Attached is the annual questionnaire for electricity and heat which provides for the submission of 2015 data and historical revisions where applicable. Administrations are requested to complete the questionnaire at the latest 30 September 2016. Earlier submissions are welcome. The transmission deadline for countries reporting to Eurostat is 30 November 2016 (Regulation (EC) No 1099/2008 on energy statistics).

Please send your questionnaire to:

- International Energy Agency (IEA/OECD), Energy Data Centre
 (the IEA will forward the data to the United Nations Economic Commission for Europe in Geneva).
- European Commission, Eurostat, Energy Statistics
 (for the EU Member States, EFTA countries, Candidate Countries and Potential Candidates)
- United Nations Statistics Division, Industry and Energy Statistics Section

Transmission details are provided in the “Data communication procedures” section.
Data Communication Procedures

IEA

9, rue de la Fédération, 75739, Paris, Cedex 15, France

Please complete data for your country on the Energy Data Center: https://www.energydatacenter.org

Alternatively send the questionnaire electronically to: eleaq@iea.org

NOTE: For questions regarding the questionnaire, contact the above email address.

--

Eurostat

European Commission – Eurostat, Unit E.5: Energy, [Name of person], 2920 Luxembourg
(for EU Member States, EFTA countries, Candidate Countries and Potential Candidates)

The completed questionnaire should be transmitted via the Single Entry Point (SEP) following the implementing procedures of eDAMIS (electronic Data files Administration and Management Information System): https://webgate.ec.europa.eu/edamis/

E-MAIL ADDRESS estat-energy@ec.europa.eu

NOTE

For questions regarding the questionnaire, contact Mr. Michael Goll, + 352 4301 32782
e-mail: MICHAEL.GOLL@ec.europa.eu

--

United Nations

United Nations Statistics Division, Energy Statistics Section
2 UN plaza, DC2-1414, New York, NY 10017, USA

The completed questionnaire should be transmitted by e-mail to:
Mr. Ralf Becker, Chief, Industrial and Energy Statistics Section, United Nations Statistics Division

E-MAIL ADDRESS energy_stat@un.org

NOTE

Fax: (1-212)-963-0623
REPORTING INSTRUCTIONS

Data should be reported for calendar years. If fiscal year data have to be used, please state this clearly and specify the period covered.

For consistency between administrations and to conform with computer software, the data reported in this questionnaire should be in whole numbers (i.e. no decimals or fractions) in the unit shown for each table.

The definitions and reporting conventions used in this questionnaire are the same as those used in the other annual questionnaires (Coal, Oil, Natural gas, and Renewables). Please ensure that data on fuel used for electricity and heat production reported in the other annual questionnaires are consistent with those reported for the same categories in the Electricity and heat questionnaire.

Any data reported under Not elsewhere specified should be explained in the Remarks page.

UNITS AND CONVERSION FACTORS

Where data are not available, estimates should be given and identified as such in the Remarks page.

Report all figures to the nearest whole number of gigawatt-hours for electricity and terajoules for heat.

(Examples: 18,436,156 Wh should be reported as "18 GWh"; 1,728,300 Wh should be reported as "2 GWh"; 18,500,000 should be reported as "18" as required to ensure that rounded figures add to totals where relevant.)

For fuel used for electricity and heat production in Table 6, please report all data using Gross calorific values, except when specifically mentioned that Net calorific values should be used.

INTERNATIONAL STANDARD INDUSTRIAL CLASSIFICATION

In 2008, the United Nations and the European Commission have published in parallel their revised classification codes.

- United Nations:
 International Standard Industrial Classification of all Economic Activities – ISIC, Rev.4
- European Commission:
 Statistical classification of economic activities in the European Community NACE, Rev.2

Eurostat and the International Energy Agency jointly produced a correspondence table aimed at providing continuity of time series and have updated the references in the Joint Questionnaires accordingly.

DEFINITIONS FOR ELECTRICITY AND HEAT

The questionnaires seek information on the fuel requirements for, and the generation of electricity and heat according to producer and generating plant types.

Types of producer:

Producers are classified according to the purpose of production:

- **Main activity producer** undertakings generate electricity and/or heat for sale to third parties, as their primary activity. They may be privately or publicly owned. Note that the sale need not take place through the public grid.

- **Autoproducer** undertakings generate electricity and/or heat, wholly or partly for their own use as an activity which supports their primary activity. They may be privately or publicly owned.

Types of Plant:

The separation of fuel use and electricity/heat generation statistics according to the type of plant (i.e. electricity, heat or combined electricity and heat) will normally be conducted using statistics collected at the plant level, i.e. generating stations comprising one or more generating sets or units. The definitions given below have been prepared on this assumption. However, when a country has data for the electricity
and heat output and fuel inputs for each of the generating units within a plant, these data should be used to prepare the report. In this case the definitions set out below will need to be interpreted on the unit basis rather than on the plant basis.

- **Electricity plant** refers to a plant which is designed to produce only electricity. If one or more units of the plant is a CHP unit (see below) then the whole plant is designated as a CHP plant.

- **Combined heat and power (CHP) plant** refers to a plant which is designed to produce both heat and electricity. It is sometimes referred to as a co-generation power station. If possible, fuel inputs and electricity/heat outputs should be reported on a unit basis rather than on a plant basis. However, if data are not available on a unit basis, the convention for defining a CHP plant noted above should be adopted.

- **Heat plant** refers to a plant which is designed to produce only heat. Note: Heat delivered from CHP or Heat plants may be used for process or space heating purposes in any sector of economic activity including the Residential sector.

It should be noted that:

- **Electricity** production reported for Autoproducer electricity or Autoproducer CHP should be the total quantity of electricity generated.

