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Foreword

Why a Eurostat Colloquium on “Modern Tools for Business Cycle Analysis”

By Klaus Reeh

Adviser, Eurostat, Luxembourg

Econometric tools for business cycle analysis are used, of course, by economists when they
work on the series provided by official statisticians. However, they are also used by official
statisticians themselves and this basically for three purposes.

First they subject their series to standard transformation procedures such as seasonal adjust-
ment, outlier detection or detrending to make them more easily readable. We at Eurostat
consider this to be a service to be rendered for our EU/EMU series. Such a service can go as
far as suggesting a business cycle dating based on statistical techniques. We have the impression
that an upgrade of this kind of service is needed by going from simple standard transformation
procedures to somewhat more sophisticated procedures.

Second and quite closely related to the first reason, they have to check the quality of their
series. Tools for analysing series are, of course, also helpful when it comes to checking them.
As it stands we at Eurostat are not yet as developed in our quality checking, as we would have
liked to be, most notably in business cycle statistics. We hope, however, to profit in our work
from the analytical tools either already existing or under development.

Third, and this is a special problem for official statisticians dealing with EU/EMU series,
our series have some shortcomings that could be remedied at least partially with the help of
analytical tools. We have to overcome the lack of stability in time and thus insufficient series
length affecting most of our series with retrapolation tools that are, of course, in their structure
quite close to extrapolation tools. Similarly we have to handle interpolation problems. There
are cases where not all Member States provide data in the desired frequency (e.g. only quarterly
instead of monthly, only annual instead of quarterly series). Here again the analytical tools
turn out to be helpful.

Finally our series suffer quite often from a lack of timeliness. We have sometimes data not from
all Member States. Therefore we have to be inventive and come up with flash estimates (not
foreca sts, but co incid ent or leading in dicators). Here again the to ol s to b e use d a re th e very
same that can be used for forecasting and extrapolation.

Official statisticians at Eurostat have therefore a strong interest in what kind of tools are
currently discussed, developed, tested and used. Closer ties with the scientific community in
general and the business cycle analysis community in particular are very helpful, as Eurostat
entered only recently into the business of business cycle statistics with its Eurozone indicators.
Let us therefore hope for more such colloquia in the future, as both the scientific community
and official statisticians can only profit from it.



Eurostat Colloquium

Modern Tools For Business Cycle Analysis

Luxembourg, 28 and 29 November 2002

STATISTICAL METHODS FOR BUSINESS CYCLE ANALYSIS

By Gian Luigi Mazzi and Giovanni Savio

Statistical Office of the European Communities, Eurostat1

1 Introduction

For a long time period business cycle analysis has been considered the most em-
pirical part of economics. In effect, being free of any specific economic theory has been the
leitmotiv of the researches conducted in this field since the advent of the economic barometers
developed by Persons (1919) within the Harvard Committee of Economic Research at Harvard
University. The atheoretical philosophy has been successively strenghtened in the pioneering
works of Burns, Mitchell and their colleagues at the NBER. The empirical characterization
of the inductivist approach has also influenced the way in which the economic analyses were
carried out for some decades, as only elementary statistical techniques were used, and a central
role was played by individual judgment.

The situation gradually started changing from the end of the ’70s onwards. On one side, real
business cycle theories have created new links between economic theory and business cycle
analyses. On the other side, various studies have successfully formalized in a statistical frame-
work the approaches commonly used for business cycle studies. In the meantime, statisticians
and econometricians have improved business cycle analyses by either introducing more sophis-
ticated techniques (Stock and Watson (1991), Hamilton (1989)), or by using less traditional
definitions of key concepts, such as trends and cycles (Beveridge and Nelson (1981), Vahid and
Engle (1993)).

Thanks to all these changes several important improvements have been achieved so far, amongst
them: a stochastic generalization of key concepts such as trends, cycles and turning points; a
more robust estimation framework of classically defined trends and cycles due to the use of
sophisticated filtering techniques; a well defined set of algorithms - both parametric and non-
parametric - to date, detect and forecast turning points.

1Unit C6, Statistical indicators for the Euro zone. Address: Bech Building, 5, rue A. Weicker, L-2920
Luxembourg. E-mail: gianluigi.mazzi@cec.eu.int and giovanni.savio@cec.eu.int.
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In this pages we propose a general overview of such improvements by giving key-readings
and syntheses of the papers presented at the Colloquium on Modern Tools for Business Cycle
Analysis, organized by Eurostat in Luxemburg on November 2002. As such, our introduction
does not claim to be exhaustive at all. It touches specific fields - those discussed during the
Colloquium - located at the frontier of business cycle analysis and on which the theoretical and
empirical debate is still open.

The scheme of this paper closely follows the contents of the sessions organized during the
Colloquium. Section 2 analyses developments in detrending techniques. Section 3 presents
an assessment of recent researches in turning points dating and detection. Section 4 discusses
contributions on convergence and synchronization of economic movements. Section 5 deals with
the use of multivariate techniques. Section 6 briefly concludes.

2 Detrending techniques

Growth or deviation cycles (and the corresponding concept of output gap) are often considered
as key variables for economists and policy makers, especially in the definition of monetary
policies aimed at controlling the inflation rate. Unfortunately, the sensibility of growth cycle
estimates to detrending techniques and their instability for current periods can considerably
reduce their relevance for practical purposes. For example, the recent literature has focused
the attention on the causes of such instabilities as well as on their relative importance in
explaining biases in preliminary estimates (see, e.g., Orphanides and van Norden (2002)). In
the same respect, the results of many studies have shown that multivariate decomposition
approaches can outperform univariate models in terms of reliability, revision properties, and
inflation forecasts. Multivariate decomposition approaches have as their main rationale that
adding economic content to the estimations can improve the trend-cycle decomposition through
a better disentanglement of supply and demand shocks. Then, it has become quite common
to encounter extensions of the literature allowing for the inclusion in estimated models of a
Phillips’ curve, the Nairu or the Okun’s law.

The paper “The impact of the macroeconomic hypothesis on the estimation of the output
gap using a multivariate Hodrick-Prescott filter: the case of the Euro area” by Odile Chagny
and Mathieu Lemoine analyses - through state-space techniques - the impacts of integrating
alternative macroeconomic hypotheses on the estimation of the output gap of the Euro zone
using some multivariate extensions of the Hodrick-Prescott’s filter (see Laxton and Tetlow
(1992)). In line with previous researches, the authors find that integrating macroeconomic
information can in some specific periods significantly modify the appreciation of the output
gap level of the Euro zone given by the univariate Hodrick-Prescott filter. Furthermore, the
assessment of both the reliability of the alternative output gaps and of the revision properties
shows a substantial superiority of models based on the capacity utilization rate over the other
models.

