknife estimators with two linearization estimators showing, on the basis of a simu-
lation study, that linearization technique proposed by Kovacevic and Yung (1997) and the generalised
jackknife are asymptotically equivalent and consistent under mild conditions. As underlined by Graf
et al. (2011) and Ollila (2004) there is not a unique method working well with any sampling design and
any complex estimator. Berger (2008) use jackknife and linearization to estimate the variance of the
Gini coefficient, allowing for the effect of the sampling design. The complexity of the sampling error es-
timates of these measures is further increased by the fact that the empirical income distribution from
which they are derived is itself subject to sampling variability. However, in the case of the replication
methods, the main requirement is efficient and accurate code for repeated computation of the involved
measures (Goedemé, 2013). This is a subject-matter specific requirement. In a different way, the same
applies to the linearisation approach: the computational forms are measure-specific. As we will explain
in the next section we had to manipulate the data and write specific programs for estimating standard
errors for inequality and poverty measures in order to adapt formulae to the characteristics of sampling
design.
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4 TheEU-SILCsurvey

4.1 Main characteristics of the EU-SILC
The EU‐SILC survey is currently implemented in 37 countries(5) . Every year in Europe more than 200,000
households and 500,000 individuals are interviewed and the complete microdata are sent to Eurostat
by NSIs (Atkinson et al., 2017). The EU-SILC survey is the main source for the compilation of statistics on
income, social inclusion and living conditions since it collects comparable multidimensional micro-data
on: (a) income, (b) poverty, (c) social exclusion, (d) housing, (e) labour, (f ) education, (g) health. In terms of
statistical units two types of variables measured and analysed are thus involved in EU-SILC: (a) variables
at household level (education, basic labour information and second job) and (b) variables at personal
level (health, access to health care, detailed labour information, activity history and calendar of activi-
ties). These “target variables” are either compiled from registers (register variables) or collected from the
sampled units (observation variables). EU-SILC is organised under a framework regulation and is thus
compulsory for all EU Member States. EU-SILC is based on the idea of a “common framework” in contrast
with the concept of a “common survey”. The common framework is defined by harmonised lists of tar-
get primary (annual) and secondary (every four years or less frequently) variables, by a recommended
design for implementing EU-SILC, by common requirements (for imputation, weighting, sampling errors
calculation), common concepts (household and income) and classifications (ISCO, NACE, ISCED) aiming
at maximising comparability of the information produced. The common framework is defined in the leg-
islative background of the project, the Council and European Parliament framework Regulation, and the
implementing Commission Regulations. SILC provides two types of annual data:

• Cross-sectional data pertaining to a given time or a certain time period with variables on income,
poverty, social exclusion and other living conditions,

• Longitudinal data pertaining to individual-level changes over time, observed periodically over a
four year period. They aim at measuring gross (micro-level) change and elucidating the dynamic
processes of social exclusion and poverty (Verma and Betti, 2006).

There are two kinds of variables in EU-SILC: the primary and secondary variables. The primary (target)
variables are collected every year, whereas secondary variables are collected every five years or less fre-
quently in the so-called ad-hoc modules. Based on these variables, additional variables (derived vari-
ables) are calculated for each statistical unit-observation, to support the computation of indicators used
for monitoring poverty and social inclusion in the EU within the Europe 2020 strategy.

Many revisions and improvements have been made to the EU-SILC survey over the years. The latest
change is the adoption of the Regulation 2019/1700 which establishes a common framework for Eu-
ropean statistics relating to persons and households, based on data at individual level collected from
samples (IESS Regulation). The new EU-SILC legal acts require:

(5) The national questionnaires received from countries are available here.
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• improved timeliness, with shorter deadlines for EU-SILC data submission;

• reformulated precision requirements both at national and regional level (NUTS2) for the at-risk-of-
poverty-or- social-exclusion indicator and the persistent-risk-of-poverty rate;

• additional/ changed EU-SILC variables;

• data collection in three frequencies: nucleus, three-year module and six-year module;

• prolongation of the longitudinal panel.

The aim of the revision process is to obtain reliable statistics both at national as well as at regional level
(where better comparability is required from the REGULATION (EU) 2019/1700). In this framework it is im-
portant that aggregated data be made available for comparable territorial units such as NUTS2. In order
to establish comparable regional statistics, data on the territorial units should be provided in accordance
with the NUTS classification.

4.2 EU-SILCsamplingdesignsacrossEuropeancountries
The Framework Regulation requires the selection of nationally representative probabilistic samples. Units
used in the sample selection may be addresses, households or individuals; each unit is selected with a
known probability and collected according to the design chosen by the country. As already mentioned,
variables are collected by register or interview survey. In most of the countries (the so-called “survey”
countries), both income and non-income variables are collected by interviewing all household members.
On the other hand, a set of countries use population registers with income information. For all house-
hold members, registers provide information for income, education and housing. In this case, income
variables are fully collected by register and the questionnaire is more focused on qualitative questions.
In “register” countries the selected respondent is only one person in each household and he/she answers
to most non-income questions. Randomised selection procedures must be used to ensure that a repre-
sentative sample of persons is obtained from the representative sample of households. Table 1 shows
the sampling units used for each country.

Sampling unit Country
Dwelling/Address CZ, DE, ES, FR, HR, LV, LU, MT, AT , PL, PT, RO, UK
Household BE, BG, EE, IE, EL, IT, CY, LT, HU, SK, CH
Individuals DK, NL, SI, FI, SE, ES, NO

Table 1: Sampling units chosen by Country

In order to ensure both longitudinal and cross-sectional representativeness, Eurostat has suggested us-
ing an integrated structure that is a rotational panel(6) . Rotational design refers to the sample selection
which is based on a number of sub‐samples. The sample for any one-year consists of four sub-samples,
which have been in the survey for 1-4 years. From year to year, some sub-sample are maintained, while
others are dropped and replaced by new sub-sample. With this methodology, cross‐sectional and lon-
gitudinal statistics are produced from essentially the same set of sample observations. Although EU-
SILC uses harmonized methods and definitions in order to establish reliable comparisons between EU
Member States, there are considerable differences in sample designs among EU countries. The specific
sampling design is chosen according to the socio-economic characteristics of the population and ge-
ographical structure of the country. Every year, each EU country sends to Eurostat information on the
sampling design used, on the strata and primary sampling units (PSU) from which each household is
drawn. Table 2 shows the sampling design chosen by countries according to the EU comparative quality
reports(7) .

(6) All countries adopted the four-year rotational design recommended by Eurostat, except for France and Norway where a longer
panel duration (eight and nine years, respectively) is used.

(7) For further details you find here the quality reports.
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Table 2: Sampling design chosen by Country

Type of sampling design Countries
Stratified sampling design:
One stage sampling DK, DE, EE, CY, LT, LU, AT, SK, FI, CH
Multi-stage sampling BE, BG, CZ, IE, EL, ES, FR, IT, LV,

HU, NL, PL, PT, RO, SI, UK, HR
Sampling design without MT, SE, IS, NO
stratification

As illustrated above, most of the EU-SILC samples are stratified by geographical region, which generally
increases the accuracy of estimated indicators. In addition, many sampling design consider cluster sam-
pling thus reducing data-collection costs but in some cases also decreasing the precision of estimates.
The loss of precision may be due to the fact that the population elements in a cluster are likely to be more
homogeneous to each other than elements of a simple random sample. To this respect, the Design Ef-
fect (Deff), that is, the ratio of the variance of a statistic with a complex sample design to the variance
that would be obtained with a simple random sample of same size, can be estimated in order to measure
the combined effect of design components, such as stratification, clustering or unequal weights. Strat-
ification serves the purpose of increasing the representativeness of the sample and decreasing the risk
that sub-groups in the population remain unrepresented. If the variance between strata is large in terms
of the relevant variable, the stratification contributes to decreasing the standard error. Clustering can
seriously increase the standard error if the variance within clusters is small compared to the between-
cluster variance with respect to the variable of interest. In contrast, if clustering is neglected, standard
errors will be under-estimated and relations which are not statistically significant may appear to be sig-
nificant (Trindade and Goedemé, 2020). The geographical clustering could reduce the costs of the sur-
vey (Sturgis, 2004) allowing the collection of the interviews in a limited number of geographical areas.
The computation of standard errors usually requires a complete description of the implemented sample
design and accurate description of stratification and clustering variables regarding “Primary strata” and
“PSUs”. If strata are not taken into account, confidence intervals can be overestimated and the researcher
might be unduly conservative.

In order to take into account the sample design when estimating poverty and social exclusions indicators,
the following variables should be considered: household id (DB030), the stratification variable (DB050)
and primary sampling unit variable (DB060). Every household will receive a household number (HB030).
This number is the base on which which the Household ID and the Personal ID are constructed. It should
be a sequential number and it should not contain other information. This number must be unique for
all the years of the survey. The DB050 provides an identification code for the strata in case the target
population is stratified at the first stage of the sample design. DB050 refers only to explicit strata(8) .
The DB060 provides an identification code for the PSUs. Every selected PSU should receive a value that
is unique across all PSUs that have been selected in EU-SILC and that remains the same for the entire
duration of EU-SILC. According to the information required for a complete description of the sampling
design, EU countries can be divided into three groups:

• Belgium, Bulgaria, Czech Republic, Ireland, Greece, Spain, France, Croatia, Italy, Latvia, Hungary,
the Netherlands, Poland, Portugal, Romania, Slovenia and the United Kingdom, where the variable
DB050 (primary strata) can be used for strata specification and DB060 (Primary Sampling Unit) for
cluster specification;

• Germany, Estonia, Cyprus, Lithuania, Luxembourg, Austria, Slovakia, Finland, Switzerland, where
the variable DB050 can be used for strata specification and DB030 for cluster specification;

• Denmark, Malta, Sweden, Iceland, Norway, variable DB030 can be used for cluster specification
and no strata are specified.

(8) Variable DB050 is included in the D-file of the EU-SILC survey.

Measuring and communicating uncertainty of poverty indicators at regional level 21



5The EU-SILC survey

4.3 Previous projects for uncertainty estimation
of EU-SILC based indicators

As EU-SILC is a sample-based survey, a great variety of errors can seriously affect the accuracy of all es-
timates. Several frameworks exist to classify sources of errors. Generally non-sampling errors in EU-SILC
survey are described (Verma et al., 2010, Goedemé, 2013) while survey data are subject to errors from
diverse sources. Information on sampling errors is of crucial importance in proper interpretation of the
survey results, and for the purpose of evaluating and improving the sample design, including sample
size.

Measuring sampling errors is an important step in assessing the accuracy, as confidence intervals in
which the population value lies with a high probability can be easily derived. Over the last years, impor-
tant progress has been made in the assessment of data accuracy and survey errors in EU-SILC survey by
also taking comparability of the results across the national surveys as a basic requirement. This is the re-
sult of several research projects developed by National Statistical Institute (NSIs) and Eurostat such as the
Network for the Analysis of EU-SILC (Net-SILC), an ambitious 18-partner Network bringing together ex-
pertise from both data producers and data users, and the Advanced Methodology for European Laeken
Indicators (AMELI), focused on methodological aspects of Laeken indicators especially regarding their
impact on policy making.

The Net-SILC was established in 2008 by Eurostat and includes various institutions and researchers. The
main results of Net-SILC have been presented at an international conference that took place in Warsaw,
on 25-26 March 2010. In line with the previous Network (Net-SILC1), the aim of Net-SILC2 is to elaborate
methodology for the analysis of the EU-SILC data, and to develop common tools and approaches regard-
ing various aspects of data production. The main objective of the Net-SILC2 is to develop a practicable
set of recommendations both for data producers and data users regarding standard error estimation.
Those recommendations include suggestions concerning the procedures for computing standard er-
rors at NSI’s level and non-NSI’s level. Since, the EU-SILC User Data Base version does not convey enough
information which would allow data users outside NSIs to compute reliable standard errors estimates
for a given set of indicator, Goedemẽ et al. (2013) includes recommendations concerning how to im-
prove the quality of sampling design variables. In this framewok, in order to estimate standard errors
for the main EU-SILC indicators, Osier (2009) implemented linearization techniques by using the pack-
age Poulpe(9) . Although the package Poulpe is powerful enough to take into account the main sample
design features, this solution turned out to be difficult to implement from the second wave onwards,
especially because of the rotational structure of the sample.