- All **heat** production from Main activity producer - CHP and Main activity producer - Heat plants should be reported. However, heat production reported for Autoproducer CHP and Autoproducer heat plants should comprise only the heat sold to third parties. Heat consumed by autoproducers should not be included.

- Report in the transformation sector only those quantities of fuels used to generate the amounts of electricity and heat reported in the questionnaire. The quantities of fuel consumed for the production of heat which is not sold will remain in the figures for the final consumption of fuels by the relevant sector of economic activity.

The reporting requirements for transformation sector activities can be summarised schematically as follows:

<table>
<thead>
<tr>
<th></th>
<th>Electricity plant</th>
<th>CHP plant</th>
<th>Heat plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main activity producer</td>
<td>Report all production and all fuel used</td>
<td>Report all electricity and heat produced and all fuel used</td>
<td>Report all heat produced and all fuel used</td>
</tr>
<tr>
<td>Autoproducer</td>
<td></td>
<td>Report all electricity produced and only heat sold with corresponding fuel used</td>
<td>Report only heat sold and corresponding fuel used</td>
</tr>
</tbody>
</table>

In this questionnaire the term **Combustible fuels** refers to fuels that are capable of igniting or burning, i.e. reacting with oxygen to produce a significant rise in temperature.
METHODOLOGY FOR APPORTIONING FUEL INPUT IN A CHP PLANT

In cases where national administrations have not adopted a methodology for this purpose, the following approach is proposed where the fuel input is divided between electricity and heat in proportion to their shares of the CHP useful energy output.

In CHP units the relationship between the fuel input and the output electricity and heat, without regard to the type of thermodynamic process, may be modelled simply in the diagram below.

The following relationship defining overall efficiency (ε) is:

$$\varepsilon = \frac{H + E}{F}$$

The definition given proposes that the imputed fuel use for electricity, F_e, and (as a consequence) that for heat, F_h, are:

$$F_e = F - \frac{H}{\varepsilon} = F \left(\frac{E}{E + H} \right)$$

$$F_h = F - \frac{E}{\varepsilon} = F \left(\frac{H}{E + H} \right)$$

The formula should be used only where national administrations have not already adopted a methodology for the purpose of reporting CHP on a unit basis.
GEOGRAPHICAL NOTES

Australia excludes the overseas territories;

Denmark excludes the Faroe Islands and Greenland;

France includes Monaco and excludes the following overseas departments and territories: French Guiana, French Polynesia, Guadeloupe, Martinique, Mayotte, New Caledonia, Réunion, Saint-Pierre and Miquelon, and Wallis and Futuna;

Italy includes San Marino and the Holy See;

Japan includes Okinawa;

The Netherlands excludes Aruba, Curaçao, Suriname and the other former Netherland Antilles (Bonaire, Saba, Saint Eustatius and Sint Maarten);

Portugal includes the Azores and Madeira;

Spain includes the Canary Islands;

Switzerland does not include Liechtenstein;

United States: includes 50 States and District of Columbia.
INSTRUCTIONS FOR COMPLETING INDIVIDUAL TABLES IN THE QUESTIONNAIRE

TABLES 1 AND 2
ANNUAL GROSS AND NET ELECTRICITY AND HEAT PRODUCTION

For a proper understanding of the definitions of categories in the table, respondents are urged to read the note ‘Definitions for Electricity and Heat’, reproduced on page 3.

Table 1 refers to gross electricity and heat production:

Gross electricity production is the sum of the electrical energy production by all the generating sets concerned (including pumped storage) measured at the output terminals of the main generators.

Gross heat production is the total heat produced by the installation and includes the heat used by the installation’s auxiliaries which use a hot fluid (space heating, liquid fuel heating etc) and losses in the installation/network heat exchanges, as well as heat from chemical processes used as a primary energy form.

Note that for autoproducers, heat used by the undertaking for its own processes is not included here; only heat sold to third parties should be reported. As only heat sold to third parties is reported, gross heat production for autoproducers will be equal to net heat production.

Table 2 refers to net electricity and heat production:

Net electricity production is equal to the gross electricity production less the electrical energy absorbed by the generating auxiliaries and the losses in the main generator transformers.

Net heat production is the heat supplied to the distribution system as determined from measurements of the outgoing and return flows.

Tables 1 and 2 electricity and heat production are divided as follows:

1. **Nuclear**
 Energy released by nuclear fission or nuclear fusion.

2. **Hydro-power**
 Potential and kinetic energy of water converted into electricity in hydroelectric plants. Pumped storage from mixed and pure pumped storage plants should be included.

3. **Pumped hydro**
 It includes pure pumped storage plants generation and the pumped storage generation portion of mixed plants. It is included in Hydro.

4. **Geothermal**
 Energy available as heat emitted from within the earth’s crust, usually in the form of hot water or steam. It is exploited at suitable sites:
 - for electricity generation using dry steam or high enthalpy brine after flashing
 - directly as heat for district heating, agriculture, etc.

5. **Solar energy**
 Solar radiation exploited for electricity generation.
 - **Solar photovoltaic** converts sunlight into electricity by the use of solar cells usually made of semi-conducting material which exposed to light will generate electricity.
 - **Solar thermal** can consist of:
 a) solar thermal-electric plants, or
 b) equipment for the production of heat for sale (hot water or steam)
6. **Tide/Wave/Ocean**
 Mechanical energy derived from tidal movement, wave motion or ocean current and exploited for electricity generation.

7. **Wind**
 Kinetic energy of wind exploited for electricity generation in wind turbines.

8. **Combustible fuels**
 Refers to fuels that are capable ofigniting or burning, i.e. reacting with oxygen to produce a significant rise in temperature. They are combusted directly for the production of electricity and/or heat.