The use of dynamic factor analysis and dynamic principal component techniques to synthesize
large data-sets and to extract common elements from them is very well-known and developed
in econometrics. Nevertheless, many of these methods - especially those using state space
model estimated with maximum likelihood - become soon not practical when the dimension
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of the model increases too much. In his paper “Modelling core inflation for the UK using a
new dynamic factor estimation method and a large disaggregated price index dataset” George
Kapetanios discusses an alternative method for estimating factors derived from a factor state-
space model. His model has the following advantages: it has a clear dynamic interpretation,
it does not require iterative estimation techniques, and it can accommodate cases where the
number of variables exceeds the number of observations.. Further, as the factor analysis is
carried out by the author within a general model, forecasting is easier to carry out than in the
currently available procedures, where a forecasting model needs to be specified. Kapetanios,
after discussion of the merits of the proposed approach, presents an application of the suggested
method to the extraction of core inflation and forecasting of UK inflation in the recent past.
The measure of core inflation obtained is shown to have predictive ability for inflation in the
UK over a relatively long evaluation period.

Torben Mark Pedersen, in his paper “Alternative linear and non-linear detrending techniques:
a comparative analysis based on Euro-zone data”, compares the distortionary effect of various
filters proposed by the literature using quarterly real GDP for the EU, the Euro-zone, and a
number of EU countries. His measurements are based on the ad hoc assumption that the ‘true’
business cycle filter is an ideal high-pass filter, or an ideal band-pass filter for a band of frequen-
cies which is determined after measuring the duration of growth cycles or the business cycle
component. Unfortunately, the author does not find general results about the distortionary
effect of the examined filters, but he shows that biases are in many cases substantial, that these
depend on the time series being filtered, and that different filters may be optimal for different
countries or different time series.

3 Turning points detection

The identification of turning points is at the the centre of almost all business cycle analyses.
Since the publication of the pioneering book of Burns andMitchell (1946), a particular attention
has been paid by business cycle researchers to the definition of turning points, to their location
in the past (dating of turning points), to their real time identification (detection), as well as to
their anticipation (use of leading cyclical indicators). Though the classical definition of cycles
and the assessment of turning points proposed by Burns and Mitchell (1946) still remain the
most commonly used, alternative definitions of turning points based either on growth cycles,
on acceleration cycles, or on the so-called recovery cycles, have been developed by the recent
literature. In particular, due to the length of cycles observed during the last years, there is an
increasing attention of economists and policy makers to turning points observed on the growth
cycles, namely on the shifts between acceleration and deceleration phases.

Concerning the methodology, two main approaches have been developed. The first is based on
non-parametric techniques, and has its roots in the algorithm developed by Bry and Boschan
(1971). The second is mainly founded on non-linear parametric techniques, such as switching-
Markov models, or threshold models. These approaches try to replicate the results obtained by
the NBER dating committee and other dating committees around the world. Usually, classical
and growth cycle approaches are considered as distinct alternatives for business cycle analysis.

In their paper entitled “A comparative assessment of parametric and non-parametric turning
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points detection methods: the case of the Euro-zone economy”, Jacques Anas and Laurent
Ferrara present their integrated approach to turning points identification based simultaneously
on classical, growth and acceleration cycles. A theoretical sequence of turning points based on
3 cycles is presented and a clear interpretation is given. Moreover, authors provide a general
assessment of both parametric and non-parametric methods, and give practical recommenda-
tions on which of the two approaches is likely to give better results in dating and detecting
contexts.

The main features and characteristics of non-parametric turning points methods are presented
in the paper by Donald Harding “Non-parametric turning point detection, dating rules and the
construction of the Euro-zone chronology”, with an interesting comparison with parametric
ones, where - following Harding - it is common to equate decisive changes with regime changes
as in the case of the Markov-switching (MS) models. What constitutes a decisive change in
the series, therefore a turning point, is the key issue to be resolved prior to formalizing and
implementing a definition of turning points. Harding starts in presenting three markers that
are based on successively weaker notions of what constitutes a ‘decisive change’, and formal-
izes them into non-parametric procedures for locating turning points. Then, he applies these
procedures to construct GDP-based business cycle chronologies for several European economies
and the Euro zone as a whole. Once turning points have been located in several series, it is of
interest to investigate whether there exists a common cycle and to study the synchronization
between the common cycle and the specific cycles from which it was constructed. A method for
aggregating turning points is discussed and then applied to European data to obtain an Euro
zone reference cycle. The common cycle located by aggregating turning points is compared
with the common cycle located in the aggregate of Euro zone GDP.

Opposite theoretical and empirical results are found by Hans Martin Krolzig in the paper
entitled “Constructing turning point chronologies with Markov—switching vector autoregressive
models: the Euro—zone business cycle”. The proposed approach is based on the MS time series
model originally formulated by Hamilton (1989) and generalized to a MS vector autoregressive
model, which is used for the modelling and dating of the Euro zone business cycle. The
parametric approach for the constructing the turning point chronology consists of the following
phases: (i) modelling the Euro zone business cycle as a single common factor generated by a
hidden Markov chain; (ii) fitting a congruent statistical model to the data, (iii) deriving the
conditional probabilities of the regimes; (iv) classifying each point in time to the regime with
the highest probability; (v) dating the turning points of the business cycle. The MS-VAR also
provides measures of uncertainty associated with the turning point chronology, facilitates real-
time detection of business cycle transitions, and offers a well-developed theory for the prediction
of the business cycle. In the empirical part, the MS-VAR approach is applied to three multi-
country data sets consisting of real GDP and industrial production growth rates for the Euro
zone.

4 Cyclical convergence and forecasting

Convergence and synchronization are at the core of Burns and Mitchell (1946, pg. 3) definition
of business cycles:
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Business cycles are a type of fluctuations found in the aggregate economic activ-
ity of nations . . . : a cycle consists of expansions occurring at about the same time
in many economic activities, followed by similarly general recessions, contractions,
and revivals which merge into the expansion phase of the next cycle.

Then, a clear relationship in terms of synchronization among different economic series is re-
quired. Moreover, business cycles are defined as fluctuations of a latent series synthesizing
the evolution of many series: individual cycles observed in many series should converge to a
common unobserved cycle.

These concepts have been developed during the last twenty years in several methodologi-
cal frameworks, particularly: geographical convergence (Barro and Sala-i-Martin (1992)); co-
integration (Engle and Granger (1987)); common features and cycles (Vahid and Engle (1993));
static/dynamic factor analysis (Stock and Watson (1991)); structural time series models (Har-
vey (1989)). In empirical works, a number of papers have used these techniques in order to test
for convergence and to investigate on the existence of commonalities among trends and cycles
of EU countries. Synchronization/convergence analyses will certainly continue in being a key
issue after future enlargements of the EU.