In 2018, the Net-SILC reached the third edition, called Net-SILC3(10) The aim of the first working package
of Net-SILC3 is to provide analyses of non-sampling errors in the EU-SILC survey. It is designed to identify
the main sources of non-sampling errors, to describe the nature and impact of each type of error and to
produce guidance for reducing them. The preliminary findings from Net-SILC3 work packages have been
presented at the Unit non-response and weighting and Item non-response and imputation international
workshops at University of Essex, held in the period 20-22 February 2019. Therefore they are particularly
suitable to illustrate the results of our analyses at national and sub regional level.

(9) POULPE is an SAS macro program for sampling variance estimation. It is very exact on applied formulae but quite demanding
to use. POULPE takes into account the impact of calibration on variance estimation (Caron, 1998)

(10) It was built on the basis of the solid research carried out in the context of the Net-SILC1 and Net-SILC2 networks. The final out-
come of Net-SILC2 was a book on “Monitoring social inclusion in Europe” (eds. Atkinson et al., 2017), which can be downloaded
free of charge.
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5 Computationalaspectsand
results

5.1 Datamanipulationandselectionof countries
The computations were made within Eurostat premises using the EU-SILC PDB for the year 2018 to allow
developing performance analyses of various standard error estimation methods with the aim of improv-
ing official statistics. This source of data includes full information on primary strata and almost complete
information on PSUs for all countries. In our analysis we used the additional variables already computed
by Eurostat in order to ease further statistical computations. We referred to eight countries according to
their sampling designs: we selected five countries using the two-stage stratified sampling design, that
is Italy, the United Kingdom, Portugal, Belgium and Ireland; two countries using the one-stage sampling
design (Germany and Sweden) and the Norway which adopts a simple sampling design without strat-
ification. In addition to different sample designs and sampling units, these countries show important
differences as regards the auxiliary information and variables considered in the sampling design.

5.1.1 The Bootstrapmethod and Laeken package
The first method we decided to use for variance estimation is the Bootstrap. This analysis has been per-
formed by using the R package Laeken (Alfons and Templ, 2012). The function variance() included in
the Laeken package provides a flexible framework for estimating the variance for the selected poverty
indicators. One of the most convenient features of the package Laeken is that point and variance esti-
mation can be obtained for different sub-domains using a single command. In our case, we estimated
standard errors for poverty indicators for NUTS1 and NUTS2 regions in addition to the overall national val-
ues by including the “Breakdown” argument in the function. Moreover, since stratified sampling designs
have been considered, in the Laeken package the specification of the design argument allows separate
re-sampling within each strata. Let X = (X1; ...;Xn)

′
denote a survey sample with n observations and

p variables. Then the naive bootstrap algorithm, which is called also the Standard Normal Approach, for
estimating the variance of poverty indicator can be summarized as follows:

• Draw S independent samples X∗
1 , ..., X

∗
S from X ;

• Compute the bootstrap replicate estimates θ̂∗s = θ̂ (X∗
s ) for each X∗

s s = 1, ..., S where θ̂ denotes
an estimator for the poverty indicator of interest. The sample weights are always needed for the
computation of the bootstrap replicate estimates;

• Estimate the variance V
(
θ̂
)

by using the variance of the S bootstrap replicate estimates:

V̂
(
θ̃
)
=

1

S − 1

R∑
s=1

(
θ̂∗s

1

s

S∑
r=1

θ̂∗s

)2

(19)
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5.1.2 The Jackknife Repeated Replicationmethod (JRR)
The second method used in order to obtain variance estimation for poverty indicators is the JRR. This
method is based on comparisons among replications generated through repeated re-sampling of the
same sample. Verma and Betti (2011) provide a general description of JRR and other practical variance
estimation methods in large-scale surveys. In order to estimate variance with JRR some assumption are
required: the sample selection is independent between strata, two or more primary selections are drawn
(independently and with replacement) from each stratum and the number of primary selections should
be large enough.

Moreover, some redefinitions of units and strata in the given sample are necessary to ensure that the
basic requirement of at least two independent selections per stratum is met (Verma and Betti, 2011).
Primarily, such redefinition involves grouping or collapsing of PSUs (and possibly also of strata) in the
sample in order to obtain larger and more uniform computational units for variance estimation. This
method implies that at least four PSUs are included in each stratum. We followed the procedure sug-
gested by Verma and Betti (2011) thus requiring that the number of replications should be equal or at
least similar to the number of PSUs in the sample. More specifically, in order to follow a unique proce-
dure for all the countries, the number of replications is equal to 2,000. Each JRR replication is formed by
eliminating one sample PSU from a particular strata at a time and increasing the weight of the remaining
sample PSUs in that stratum appropriately. In this way it is possible to obtain an alternative but equally
valid estimate to that obtained from the full sample. Let j indicate a sample PSU and k indicates the
stratum; ak ≥ 2 is the number of PSUs in stratum k, assumed to be selected independently. Let λ be
a full sample estimate of any complexity, and λkj the estimate produced using the same procedure af-
ter eliminating primary unit j in stratum k and increasing the weight of the remaining (ak−1) units in
that stratum by gkj = wk

wk−wkji
with wk =

∑
j wkj , wkj =

∑
i wkji the sum of the sample weights of

ultimate units i in PSU j.

This means that the weights for individual units are redefined in replication kj as follows:

• For a unit i not in stratum k: w
′

kji = wkji;

• For a unit i in stratum k but not in PSU j: w
′

kji = gkjwkji;

• For a unit i in stratum k and PSU j: w
′

kji = 0.

Let λk be the simple average of the λkj over the ak values of j in k. The variance of λ is then estimated
as:

V ar (λ) =
∑
k

(1− fk)
ak − 1

ak

∑
j

(λkj − λk)
2

 (20)

In this case the finite population correction (1 − fk) is close to 0. The aggregate quantity λkj for repli-
cation (kj) has been computed by taking a weighted sum of values for individual units with modified
weights wkji. With the delete one-PSU at a time JRR model, each term in V ar (λ) is the contribution of
a single PSU to the variance of the whole sample. The average contribution per PSU (or per replication)
is then summed over all replications to obtain an estimate of total variance.

5.1.3 The Linearizationmethod
In order to estimate the variance of non-linear indicators the linearisation approach, based on the con-
cept of influence function, has been used as proposed by Osier (2009) and Berger et al. (2017). As spec-
ified in section 3.3.1 of Deliverable 4.A, this method has been firstly introduced in robust statistics by
Hampel (1974). This method was implemented by Eurostat to produce variance estimates for the EU-
SILC social indicators: it simplifies the estimation of the variances and can be easily extended to cover
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multi‐stage designs by using the ultimate cluster approximation. With the ultimate cluster approach,
the variance between PSUs is used as an approximation of the total sampling variance. The variance of
the linear approximation can be used as an approximation of the variance of the non-linear indicator
considered. The “vardpoor” package in R has been used in order to obtain linearized versions of the
non-linear poverty measures used (the at-risk-of-poverty rate, Gini coefficient, income quintile share ra-
tio and relative median at risk of poverty gap). Suppose θ is a complex non-linear indicator. The variance
of an estimator θ̂ of θ is estimated by:

V̂
(
θ̂
)
=

H∑
h=1

nh

nh − 1

∑
(zhi. − zh..)

2 (21)

Where zhi. =
∑mhi

j=1 ωhij · zhij , z̄h.. = n−1
h (

∑nh

i=1 zhi.) and zhij is the value of a linearised variable.
We introduced a criterion to proper consider the case in which a strata includes only a PSU. Since as
already emphasized, we do not have information on the Order of selection of PSU variable, we decided
to regroup (collapse) PSUs. In this way, each stratum contains at least four sample PSUs – even if the
minimum number required for the computation of variance is two.

5.2 Standard errors estimation results
This section illustrates estimated standard errors of poverty measures for the eight countries selected for
our empirical application both at national and regional level. Table 3 provides the following information
for each country: achieved sample size, number of NUTS1 and number of NUTS2.

Table 3: Countries sample size and NUTS classification

Country n NUTS1 NUTS2
Two stage stratified sampling

IT 45,767 5 21
UK 38,776 12 42
PT 33,935 3 7
BE 13,767 3 11
IE 11,130 1 3

One stage stratified sampling
DE 25,259 16 38
Sampling design without stratification
NO 14,315 1 7
SE 14,403 3 8

As we can observe from Table 3, sample size varies greatly from one country to another. This is an essen-
tial factor for explaining national differences as regards to the accuracy of income-poverty and income-
inequality indicators. In general, there is a positive correlation trend between effective sample size and
relative standard error. As reported in Section 2, regarding the income-inequality measures, we selected
the Gini coefficient and the quantile share ratio (S80/S20) indicators; as for the income-inequality indi-
cators, we selected the At-risk-of-poverty rate (AROP) and the Relative median at-risk-of-poverty gap
(RMPG).

5.2.1 Results at national level
Tables 4 - 6 compare, when available, our point and standard error estimates with the official figures ob-
tained from Eurostat. In each table, the first four columns illustrate our estimation results by comparing
bootstrap (B), JRR and linearization (L) methods, while the last two columns include the official Eurostat
estimates.
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Regarding our estimates, the general closeness of the results from three entirely different methodolo-
gies can be considered quite remarkable. Similar results were found for the jackknife by Verma and Betti
(2011) from a national survey based on a complex (stratified, two-stage, weighted) sample. In addition it
is essential to note that our standard error results show a satisfactory level of reliability for all the meth-
ods used, since the estimated coefficients of variation are lower than 5% as underlined by Ardilly (2006).
Indeed, even if precision thresholds are generally survey-specific and depend on the required reliability
and resource-related political decision, specifying what degree of precision is an important step when
planning a sample survey. Our results also confirm previous finding concerning the poor performance
of the boostrap method for estimating standard errors for income-inequality indicators (Gini coefficient
and S80/S20) in the case of the UK and Belgium. The estimation results may be influenced by the dimen-
sion of strata and the implicit stratification used by Belgium and the United Kingdom, where PSUs are
descendingly sorted according to variables strictly related to income. Using the jackknife and lineariza-
tion methods we are able to better capture both the reduced number of PSUs and, to some extent, the
implicit stratification by defining computational strata. However, our findings demonstrate that there
is not a unique method working well with any complex estimator and sampling design implemented in
the various countries (Ollila, 2004).

Looking at the uncertainty measures for poverty indicators for Italy, the relative standard errors of es-
timates tend to be lower when bootstrap is used. If we consider the AROP, the relative standard error
ranges from 1.63% (for bootstrap) to 2.42% (for jackknife). Standard errors obtained using the jackknife
procedure are similar to those obtained using linearization for almost all the poverty indicators with the
exception of the Gini coefficient. Yet, bootstrap may under-estimate the true value of standard error
because it may be less able to reproduce strata and PSUs thus being similar to a simple random sample.

In the case of the United Kingdom, the linearization method produces lower standard errors than boot-
strap and jackknife for the AROP and S80/S20. Contrastingly, bootstrap seems to perform well only in
the case of RMPG. For Portugal, standard errors for the Gini coefficient are very similar among the three
methods that were used. For the AROP and S80/S20 jackknife produces higher values than bootstrap
and the linearization methods. As already mentioned, the jackknife performs very well for Belgium and
Ireland for the various measures.

Focusing on countries adopting a one-stage sampling structure (Germany) and a simple random sam-
pling design (Norway and Sweden) we can observe that the three estimation methods produce similar
values for the standard errors of the various poverty measures. However, the jackknife seems to poorly
perform in the case of Germany not only for the two income-inequality indicators (Gini coefficient and
S80/S20) but also for the AROP.