9. **Heat from chemical processes**
 Report only the heat originating from processes without input energy, such as a chemical reaction (e.g. the treatment of zinc oxide ore with hydrochloric acid). Note that waste heat originating from energy driven processes is not considered as a primary energy source. Therefore, it should be reported as heat produced from the corresponding fuel.

10. **Other sources - electricity**
 Report electricity production from sources other than those listed, e.g. from fuel cells. Please provide details of the sources included on the Remarks page.

11. **Heat pumps**
 Report the heat output from heat pumps only where the heat is sold to third parties (i.e. in cases where production occurs in the Transformation sector).

12. **Electric boilers**
 Report the heat from electric boilers where the output is sold to third parties. Report the electricity used in such boilers in Table 3.

13. **Other sources – heat**
 Report here the heat from other sources; for example, recovered waste heat from industry sold to third parties. Please provide details of the Sources included on the Remarks page.
TABLE 3
ELECTRICITY AND HEAT SUPPLY AND CONSUMPTION

1. **Gross electricity production**
 See definition in “Tables 1 and 2” section.

2. **Gross heat production**
 See definition in “Tables 1 and 2” section.

3. **Own use by power plants**
 This is the difference between Gross and Net production, i.e. it is the electricity and heat used by power station auxiliaries directly related to generation and including that used for fuel handling plant, cooling water plant, power station services, heating, lighting, workshops and administrative buildings directly associated with the power station during both on-load and off-load periods.

4. **Net electricity production**
 See definition in “Tables 1 and 2” section.

5. **Net heat production**
 See definition in “Tables 1 and 2” section.

6. **Imports and Exports**
 Amounts of electricity and heat are considered as imported or exported when they have crossed the political boundaries of the country, whether customs clearance has taken place or not. If electricity is “wheeled” or transited through a country, the amount should be reported as both an import and an export (see notes on Table 8).

7. **Used for heat pumps**
 Report the electricity used in heat pumps for which the heat output is reported in Tables 1 and 2.

8. **Used for electric boilers**
 Report the electricity used in electric boilers for which the heat output is reported in Tables 1 and 2.

9. **Used for pumped storage**
 Report the electricity consumed by pumping in hydro-electric power plants.

10. **Used for electricity production**
 Report heat from chemical processes used as a primary energy form, and purchased secondary waste heat consumed as input to electricity generation.

11. **Energy supplied**
 For *electricity*, this is the electrical energy supplied from the plant. In the case of a national network this is equal to the sum of the net electrical energy production supplied by all power stations within the country, reduced by the amount used simultaneously for pumping as well as the amount used for heat sold using heat pumps and electric boilers. It is then reduced or increased by exports to or imports from abroad. For *heat*, this is equal to the sum of the net heat production for sale by all plants within a country reduced or increased by exports or imports from abroad.

12. **Transmission and distribution losses**
 All losses due to transport and distribution of electrical energy and heat. For electricity, losses in transformers which are not considered as integral parts of the power plants are also included.

13. **Total consumption (calculated)**
 This equals the Energy supplied minus Distribution losses.
14. **Statistical difference**

This equals the Total consumption (calculated) – Total consumption (observed).

15. **Total consumption (observed)**

This is the amount actually recorded in surveys of end-use sectors. It should, in principle, correspond to the total consumption (calculated).

16. **Energy sector**

Report all electricity and purchased heat consumed by the energy sector to support the extraction (mining, oil and gas production) and plant operation of transformation activities. It should exclude Own use by plant, Used for pumped storage, Used by heat pumps and Used for electric boilers, which are reported elsewhere. Heat consumed by *autoproducers* for their own use should not be included. Consumption in support of the operation of pipelines (e.g. oil, gas, and coal slurry) should be reported in the Transport sector.

The Energy Sector covers ISIC\(^1\) Divisions 05, 06, 19 and 35, Group 091, Classes 0892 and 0721 (NACE\(^2\) Divisions 05, 06 19, and 35, Group 09.1, Classes 08.92 and 07.21). The Energy sector includes the manufacture of chemical materials for atomic fission and fusion and the products of these processes. Electricity and heat used in the manufacture of fuel briquettes and packaged fuel from coal, lignite or peat and consumption in coke ovens, gas works, blast furnaces, liquefaction plants, gasification plants, charcoal production plants and other transformation industries should also be reported here.

17. **Industry sector**

Report the total of the Industry sub-sectors listed under item 2 in the Table 4 instructions.

18. **Transport sector**

Report electricity used for all transport activity irrespective of the economic sector, in which the activity occurs (except military fuel use, see Not elsewhere specified - Other). Electricity and purchased heat used for heating and lighting at railway and bus stations and airports should be reported in Commercial and public services. Report consumption in the following ISIC and NACE categories: Divisions 49, 50 and 51. The transport sector is divided into the following sub-sectors:

- **Rail** – Report electricity consumption for use in rail traffic, including industrial railways and consumption for use in rail transport as part of urban or suburban transport systems.

- **Pipeline transport** – Report electricity consumption in support of the operations of both submarine and overland pipelines transporting gases, liquids, slurries and other commodities up to the distributors network, including the energy used for pump stations and maintenance of the pipeline. Use for pipeline distribution of natural or manufactured gas, hot water or steam (ISIC 35) from the distributor to the final users is excluded and should be reported in the Energy sector while use for the final distribution of water (ISIC 36) to household, industrial, commercial and other users should be included in the Commercial/public services sector.