In their paper “Convergence and cycles in the Euro-zone”, Vasco Carvalho and Andrew Harvey
establish stylized facts about convergence in Euro zone countries both with respect to long-
run income levels and to cycles. Their analysis is based on a new multivariate unobserved
components model in which convergence components, formulated through a second-order error
correction mechanism able to capture temporary disequilibrium, are combined with a common
trend and similar cycles. The results obtained for eleven Euro zone countries indicate the exis-
tence of two convergence clubs, a high income group and a low income group. The multivariate
convergence model is successful in separating trends from cycles and capturing the absolute
convergence in the two groups. The evidence for convergence in the low income group is less
compelling, but the assumption of a single common trend is found to be not unreasonable. The
groups themselves appear to have converged in the relative sense. The implication is that the
average per capita income in the poor group will remain almost 30% below that of the high
group. The cycles in the core high income group show a remarkable coherence in recent years,
with the group standard deviation having fallen dramatically. There is less coherence in the
poor group, though again there is evidence of a movement towards the same cycle as the rich
group in recent years.

Synchronization and convergence can represent a very helpful element to be included in fore-
casting models. The paper by Massimiliano Marcellino “Forecasting monthly macroeconomic
variables for the Euro area” compares the linear, time-varying, and non-linear forecasts for
aggregate monthly Euro zone macroeconomic variables obtained by two alternative aggrega-
tion procedures. The first uses constant aggregation weights, while the second is founded on
time-varying weights. The main result is that for several variables forecasts from linear models
can be substantially improved upon by using nonlinear or time-varying models, a circumstance
of some interest for policy purposes but also - more generally - for empirical macroeconomic
analyses. For example, it suggests that measures of persistence based on linear specifications
can be inappropriate, as well as impulse response functions.
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An interesting analysis on the existence of a common European cycle and on the differences
induced by alternative detrending techniques is contained in the paper “Is there a common
Euro-zone business cycle?” by James Mitchell and Kostas Mouratidis. The authors, using 40
years of monthly industrial production indices data and alternative parametric and nonparamet-
ric univariate measures of the ‘classical’ and ‘growth’ cycles, examine the relationship between
the business cycles of the 12 Euro zone countries and investigate both whether their cycles have
moved ‘closer’ together, and whether they have become more correlated over time. Authors’
findings are that business cycles display different properties and that the degree of correlation
varies according to the measure considered. However, their measures of synchronization be-
tween Euro zone business cycles, namely the average (size-weighted) correlation between them,
exhibits common features across alternative measures of the business cycle. This increased syn-
chronization between Euro-zone business cycles is consistent with the emergence of a ‘common’
Euro zone business cycle. Accompanying this increased correlation, their results indicate that
Euro-zone business cycles have moved ‘closer’ together.

5 Multivariate decomposition methods

The simultaneous modelling of growth and cycle for a large set of series represents a very useful
contribution in the context of business cycle analyses. It gives the opportunity of taking into
account all the likely interactions among variables and gives a more sophisticated and complete
view of the economic behavior. Relevant contributions in this field have been produced, amongst
others, by Laxton and Tetlow (1992) with the multivariate generalization of the Beveridge and
Nelson (1981) decomposition, by Evans and Reichlin (1994) with the multivariate Hodrick and
Prescott (1997) filter, by Harvey (1989) with the multivariate extension of the structural time
series approach, by Blanchard and Quah (1989) with the application of structural VAR models
to business cycle analysis, by Vahid and Engle (1993) in the common trends-common cycles
multivariate decomposition, etc..

A general multivariate model describing the Euro zone behavior is presented by Siem Jan Koop-
man in the paper “The common converging trend-cycle model: estimation, modelling and an
application”. In his model, Koopman includes and test for several constraints among variables,
such as convergence of their long- and short-run movements, as well as their synchronization.
He discusses multivariate time series models based on unobserved components with dynamic
converging properties. Koopman defines convergence in terms of a decrease in dispersion over
time, and models this decrease through mechanisms that allow for gradual reductions in the
ranks of covariance matrices associated with the disturbance vectors driving the unobserved
components of the model. The inclusion of such convergence mechanisms makes the identi-
fication of the various types of convergence possible. The multivariate unobserved common
converging component model is applied to the per-capita GDP for five European countries:
Germany, France, Italy, Spain and the Netherlands.

In the paper “State space decomposition under the hypothesis of non zero correlation between
trend and cycle with an application to the Euro-zone”, Tommaso Proietti discusses several
issues related to trend-cycle decompositions with correlated components of macroeconomic time
series, and illustrates them with reference to the Euro zone and the Italian GDP. In particular,
he addresses the small sample properties of the estimated correlation of the trend and cycle

7



disturbances, and reviews the interpretative issues raised by these decomposition. The nature
of inferences about trends and cycles, with reference to the real time and final estimates, and the
related topic of revision, is considered, along with the relationship with other popular results,
such as the Beveridge and Nelson (1981) decomposition, the Single Source of Error and the
Innovation models. He also looks at the consequences of seasonal adjustment and temporal
aggregation on the empirical evidence for a negative correlation between the disturbances.
Finally, he illustrates that multivariate analysis can provide additional insight on these topics.

6 Conclusions

Sophisticated statistical and econometric methods are nowadays available for business cycle
analysts. These methods can integrate and improve the appreciation of economists on the
current state and future development of the economy. In this context, a more active role of
official statisticians can be sketched out. Official statisticians have traditionally been requested
to do their best to fulfil economists’ needs. In particular, they are asked to provide long and
timely time series in order to achieve both a historical and a real time analysis of economic
movements. Moreover, they are also required to provide transparent and well-documented
seasonally adjusted data which are traditionally at the core of business cycle analyses. Fur-
thermore, thanks to the development of new statistical and econometric techniques, official
statisticians can play a major role in extending scope and coverage of data, and to propose
alternative estimation strategies. For example, they can provide useful inputs to economists
for their analyses, such as reliable and real time estimates of the output gap, turning points,
convergence and synchronization measures.

Then, contributions from official statisticians will be interpreted and validated by economists
in order to produce a reliable assessment of the cyclical situation of the economy. A solid
cooperation between official statisticians and economists will probably lead to a more robust
framework for business cycle analyses. The expected result of such cooperation could be a more
reliable and transparent set of indicators to be supplied to policy and decision makers in order
to help them in the definition of current policy strategies.
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Luxembourg, 28 and 29 November 2002
Session on “Detrending Techniques”

THE IMPACT OF THE MACROECONOMIC HYPOTHESIS ON THE
ESTIMATION OF THE OUTPUT GAP USING A MULTIVARIATE
HODRICK-PRESCOTT FILTER: THE CASE OF THE EURO AREA

By Odile Chagny and Matthieu Lemoine

OFCE, Département Analyse et Prévision

The paper proposes to apply the multivariate Hodrick-Prescott (HPMV) filter to the es-

timation of the Euro area output gap. It investigates specifically the impact of using

alternative economic relationships on the output gap estimates of the Euro area. The

comparison with the univariate HP filter shows that this can significantly modify the ap-

preciation of the output gap level of the Euro area in some specific periods. The paper

proposes also to estimate the HPMV models with the methodology adopted for the es-

timation of state-space models. This strategy provides an alternative to the calibration

of the parameters and allows to assess the reliability of the HPMV output gap estimates.