Table 4: AROP: Point and standard errors estimated values vs. official figures

Own estimated values Official figures
value B s.e. JRR s.e. L s.e. value s.e. (1)

Italy 19.9 0.324 0.482 0.407 20.3 0.534
United Kingdom 18.7 0.445 0.409 0.402 18.6 0.452
Portugal 17.5 0.476 0.693 0.484 17.3 0.516
Belgium 14.7 0.699 0.529 0.603 16.4 1.178
Norway 13.2 0.276 0.536 0.373 12.9 0.529
Germany 16.0 0.235 0.415 0.251 16.0 0.366
Sweden 16.2 0.253 0.592 0.371 16.4 0.614
Ireland 16.9 0.980 0.961 0.902 14.9 0.842

Source: Own calculations based on data extracted on 14/06/2020, and Eurostat official figures extracted
on 25/09/2020
(1) The standard errors are from the Annex 4 of the EU quality report publicly available on 21/10/2020
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Table 5: GINI: Point and standard errors estimated values vs. official figures

Own estimated values Official figures
value B s.e. JRR s.e. L s.e. value s.e. (1)

Italy 33.3 0.322 0.368 0.369 33.4 0.101
United Kingdom 34.0 1.155 0.459 0.460 34.2 0.318
Portugal 33.6 0.415 0.435 0.373 32.1 0.147
Belgium 26.4 0.818 0.218 0.526 25.6 0.504
Norway 25.0 0.205 0.382 0.246 24.8 0.161
Germany 30.9 0.508 1.374 0.608 31.1 0.194
Sweden 26.3 0.214 0.128 0.371 27.0 0.207
Ireland 30.5 1.089 1.117 1.034 28.9 0.365

Source: Own calculations based on data extracted on 14/06/2020, and Eurostat official figures extracted
on 25/09/2020
(1) The standard errors provided by Eurostat on 13/07/2020

Table 6: S80/S20: Point and standard errors estimated values vs. official figures

Own estimated values Official figures
value B s.e. JRR s.e. L s.e. value s.e. (1)

Italy 6.1 0.134 0.146 0.142 5.9 0.014
United Kingdom 5.8 0.268 0.132 0.121 5.4 0.017
Portugal 5.6 0.110 0.145 0.100 5.7 0.007
Belgium 3.8 0.155 0.007 0.096 3.8 0.026
Norway 3.8 0.055 0.093 0.056 3.9 0.010
Germany 5.0 0.152 0.428 0.188 4.5 0.020
Sweden 3.9 0.045 0.371 0.074 4.3 0.019
Ireland 4.6 0.202 0.201 0.179 4.6 0.028

Source: Own calculations based on data extracted on 14/06/2020, and Eurostat official figures extracted
on 25/09/2020
(1) The standard errors provided by Eurostat on 13/07/2020

Tables 4 - 6 report point estimates and uncertainty measures for AROP, GINI and S80/S20 poverty indica-
tors. It is worth noting that our estimates do not match exactly the official figures calculated by Eurostat
and reported in the EU quality report regarding AROP and obtained from Eurostat for the other indica-
tors.

The observed differences between our findings and official figures may be caused by various factors
which are related to data and variable definitions as well as to the software used for performing esti-
mates. With regard to the differences in point estimates, the main factor affecting our estimates is re-
lated to the different dataset used for our analysis, more specifically we used the harmonized EU-SILC
dataset produced by Eurostat that may differs from the dataset used by NSIs. In addition, it is worth not-
ing that Eurostat frequently receives data revisions that are not promptly reported in UDB, which is only
published twice a year. Another aspect related to the accuracy of measurement at level of individual
units needs to be considered. Although the EU-SILC survey is the most important comparative micro-
data source on household income in Europe, the impact of conceptual or definitional differences in data
collection and data treatment procedures adopted by NSIs may be significant thus causing a loss of accu-
racy of measurement and comparability of income variables among the various countries. The impact of
the above mentioned differences is seen markedly in the case of income regarding the inclusion or exclu-
sion of imputed rent and income from production for own consumption. In addition, different methods
may be used for outlier detection and data error correction. Moreover, countries adopt different meth-
ods regarding the conversion process which may concern the omission of income components and/or
misallocation of income components within income target variables. For example, detailed information
concerning the allocation of payments for fostering children is lacking for the United Kingdom and Italy.
This income component, which should be treated as employee cash and near-cash income, is not in-
cluded under PY010 nor in any other variable. Therefore, even if various methodological guidelines and
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quality reports are available to assess procedural comparability of the EU-SILC income variables at EU
level, not all countries adhere to the standard definition suggested in the Eurostat guidelines (Trindade
and Goedemé, 2020). In addition complete information on how the national income components are
constructed and classified is often lacking. As a result, the quality of collected information is not uniform
across countries.

Another reason that can justify the above differences between our estimates and the official figures could
derive from the software and packages that are being used. Eurostat use the SAS statistical software,
while in our analysis we used the open-source software R. More specifically, to obtain point estimates
we used the Laeken package, which provides standard functions for estimating a set of Laeken indica-
tors. It should be highlighted that the developed R codes have been fine-tuned remotely and ran by
Eurostat staff on the EU-SILC micro-data for the production of the results. For this reason, we could not
check the composition and the distribution of income variables of the EU-SILC data in order to examine
the top end of the distribution for identifying top-values set and potential outliers that influence the esti-
mation of income-inequality indicators. More specifically, the presence of large values at the upper end
of the distribution does not affect point estimates of poverty indicators, but they can markedly affect
the estimated indicators of inequality such as the Gini coefficient and S80/S20 (see Section 3). Therefore,
variance of the estimates can also become greatly inflated. These factors affect cross countries com-
parability. Computational aspects need also to be considered when explaining the differences among
our estimates and official figures. More specifically, in our analysis some aspects of sample structure
have been redefined in order to make variance computation possible, efficient and stable. Due to the
unavailability of detailed information regarding the order of unit selection, we had to regroup units by
considering individual ID in order to meet the basic requirement of practical methods of variance esti-
mation for complex samples. Sometimes non-response can result in the disappearance from the sample
of whole PSUs. This can disturb the structure of the sample, such as increasing the heterogeneity of the
PSUs in some strata. This problem arises more frequently and seriously when computing sampling errors
at sub-national level.

5.2.2 Results for NUTS1 regions
In the following sub-section we present the results obtained by estimating the poverty indicators and
their standard errors at NUTS1 level(11) . All income-poverty indicators are based on country poverty
lines. Therefore, the income distribution is considered separately at the level of each country, in relation
to which a poverty line (ARPT) is defined and the AROP and the RMPG are computed. It is worth noting
that we refer to countries for which the NUTS1 geographical entities are considered planned domain in
the sampling design. As a matter of fact, since the available sample sizes at NUTS1 level become small,
sampling error tends not only to be high, but also estimates of sampling error tend to be more complex
and subject to high levels of variability. It is possible that in some strata only 1 or 2 PSUs determine
the total variability associated with the point estimates. In order to remove this effect and increase the
size of strata, computational units have been used when computing jackknife and linearization. In this
section we illustrate the relative performance of the three methods for estimating uncertainty measures
at NUTS1 level by providing tables for all the selected countries and by using bar plot for the UK and
Germany where the number of NUTS1 regions is particularly high.

It is worth noting that we encountered computational problems when estimating the RMPG indicator
for those countries adopting a one stage stratified sampling design and sampling design without strat-
ification. As a result, we do not illustrate relative standard errors estimation results obtained using lin-
earization for Sweden and Germany.

Our findings show that the standard errors obtained using the jackknife method are greater than those
obtained using the other two methods. Table 7 illustrates the estimated relative standard errors for the
selected income-poverty indicators and income-inequality indicators for Italy at the NUTS1 level.

(11) All the tables below for NUTS1 and NUTS2 are containing values of own calculations using the data extracted on 14/06/2020.
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Table 7: Estimated standard errors EU-SILC 2018 for income poverty – Italy NUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
North-west 12.8 15.99 5.48 5.31
South 32.8 6.11 4.22 3.28
Insular 35.7 6.49 6.17 5.55
North-east 10.9 20.61 6.82 6.77
Central 17.2 10.98 6.67 5.02
RMPG
North-west 27.4 6.53 12.76 7.26
South 33.3 4.22 4.15 9.99
Insular 34.5 8.52 7.85 19.70
North-east 20.1 8.54 26.66 5.88
Central 25.3 8.14 12.37 6.07
GINI
North-west 31.6 2.08 2.80 2.60
South 33.9 1.46 1.90 1.93
Insular 35.9 3.13 1.73 3.47
North-east 29.1 1.61 4.18 1.97
Central 33.2 1.17 1.52 1.91
S80/S20
North-west 5.3 3.75 4.88 3.90
South 6.6 3.69 5.44 4.66
Insular 7.8 10.02 11.40 13.77
North-east 4.6 2.75 2.93 2.93
Central 5.7 2.27 3.46 3.31

The estimated values of the AROP lies between 10.9 in the North-East NUTS1 region and 35.7 in the In-
sular regions of Italy. As regards variance estimation, the bootstrap method is less stable among regions
and the obtained standard errors are higher than those obtained using the other two methods. On the
contrary, the linearization method gives more accurate estimates when compared to the other meth-
ods. The estimated value of the RMPG lies between 20.1 in the North-East regions and 34.5 in the Insular
regions of Italy. Considering the jackknife method, we obtained higher values of standard error for the
North-East regions where it reaches the value of 26.65. The Gini coefficient and the S80/S20 achieved
minimum estimated values in the North-East of Italy (29.7 and 4.6 respectively) while the maximum val-
ues are reported for the insular regions (35.88 and 7.8 respectively). For these indicators, the relative
standard errors estimates for the three approaches are close for the various NUTS1.
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Table 8: Estimated standard errors EU-SILC 2018 formonetary poverty indicators – TheUKNUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
North East (England) 19.0 17.39 12.18 7.95
North West (England) 23.6 10.71 4.61 4.50
Yorkshire and the Humber 22.5 11.96 9.51 5.79
East Midlands (England) 18.6 14.65 10.13 7.11
West Midlands (England) 20.5 12.79 6.79 6.64
East of England 18.1 14.96 10.67 6.90
London 16.5 16.70 10.14 7.74
South East (England) 12.0 23.81 6.34 9.22
South West (England) 14.6 19.47 7.61 10.02
Wales 20.3 13.78 8.02 7.98
Scotland 18.1 13.88 6.34 6.59
Northern Ireland 28.9 11.95 3.92
RMPG
North East (England) 16.2 20.91 32.44 38.23
North West (England) 24.8 11.32 7.10 8.84
Yorkshire and the Humber 22.2 7.24 7.09 9.06
East Midlands (England) 22.4 8.95 7.09 11.71
West Midlands (England) 23.9 6.95 16.19 7.50
East of England 14.6 14.36 13.20 14.90
London 26.6 7.23 17.40 8.94
South East (England) 23.6 9.56 10.51 8.48
South West (England) 19.9 14.82 15.57 12.34
Wales 23.3 11.35 16.21 11.82
Scotland 21.8 9.53 3.86 8.63
Northern Ireland 36.6 21.01 2.56
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Figure 1: Estimated relative Standard Errors for income-poverty indicators: The UK NUTS1
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Table 8 and Figure 1 illustrate the estimated relative standard errors for income-poverty indicators in the
United Kingdom at NUTS1 level. The estimated AROP lies between 12 and 28.9: the minimum value is
observed in South East England while the highest value is observed in Northern Ireland. Regarding the
AROP uncertainty measures, the performance of the bootstrap is less satisfactory than jackknife and lin-
earization methods. More specifically, the relative standard error for South East England (for which the
sample size is equal to 4,429 units) obtained using the bootstrap method assumes the highest value
compared to the jackknife and linearization. The linearization method produces more accurate and pre-
cise variance estimates when compared with jackknife method. The estimated value of the RMPG lies
between 14.6 and 36.6 in the UK NUTS1. The minimum value is observed in East England while the high-
est value is observed in Northern Ireland (in this region the bootstrap variance estimate is not available).
In the case of AROP, relative standard error results from the three variance estimation approaches are
quite close.

Table 9 and Figure 2 illustrate the estimated relative standard errors for income-inequality indicators in
the UK at NUTS1 level. The estimated values of the Gini coefficient and the S80/S20 slightly vary among
the UK regions except for London and Northern Ireland. As regards relative standard errors for both
indicators it is worth noting that the three methods perform similarly. However, for the East Midland
region, the jackknife produces the highest value of standard error.