- **Road** – Report electricity use in road vehicles. This includes electricity consumption in road transport vehicles such as electric buses, electric cars and trolley buses when the electricity is supplied from *external sources* to directly generate mechanical energy or used to charge batteries. Include use by agricultural vehicles on highways. Exclude use in stationary engines (see Not elsewhere specified – Other), non-highway use in tractors (see Agriculture/forestry – Other sector), and military use (see Not elsewhere specified – Other). It is to be noted that the consumption of vehicles running on rails in urban transport (trams, metro, etc.) should be included under Rail transport.

- **Not elsewhere specified - Transport** – Report electricity use for transport activities not included elsewhere. Please state on the Remarks page what is included under this heading.

19. **Residential sector**

Report fuel consumed by all households including “households with employed persons (ISIC and NACE Divisions 97 and 98)”.

20. **Commercial and public services**

These activities are covered by ISIC and NACE Divisions 33, 36, 37, 38, 39, 45, 46, 47, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84 (excluding Class 8422), 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96 and 99. Report consumption by businesses and offices in the public and private sectors. Note that electricity and purchased heat use at railway, bus stations, shipping piers and airports should be reported in this category and not shown in the Transport sector.

21. **Agriculture/Forestry**

Report electricity and purchased heat consumed by users classified as agriculture, hunting and forestry by ISIC and NACE Divisions 01 and 02.

22. **Fishing**

Report electricity and purchased heat consumed for inland, coastal and deep-sea fishing as specified in ISIC and NACE Division 03. Fishing should cover energy consumption in ships of all flags that have refuelled in the country (include international fishing).

23. **Not elsewhere specified – Other**

Report activities not included elsewhere. Please specify on the Remarks page what is included under this heading. This category should include military use for all mobile and stationary consumption (e.g. ships, aircraft, and energy used in living quarters) within the country regardless of whether the use is by the military of that country or by the military of another country.
TABLE 4
ELECTRICITY AND HEAT CONSUMPTION IN THE INDUSTRY AND ENERGY SECTORS

1. Energy sector
As defined under item 16 in Table 3 instructions, report all electricity and purchased heat energy consumed by the energy industry to support the extraction (mining, oil and gas production) and plant operation of transformation activities.

The energy sector is divided into the following sub-sectors:
- **Coal mines** - Report electricity and purchased heat consumed to support the extraction and preparation of coal within the coal mining industry.
- **Oil and gas extraction** - Report electricity and purchased heat consumed to support the operation of oil and gas extraction facilities.
- **Patent fuel plants** - Report electricity and purchased heat consumed at patent fuel plants.
- **Coke ovens** - Report electricity and purchased heat consumed at coking plants.
- **BKB / PB plants** - Report electricity and purchased heat consumed at briquetting plants.
- **Gas works** - Report electricity and purchased heat consumed at gas works plants and coal gasification plants.
- **Blast furnaces** - Report electricity and purchased heat consumed in blast furnaces operations.
- **Oil refineries** - Report electricity and purchased heat consumed at oil refineries.
- **Nuclear industry** - Report electricity and purchased heat consumed at nuclear power plants.
- **Coal liquefaction** - Report electricity and purchased heat consumed at liquefaction plants.
- **Liquefaction (LNG) / regasification** - Report electricity and purchased heat consumed at natural gas liquefaction and regasification plants.
- **Gasification plants (biogas)** - Report electricity and purchased heat consumed at biogas gasification plants.
- **Gas-to-liquid (GTL)** - Report electricity and purchased heat consumed at the Gas-to-liquid conversion plants.
- **Charcoal production plants** - Report electricity and purchased heat consumed at charcoal production plants.
- **Not elsewhere specified - Energy** - Report electricity and purchased heat consumed for other purposes not reported above. Please specify on the Remarks page what is included under this heading.

2. Industry sector
Report the electricity and purchased heat consumption by the industrial undertaking in support of its primary activities in the appropriate sub-sectors:
- **Chemical and petrochemical** : ISIC and NACE Divisions 20 and 21.
- **Non-ferrous metals** : ISIC Group 242 + Class 2432 (NACE Group 24.4, Classes 24.53 and 24.54).
- **Non-metallic minerals** : ISIC and NACE Division 23. Report glass, ceramic, cement, and other building materials industries.
- **Transport equipment** : ISIC and NACE Divisions 29 and 30.
- **Machinery** : ISIC and NACE Divisions 25, 26, 27 and 28. Report fabricated metal products, machinery and equipment other than transport equipment.
- **Mining (excluding energy producing industries) and quarrying**: ISIC Divisions 07 and 08 + Group 099 (NACE Divisions 07 and 08 + Group 09.9).

- **Food, beverages and tobacco**: ISIC and NACE Divisions 10, 11 and 12.

- **Pulp, paper and printing**: ISIC and NACE Divisions 17 and 18. Includes reproduction of recorded media.

- **Wood and wood products (other than pulp and paper)**: ISIC and NACE Division 16.

- **Construction**: ISIC and NACE Divisions 41, 42 and 43.

- **Textile and leather**: ISIC and NACE Divisions 13, 14 and 15.

- **Not elsewhere specified – Industry**: If your country’s industrial classification of electricity and heat consumption does not correspond to the above ISIC codes, please estimate the breakdown by industry and include in Not elsewhere specified only consumption in sectors which is not covered above. Please specify on the Remarks page what is included under this heading. ISIC and NACE Divisions 22, 31 and 32 are included here.
TABLE 5
NET ELECTRICITY AND HEAT PRODUCTION BY AUTOPRODUCERS

For a proper understanding of the definitions below respondents are urged to read the note ‘Definitions for Electricity and heat’ reproduced on page 3.

For a description of individual industry classifications, please refer to the reporting instructions for Table 3 and 4.

TABLES 6 A, B, C, D
GROSS ELECTRICITY AND HEAT PRODUCTION FROM COMBUSTIBLE FUELS

For a proper understanding of the definitions of categories in the table respondents are urged to read the note ‘Definitions for Electricity and heat’, reproduced on page 3.