Estimated weights associated to the economic relationships in the optimisation program

of the HPMV are generally coherent with the calibrated values usually retained in the

literature. The assessment of the reliability of the alternative output gaps and of the

revision properties shows a substantial superiority of some HPMV models over the uni-

variate HP filter. Finally, integrating macro-economic information improves generally the

accuracy of the inflation forecasts.
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1 Introduction

The concepts of potential GDP and output gap are widely used in macroeconomics
even though their definition and estimation raise a number of theoretical and empirical ques-
tions, which reflect the ongoing controversy over the causes of economic fluctuations. Indeed,
since the seminal contribution of Nelson and Plosser (1982) suggesting that output series are
better described as integrated stochastic processes, measuring the permanent component of
output, e.g. potential output, with any degree of accuracy has proved to be difficult.

An output gap is defined as the difference between - unobservable - potential and actual GDP.
The precise understanding of the output gap concept therefore requires a precise definition of
potential output. Potential output is commonly defined as the ”maximum output an economy
can sustain without generating a rise in inflation” (De Masi, 1997) or equivalently as the level of
the output consistent with a stable inflation rate given the productivity shock of capital. Hence,
a level of real output above potential output, i.e. a sustained positive output gap, indicates
demand pressures and signals to the monetary authority that inflation pressures are increasing
and that policy tightening may be required. This implies, in turn, that an accurate measure of
potential output presents an important challenge to policy makers. In this respect, since the
contribution of Okun (1962), numerous methodologies have been proposed in the literature.

One approach consists of using non-structural univariate methods, which separate a time series
into a permanent and a cyclical component. In this context, one may distinguish between
deterministic detrending, mechanical filters and unobserved components models. A first ap-
proach includes standard linear, phase average or robust detrending estimations of potential
output. Such methods are obviously overly simplistic and do not capture the overall data gen-
erating process. A second methodology uses mechanical filters such as the Hodrick-Prescott
(HP) filter or the band-pass filter developed by Baxter and King (1995). Nevertheless, the
limits of such filters are now well-known. A third methodology assumes that output contains
an unobserved component and a temporary component consisting of a random walk with drift
and a stationary autoregressive process. However, Quah (1992) has shown that “without ad-
ditional ad hoc restrictions those (univariate) characterisations are completely uninformative
for the relative importance of the underlying permanent and transitory components”. Another
strategy for identifying the potential output involves non-statistical structural methods. In this
case, the detrending method relies on a specific economic theory as for instance, the production
function-based approach. This has the advantage of identifying explicitly the sources of growth,
but raises a number of issues, such as the choice of an appropriate production function or the
measurement of unobservable variables (total factor productivity).

Partly in response to criticisms of the previous methodologies, a variety of multivariate method-
ologies have been proposed as an alternative. The main rationale behind these methodologies
is that adding economic content can improve the trend-cycle decomposition, through a better
disentanglement of supply and demand shocks. In this paper, we restrict our attention to one of
these methods, the multivariate Hodrick-Prescott filter (HPMV). This filter is a middle ground
between univariate statistical methods and full, simultaneous estimations of potential output
and consists merely of using additional economic relationships and/or terminal constraints in
the HP maximisation program. This paper proposes to apply the HPMV to the estimation of
the euro area output gap. It investigates the impact of using alternative economic relationships
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on the measure of the output gap of the euro area and compares the estimates with the output
gap obtained with the univariate HP filter. It proposes to estimate the various HPMV models
with the methodology adopted for the estimation of state-space models. This strategy allows to
propose an alternative to the calibration of the parameters and to obtain confidence intervals
for the output gap.

The paper is organised as follows. The second Section explains the main features of the HPMV
filter. The third Section presents the estimation methodology. The models chosen for the
estimation of the Euro area output gap are presented in a first part. The estimation procedure
is explained in a second part. The fourth Section presents the empirical results of the application
of the HPMV models to the estimation of the euro area output gap. The first part presents
the data set. The second part analyses the main properties of the output gap estimates. The
third part assesses the results on the basis on different criteria (standard error of the output
gaps, comparison of quasi real time estimates with two sided estimates, predictive power of
the output gap estimates relative to inflation). The fourth part analyses the impact of using
alternative weights for the economic relationships. The fifth part concludes.

2 General description of the HPMV filter

2.1 The minimisation program

The multivariate Hodrick-Prescott filter was firstly developed by Laxton and Tetlow (Laxton
and Tetlow, 1992). It is formally an extension of the optimisation problem that defines the HP
filter. In the univariate version of the HP filter the trend output is the solution of a program that
minimises the variance of the cyclical component subject to a smoothness constraint penalising
the variations in second difference of the growth rate of the trend:

y∗t=1:T = argmin(
TX
t=1

(yt − y∗t )
2 + λ

T−1X
t=2

£¡
y∗t+1 − y∗t

¢− ¡y∗t − y∗t−1
¢¤

2), λ > 0 (1)

where yt is the output, y
∗
t is the trend output, λ is the smoothness parameter. The greater is

λ, the greater is the proportion of the changes in the series attributed by the filter to demand
shocks; the smaller is λ, the greater is the proportion of the series attributed by the filter to
supply shocks. The standard value of λ is 1600 for quarterly data. King and Rebello (1993) show
that the optimal value of λ is a function of the ratio of demand and supply shocks σ2(yt−y∗t )/σ

2

∆2y∗t
.

The problem is however that there is considerable uncertainty about the relative proportion of
demand and supply shocks and hence about the optimal value of λ. Moreover, as the HP filter
with a standard value of 1600 attributes ”any dramatic change in the series to both supply and
demand influence” (Laxton and Tetlow, 1992), it will have difficulties to distinguish between
persistent demand shocks and supply shocks, as the only identifiable difference between them
for a univariate filter is that the former have permanent effects, while the latter have only
temporary effects.

The HP filter is a two sided filter in the middle of the sample, but becomes one-sided at the
end of the sample. Consequently, the problem of accurately distinguishing between supply and
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demand shocks is increased near the end of the sample period. As future data is not available,
the filter is less reluctant to consider that a transitory shock will revert and hence will produce
unstable trend estimations.

The HPMV addresses these issues in three ways. The first is to incorporate additional economic
information about excess supply or excess demand. The second is to give more flexibility to the
decomposition between supply and demand shocks via allowing the weights of the smoothing
parameters to take different values over time. The third is to introduce additional constraints,
aimed at improving the end of sample properties of the univariate HP filter.