Table 9: Estimated standard errors EU-SILC 2018 for income inequality indicators – The UKNUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
GINI
North East (England) 28.8 4.04 3.87 4.47
North West (England) 32.6 3.13 2.51 2.37
Yorkshire and the Humber 29.7 2.47 2.64 2.37
East Midlands (England) 30.2 2.76 6.36 3.08
West Midlands (England) 31.8 4.91 2.98 6.46
East of England 33.5 2.93 2.14 2.72
London 38.9 3.61 4.09 4.02
South East (England) 32.7 3.16 1.69 3.28
South West (England) 29.2 3.31 3.17 2.69
Wales 29.1 3.39 2.37 3.36
Scotland 30.9 2.91 3.42 3.51
Northern Ireland 60.8 4.57 3.42
S80/S20
North East (England) 4.2 6.50 6.62 6.16
North West (England) 5.6 6.50 4.19 4.18
Yorkshire and the Humber 4.6 4.11 5.83 4.48
East Midlands (England) 4.7 4.53 9.65 5.74
West Midlands (England) 5.2 8.16 6.35 8.98
East of England 5.6 5.03 5.82 4.53
London 7.6 7.26 8.46 7.50
South East (England) 5.3 5.10 3.16 5.04
South West (England) 4.5 5.18 6.11 4.47
Wales 4.6 5.68 4.88 5.76
Scotland 5.1 4.88 6.21 6.01
Northern Ireland 17.7 8.22 5.04
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Figure 2: Estimated relative Standard Errors for income-inequality indicators: The UK NUTS1

Table 10: Estimated standard errors EU-SILC 2018 – Portugal NUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Continente 15.5 11.90 4.56 4.70
Região Autónoma Dos Açores 23.5 12.54 11.38 9.05
Região Autónoma Da Madeira 24.7 10.63 8.28 7.08
RMPG
Continente 24.3 3.81 3.45 4.11
Região Autónoma Dos Açores 31.6 10.64 10.67 9.20
Região Autónoma Da Madeira 27.2 9.60 6.13 6.68
GINI
Continente 32.9 1.42 1.38 1.18
Região Autónoma Dos Açores 38.1 3.54 2.17 2.64
Região Autónoma Da Madeira 33.6 2.40 2.59 1.94
S80/S20
Continente 5.3 2.13 2.29 1.92
Região Autónoma Dos Açores 7.2 8.35 7.53 5.73
Região Autónoma Da Madeira 5.8 4.52 5.91 4.26

Table 10 reports points and uncertainty estimates for income-poverty and income-inequality indicators
for NUTS1 of Portugal. Focusing on point estimates, the AROP value varies between 15.5 observed in
Continente region and 24.7, observed in the Regia Autónoma Da Madeira. The Gini coefficient, S80/S20
and RMPG achieve maximum estimated values in the Região Autónoma Dos Açores. As regards the stan-
dard errors estimations, the relative precision of estimates obtained from bootstrap tends to be lower
than the other two methods for most of the regions.
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Table 11: Estimated standard errors EU-SILC 2018 – BelgiumNUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Brussels 26.0 9.70 2.59 4.70
Flanders 9.3 10.58 9.93 9.05
Wallonia 18.3 8.43 9.78 7.08
RMPG
Brussels 20.3 13.31 7.29 8.07
Flanders 12.2 16.72 12.94 11.17
Wallonia 15.9 10.34 8.67 12.66
GINI
Brussels 32.6 3.63 2.07 1.58
Flanders 24.5 3.25 3.24 3.17
Wallonia 25.4 2.69 2.68 2.84
S80/S20
Brussels 5.1 7.37 2.03 2.89
Flanders 3.5 3.66 2.99 3.53
Wallonia 3.6 4.03 3.92 4.29

Table 11 reports point estimates and uncertainty measures for selected poverty indicators for Belgium at
NUTS1 level. As regards the point estimates, the selected monetary poverty and income inequality indi-
cators achieve maximum estimated values in the Brussels region, while the lowest values are observed
in the Flanders region. Brussels region seems to present higher income inequality indicators than the
other two regions in Belgium. Overall, the difference between the various relative standard errors is
slight among the methods, except for Bruxelles where bootstrap produces higher values for all the indi-
cators.

Table 12: Estimated standard errors EU-SILC 2018 – Sweden NUTS1

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Ostra Sverige 14.5 2.79 3.68 4.04
Södra Sverige 17.1 2.13 6.06 3.30
Norra Sverige 17.5 3.39 6.15 5.08
RMPG
Ostra Sverige 19.2 5.29 7.36
Södra Sverige 19.9 3.57 7.18
Norra Sverige 17.3 6.79 19.55
GINI
Ostra Sverige 27.5 1.40 2.16 2.35
Södra Sverige 26.3 1.20 3.24 2.16
Norra Sverige 23.0 1.17 4.63 1.75
S80/S20
Ostra Sverige 4.2 1.70 4.69 3.08
Södra Sverige 4.0 1.78 5.34 3.02
Norra Sverige 3.3 1.36 7.04 2.34

Estimation results of uncertainty measures for income-poverty and income-inequality indicators for Swe-
den are reported in Table 12. For the EU-SILC survey, Sweden adopts a sampling design structure without
stratification. For this country the RMPG uncertainty measure calculated with linearization method is not
available. Focusing on point estimates, the AROP value varies between 14.5 observed in Ostra Sverige
region and 17.5 observed in Norra Sverige region. For the selected income inequality indicators, the
highest values are observed in Ostra Sverige (27.5 for the Gini coefficient and 4.2 for the S80/S20 indica-
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tor respectively), while the lowest values are observed in Norra Sverige (23.0 for the Gini coefficient and
3.3 for the S80/S20 indicator respectively). From Table 12 we can observe that bootstrap method pro-
duces lower standard error estimates when compared with linearization and jackknife methods. Yet, it
is important to note that this method may under-estimate the true value of variance. Tables 13, 14, 15
and Figures 3 -4 report point estimates and uncertainty measures of AROP, Gini coefficient and S80/S20
for Germany at NUTS1 level.

Table 13: Estimated standard errors EU-SILC 2018 for AROP – Germany NUTS1

Region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Baden-Württemberg 12.1 5.00 19.05 6.08
Bavaria 14.4 3.80 10.50 4.54
Berlin 18.4 7.63 7.26 8.16
Brandenburg 15.5 5.85 16.22 7.36
Free Hanseatic City of Bremen 28.4 9.70 11.84 8.84
Hamburg 24.0 9.28 13.47 8.81
Hessen 12.1 6.01 10.39 7.23
Mecklenburg-Vorpommern 23.4 6.29 9.12 6.65
Lower Saxony 15.2 4.94 17.52 5.19
North Rhine-Westphalia 15.8 2.66 6.47 3.27
Rhineland-Palatinate 20.8 6.36 16.02 5.75
Saarland 16.2 13.55 13.21 13.95
Saxony 18.4 5.60 8.13 5.51
Saxony-Anhalt 16.3 8.04 22.96 8.94
Schleswig-Holstein 22.5 5.68 7.08 5.76
Thuringia 18.4 6.93 18.02 7.77

As shown in Table 13, the estimated values of the AROP lies between 12.1 in Baden-Wurttemberg and
Hessen regions and 28.4 in the Free Hanseatic City of Bremen region of Germany. From the same Table
and Figure 3, we can observe that the jackknife is less stable than the other two methods among regions.
It reaches the maximum value of 22.95 in the Saxony-Anhalt, which is one of the smallest regions with
a sample size equal to 639 units. Contrastingly, linearization performs well compared with the other
methods.

Table 14: Estimated standard errors EU-SILC 2018 for Gini indicator – Germany NUTS1

Region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Baden-Württemberg 28.4 1.93 2.94 2.02
Bavaria 33.7 5.12 2.88 5.67
Berlin 26.8 4.11 5.68 4.51
Brandenburg 25.3 2.35 3.02 2.81
Free Hanseatic City of Bremen 28.2 5.26 3.24 4.21
Hamburg 30.6 3.92 4.79 4.34
Hessen 40.8 2.71 2.95 3.06
Mecklenburg-Vorpommern 26.1 3.09 3.55 3.28
Lower Saxony 27.4 1.56 7.93 1.92
North Rhine-Westphalia 29.4 1.25 3.62 1.79
Rhineland-Palatinate 31.6 2.55 3.21 2.66
Saarland 23.7 4.55 3.61 4.71
Saxony 23.7 2.35 5.20 2.80
Saxony-Anhalt 27.7 5.08 5.02 6.17
Schleswig-Holstein 36.5 6.02 9.05 7.27
Thuringia 25.6 2.82 6.89 3.29

The point estimates of the Gini coefficient lie between 23.7 in the Saxony and Saarland regions and 40.8
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in the Hessen region of Germany. Focusing on relative standard errors, we can observe that the Jackknife
produces higher values than those obtained with the other two methods in most of the NUTS1 regions.

Table 15: Estimated standard errors EU-SILC 2018 for S80/S20 indicator – Germany NUTS1

Region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Baden-Württemberg 4.2 3.25 16.01 3.44
Bavaria 7.7 28.66 3.18 28.65
Berlin 3.7 5.09 32.84 5.31
Brandenburg 3.6 3.50 9.70 3.72
Free Hanseatic City of Bremen 4.2 8.57 5.84 4.30
Hamburg 5.0 7.27 7.63 7.76
Hessen 6.9 12.46 9.92 14.36
Mecklenburg-Vorpommern 3.8 4.65 11.20 5.09
Lower Saxony 4.0 2.35 8.25 2.68
North Rhine-Westphalia 4.5 1.85 7.39 2.56
Rhineland-Palatinate 5.3 6.17 9.28 5.48
Saarland 3.3 9.05 5.61 7.37
Saxony 3.3 3.19 8.83 3.21
Saxony-Anhalt 3.9 5.90 10.19 6.78
Schleswig-Holstein 9.2 12.87 23.41 32.73
Thuringia 3.7 4.89 10.64 5.31

The estimated value of the quintile share ratio lies between 3.3 in the Saxony and Saarland regions and
9.2 in the Schleswig-Holstein region of Germany. The jackknife method provides higher value of the
variance for 8 out of 16 NUTS1 compared to bootstrap and linearization. On the contrary, bootstrap
and linearization methods tend to exhibit similar performance with some differences at regional level.
Indeed, for the Fee Hanseatic city of Bremen and Saarland regions, which are the smallest regions of
Germany, the bootstrap method provides less accurate estimates.
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Figure 3: Estimated relative Standard Errors for income-poverty indicators: Germany NUTS1
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Figure 4: Estimated relative Standard Errors for income-inequality indicators: Germany NUTS1

5.2.3 Results for NUTS2 regions
We considered NUTS2 regions to provide a common framework that enhances comparability of the es-
timated relative standard errors. As expected, uncertainty measures for income-poverty and income-
inequality indicators at NUTS2 level are higher than those obtained for NUTS1 regions especially for the
UK and Germany where the number of NUTS2 is particularly high. Estimated standard errors obtained
by applying the various methods are higher for those regions with a reduced number of sampling units.
Indeed, for the UK the number of units is lower than 1,000 for 26 out of 41 NUTS2 regions while con-
cerning Germany only 7 NUTS2 contains more than 1,000 units. In these cases, the relative standard
errors obtained using jackknife could be also affected by the sensitivity of this method to the construc-
tion of strata as well as to the presence of outliers in the income distribution, especially regarding the
income-inequality indicators(12) . In order to ameliorate the problem of small sample sizes and produce
regional estimates with reduced sampling error, various procedures can be implemented. It is advisable
to improve size and unit allocation and/or using auxiliary information for computing small area estima-
tion. Linearization seems to produce lower relative standard errors than re-sampling techniques for all
the regions and countries considered. There are few exceptions in Italy (as can be seen in Tables 16 - 19
reported in the Appendix and Figures 5-6), regarding AROP for Calabria, RMPG for Puglia and S80/220
for Molise, in Portugal (Table 27 and Figures 7 - 8), regarding RMPG in Norte region, in Belgium (Table 28
and Figures 9 - 10) regarding RMPG for Liège, Gini and S80/S20 for Hainaut and in Norway (Table 30 and
Figures 11 - 12) regarding AROP and Gini for Hedmark og Oppland.