The reported quantity of heat produced at autoproducer CHP plants should be only that sold (see definitions on page 3). Accordingly, the quantity of fuel required for this heat will be the proportional part of the fuel attributed to the total heat production at the plant. A methodology for the division of the total fuel used at the plant between heat and electricity is given on page 5.

The total electricity and heat reported here in Table 6 should be equal to the total from “Combustible fuels” in Table 1. Fuels used for ‘starting up’ a plant should be included with other fuels used in the plant. The quantity of fuels used to drive heat pumps should not be included in data reported in this table but noted separately, if available, on the Remarks page. Heat output (that is sold) from heat pumps should be reported in Tables 1 and 2.

Definitions of Combustible fuels:

1. Anthracite
High rank coal normally used for industrial and residential applications. It has generally less than 10% volatile matter and a high carbon content (about 90% fixed carbon). Its gross calorific value is equal to or greater than 24000 kJ/kg (5732 kcal/kg) on an ash-free but moist basis.

2. Coking coal
Bituminous coal with a quality that allows the production of a coke suitable to support a blast furnace charge. Its gross calorific value is equal to or greater than 24000 kJ/kg (5732 kcal/kg) on an ash-free but moist basis.

3. Other bituminous coal
Coal used for steam raising purposes and includes all bituminous coal that is not included under coking coal nor anthracite. It is characterized by higher volatile matter than anthracite (more than 10%) and lower carbon content (less than 90% fixed carbon). Its gross calorific value is equal to or greater than 24000 kJ/kg (5732 kcal/kg) on an ash-free but moist basis.

4. Sub-bituminous coal
Non-agglomerating coal with a gross calorific value equal to or greater than 20000 kJ/kg (4777 kcal/kg) and less than 24000 kJ/kg containing more than 31% volatile matter on a dry mineral matter free basis.

5. Lignite
Non-agglomerating coal with a gross calorific value less than 20 000 kJ/kg (4 777 kcal/kg) and greater than 31% volatile matter on a dry mineral matter free basis.

6. Patent fuel
A composition fuel manufactured from hard coal fines with the addition of a binding agent.

7. Coke oven coke
The solid product obtained from carbonization of coal, principally coking coal, at high temperature, it is low in moisture and volatile matter. Coke oven coke is used mainly in the iron and steel industry
acting as energy source and chemical agent. Coke breeze and foundry coke are included in this category. Semi-coke (a solid product obtained from carbonization of coal at low temperature) should be included in this category. This heading also includes coke, coke breeze and semi-coke made from lignite coal.

8. Gas coke
By-product of hard coal used for production of town gas in gas works. Gas coke is used for heating purposes.

9. Coal tar
A result of the destructive distillation of bituminous coal or of the low-temperature carbonisation of brown coal. Coal tar from bituminous coal is the liquid by-product of the distillation of coal to make coke in the coke oven process. Coal tar can be further distilled into different organic products (e.g. benzene, toluene, naphthalene), which normally would be reported as a feedstock to the petrochemical industry.

10. BKB (Brown coal briquettes)
BKB is a composition fuel manufactured from lignite coal, or sub-bituminous coal, produced by briquetting under high pressure without the addition of a binding agent. These figures include dried lignite fines and dust.

11. Gas works gas
Covers all types of gases produced in public utility or private plants, whose main purpose is manufacture, transport and distribution of gas. It includes gas produced by carbonization (including gas produced by coke ovens and transferred to gas works gas), by total gasification with or without enrichment with oil products (LPG, residual fuel oil, etc.), and by reforming and simple mixing of gases and/or air. The quantity of fuel should be reported on a gross calorific value basis.

12. Coke oven gas
Obtained as a by-product of the manufacture of coke oven coke for the production of iron and steel. The quantity of fuel should be reported on a gross calorific value basis.

13. Blast furnace gas
Produced during the combustion of coke in blast furnaces in the iron and steel industry. It is recovered and used as a fuel partly within the plant and partly in other steel industry processes or in power stations equipped to burn it. The quantity of fuel should be reported on a gross calorific value basis. In addition, off-gases from all iron-production reduction processes utilising air as the oxygen source (such as Direct reduced iron) should be reported here.

14. Other recovered gases
By-product of the production of steel in an oxygen furnace, recovered on leaving the furnace. The gases are also known as converter gas, LD gas or BOS gas. Also covers non-specified manufactured gases not mentioned above, such as combustible gases of solid carbonaceous origin recovered from manufacturing and chemical processes not elsewhere defined. The quantity of recuperated fuel should be reported on a gross calorific value basis.

15. Peat
A combustible soft, porous or compressed, fossil sedimentary deposit of plant origin with high water content (up to 90 per cent in the raw state), easily cut, of light to dark brown colour. Peat used for non-energy purposes is not included. Milled peat is included here.

16. Peat products
Products such as peat briquettes derived directly or indirectly from sod peat and milled peat.
17. **Oil shale and oil sands**

Oil shale and oil sands are sedimentary rock which contains organic matter in the form of kerogen. Kerogen is a waxy hydrocarbon-rich material regarded as a precursor of petroleum. Oil shale may be burned directly or processed by heating to extract shale oil. Shale oil and other products derived from liquefaction should be reported under “Other oil products”.

18. **Crude oil**

Crude oil is a mineral oil of natural origin comprising a mixture of hydrocarbons and associated impurities, such as sulphur. It exists in the liquid phase under normal surface temperature and pressure and its physical characteristics (density, viscosity, etc.) are highly variable. This category includes field or lease condensate recovered from associated and non-associated gas where it is commingled with the commercial crude oil stream.