A general representation of the HPMV program is:

y∗t=1:T = argmin (
PT

t=1 (yt − y∗t )
2

+λ
PT−1

t=2

£¡
y∗t+1 − y∗t

¢− ¡y∗t − y∗t−1
¢¤

2

+
Pn

i=1

PT
t=1 µ

i
t(ε

i
t)
2 +

Pm
j=1

PT
t=1 γ

j
t(AD

j
t )
2)

(2)

where yt is output , y
∗
t is trend output, λ, µ

i
t and γjt are the positive weights associated to

the different objectives, εit are the residuals of the i = 1 to n economic relationships linking
the output gap or the trend itself to other economic variables and ADj

t are the additional
constraints. The trend is hence chosen to simultaneously minimise the deviations of output from
trend, the changes in the trend growth rate, fitting best the n economic structural relationships,
conditional to j additional constraints.

As in the univariate version of the filter, the trend-cycle decomposition provided by the HPMV
assumes that the output is a white noise, that the growth rate of the trend is a random walk
(the output is hence I(2)), and that innovations to the cycle and the trend are orthogonal. The
economic relationships amend the univariate filter as they integrate additional information to
the trend-output decomposition.

2.2 Description of the additional objectives

The choice of the economic relationships is above all motivated by their information content with
regard to excess supply or excess demand in the economy. The relationships most frequently
found in the literature are the inflation-output relation (3), the Okun’s law (4) and the capacity
utilisation equation (5).

The inflation equation accounts for the view that potential output is defined as the maximum
level of output that can be produced without creating inflation pressures.

The Okun’s law accounts for the fact that labour market conditions contains valuable informa-
tion about desiquilibrium in the goods and service market.

Finally, the use of the capacity utilisation rate provided by surveys accounts for the idea that
the potential output is in the short run limited by the capital stock available in the economy.

Πt = Πe
t + a (L) (yt − y∗t ) +

nX
i=1

Φπ
i (L)X

π
i,t + επ,t, (3)
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where Πt is the inflation, Π
e
t the anticipated inflation, X

π
i,t−1 are additional variables explaining

the inflation.

UNRt − UNR∗t = b(L)
¡
UNRt−1 − UNR∗t−1

¢
+ c(L) (yt − y∗t )+Pm

j=1Φ
u
j (L)X

u
j,t + εu,t,

(4)

where UNRt is the unemployment rate, UNR∗t is the equilibrium unemployment rate, X
u
j,t are

additional variables explaining the unemployment gap.

CAPt − CAP ∗t = d(L)
¡
CAPt−1 − CAP ∗t−1

¢
+ e(L) (yt − y∗t ) + εcap,t, (5)

where CAPt is the capacity utilisation rate provided by surveys and CAP ∗t the equilibrium
value of the capacity utilisation rate.

Equilibrium values of unemployment and capacity utilisation are exogenous. The amount of
structural relationships integrated into the filter and their specification depends on the judgment
or the objectives of the researchers. In the original version of the HPMV (Laxton and Tetlow
1992), two economic relations were integrated (the inflation equation and the Okun’s law).
Conway and Hunt (1997) and de Brouwer (1998) add the capacity utilisation rate equation.
Haltmaier (1996) incorporates the inflation equation only, whereas Côté and Hostland (1993)
integrate three different measures of inflation, along with an unemployment equation. In most
of the specifications of the inflation equation, anticipated inflation is approximated combining
lagged values of inflation and the relation is linear and symmetric1.

The additional variables in the inflation equation account for the idea that temporary shocks
do not affect the potential output. Such variables can be found in Haltmaier (1996) and in Côté
and Hostland (1993). With regard to the Okun’s law, the alternative specifications account for
different views about the relative adjustments of labour and goods markets. Deviations between
output and its potential value is for instance assumed to follow deviations on the labour market
after four quarters in Conway and Hunt (1997), whereas Laxton and Tetlow (1992) assume that
labour market disequilibrium adjust slowly to the goods market disequilibrium.

The idea of allowing weights to take different values over time to accounts for the researcher’s
judgement of supply and demand shocks for specific periods was introduced by Laxton and
Tetlow (1992), whereas the idea to integrate additional restrictions to the HPMV aimed at
improving the end of sample properties of the filter was first proposed by Butler (1996). The
first additional restriction proposed by Butler (1996) is a steady-state condition regarding the
end-of-sample estimates. To this end, an additional term is integrated in the minimisation
program that penalises the variations of the trend component or the difference between the
growth rate of the trend and a steady state growth rate. The second additional constraint
proposed by Butler (1996) is a recursive updating restriction, that penalises the deviation
between the trend and its previous quarter’s estimate. Whereas the first restriction intends to
prevent large, quarter-over-quarter revisions to the trend at the end of the sample, the second
restriction intends to prevent large revisions to the level of the trend with the arrival of new
data (Butler, 1996).

1However, expected inflation is modelled as an average of survey/expert’s forecasts and of past inflation
in Conway and Hunt (1997) and in Butler (1996), and the inflation equation is asymmetric in Butler (1996),
accounting for the view that the cost of reducing inflation may be higher than the benefits of an excess demand.
In both cases, these choices reflect the wish to estimate potential output consistent with the macro-economic
models they are used in conjunction with.
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2.3 Key implementation problems

Two key problems arise for the implementation of the filter. The first is that the estimation of
the structural equations requires to know the potential value of one or more macro-economic
variables, whereas the optimisation programme depends itself on the estimated residuals of
these economic relationships.

The second problem is the determination of the weights λ, µit (i = 1 to n) associated to the
different objectives of the filter. Both problems are correlated, as the value of potential output
depends itself on the weights.

2.3.1 Calibration versus estimation of the parameters of the structural equations

Different solutions to the circularity problem are available in the literature.

Recursive procedure A first - and widely used - possibility is to use an iterative estimation
procedure. An initial estimate of the potential is computed using an univariate HP filter and
integrated in the economic relations. Residuals of the structural relations are then integrated in
a second step into the optimisation program of the HPMV, etc. But in many cases, structural
relations are partially or totally calibrated, using either well-established empirical studies or in
coherence with macro-economic models2. Moreover, although the optimisation program can be
generalised to produce the potential values of the other economic variables intervening in the
structural equations3, many empirical studies use exogenous estimates of these variables4. This
estimation procedure presents some shortcomings. It is not straightforward, as many iterations
are necessary5. It does not provide confidence intervals for the trend output. Finally, the
quality of the fit of the economic relationship is not guaranteed, as they are mostly calibrated.

Kalman filter procedure Recent applications of the Kalman filter techniques provide some
alternatives to overcome the difficulties of the procedure described above. Harvey (1985) ex-
plains how to reproduce the univariate HP filter with the Kalman filter. Estimating the NAIRU
for France and the United-States, Boone (2000) extends this work to reproduce the HPMV with
a Kalman filter6. This estimation procedure allows a joint estimate of the parameters of the
inflation equation and the NAIRU and also provides confidence intervals for trend output. For
these reasons, we have decided to use such a procedure for the estimation.