(12) In order to reduce the upward bias of jackknife we have set the number of replications to 2,000.
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Figure 5: Estimated relative standard errors for income-poverty indicators: Italy NUTS2
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Figure 6: Estimated relative standard errors for income-inequality indicators: Italy NUTS2
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Figure 7: Estimated relative standard errors for income-poverty indicators: Portugal NUTS2
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Figure 8: Estimated relative standard errors for income-inequality indicators: Portugal NUTS2
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Figure 9: Estimated relative standard errors for income-poverty indicators: BelgiumNUTS2
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Figure 10: Estimated relative standard errors for income-inequality indicators: BelgiumNUTS2
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Figure 11: Estimated relative standard errors for income-poverty indicators: Norway NUTS2
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Figure 12: Estimated relative standard errors for income-inequality indicators: Norway NUTS2
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Figure 13: Estimated relative standard errors for income-poverty indicators: Sweden NUTS2
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Figure 14: Estimated relative standard errors for income-inequality indicators: Sweden NUTS2
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6 Communicatinguncertainty
inpoverty indicators

Communicating uncertainty aims at increasing the transparency of the scientific assessment process
and provide the risk managers with a more informed evidence based on reporting on the strengths and
weaknesses of the evidence (EFSA Scientific Committee et al., 2017). It is clear that a transparent and
open communication requires that uncertainty is communicated, yet Frewer et al., 2002 found that un-
certainty related to the scientific process is more readily accepted than uncertainty due to lack of action
by the government. This finding suggests that uncertainty communication is less likely to cause public
alarm if it is accompanied by information on what actions are being taken by the pertinent authorities to
address that uncertainty. However, when a measure of uncertainty is known, it is usually not presented
or little communicated (Van der Bles et al., 2019). Untill now, specific guidance on how to communicate
uncertainty has not yet been developed and no consensus has emerged as a general recommendation
for communicating uncertainty among different target audiences. To avoid that audience often incor-
rectly interpret confidence intervals or other measures of uncertainties (Greenland et al., 2016), commu-
nicators of uncertainty should have relationships with the audience they are communicating to. Indeed,
the source of uncertainty could have different effects on different audience and different sources of un-
certainty can lead to different forms of communication.

Although several statistical organisations have started to invest in identifying ways to measure and com-
municate data uncertainty, this is only being done randomly. The EU-SILC implementing regulations
specify quality criteria concerning the detailed content of intermediate and final quality reports. More
specifically, the regulation states that NSIs should provide the following information for equivalised dis-
posable income and for the unadjusted gender pay gap:

• effective sample size for the common cross-sectional EU indicators based on the cross-sectional
component of EU-SILC,

• standard errors for the common cross-sectional EU indicators based on the cross-sectional com-
ponent of EU-SILC.

Recently, the European Regulation 2019/1700 of 10 October 2019 established a common framework
for European statistics relating to persons and households, based on data at individual level collected
from samples, amending Regulations (EC) No 808/2004 (EC) No 452/2008 and (EC) No 1338/2008 of the
European Parliament and of the Council, and repealing Regulation (EC) No 1177/2003 of the European
Parliament and of the Council and Council Regulation (EC) No 577/98.
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6.1 Current practices adopted by NSIs
NSIs communicate uncertainty of poverty measures by providing a quantification of the magnitude of
the variability in their national quality reports. However, to the authors’ knowledge, only few EU coun-
tries are currently communicating measures of uncertainty when publishing new releases on poverty
and living conditions. In 2018, ISTAT adopted official figures of absolute and relative poverty using
Household Budget Survey data for various subgroups in the population. In this report, ISTAT adopted
a numerical communication of uncertainty for relative poverty incidence by regions and geographical
area. As illustrated in Figure 15, standard errors and confidence intervals are provided for the years 2016
and 2017 (Istat, 2018).

Figure 15: Relative poverty incidence estimates for Italy at sub-national level reporting standard
error and confidence interval

Source: ISTAT, La povertà in Italia. Statistiche Report 2018

Since statistical institutes have different users, this communication method based on numerical com-
munication may be confusing especially for layman users since it assumes a certain level of statistical lit-
eracy. In order to enhance the users’ interpretation of the data in 2018 and 2019, ISTAT briefly described
the uncertainty related to the official figures as follows: Confidence interval andabsolute and relative sam-
pling error: Knowing the estimate Y ∗ of a Y parameter of the population and the estimate of the absolute
sampling error associatedwith it, it is possible to construct a confidence interval which, with confidence level
α, includes within it the value of the Y parameter being estimated. The magnitude of this interval is a func-
tion of the absolute sampling error of a k value that depends on the shape of the sample distribution of the
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estimator and the value chosen for the confidence levelα. For large samples, reference is commonlymade to
the normal distribution and there is, for example, for α = 0.05, that k = 1.96. The magnitude of the confi-
dence interval, and therefore the degree of uncertainty on the parameter Y in the population, is equal to 2k
times the absolute sampling error. The estimation of the absolute sampling error is a statistic to evaluate the
sample error and is equal to the mean squared deviation of the parameter’s estimator Y ∗. The coefficient of
variation of the estimator is instead the relative sampling error, generally expressed as a percentage (Istat,
2018). However, a simpler verbal information method describing probabilities may be preferred by lay-
man user, since as underlined by Druzdzel (1989) the general public tends to prefer to conceptualize the
uncertainty in verbal form.

Turning to EU-SILC based indicators, Statistics Austria publishes on a regular basis standard errors and
confidence intervals of the main poverty indicators at national level. These estimates are disaggregated
also by gender and age. On the contrary, regional indicators on poverty are not regularly published. As
shown in Figure 16, the latest release is based on EU-SILC data for the year 2007.

Figure 16: Austria AROP estimates at sub-national level reporting confidence interval
Source: Statistiks Austria, EINKOMMEN, ARMUT UND LEBENSBEDINGUNGEN

Statistics Belgium publishes confidence intervals for the common cross-section EU poverty indicators in
annual Quality Reports. However, no explanation is provided to help users in understanding uncertainty
presentation. Nevertheless, Statistics Belgium planned to use Small Area Estimation methods for the
estimation of poverty indicators at NUTS2 level starting from EU-SILC 2018 by using administrative data,
in order to produce reliable and stable results at NUTS2 level, as expected by Eurostat. Indeed, the EU-
SILC survey was planned to provide results at national level and therefore some NUTS2 sampling sample
are very small.

Regarding the UK, the Office for National Statistics (ONS) provides a detailed explanation of uncertainty
measures such as standard errors, confidence interval, coefficient of variation and statistical significance
and how they affect estimates from surveys used for producing official figures. Figure 17 provides esti-
mates of uncertainty for Gini coefficient .

Figure 17: 95% confidence intervals for statistics on Gini coefficient for individuals, 2018/19
Source: Office for National Statistics of the UK
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In addition, as reported in Figure 18 the ONS published provisional estimates of Gini coefficient in the
UK for the financial year ending 2020 by comparing provisional and final estimates. Using visualization
method, the ONS highlights the accuracy of the provisional estimates of income inequality measures.

Figure 18: Provisional estimates of income inequality
Source: Office for National Statistics of the UK

Focusing on estimations of poverty indicators at local level, the ONS designed experimental statistics
which are calculated using a model-based method to produce two estimates of the percentage of house-
holds in poverty: before housing costs and after housing costs at the middle layer super output area
(MSOAs) level in England and Wales. Figure 19 shows the estimated percentage of households in poverty
(with 95% confidence intervals) for the 27 MSOAs in the Calderdale Local Authority Districts LAD.

Figure 19: Percentage of households in poverty in UK
Source: Office for National Statistics of the UK
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The Swiss Institute of Statistics publishes a report providing point estimates and confidence intervals for
regional indicators of poverty but not on a regular basis. The latest report is based on EU-SILC data for
the year 2014 and has been published in June 2017. Results for the AROP at regional level are reported
in Figure 20.

Figure 20: Swisse AROP estimates at sub-national level reporting confidence interval
Source: Swisse Institute of Statistics, Quality report

From the above illustrated practices adopted by NSIs, it is clear that communication of uncertainty is
a challenging task and implementation of uncertainty communication activity should be gradually ap-
plied by NSIs in their assessment process.

6.2 Practical suggestions forcommunicatingun-
certainty in the Quality reports

In this sub-section we suggest methods for presenting uncertainty in the Eurostat national quality re-
ports by considering different types of audience. In the national quality reports, poverty estimates are
often shown in tables, with a numerical indication of their precision. However, point estimates and stan-
dard errors for income-inequality indicators such as Gini coefficient and S80/S20 are not reported in the
national quality reports. It is worth noting that clearly communicating uncertainty measures for these
figures may not be trivial, due to the possibility that this information may be mis-interpreted by the
general public. Indeed, information regarding standard errors or relative standard errors is often shown
without an explanation of the meaning of the uncertainty range (Griethe et al., 2006). The effects of
uncertainty communication depend not only on the characteristics of the target audience and on the
relationship between the audience and the communicator, but also on the topic or source of the un-
certainty. Important differences between individuals, including the level of expertise, prior attitudes,
numeracy skills, education level, might mean that the same communication of uncertainty affects peo-
ple in a different manner (Van der Bles et al., 2019). Therefore improving verbal communication should
be a good practice in order to understand the magnitude of the uncertainty among the general public.
Some factors relating to the form of the communication should be considered: for non-expert audience
(general public) we suggest to improve the format of uncertainty communication, in terms of verbal
statements and the medium of the communication, by including not only print, but also online, broad-
cast or verbal conversation. The approach adopted by the ONS could be followed by other NSIs when
compiling their quality reports for official poverty indicators. A verbal explanation of the meaning of the
underlying and inherent uncertainty of official poverty indicators could be an efficient communication
tool for non-expert users. They may be basically based on two kinds of measures: an interval measure
(confidence or credible intervals) and probability distribution. As regards the interval measure, the er-
ror bars, where each point estimates are visualised with a bar and the confidence interval is plotted as
an interval on top of each bar, are widely used in scientific and other publications. This kind of plot are
particularly useful when standard errors are obtained using cross-sectional data. A case study is pre-
sented to illustrate the type of information that is usually published by NSIs. Focusing on Italy, Figure
22 shows point estimates, standard error and confidence intervals for various poverty measures. More
specifically in the 2018 national quality report for Italy the following measures are reported by gender
and age: AROPE, AROP, several material deprivation and very low work intensity.
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Figure 21: Italian quality report: point and standard error estimates
Source: National Quality Report for Italy, year 2018

In addition to this numerical information, bar chart may be used to visualise uncertainty measures com-
puted for different sub-populations. Error bars may be a good solution due to their widespread use and
for the lack of better visualisation methods. Points and confidence intervals for AROP, computed for
different sub-population, may be illustrated as in Figure 22.
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Figure 22: AROP: Error bars for AROP by age
Source: Own Elaboration from National Quality Report Italy, year 2018

However, error bars do not provide indication of the underlying distribution of the number. For this rea-
son we suggest continuous-outcome visualizations approach by referring to a probability distribution
which describes a set of possible values for the estimated poverty indicators that are consistent to vary-
ing degrees with the data we saw and what our model assumes. For the sake of explaining uncertainty, a
statistical model may be created that allows pointing to intervals. This kind of uncertainty can be defined
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as the difference between the estimated and the true population value. The measurement of poverty is
accurate, but not exact, since it is an estimate based on a sample of total population and it is therefore
affected by sampling and non-sampling errors. As an example, Figure 23 shows the probability distri-
bution for the AROP in Italy for the year 2018. Therefore, this plot may help users in understanding the
uncertainty in what the AROP was in 2018: there was a 95% chance the AROP was between 19.39% and
21.2%. Values that are more consistent are assigned a higher probability.

Figure 23: Probability distribution of uncertainty for AROP (Italy 2018)
Source: National Quality Report for Italy, year 2018

It is worth noting that official poverty indicators are inherently uncertain due to the way they are com-
puted and this may change the interpretation of the meaning of intervals or probability distributions. In
this context, the effect of uncertainty communicating on decision making is particularly relevant.
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7 Conclusion

This report focuses on the issue of measuring and communicating uncertainty in poverty measures on
EU countries by using EU-SILC surveys. Information about the sampling variability of point estimates
is essential when comparing poverty differences among geographical areas or among various social-
economic groups and when understanding if poverty rate has increased or decreased over time. The
computation of standard errors for the main poverty measures is a complex task due to the character-
istics of these indicators which are often expressed as non-linear statistics. Moreover, standard errors
estimation should reflect as much as possible the complexity of EU-SILC surveys, which involve stratifi-
cation, geographical clustering, unequal probabilities of selection, post-survey weighting adjustments
and rotating samples. If these aspects are not considered, standard errors can be under-estimated, thus
resulting in wrong interpretations.