19. **Natural gas liquids (NGL)**

NGL are liquid or liquefied hydrocarbons recovered from natural gas in separation facilities or gas processing plants. Natural gas liquids include ethane, propane, butane (normal and iso-), (iso) pentane and pentanes plus (sometimes referred to as natural gasoline or plant condensate).

20. **Refinery gas**

Refinery gas includes a mixture of non-condensed gases mainly consisting of hydrogen, methane, ethane and olefins obtained during distillation of crude oil or treatment of oil products (e.g. cracking) in refineries. This also includes gases which are returned from the petrochemical industry.

21. **Liquefied petroleum gases (LPG)**

LPG are light paraffinic hydrocarbons derived from the refinery processes, crude oil stabilisation and natural gas processing plants. They consist mainly of propane (C3H8) and butane (C4H10) or a combination of the two. They could also include propylene, butylene, isobutene and isobutylene. LPG are normally liquefied under pressure for transportation and storage.

22. **Naphtha**

Naphtha is a feedstock destined for either the petrochemical industry (e.g. ethylene manufacture or aromatics production) or for gasoline production by reforming or isomerisation within the refinery. Naphtha comprises material in the 30°C and 210°C distillation range or part of this range.

23. **Kerosene type jet fuel**

This is a distillate used for aviation turbine power units. It has the same distillation characteristics between 150°C and 300°C (generally not above 250°C) and flash point as kerosene. In addition, it has particular specifications (such as freezing point) which are established by the International Air Transport Association (IATA).

24. **Other kerosene**

Kerosene comprises refined petroleum distillate and is used in sectors other than aircraft transport. It distils between 150°C and 300°C.

25. **Gas/diesel oil (distillate fuel oil)**

Gas/diesel oil is primarily a medium distillate distilling between 180°C and 380°C. It is comprised of road diesel, heating and other gasoil.

26. **Fuel oil**

This covers all residual (heavy) fuel oils (including those obtained by blending). Kinematic viscosity is above 10 cSt at 80 °C. The flash point is always above 50 °C and density is always more than 0.90 kg/l.
27. **Bitumen (including Orimulsion)**

Bitumen is a solid, semi-solid or viscous hydrocarbon with a colloidal structure, being brown to black in colour, obtained as a residue in the distillation of crude oil, by vacuum distillation of oil residues from atmospheric distillation. Bitumen is often referred to as asphalt and is primarily used for construction of roads and for roofing material. This category includes fluidized and cut back bitumen as well as Orimulsion.

28. **Petroleum coke**

Petroleum coke is a black solid by-product, obtained mainly by cracking and carbonising petroleum derived feedstock, vacuum bottoms, tar and pitches in processes such as delayed coking or fluid coking. It consists mainly of carbon (90 to 95%) and has a low ash content. It is used as a feedstock in coke ovens for the steel industry, for heating purposes, for electrode manufacture and for production of chemicals. The two most important qualities are "green coke" and "calcinated coke". This category also includes "catalyst coke" deposited on the catalyst during refining processes; this coke is not recoverable and is usually burned as refinery fuel.

29. **Other oil products**

All products not specifically mentioned above, for example: tar, sulphur, and shale oil. Report oil products not specifically mentioned above, and identify such product in the Remarks page.

30. **Natural gas**

Natural gas consists mainly of methane occurring naturally in underground deposits. This includes colliery gas. The quantity of fuel used should be reported on a gross calorific value basis.

31. **Industrial waste (non-renewable)**

Wastes of industrial non-renewable origin (solids or liquids) combusted directly for the production of electricity and/or heat. Renewable industrial waste should be reported in the Solid biomass, Biogas and/or Liquid Biofuels categories. The quantity of fuel used should be reported on a net calorific value basis.

32. **Municipal waste (renewable)**

Renewable: Report that portion of waste produced by households, industry, hospitals and the tertiary sector which is biological material collected by local authorities and incinerated at specific installations. The quantity of fuel used should be reported on a net calorific value basis.

33. **Municipal waste (non-renewable)**

Non-Renewable: Report that portion of waste produced by households, industry, hospitals and the tertiary sector which is non-biological material collected by local authorities and incinerated at specific installations. The quantity of fuel used should be reported on a net calorific value basis.

34. **Solid biofuels**

Covers organic, non-fossil material of biological origin which may be used as fuel for heat production or electricity generation. It comprises:

- **Charcoal**: covers the solid residue of the destructive distillation and pyrolysis of wood and other vegetal material.
- **Fuelwood, wood residues and by-products**: Fuelwood or firewood (in log, brushwood, pellet or chip form) obtained from natural or managed forests or isolated trees. Also included are wood residues used as fuel and in which the original composition of wood is retained. Charcoal and black liquor are excluded. The quantity of fuel used should be reported on a net calorific value basis.
- **Black liquor**: Energy from the alkaline-spent liquor obtained from the digesters during the production of sulphate or soda pulp required for paper manufacture.
- **Bagasse**: Fuel obtained from the fibre which remains after juice extraction in sugar cane processing.
• **Animal waste**: Energy from excreta of animals, meat and fish residues which, when dry, are used directly as a fuel. This excludes waste used in anaerobic fermentation plants. Fuel gases from these plants are included under biogases.

• **Other vegetal materials and residuals**: Biofuels not specified elsewhere and including straw, vegetable husks, ground nut shells, pruning brushwood, olive pomace and other wastes arising from the maintenance, cropping and processing of plants.

35. **Biogases**

A gas composed principally of methane and carbon dioxide produced by anaerobic digestion of biomass, or by thermal processes.