2Conway and Hunt (1997) constraint all coefficients of both the Okun’s law and the capacity utilisation
equation and estimate only the coefficients of the inflation equation. In contrast, Butler (1996) calibrates all
structural equations, whereas all coefficients are estimated in Laxton and Tetlow (1992) , Haltmaier (1996) and
de Brouwer (1998).

3See Haltmaier (1996).
4Laxton and Tetlow (1992) estimate the NAIRU using a multivariate HP filter, whereas Conway and Hunt

(1997) use an univariate HP filter for the estimation of the NAIRU and the average value over the sample
period for the capacity utilisation rate (allowing for a break in the series). De Brouwer (1998) assumes that the
NAIRU stems from a structural estimation, which leads persistent and substantial unemployment gaps.

5For instance, 250 iterations are necessary in de Brouwer (1998).
6For recent applications, see also Lemoine and Pelgrin (2002).
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2.3.2 Choosing the weights

The determination of the weights involves the choice of the smoothing parameter λ, the choice
of the weights of the economic relationships, and the stability of the weights over time. In
most empirical studies, the value of the smoothing parameter λ is fixed at its conventional
value (1600 in the case of quarterly data)7, imposing an a priori assessment on the relative
smoothness of the trend and the cycle.

The determination of the weights of the economic relationships is identified as one of the key
questions in implementing the HPMV and has received no clear and definitive answer. One
solution attempted is to test alternative weighting and to see how sensitive the results are
to these choices8. An alternative9 is to link the weights of the economic relations to their
uncertainty. In many cases, the decision rules are however more or less arbitrary10, even with
Kalman filter procedures. The same conclusions can be drawn for the choice of the weights
associated to the additional constraints11. The strategy adopted here has been to endogenize
the determination of the weights of the economic relationships in the HPMV optimisation
program, using their estimated variances.

3 Estimation methodology

3.1 The models chosen for the estimation of the euro area output
gap

In this paper, we concentrate on the impact of integrating alternative macroeconomic hypothe-
ses on the estimation of the output gap of the euro area. The HPMV framework.developed here
incorporates hence no additional constraints and weights are assumed to be time invariant.

Seven models have been estimated. The first model is the univariate HP filter. The second
model, named HP-P, incorporates an inflation equation (6):

Πt = α1Πt−1 + α2Πt−2 + α3Πt−3 + απ

¡
yt−1 − y∗t−1

¢
+ γ1St−1 + γ2St−2 + επ,t (6)

7A noticeable exception is Côté and Hostland (1993). Their statistical methodology is indeed to choose the
value of the smoothing parameter λ that maximizes the likelihood of their system of structural equations. To
this end, values of λ ranging from 10 to 100 000 are tested. They find that the values are sensitive to the sample
period and that the results are sensitive to the specification of the structural equations.

8This approach is used by Laxton and Tetlow (1992) (essentially through dropping one economic relation)
and Haltmaier (1996).

9This approach is mentioned by Laxton and Tetlow (1992), tested by Butler (1996) and used by De Brouwer
(1998). In the latter, the sum of the squared residuals for each of the conditioning equations is weighted by its
size relative to the sum of squared residuals of the output gap from the previous iteration and weights change
at each iteration.
10Haltmaier (1996) compares for instance the impact of different weights on the fit of the inflation equation

and the standard deviation of the output gap, but admits that this criteria is not well grounded.
11In the Butler model, the weights put on the additional constraints are fixed at the positive value 64 for the

final 15 quarters of the sample, and are at the value zero otherwise. A steady- state growth rate restriction is
also found in Conway and Hunt (1997). The weights are fixed to one, except for the last quarter, where the
value is zero.
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where Πt is the inflation, measured as the quarterly growth rate of the consumer price index,
St is the relative import price growth rate, measured as the difference between the quarterly
growth rate of the goods and services deflator index and the quarterly growth rate of the
consumer price index. The choice of a relative price index has been motivated by the idea that
supply shocks entering the inflation equation are assumed to revert to zero in the long run. In
order to ensure that the inflation equation is in the long run specified in acceleration, the sum of
the coefficients α1 to α3 has been constrained to 1. Different lags for the output gap have been
tested, but in most of the estimated models, the output gap showed the highest explanatory
power at lag 1 and first difference of the output gap was found not significant.

The third model, named HP-P-CAP, incorporates the inflation equation and a capacity utili-
sation equation specified as follows:

CAPt − CAP ∗t = αcap (yt − y∗t ) + εcap,t, (7)

where CAP ∗t has been estimated as the linear trend of the capacity utilisation rate, accounting
for the view of possible structural changes in the trend level of the capacity utilisation rate in
the euro area.

The fourth and the fifth models, named HP-P-OK1 and HP-P-OK2, incorporate the inflation
equation and an Okuns’ law specified as follows:

UNRt − UNR∗t = αunr

¡
yt−1 − y∗t−1

¢
+ εu,t, (8)

where two alternative exogenous measures of UNR∗ have been used (an univariate HP trend
and a time-varying Nairu (see below for a more detailed description of the TV Nairu).

The sixth and the seventh models, named HP-P-OK1-CAP and HP-P-OK2-CAP, incorporate
three economic relationships : the inflation equation, the Okun’s law and the capacity utilisation
equation. The model HP-P-OK1-CAP uses as exogenous UNR∗ the TV Nairu, whereas the
model HP-P-OK2-CAP uses as exogenous UNR∗ the trend unemployment provided by an
univariate HP filter.

3.2 Estimation procedure

The estimation procedure for the general HPMV filter consists firstly in rewriting the min-
imisation program of the HPMV filter in a state-space form. The state-space form of the
general HPMV filter with inflation (Π), unemployment rate (UNR) and capacity utilisation
rate (CAP ) can be written 12 as follows:½

SVt = A.SVt−1 + Ut

MVt = B.SVt + C.EVt + Vt

(state equation)
(measurement equation)

(9)

with U ∼ NID(0, Q), V ∼ NID(0, R), Cov(U, V ) = 013 and with:

12Numbers of lags for inflation, output gap and exogenous variables have been fixed with usual t-statistics
and AIC criteria.
13A covariance equal to 0 corresponds to the classical assumption that the state-space model is formulated in

its canonical form.
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• the state vector: SVt = (Y ∗t , Y ∗t−1, gapt, gapt−1)0

• the measurement vector: MVt = (Yt,Πt, UNRt, CAPt)
0

• the exogenous vector: EVt = (Πt−1,Πt−2,Πt−3, St−1, St−2, UNR∗t , CAP
∗
t )
0

and matrices

A =


2 −1 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , B =


1 0 1 0
0 0 0 απ

0 0 0 αunr

0 0 αcap 0

 ,

C =


0 0 0 0 0 0 0
α1 α2 α3 γ1 γ2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ,

Ut =


ε∆∆y∗,t
0

εgap,t
0

 , Vt =


0
επ,t
εunr,t
εcap,t



(10)

In the state-space framework presented here, the calibration of the parameter λ and of the
weights µi associated to the economic relationships consists in fixing the following variance
ratios:

λ = σ2gap/σ
2
∆∆y∗, kπ = σ2gap/σ

2
π, kunr = σ2gap/σ

2
unr, kcap = σ2gap/σ

2
cap

However, if we except λ14, which has been imposed here at its conventional value of 1600,
these ratios can be estimated in the state-space framework, which allows to compare the results
obtained with these estimated ratios with the results obtained with the usual values found in
the literature.