First, we briefly reviewed the various studies focused on comparing the linearization approach with re-
sampling methods for the AROP, RMPG, Gini coefficient and S80/S20. Since the linearization, jackknife
and bootstrap are estimating the same quantity, that is the variance of poverty indicators, one may ask
if it is possible to identify conditions under which some estimators perform better than others. In this
context, several comparisons, both theoretical and empirical, have been carried out in the literature. In
this report we provided an empirical application based on EU-SILC survey for assessing the relative per-
formance of these methods even if we cannot know the true value of the variance. In our analysis, we
focused on eight countries chosen according to their sampling designs. More specifically, we selected
five countries using the two-stage stratified sampling design, that is Italy, the United Kingdom, Portu-
gal, Belgium and Ireland; two countries using the one-stage sampling design (Germany and Sweden)
and the Norway which adopts a simple sampling design without stratification. With the aim of reflect-
ing the main features of the sample design an “analytic” approach for variance estimation could be used.
Nevertheless, since the EU-SILC indicators are nonlinear statistics, they had to be linearized to allow vari-
ance calculations. The Taylor linearisation approach for approximating variance of non-linear statistics is
a long-established procedure. However, for statistics which cannot be expressed as a smooth function
of estimated totals, other methods should be used for variance estimation. In this report we referred to
the concept of influence functions.

Bootstrap and jackknife are also used to obtain relative standard errors to be compared with those de-
rived from linearization.The jackknife approach is a valid alternative to the linearization approach since
it is simpler technically. However, this method requires the specification of the sample structure and the
appropriate definition of computational strata. It involves repeated computation of the estimates (for
which sampling errors are required) over different (often numerous) sample replications. Then variance
of any statistic is estimated simply from variability in the estimate itself across the replications. The final
variance estimation formula does not depend on the particular statistic involved. The presence of large
values at the upper end of the distribution does not affect point estimates of poverty, but it can markedly
affect the estimated indicators of inequality such as the Gini coefficient and S80/S20. Therefore, variance
of the estimates can also become greatly inflated.

Moreover in order to obtain strata containing at least four PSUs, we have manipulated the data by con-
structing computational strata. However, information regarding the order of PSUs is not available. There-
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fore in order to obtain computational strata we ordered them according to their individual ID. We consid-
ered this new structure when computing jackknife and linearization but not when implementing boot-
strap. Therefore, bootstrap may under estimate relative standard error of the various poverty indicators
since it may replicate strata with a single PSU, thus reducing the variability of estimates.

Therefore, several factors including the different dataset used by NSIs when producing national qual-
ity report may affect our estimation results and their differences with respect to the official figures. Our
findings demonstrate that there is not a unique method working well with any complex estimator and
sampling design implemented in the various countries (Ollila, 2004). Yet, the general closeness of the re-
sults from these three entirely different methodologies can be considered quite remarkable. Bootstrap
method seems to perform poorly when estimating standard errors for income-inequality indicators (Gini
coefficient and S80/S20) especially in the case of the UK and Belgium. The estimation results may be in-
fluenced by the implicit stratification used by Belgium and the United Kingdom, where PSUs are sorted
in descending order according to variables strictly related to income. Using the jackknife and lineariza-
tion methods we are able to better capture both the reduced number of PSUs and, to some extent, the
implicit stratification by defining computational strata.
Contrastingly, the relative standard errors obtained using jackknife could be influenced by the sensitivity
of this method to the construction of strata as well as by the exact nature of the upper tail of the income
distribution, especially regarding the income-inequality indicators.

As expected, uncertainty measures for income-poverty and income-inequality indicators at NUTS2 level
are higher than those obtained for NUTS1 regions especially for the UK and Germany. This effect is due
to the reduced number of sampling units in each NUTS2 regions which characterize these two coun-
tries. In addition, when sample sizes become small, sampling error tends not only to be high, but also
estimates of sampling error tend to be more complex and subject to high levels of variability. In order
to ameliorate the problem of small sample sizes and produce regional estimates with reduced sampling
error, various procedures can be implemented. It is advisable to improve size and unit allocation and/or
using auxiliary information for computing small area estimation. Overall, linearization proved to be the
best performing method for estimating relative standard errors for poverty indicators. However, all lin-
earization approaches rest on the asymptotic assumption that the sample size is large enough for the
linear approximation to be valid. Moreover, linearization method is not always the most practical proce-
dure for variance estimation for the type of statistics and samples being considered thus requiring high
level of expertise for implementing computational formulae.

Another critical aspect in measuring uncertainties of poverty indicators is how to communicate them
in a “comprehensive” manner, in terms of fully capturing the uncertainties, but also in a “understand-
able” way so that different users and readers of these data correctly infer and interpret the uncertainties
communicated to them. Increasing attention has been paid to this aspect in literature (Spiegelhalter
et al., 2011, Van der Bles et al., 2019). NSIs communicate uncertainty of poverty measures by providing a
quantification of the magnitude of variability in their national quality reports. However, to the authors’
knowledge, only few EU countries currently communicate measures of uncertainty when publishing new
release on poverty and living conditions. To this respect, useful suggestions for communicating uncer-
tainty in the national quality reports are provided.
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Table 16: Estimated standard errors EU-SILC 2018 for AROP indicator – Italy NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Piemonte 14.7 6.04 8.48 9.32
Valle d’Aosta 19.9 39.72 15.41 11.77
Liguria 14.3 16.18 6.66 9.98
Lombardia 11.2 7.03 21.52 7.98
Abruzzo 22.5 8.61 4.36 12.35
Molise 23.4 11.22 3.58 9.96
Campania 40.5 4.78 3.70 3.92
Puglia 26.7 8.11 5.10 4.99
Basilicata 28.5 10.56 6.04 8.28
Calabria 34.5 8.33 5.42 9.52
Sicilia 39.8 5.66 4.36 5.73
Sardegna 24.4 8.28 8.45 8.95
Bolzano 11.6 27.92 31.94 26.08
Trento 11.4 15.26 14.92 16.83
Veneto 12.0 7.79 29.47 10.50
Friuli-Venezia Giulia 8.0 7.62 46.65 18.46
Emilia-Romagna 10.5 7.28 25.68 10.50
Toscana 14.5 6.08 22.42 8.44
Umbria 13.6 12.79 21.83 15.25
Marche 15.9 6.85 15.77 8.65
Lazio 20.1 4.85 14.21 6.65

Table 17: Estimated standard errors EU-SILC 2018 for relativemeanPovertyGap indicator (RMPG)
– Italy NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Piemonte 31.1 10.05 23.49 11.09
Valle d’Aosta 46.1 21.72 11.07 8.69
Liguria 30.0 14.74 3.63 9.64
Lombardia 22.5 10.20 50.12 10.58
Abruzzo 38.8 15.11 9.83 17.21
Molise 22.7 29.57 42.55 37.43
Campania 34.2 5.78 18.91 15.20
Puglia 30.3 7.04 11.06 18.28
Basilicata 34.1 12.02 15.68 16.67
Calabria 34.1 14.98 22.56 19.92
Sicilia 34.5 9.35 29.51 23.68
Sardegna 33.0 12.04 17.86 18.59
Bolzano 18.6 102.85 30.44 29.04
Trento 29.2 42.47 3.68 18.65
Veneto 20.1 15.63 10.81 11.08
Friuli-Venezia Giulia 18.3 13.32 28.69 14.53
Emilia-Romagna 21.5 16.46 15.59 9.94
Toscana 21.7 16.68 25.00 10.39
Umbria 19.6 29.28 90.86 21.86
Marche 23.4 26.89 42.51 20.69
Lazio 28.0 5.39 12.67 8.17
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Table 18: Estimated standard errors EU-SILC 2018 for Gini indicator – Italy NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Piemonte 30.5 2.04 2.91 2.85
Valle d’Aosta 33.0 13.86 6.67 5.43
Liguria 33.7 7.42 3.82 2.21
Lombardia 31.4 2.94 3.71 3.77
Abruzzo 30.3 5.24 2.46 4.54
Molise 29.2 2.31 2.84 3.86
Campania 35.6 1.98 2.33 3.44
Puglia 32.2 2.77 3.72 3.27
Basilicata 33.2 6.15 2.79 4.26
Calabria 35.2 5.36 3.17 4.72
Sicilia 36.0 3.57 3.62 3.92
Sardegna 33.8 5.56 3.03 6.61
Bolzano 30.9 9.68 4.88 5.42
Trento 31.1 4.93 3.32 7.30
Veneto 29.3 2.00 7.16 3.62
Friuli-Venezia Giulia 25.7 2.38 8.47 3.48
Emilia-Romagna 29.2 2.96 3.75 2.86
Toscana 31.2 2.70 5.06 3.56
Umbria 32.0 7.89 8.54 3.63
Marche 30.4 3.23 7.25 3.73
Lazio 35.6 0.92 3.83 3.04