- **Landfill gas**: formed by the digestion of landfilled waste. The quantity of fuel used should be reported on a net calorific value basis.
- **Sewage sludge gas**: produced from the anaerobic fermentation of sewage sludge. The quantity of fuel used should be reported on a net calorific value basis.
- **Other biogases from anaerobic digestion**: such as biogas produced from the anaerobic fermentation of animal slurries and of waste in abattoirs, breweries and other agro-food industries. The quantity of fuel used should be reported on a net calorific value basis.
- **Biogases from thermal processes**: biogas produced from thermal processes of renewable forms of energy.

36. **Biodiesels**

This category includes biodiesel (a methyl-ester produced from vegetable or animal oil, of diesel quality), biodimethylether (dimethylether produced from biomass), Fischer Tropsch (Fischer Tropsch produced from biomass), cold pressed biooil (oil produced from oil seed through mechanical processing only) used straight as road diesel or for electricity and heat generation.

37. **Other liquid biofuels**

This category includes liquid biofuels not included in biodiesels.

Note: In the Renewables and waste questionnaire, fuel inputs of Liquid biofuels are reported for five categories: Biogasoline, of which Bioethanol, Bio jet kerosene, Biodiesels and Other liquid biofuels, whereas the output is reported for two categories: Biodiesels and Other liquid biofuels. In the Electricity questionnaire, both the inputs and outputs are reported for the two categories: Biodiesels and Other liquid biofuels. As a consequence, in Table 6 of this questionnaire, gross electricity and heat production from combustible fuels, Other liquid biofuels could also contain small amounts of Biogasoline and Bio jet kerosene. This difference in classification between the two questionnaires was made in order to reduce the amount of information requested because it is not expected that large quantities of Biogasoline and Bio jet kerosene are being used in the transformation sector to generate electricity and heat.
TABLE 7A
NET MAXIMUM ELECTRICAL CAPACITY AND PEAK LOAD

Net electrical capacity, peak load and date of peak load occurrence are monitored to measure energy security-related factors such as reserve margin, and capacity available during load peaking periods.

Net maximum electrical capacity

The net maximum capacity is the maximum active power that can be supplied, continuously, with all plant running, at the point of outlet (i.e., after taking the power supplies for the station auxiliaries and allowing for the losses in those transformers considered integral to the station). This assumes no restriction of interconnection to the network. Does not include overload capacity that can only be sustained for a short period of time (e.g., internal combustion engines momentarily running above their rated capacity). The net maximum electricity-generating capacity represents the sum of all individual plants’ maximum capacities available to run continuously throughout a prolonged period of operation in a day.

1. Classification by sources

The reported figures should relate to the maximum capacities on 31st of December and be expressed in megawatts (MW). The reported electrical capacity should include both electricity and CHP plants. Data for fuel cells should be reported in the row Other energy sources.

Mixed (hydro) plants are hydro plants with natural inflow where part or all equipment can be used for pumping water uphill and also for producing electricity from natural inflow and pump storage. Pure pumped storage plants are plants with no natural inflow, producing electricity only from water previously pumped uphill.

If, for some reason, only gross capacity data can be provided, please state this clearly. It is assumed that all equipment is in full working order, that the power produced can be disposed of without any restrictions and that optimum conditions prevail as regards primary sources (i.e., flow and head in the case of hydro plant; grade and quantity of fuel in hand and water supply, temperature, and purity in the case of thermal plant, and assuming that the output and method of production in CHP plant are those which lend to maximum electricity production).

The capacity reported under Combustible fuels is further divided according to the technology of the generating plant.

2. Combustible fuels: type of generation.

Data on fuel firing capability are important inputs into planning responses to national and international fuel disruptions.

- **Steam**: steam turbines are of two main types—non-condensing (or open cycle), also called backpressure turbines, and condensing turbines (or closed cycle). In non-condensing turbines, the exhaust steam leaving the turbine is used either as co-generated process steam or, more rarely, released into the atmosphere. In a condensing turbine, the exhaust steam is condensed and the water thus formed supplies the feed water for the generator. The boilers supplying steam turbines can be fuelled by all forms of fossil fuels;

- **Internal combustion**: the internal combustion engines referred to in this heading are the engine based on the gasoline or diesel cycle, which work on the spark ignition or the compression ignition principle. Diesel-type engines can use a variety of fuels ranging from natural gas to liquid fuels;

- **Gas turbines**: the gas turbine uses high temperature, high pressure gas as fuel, in which part of the heat supplied by the gas is converted into rotational energy. Fuel can be natural gas, coal gases or liquid fuels;

- **Combined cycle**: the combined cycle system refers to electricity produced by coupling two heat engines in a sequence to drive generators. The heat discharged from one heat engine serves as the energy source for the next engine. The gas turbine is generally used as the first heat engine, and a conventional condensing steam turbine at the second stage.

- **Other** (please specify)
Peak load
The highest value of the power absorbed or supplied by a network or combination of networks within the country.

1. Peak load demand
The peak load demand is the highest simultaneous demand for electricity satisfied during the year. Note that the electricity supply at the time of peak demand may include demand satisfied by imported electricity or alternatively the demand may include exports of electricity. Total peak load on the national grid is not the sum of the peak loads during the year on every power station as they may occur at different times.

2. Available capacity at time of peak
The available capacity of an installation at peak period is the maximum power at which it can be operated under the prevailing conditions at the time, assuming no external constraints. It depends on the technical state of the equipment and its ability to operate, and may differ from the Net maximum capacity due to lack of water for hydro capacity, plant maintenance, unanticipated shutdown, or other outages at the time of peak load.

3. Date of peak load occurrence
Report the date on which the peak load was reached.

4. Time of peak load occurrence
Report the hour that peak load was reached.

TABLE 7B
NET MAXIMUM ELECTRICAL CAPACITY OF COMBUSTIBLE FUELS
The total net maximum capacity reported under Combustible fuels in Table 7a, subdivided by public/autoproducer, is further subdivided by fuel firing capability in Table 7b. Firing capability is separated into “single” fuel and “multiple” fuel categories.