In a second step, the state variables (Y ∗t , gapt) and parameters¡
απ, αunr, αcap, α1, α2, α3, γ1, γ2, σ

2
∆∆y∗, σ

2
π, σ

2
unr, σ

2
cap

¢
are estimated with state-space estimation techniques, i.e. the Kalman and EM algorithms
described in appendices 6.1 and 6.2.15 The EM algorithm is an iterative algorithm designed to
provide maximum likelihood estimates of the parameters. Each step of the EM algorithm is itself
decomposed into two steps that update estimates of state variables and parameters, conditional
to each other. The update of the state variables conditional to parameters is implemented with
a Kalman filter, whereas the update of parameters conditional to state variables is obtained by
the maximisation of the conditional likelihood. These two steps are repeated untill convergence
towards the maximum likelihood estimates is reached.

However, the implementation of the algorithms requires to face two problems. At each step of
the EM algorithm, the Kalman filter has to be initialised with appropriate initial values and

14If the cycle is specified as a white noise, λ has to be fixed to 1600 for quarterly data. Indeed, this parameter
would be estimated to 0, when such a constraint is relaxed. A correct estimation of this variance ratio would
require a correct AR(2) specification of the cycle and the model would exit from the HPMV framework.
15For a comprehensive presentation of the estimation of state-space models, see Harvey (1989), Durbin and

Koopman (2001).
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variances of the state variables. As the global EM algorithm for maximising the likelihood
can be trapped in local minima, a priori knowledge of parameters’ distribution has to be
used. These a priori values are incorporated in the initialisation of the algorithm to help its
convergence. The following strategy has been adopted here:

• Initialisiation of the Kalman filters: initial possible values and variance of the output
gap have been taken from the univariate HP filter. As the trend and the lagged trend
are integrated, few a priori are available on their location and a diffuse initialisation is
necessary16. Initial trend values have been estimated with the univariate HP filter and
an arbitrary high value has been chosen for their variance.

• EM initialisation: elasticities and residual variances have been initialised by pre-estimating
equations (6), (8) and (7) with the univariate HP output gap.

Together with the descriptive statistics of estimated output gaps, state-space models allow
to compute various interesting statistics. Confidence bands around the output gap can be
measured taking into account ”filter” and ”parameter” uncertainty, following Hamilton (1986)
procedure (Appendix 6.3).

Given the well-known end-of-sample problems of the univariate HP filter, output gap revisions
should also be considered. Following Orphanides and Van Norden (1999) typology, state-space
models allow to compute ”quasi-real time”, ”quasi-final” and ”final” output gap estimates.
The quasi-real time estimates use subsamples of final data17. Quasi-final (filtered) estimates are
based on sub-samples estimates of the state variables, conditional to the full sample parameters
estimates. Lastly, the final (smoothed) estimates use the full sample for the estimation of
parameters and state variables. The difference between quasi-final and quasi-real series reflects
the importance of the parameter instability in the underlying state-space model, while the
difference between quasi-final and final series reflects the importance of ex post information in
estimating the output gap.

Finally, as HPMV models combine output gap and inflation dynamics, estimated state-space
models provide forecasts of inflation, conditional to output gap estimates. The comparison of
the predictive accuracy of HPMV output gap estimates with benchmark forecasts can hence
be tested with Diebold-Mariano tests (Appendix 6.4 for a description of the test).

4 Application to the Euro area

4.1 Data set

Estimations are made for the Euro area 12. The estimation period covers the years 1980 to
2000 and is made on a quarterly basis. The choice of this estimation period has been mainly
motivated by the wish to use ESA95 GDP data for most of the countries.

16Diffuse initialisation of non-sationary variables is presented and explained in Durbin and Koopman (2001).
17They do not account for data revisions, as would be the case with real time estimates.
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The following data set has been used. Inflation data use the harmonised price index published
by Eurostat. For the years 1980-1990, they have been backward calculated on the basis of
national price indexes. Seasonal adjustment has been implemented with X12 Arima. The
capacity utilisation rate published by the European Commission has been used from 1992 on.
Earlier data have been backward calculated using data published by the European Commision
for the European union (EU15). The quarterly GDP data (constant prices of 1995) come from
Eurostat National accounts. They have been backward calculated with the National accounts
when necessary. German post reunification data have been linked to the west German National
accounts data, in order to avoid the break of 1991 due to the reunification. Unemployment rate
is the standardized unemployment rate published by Eurostat from 1997 on. Earlier values
come from the data set calculated by Fagan et al. (2001), covering the same twelve countries.
The exogenous Nairu and the import price deflator come from the same data set.

4.2 Main properties of output gap estimates

Four main results emerge from the comparison of the descriptive statistics relative to the
estimated models and output gaps.

Firstly, it appears difficult to obtain a significant impact of the output gap on the inflation in
the bivariate model HP-P, which integrates as additional economic relationship the inflation
equation only (see Table 1a). This is mainly due to the fact that the estimation procedure
chosen here, which consists in estimating all parameters in an integrated framework -instead of
calibrating them-, provides in this specific case output gap estimates which are hardly different
from the univariate HP filter (see Graphs 1 to 6). This result confirms the relative poor
performance of the univariate HP filter to contain information with regard to inflation18. Table
1a highlights hence the advantage of multivariate models, as in all cases the integration of other
additional economic relationships provides better fits of the inflation equation. This is especially
true when - in addition to the inflation equation - the HPMV integrates the capacity utilisation
rate (model HP-P-CAP), or when it links the output gap to an unemployment gap which
incorporates itself some information about inflation pressures, as is the case with the models
HP-P-OK1 and HP-P-OK1, using as exogenous measure of the equilibrium unemployment rate
a TV Nairu estimated within a Gordon (1997) framework19.