Table 19: Estimated standard errors EU-SILC 2018 for Quantile Share Ratio (S80/S20) indicator –
Italy NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Piemonte 5.2 3.88 6.20 4.51
Valle d’Aosta 6.7 28.05 8.42 5.15
Liguria 5.8 13.69 6.17 5.52
Lombardia 5.1 5.31 10.77 5.73
Abruzzo 5.7 14.22 3.44 8.16
Molise 4.6 6.72 4.61 10.94
Campania 7.4 5.48 2.93 8.61
Puglia 5.8 6.53 6.41 6.37
Basilicata 6.2 13.16 7.03 9.03
Calabria 7.4 14.43 4.16 11.95
Sicilia 8.0 13.70 5.38 17.02
Sardegna 6.3 8.94 6.66 13.57
Bolzano 4.7 25.45 17.21 8.95
Trento 5.1 9.06 8.77 13.97
Veneto 4.7 3.19 25.44 5.06
Friuli-Venezia Giulia 3.7 4.83 41.34 4.54
Emilia-Romagna 4.6 5.03 16.17 4.61
Toscana 5.0 4.11 13.68 5.06
Umbria 4.9 12.32 18.07 5.70
Marche 5.1 6.86 18.26 5.54
Lazio 6.7 2.42 17.64 6.17
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Table 20: Estimated standard errors EU-SILC 2018 for AROP indicator – The UK NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Tees Valley and Durham 23.0 15.26 10.05 9.56
Northumberland and Tyne and Wear 15.5 15.95 20.07 16.41
Cumbria 28.6 15.81 7.03 10.52
Greater Manchester 25.6 9.81 8.48 6.97
Lancashire 21.6 11.57 14.55 10.92
Cheshire 15.5 16.92 13.38 17.03
Merseyside 24.3 13.12 8.43 8.49
East Yorkshire 17.4 21.65 21.79 15.23
North Yorkshire 21.4 15.88 17.55 14.32
South Yorkshire 27.1 13.20 10.30 10.04
West Yorkshire 22.4 11.44 27.47 10.03
Derbyshire and Nottinghamshire 17.7 11.77 15.55 10.54
Leicestershire 20.1 13.25 19.42 10.32
Lincolnshire 17.5 18.81 6.75 23.26
Herefordshire 12.4 18.87 16.96 17.96
Shropshire and Staffordshire 20.5 12.24 17.54 12.59
West Midlands 24.5 8.85 10.54 8.69
East Anglia 21.2 10.72 15.14 9.62
Bedfordshire and Hertfordshire 14.0 15.58 20.96 15.96
Essex 17.4 12.54 17.74 11.92
Inner London - West 17.5 16.73 12.78 15.11
Inner London - East 18.2 19.00 21.31 18.21
Outer London - East and North East 20.2 11.53 8.41 13.29
Outer London - South 12.9 16.69 11.53 17.71
Outer London - West and North West 13.3 18.31 19.82 19.06
Berkshire Oxfordshire 9.6 18.38 13.00 25.05
Surrey, East and West Sussex 12.8 16.37 18.47 15.31
Hampshire and Isle of Wight 12.1 14.35 17.82 19.87
Kent 14.6 15.88 8.03 16.60
Gloucestershire and Bristol area 13.1 12.42 23.54 18.87
Dorset and Somerset 17.0 14.63 19.96 12.66
Cornwall and Isles of Scilly 19.5 25.11 7.63 22.38
Devon 12.7 18.37 22.62 24.42
West Wales and The Valleys 20.1 10.64 11.93 9.66
East Wales 20.8 11.05 9.11 14.53
North Eastern Scotland 19.0 22.68 16.62 20.27
Highlands and Islands 23.2 20.17 9.94 12.74
Eastern Scotland 15.8 10.45 17.59 11.93
West Central Scotland 20.0 12.87 13.10 11.27
Southern Scotland 17.2 16.99 8.82 15.20
Northern Ireland 28.9 11.95 3.92
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Table 21: Estimated standard errors EU-SILC 2018 for relativemeanpoverty gap (RMPG) indicator
– The UK NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Tees Valley and Durham 20.8 30.36 26.03 25.87
Northumberland and Tyne and Wear 11.1 34.20 27.48 33.36
Cumbria 20.9 25.22 34.61 36.15
Greater Manchester 24.8 15.38 9.99 14.91
Lancashire 29.1 17.02 10.51 14.01
Cheshire 32.3 32.01 13.72 13.02
Merseyside 32.8 16.60 4.23 14.02
East Yorkshire 24.9 12.20 21.27 18.52
North Yorkshire 27.6 23.82 14.09 24.30
South Yorkshire 19.3 24.19 13.00 28.88
West Yorkshire 22.2 9.74 24.80 11.23
Derbyshire and Nottinghamshire 25.2 11.98 15.76 12.73
Leicestershire 19.5 15.62 39.03 29.10
Lincolnshire 24.0 17.44 6.44 18.72
Herefordshire 20.7 9.40 8.85 18.86
Shropshire and Staffordshire 24.8 14.43 15.28 14.04
West Midlands 23.9 9.15 12.94 11.57
East Anglia 14.9 25.01 33.04 25.61
Bedfordshire and Hertfordshire 15.7 28.11 37.34 25.62
Essex 11.3 33.66 13.54 28.52
Inner London - West 27.3 29.74 12.01 18.25
Inner London - East 36.5 12.21 16.66 15.59
Outer London - East and North East 22.2 16.36 30.44 19.60
Outer London - South 22.3 24.81 33.27 22.24
Outer London - West and North West 21.7 22.04 24.55 17.02
Berkshire Oxfordshire 27.1 14.35 33.93 20.23
Surrey, East and West Sussex 20.7 29.79 31.68 18.62
Hampshire and Isle of Wight 24.2 17.36 34.08 18.89
Kent 13.6 52.92 95.55 27.65
Gloucestershire and Bristol area 16.3 18.82 19.10 19.94
Dorset and Somerset 25.2 26.06 26.81 16.66
Cornwall and Isles of Scilly 19.7 45.43 4.33 31.08
Devon 25.6 17.54 20.41 13.48
West Wales and The Valleys 25.7 12.95 21.13 14.03
East Wales 21.5 17.09 13.75 18.26
North Eastern Scotland 32.6 32.93 48.19 22.68
Highlands and Islands 24.2 23.78 8.03 29.96
Eastern Scotland 20.6 15.12 60.86 13.11
West Central Scotland 20.1 17.99 14.69 15.28
Southern Scotland 21.8 19.41 4.56 17.95
Northern Ireland 36.6 21.01 2.56
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Table 22: Estimated standard errors EU-SILC 2018 for Gini coefficient indicator – The UK NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Tees Valley and Durham 29.39 6.05 5.81 4.49
Northumberland and Tyne and Wear 28.13 5.72 3.06 6.99
Cumbria 31.72 5.85 3.82 8.70
Greater Manchester 33.51 5.34 4.75 3.29
Lancashire 30.89 6.31 4.70 5.59
Cheshire 31.95 5.65 4.68 5.65
Merseyside 31.70 5.56 4.02 5.63
East Yorkshire 27.08 4.21 6.19 5.01
North Yorkshire 32.82 5.91 3.15 5.55
South Yorkshire 27.93 4.84 6.38 5.46
West Yorkshire 30.00 3.52 6.19 3.33
Derbyshire and Nottinghamshire 30.02 4.02 6.57 4.39
Leicestershire 30.40 4.68 4.30 5.04
Lincolnshire 30.10 7.37 6.13 7.93
Herefordshire 26.38 5.68 14.49 6.60
Shropshire and Staffordshire 33.05 4.31 3.56 4.52
West Midlands 33.12 8.90 5.52 11.93
East Anglia 33.15 3.87 2.02 4.09
Bedfordshire and Hertfordshire 32.27 4.85 5.07 4.32
Essex 34.43 5.46 4.83 4.51
Inner London - West 46.69 7.47 4.07 8.76
Inner London - East 43.01 7.21 4.89 8.10
Outer London - East and North East 33.93 4.73 6.94 5.04
Outer London - South 33.47 5.56 3.33 5.59
Outer London - West and North West 34.33 3.94 9.09 3.85
Berkshire Oxfordshire 32.71 4.84 6.69 5.07
Surrey, East and West Sussex 33.68 6.49 4.07 7.68
Hampshire and Isle of Wight 30.10 4.41 3.24 4.55
Kent 31.59 4.92 7.24 6.32
Gloucestershire and Bristol area 31.34 5.04 3.07 3.89
Dorset and Somerset 29.20 6.43 7.38 5.24
Cornwall and Isles of Scilly 27.61 6.56 2.25 5.06
Devon 24.38 5.57 7.91 5.65
West Wales and The Valleys 28.21 4.28 4.40 4.67
East Wales 30.42 4.34 3.02 4.48
North Eastern Scotland 35.69 10.82 14.15 14.74
Highlands and Islands 29.13 11.87 4.97 7.84
Eastern Scotland 30.87 4.33 5.63 5.52
West Central Scotland 30.81 4.84 5.02 4.19
Southern Scotland 28.34 4.18 5.24 6.05
Northern Ireland 60.80 0.00 4.57 3.42
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Table 23: Estimated standard errors EU-SILC 2018 for S80/S20 indicator – The UK NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Tees Valley and Durham 4.6 10.55 6.67 7.93
Northumberland and Tyne and Wear 3.6 8.32 9.64 10.37
Cumbria 4.3 13.84 6.99 15.46
Greater Manchester 5.9 10.78 7.33 5.57
Lancashire 5.3 14.32 8.98 7.91
Cheshire 5.1 17.38 10.72 13.64
Merseyside 5.3 10.89 12.14 11.45
East Yorkshire 4.0 10.67 15.18 7.72
North Yorkshire 5.6 9.92 6.43 9.61
South Yorkshire 4.0 10.54 20.52 12.30
West Yorkshire 4.7 6.42 12.95 5.57
Derbyshire and Nottinghamshire 4.6 7.83 11.72 7.27
Leicestershire 4.9 8.02 11.93 9.67
Lincolnshire 4.3 14.86 16.76 14.11
Herefordshire 3.6 10.93 25.69 11.34
Shropshire and Staffordshire 5.2 11.41 10.63 8.18
West Midlands 5.4 13.59 9.88 17.06
East Anglia 5.3 5.70 4.80 6.24
Bedfordshire and Hertfordshire 5.4 8.57 28.21 9.71
Essex 5.6 10.99 10.96 7.51
Inner London - West 12.0 18.94 5.68 24.08
Inner London - East 9.2 17.46 7.88 19.47
Outer London - East and North East 5.7 9.28 10.62 9.03
Outer London - South 5.8 10.94 5.49 10.58
Outer London - West and North West 5.9 9.10 22.51 6.84
Berkshire Oxfordshire 5.3 7.97 9.97 9.62
Surrey, East and West Sussex 5.6 11.05 8.58 11.09
Hampshire and Isle of Wight 4.6 9.56 9.40 7.31
Kent 4.9 8.36 8.54 9.95
Gloucestershire and Bristol area 4.7 8.56 7.92 7.14
Dorset and Somerset 4.8 15.94 12.66 8.29
Cornwall and Isles of Scilly 4.2 12.25 6.99 9.01
Devon 3.4 8.99 18.51 9.20
West Wales and The Valleys 4.3 7.14 7.44 7.10
East Wales 4.7 9.80 8.19 9.84
North Eastern Scotland 6.8 23.75 23.45 38.74
Highlands and Islands 4.4 26.96 7.80 10.14
Eastern Scotland 4.9 7.39 12.24 9.21
West Central Scotland 4.9 8.39 14.85 7.17
Southern Scotland 4.4 9.49 7.19 10.14
Northern Ireland 17.7 0.00 8.22 5.04
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Table 24: Estimated standard errors EU-SILC 2018 for AROP indicator – Germany NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Stuttgart 12.0 7.91 10.29 9.45
Karlsruhe 12.5 10.15 21.41 12.12
Freiburg 11.6 14.10 13.20 15.92
Tübingen 12.1 11.03 22.70 14.18
Oberbayern  12.6 8.35 8.42 9.43
Niederbayern 22.6 8.21 20.15 9.65
Oberpfalz 16.4 15.12 19.22 14.98
Oberfranken 15.6 10.56 15.17 11.54
Mittelfranken 15.0 9.75 28.31 10.44
Unterfranken 10.4 16.19 43.64 20.52
Schwaben 13.4 9.79 24.80 12.24
Berlin 18.4 7.63 13.10 8.16
Brandenburg 15.5 5.85 6.57 7.36
Bremen 28.4 9.70 7.71 8.84
Hamburg 24.0 9.28 12.33 8.81
Darmstadt 10.2 8.85 26.28 11.36
Gießen 14.4 10.93 14.41 13.32
Kassel 15.1 11.30 16.67 12.45
Mecklenburg-Vorpommern 23.4 6.29 7.68 6.65
Braunschweig 18.6 9.80 12.03 8.95
Hannover 15.1 8.23 18.15 9.83
Lüneburg 12.2 10.85 21.74 13.58
Weser-Ems 15.0 9.40 10.07 10.11
Düsseldorf 15.5 5.08 10.53 6.15
Köln 12.8 6.20 9.83 8.27
Münster 18.0 7.23 12.89 7.62
Detmold 14.6 10.84 10.76 11.64
Arnsberg 18.4 4.55 12.48 5.79
Koblenz 21.7 7.78 7.17 8.50
Trier 21.6 14.18 16.33 14.00
Rheinhessen-Pfalz 19.8 11.33 13.25 9.20
Saarland 16.2 13.55 12.92 13.95
Dresden 20.3 6.74 10.54 7.94
Chemnitz 15.0 13.11 25.99 10.87
Leipzig 19.3 10.57 8.99 10.76
Sachsen-Anhalt 16.3 8.04 22.96 8.94
Schleswig-Holstein 22.5 5.68 14.70 5.76
Thüringen 18.4 6.93 18.02 7.77
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Table 25: Estimated standard errors EU-SILC 2018 for Gini Coefficient – Germany NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Stuttgart 30.1 3.03 7.81 3.38
Karlsruhe 25.9 3.78 8.24 3.88
Freiburg 26.6 3.68 6.03 4.31
Tübingen 28.9 3.54 6.57 4.27
Oberbayern  32.8 4.13 2.79 4.04
Niederbayern 31.0 3.76 3.34 4.63
Oberpfalz 28.0 5.94 5.46 6.68
Oberfranken 28.1 6.43 4.80 6.89
Mittelfranken 51.9 2.38 5.02 2.94
Unterfranken 26.9 4.37 4.66 4.96
Schwaben 28.7 5.05 3.54 4.98
Berlin 26.8 4.11 7.50 4.51
Brandenburg 25.3 2.35 5.79 2.81
Bremen 28.2 5.26 8.43 4.21
Hamburg 30.6 3.92 3.22 4.34
Darmstadt 46.2 3.25 4.16 3.41
Gießen 31.1 6.06 3.50 4.18
Kassel 25.8 3.06 8.04 3.69
Mecklenburg-Vorpommern 26.1 3.09 2.89 3.28
Braunschweig 29.1 3.51 6.62 4.52
Hannover 27.1 2.62 7.75 3.14
Lüneburg 25.7 3.29 8.46 3.78
Weser-Ems 27.5 3.41 8.45 3.86
Düsseldorf 28.7 1.55 5.43 1.96
Köln 30.7 1.97 3.90 2.87
Münster 31.3 5.99 4.08 7.74
Detmold 25.5 3.80 5.65 5.81
Arnsberg 28.1 2.01 9.38 3.21
Koblenz 32.2 4.47 3.06 4.50
Trier 32.8 6.08 6.14 6.69
Rheinhessen-Pfalz 30.6 3.23 5.45 3.66
Saarland 23.7 4.55 3.26 4.71
Dresden 23.9 3.85 3.87 4.84
Chemnitz 20.2 3.54 4.58 3.94
Leipzig 27.0 3.81 6.30 5.05
Sachsen-Anhalt 27.7 5.08 5.02 6.17
Schleswig-Holstein 36.5 6.02 9.48 7.27
Thüringen 25.6 2.82 6.89 3.29
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Table 26: Estimated standard errors EU-SILC 2018 for S80/S20 indicator – Germany NUTS2