1. Single-fired capacity
Refers to units equipped to burn only one fuel type on a continuous basis. Power stations consisting of several units burning different types of fuel but with each individual unit capable of burning only one fuel should be considered as single-fired and have their capacity divided accordingly among the following conventional fuel types:
- Coal and coal products - including all types of coal, primary and secondary, blast furnace gas and coke oven gas;
- Liquid fuels - covers crude oil and all oil products, including refinery gas and petroleum coke;
- Natural gas - covers natural gas and gas works gas;
- Peat
- Biofuels and waste - covers solid biofuels, liquid biofuels and biogases; municipal waste and industrial waste.

2. Multi-fired capacity
Refers to units with supply access to more than one nominated type of fuel and capable of generating electricity using these fuel types either in alternation or in combination on a continuous basis. These units should be capable of generating their maximum capacity, or a large proportion thereof, using any one of the fuels nominated. A multi-fired unit can have either one boiler capable of using more than one fuel or two boilers, each using a single fuel but feeding the same generator in alternation or simultaneously.

Generally, multi-fired capacity will fall into dual-fired or tri-fired groups. This includes solids and liquids, solids and natural gas, liquids and natural gas, and solids, liquids and natural gas. In the section for reporting the multi-fired capacity, please list the primary fuel using the fuel classifications provided
for single-fired capacity. Also, list the alternate fuel(s) in the column indicated using the fuel classifications provided for single-fired capacity. This is determined by the fuels used to operate the unit or plants for the year which is reported.

TABLE 8
IMPORTS BY ORIGIN AND EXPORTS BY DESTINATION OF ELECTRICITY
Report the gross trade in electricity between all countries including quantities in transit. The countries of origin for imports and destination for exports are neighbouring countries from which the electricity has been received (imports) and to which it has been sent (exports). See Geographical notes for country definitions.

Physical quantities should be given. If only contracted quantities are available, please indicate clearly on the Remarks page.

Amounts are considered as imported or exported when they have crossed the political boundaries of the countries, whether customs clearance has taken place or not. Where no origin or destination can be reported or where the country is not specified in the table, the category “Other” may be used.

Statistical differences may exist if only total imports and exports are available on the above basis, while the geographical breakdown is based on a different survey, source or concept. In this case the figures by origin/destination should be adjusted proportionally to the correct total.

REMARKS PAGE
Report on this page comments or additional data, if available, as follows:

- the quantity of combustible fuels (in appropriate physical units and in TJ) used to drive heat pumps (used in the Transformation sector). These data should not be included in Table 6.
- the quantity of waste heat (TJ) used in heat pumps (used in the Transformation sector). These data will not have been reported elsewhere in the questionnaire.
ANNEX 1: List OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKB</td>
<td>brown coal briquettes</td>
</tr>
<tr>
<td>CHP</td>
<td>combined heat and power (plant)</td>
</tr>
<tr>
<td>CV</td>
<td>calorific value</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GCV</td>
<td>gross calorific value</td>
</tr>
<tr>
<td>GJ</td>
<td>gigajoule, or one joule x 10^9 (see joule)</td>
</tr>
<tr>
<td>GJ/t</td>
<td>gigajoule per tonne</td>
</tr>
<tr>
<td>GWh</td>
<td>gigawatt-hour, or one watt x one hour x 10^9</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>ISIC</td>
<td>International Standard Industrial Classification</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>kJ</td>
<td>kilojoules</td>
</tr>
<tr>
<td>ktonnes</td>
<td>kilotonnes, or one tonne x 10^3</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt-hour, or one watt x one hour x 10^3</td>
</tr>
<tr>
<td>LPG</td>
<td>liquefied petroleum gas; refers to propane, butane and their isomers, which are gases at atmospheric pressure and normal temperature</td>
</tr>
<tr>
<td>MJ/m3</td>
<td>megajoule/cubic metre</td>
</tr>
<tr>
<td>Mm3</td>
<td>million cubic metres</td>
</tr>
<tr>
<td>Mtoe</td>
<td>million tonnes of oil equivalent</td>
</tr>
<tr>
<td>MW</td>
<td>megawatt, or one watt x 10^6</td>
</tr>
<tr>
<td>NACE</td>
<td>Statistical Classification of Economic Activities in the European Community</td>
</tr>
<tr>
<td>NCV</td>
<td>net calorific value</td>
</tr>
<tr>
<td>PB</td>
<td>Peat briquettes</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>TJ</td>
<td>terajoule, or one joule x 10^{12}</td>
</tr>
<tr>
<td>toe</td>
<td>tonne of oil equivalent</td>
</tr>
</tbody>
</table>
ANNEX 2. Table Relations in the Electricity and Heat Questionnaire

Table 3: Electricity and Heat Supply and Consumption

Table 1: Gross Production
- Total Com Bustible Fuels
- Inputs to Gross Production
- Utilisation rate

Table 2: Net Production
- Total Gross Production
- Total Combustible Fuels
- Total Autoproducer

Table 4: Consumption in Industry and Energy Sectors
- Total Energy Sector
- Total Industry Sector

Table 5: Net Production by Autoproducers
- Total Autoproducer

Table 6: Gross Production from Combustible Fuels
- Total Combustible Fuels

Table 7a: Net Maximum Electrical Capacity and Peak Load

Table 7b: Net Maximum Electrical Capacity of Combustible Fuels

Table 8: Imports by Origin / Exports by Destination
- Total Imports
- Total Exports

Combustible fuel inputs from other annual questionnaires