NUTS2 region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
Stuttgart 4.6 6.31 17.19 6.72
Karlsruhe 3.6 5.19 16.17 5.52
Freiburg 3.9 6.03 13.51 6.18
Tübingen 4.3 5.60 29.78 6.34
Oberbayern  5.7 7.05 4.34 7.38
Niederbayern 4.4 8.86 25.56 7.23
Oberpfalz 4.9 17.51 7.12 15.04
Oberfranken 4.3 8.75 10.58 8.24
Mittelfranken 4.5 12.00 24.31 69.49
Unterfranken 3.7 8.87 20.23 9.10
Schwaben 4.4 18.32 11.17 8.84
Berlin 3.7 5.09 15.62 5.31
Brandenburg 3.6 3.50 10.58 3.72
Bremen 4.2 8.57 17.74 4.30
Hamburg 5.0 7.27 14.63 7.76
Darmstadt 8.3 16.82 8.35 19.49
Gießen 4.7 8.23 6.81 5.28
Kassel 3.7 7.35 17.01 7.01
Mecklenburg-Vorpommern 3.8 4.65 14.19 5.09
Braunschweig 4.4 4.68 18.65 5.58
Hannover 4.1 4.54 13.87 4.70
Lüneburg 3.6 5.01 9.19 4.77
Weser-Ems 4.0 5.50 20.17 5.40
Düsseldorf 4.3 2.83 20.13 3.31
Köln 4.8 3.19 14.29 4.82
Münster 4.9 8.65 9.96 11.48
Detmold 3.9 6.43 91.87 8.97
Arnsberg 4.2 3.20 16.23 4.12
Koblenz 5.6 7.95 7.07 8.20
Trier 5.2 13.17 10.44 11.39
Rheinhessen-Pfalz 5.3 7.87 8.19 7.93
Saarland 3.3 9.05 13.70 7.37
Dresden 3.4 5.32 12.64 5.74
Chemnitz 2.6 4.60 49.22 3.47
Leipzig 3.8 6.74 12.50 6.62
Sachsen-Anhalt 3.9 5.90 10.19 6.78
Schleswig-Holstein 9.2 7.75 8.68 32.73
Thüringen 3.7 4.89 10.64 5.31
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Table 27: Estimated standard errors EU-SILC 2018 – Portugal NUTS2

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Norte 17.8 5.91 6.01 5.27
Algarve 16.8 8.68 6.54 6.29
Centro (PT) 17.0 7.62 10.45 5.33
Lisboa 11.1 9.66 16.92 8.81
Alentejo 15.3 8.53 6.00 6.51
Região Autónoma dos Açores 23.5 8.64 11.38 5.38
Região Autónoma da Madeira 24.7 6.90 8.28 3.89
RMPG
Norte 23.3 4.93 5.27 7.18
Algarve 26.2 13.69 14.54 9.54
Centro (PT) 26.4 6.43 7.98 5.85
Lisboa 25.3 12.65 18.28 6.26
Alentejo 20.4 14.67 16.04 11.48
Região Autónoma dos Açores 31.6 10.64 10.67 9.20
Região Autónoma da Madeira 27.2 9.60 6.13 6.68
GINI
Norte 30.9 2.39 2.20 2.47
Algarve 33.9 6.11 2.46 3.00
Centro (PT) 32.2 2.73 2.49 2.22
Lisboa 33.6 2.01 2.69 2.04
Alentejo 31.8 5.38 1.89 2.17
Região Autónoma dos Açores 38.1 3.54 2.17 2.64
Região Autónoma da Madeira 33.6 2.40 2.59 1.94
S80/S20
Norte 4.9 3.83 4.06 3.68
Algarve 5.6 8.61 4.66 4.70
Centro (PT) 5.1 4.96 4.02 3.55
Lisboa 5.6 3.90 4.44 3.56
Alentejo 4.8 7.65 3.24 3.49
Região Autónoma dos Açores 7.2 8.35 7.53 5.73
Região Autónoma da Madeira 5.8 4.52 5.91 4.26
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Table 28: Estimated standard errors EU-SILC 2018 – BelgiumNUTS2

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Brussels 26.0 9.70 5.59 4.70
Antwerp 9.5 18.57 30.59 18.14
Limburg 8.8 25.58 31.73 27.68
East Flanders 9.8 13.39 23.96 15.37
Flemish Brabant 10.8 23.59 21.16 22.57
West Flanders 7.0 25.47 22.62 26.25
Walloon Brabant 20.9 27.15 11.31 15.90
Hainaut 18.4 15.23 6.68 11.23
Liège 16.6 15.41 19.87 12.60
Luxembourg 17.2 19.89 21.97 9.91
Namur 20.5 16.13 21.12 22.43
RMPG
Brussels 20.3 13.31 32.94 8.07
Antwerp 15.9 33.06 31.43 22.08
Limburg 11.3 60.59 24.54 26.34
East Flanders 11.5 21.89 28.88 16.99
Flemish Brabant 11.4 39.02 24.49 25.72
West Flanders 17.4 30.01 27.20 23.63
Walloon Brabant 17.3 57.76 40.41 38.98
Hainaut 18.0 14.04 11.73 17.08
Liège 13.4 12.99 8.97 18.65
Luxembourg 28.1 27.32 9.42 19.88
Namur 12.5 29.70 21.15 37.41
GINI
Brussels 32.6 3.63 3.06 1.58
Antwerp 25.4 9.98 3.12 5.11
Limburg 21.3 3.72 6.48 4.48
East Flanders 23.2 3.02 4.87 3.45
Flemish Brabant 28.2 5.64 9.81 9.72
West Flanders 21.4 5.70 4.23 5.42
Walloon Brabant 28.8 6.84 2.34 5.99
Hainaut 24.2 3.97 3.00 5.36
Liège 25.0 4.66 5.55 4.23
Luxembourg 26.4 11.64 8.97 9.16
Namur 24.6 6.44 3.69 5.21
S80/S20
Brussels 5.1 7.37 4.00 2.89
Antwerp 3.5 12.12 9.39 6.70
Limburg 2.9 5.01 8.01 4.07
East Flanders 3.3 5.34 18.85 4.50
Flemish Brabant 4.2 7.92 10.04 10.44
West Flanders 3.0 6.75 8.40 6.36
Walloon Brabant 4.3 17.03 6.16 13.52
Hainaut 3.4 6.19 3.92 8.35
Liège 3.3 5.46 7.96 5.64
Luxembourg 3.9 23.46 13.70 10.16
Namur 3.5 15.92 6.08 6.29
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Table 29: Estimated standard errors EU-SILC 2018 – Sweden NUTS2

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Stockholm 12.4 4.11 16.47 6.28
Östra Mellansverige 17.1 3.74 8.17 5.17
Småland med öarna 17.7 4.79 14.82 7.09
Sydsverige 21.1 3.58 7.30 4.75
Västsverige 14.3 3.38 12.97 5.70
Norra Mellansverige 17.9 5.10 20.34 7.22
Mellersta Norrland 15.7 7.70 16.29 11.90
Övre Norrland 18.2 6.09 7.28 8.85
GINI
Stockholm 28.9 2.13 9.95 3.33
Östra Mellansverige 24.5 1.25 4.34 1.87
Småland med öarna 27.9 3.84 3.00 6.86
Sydsverige 27.3 1.84 2.68 2.37
Västsverige 24.9 1.60 4.36 2.95
Norra Mellansverige 22.2 1.57 5.69 2.49
Mellersta Norrland 21.9 2.49 5.12 4.27
Övre Norrland 24.8 2.76 6.57 3.00
S80/S20
Stockholm 4.4 2.77 14.13 4.49
Östra Mellansverige 3.6 2.15 6.23 3.17
Småland med öarna 4.2 4.69 6.79 8.17
Sydsverige 4.2 4.01 6.68 4.98
Västsverige 3.7 2.11 10.64 3.96
Norra Mellansverige 3.1 2.30 19.46 3.11
Mellersta Norrland 3.1 3.34 18.78 7.01
Övre Norrland 3.6 3.75 9.85 3.99
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Table 30: Estimated standard errors EU-SILC 2018 – Norway NUTS2

Indicator/region Stat Boots. Rel. SE (%) Jackk. Rel. SE (%) Linear. Rel. SE (%)
AROP
Oslo og Akershus 4.4 2.87 4.88 1.69
Hedmark og Oppland 3.1 3.67 3.63 4.51
Sør-Østlandet 3.3 2.14 8.31 2.51
Agder og Rogaland 3.6 2.32 6.14 2.76
Vestlandet 3.4 2.82 4.61 2.57
Trøndelag 3.8 5.50 4.46 3.37
Nord-Norge 3.8 3.53 5.34 3.54
GINI
Oslo og Akershus 27.59 1.67 1.52 1.88
Hedmark og Oppland 22.93 3.65 3.44 4.43
Sør-Østlandet 23.02 1.72 20.19 2.24
Agder og Rogaland 23.96 1.40 4.58 2.33
Vestlandet 23.50 1.63 3.70 2.85
Trøndelag 24.54 2.65 3.82 3.03
Nord-Norge 24.89 1.98 4.39 2.83
S80/S20
Oslo og Akershus 4.4 2.87 7.42 3.29
Hedmark og Oppland 3.1 3.67 5.96 4.92
Sør-Østlandet 3.3 2.14 5.41 3.09
Agder og Rogaland 3.6 2.32 7.02 3.93
Vestlandet 3.4 2.82 6.87 3.73
Trøndelag 3.8 5.50 8.04 4.65
Nord-Norge 3.8 3.53 7.81 3.76
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GETTING IN TOUCH WITH THE EU 

 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 

address of the centre nearest you at: https://europa.eu/european-union/contact_en 

 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this 

service: 

– by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

– at the following standard number: +32 22999696 or  

– by email via: https://europa.eu/european-union/contact_en 

 

FINDING INFORMATION ABOUT THE EU 

 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 

website at: https://europa.eu/european-union/index_en 

 

EU publications  

You can download or order free and priced EU publications at: https://op.europa.eu/en/publications. 

Multiple copies of free publications may be obtained by contacting Europe Direct or your local information 

centre (see https://europa.eu/european-union/contact_en). 

 

EU law and related documents 

For access to legal information from the EU, including all EU law since 1952 in all the official language 

versions, go to EUR-Lex at: http://eur-lex.europa.eu 

 

Open data from the EU 

The EU Open Data Portal (http://data.europa.eu/euodp/en) provides access to datasets from the EU. 

Data can be downloaded and reused for free, for both commercial and non-commercial purposes. 

 

 

 



Title	
2020 edition

Measuring and communicating 
uncertainty of poverty indicators 
at regional level

During the last years, there has been an increasing interest in providing 
uncertainty measures for poverty indicators both at national and 
regional level. After reviewing the literature this report presents 
standard error estimation results at regional level for official income-
poverty and income-inequality poverty indicators for eight selected 
European countries which vary in the sample design structure from a 
simple random sampling in one stage to a stratified two-stage random 
sampling.

For more information
https://ec.europa.eu/eurostat/

PD
F: KS-TC-20-010-EN

-N

PDF: ISBN  978-92-28361-4


	Abstract
	Introduction
	Estimating uncertainty measures for official poverty indicators 
	Choosing poverty indicators for variance estimation
	Issues in estimating sampling errors for regional poverty indicators

	Methodological approaches: a review
	Linearization approach
	Common linearization methods
	The generalized linearization method based on influence function
	Estimating equations and other approaches

	Replication methods
	Evaluating the relative performance of different methods

	The EU-SILC survey
	Main characteristics of the EU-SILC
	EU-SILC sampling designs across European countries
	Previous projects for uncertainty estimation of EU-SILC based indicators

	Computational aspects and results
	Data manipulation and selection of countries
	The Bootstrap method and Laeken package
	The Jackknife Repeated Replication method (JRR)
	The Linearization method

	Standard errors estimation results
	Results at national level
	Results for NUTS1 regions
	Results for NUTS2 regions


	Communicating uncertainty in poverty indicators
	Current practices adopted by NSIs
	Practical suggestions for communicating uncertainty in the Quality reports

	Conclusion
	References
	References
	Annex