Secondly, the results highlight the relative advantage of using a coherent framework for es-
timating all coefficients and variables entering the HPMV filter. This is illustrated by the
comparison of the four models integrating the Okun’s law equation. Models HP-P-OK1 and
HP-P-OK1-CAP use as exogenous variable Nairu estimates obtained with a multivariate un-
observed component model integrating an inflation equation. The Nairu is very smooth, which
leads to very persistent and high unemployment gaps20, as in other empirical studies estimat-
ing HPMV output gaps (see for instance de Brouwer (1998) in the case of Australia). As a
consequence, the estimated output gaps exhibit persistent periods of high excess supply, if one

18See Chagny and Döpke (2001) for an empirical evidence for the euro area, covering the same period of time.
19Unpublished estimates show that estimating the Nairu with an HPMV integrating an inflation equation

would also provide better results than a univariate HP filter based Nairu.
20Over the period 1981-2000, the effective unemployment rate is on average 1.4 percent above the TV Nairu,

whereas the unemployment gap calculated with a univariate filter is on average equal to zero.
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excepts the years 1990-1991 and 200021 . But this result has a counterpart : as a consequence
of the large unemployment gap, the estimated coefficient of the output gap in the Okun’s law
fluctuates around -0.7, a value quite higher than one would expect for an Okun’s coefficient. In
contrast, the HP-P-OK2 and HP-P-OK2-CAP models use similar methodologies for estimating
the Nairu and the output gap, as the Nairu is obtained here with an univariate HP filter. This
leads in average to much lower unemployment gaps, but also to more coherent estimated val-
ues for the Okun’s law coefficient (around -0.3, Table 1a) and to a better fit of this economic
relationship. Integrating the ”researcher’s view” on the equilibrium value of some exogenous
variables might hence have consequences on the reliability of the HPMV estimates.

Thirdly, and letting aside the models HP-P, HP-P-OK1 and HP-P-OK1-CAP described here
above, the analysis of the descriptive statistics concerning the output gaps confirms the results
obtained in other empirical studies. The integration of macroeconomic information within the
HPMV filter can in some specific periods provide quite an ”alternative” information about
the level of the output gap, although the differences with the univariate HP filter are on
average limited22 . All models provide output gaps with higher standard deviation than the
HP univariate filter and, except for the capacity utilisation model, less volatile trends (see
Table 1b). The highest output gap standard deviation is obtained with the capacity utilisation
model (HP-P-CAP), as it partly captures the higher volatility of the industrial activity. All
models show more excess demand at the end of the eighties and more excess supply in the
first half of the nineties. At the end of the eighties, the difference is the most pronounced
for the capacity utilisation rate model, as a consequence of the sustained pressures on the
industrial capacities consecutive among others to the boom caused by the iron curtain fall
on the German economy. The appreciation of the actual output gap level, understood as the
end of sample output gap estimates, differs significantly from one model to another. Models
integrating Okun’s law suggest that a greater part of the recovery of the end of the nineties was
demand induced, which is reflected by a level of the unemployment rate below it’s equilibrium
value and a consequently lower growth rate of potential output (Table 1b). In contrast, the
capacity utilisation based model exhibits less demand excess in 2000 and the highest end of
sample potential output growth rate, reflecting the impact of the investment recovery on the
capacity utilisation rate.

Fourthly, the analysis of the estimated weights provides some explanations for the comparison
of the estimated output gaps and benchmarks for a comparison with other empirical studies. In
most cases, it appears that the estimated weights of the economic relationships are coherent with
the calibrated values retained in most empirical studies (Tables 1c and 1d). The consequences of
using alternative weights on the output gap estimates will be assessed in the fourth part of this
Section. The highest weight for the inflation equation is obtained with the TV Nairu models,
who exhibit both a high volatility of the output gap and a good fit of the inflation equation.
Similar conclusions, although to a lesser extent, can be drawn for the capacity utilisation model
(HP-P-CAP). Finally, the very similar output gap estimates obtained with the models HP-P-
OK2 and HP-P-OK2-CAP are explained by the fact that the estimation procedure gives a very
low weight to the capacity utilisation equation in the latter model.

21Moreover, the unit root test for the output gap is not rejected for these both models, in contrary to all
others models (see table 1b).
22The difference between the absolute value of the models HP-P-CAP, HP-P-OK1, HP-P-OK1-CAP output

gaps and the absolute value of the univariate HP filter output gap amounts on average 33 percent of the standard
deviation of the univariate HP filter output gap.
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4.3 Assessment of output gaps estimates

4.3.1 Uncertainty statistics

Table 2.a directly illustrates the well-known end-of-sample problem of the univariate HP filter.
This filter cannot inform the policy-maker, as the standard errors indicate that the filtered gap
is never significantly different from zero and that standard revisions are very high.23 Although
results become acceptable for the smoothed gap, there is still important uncertainty about the
”true” value of the output gap.24 Univariate HP filters have difficulties to distinguish between
persistent demand shocks and supply shocks, as the only identifiable difference between them
for a univariate filter is that the former have permanent effects, while the latter have only
temporary effects. We might hence expect to improve one-sided results with multivariate filters,
i.e. to better distinguish supply from demand shocks with additional economic information. It
is also of some interest to see whether the addition of exogenous variables can also statistically
improve the accuracy of the output gap estimates. Both issues are explored here25.

The results presented in Table 2.a show that the integration of exogenous variables decreases
the filter uncertainty of the two-sided estimates. The lowest filter uncertainty is obtained for
the multivariate models with Okun’s law. However, models using the TV-Nairu (HP-P-OK1
and HP-P-OK1-CAP) show a higher parameter uncertainty, which leads to increase the global
standard errors relative to the univariate HP filter.

Concerning the one-sided estimates, the comparison of the standard errors shows that all mul-
tivariate models perform better than the univariate HP filter. This is especially the case for
the capacity utilisation model (HP-P-CAP). For multivariate models (except HP-P), all con-
fidence bands widths are lower than the standard deviations. Multivariate filtered gaps are
hence generally significantly different from zero.

Contrary to the univariate HP filter, the standard deviations of revisions of all multivariate
HP models (one sided versus two-sided estimates) are lower than the standard deviations of
the output gaps. The lowest revisions occur with the Okun’s law based models. In conclusion,
the addition of capacity utilisation or Okun’s law allows to better distinguish between supply
and demand shocks, even with filtered estimates. However, these results are downward biased,
as they do not take account of possible revisions of the Nairu estimates. The impact of such
revisions on quasi-real time revisions is analysed in the next part.

4.3.2 Revision statistics

In order to better account for the end of sample properties of the models, ”quasi-real time”
output gaps have been estimated for four models26. This allows to assess the global impact of

23The filtered gap, with a standard deviation of 0.94, has a confidence band of 2*54=1.08 and a standard
revision equal to 1.09.
24The confidence band width, with a value of 0.56, is lower than the standard deviation equal to 0.83.
25Following Hamilton (1986) procedure, these standard errors are decomposed into ”parameter” and ”filter”

uncertainty (Appendix 7.3).
26As quasi-real time estimates of TV-Nairu were not available, models HP-P-OK1 and HP-P-OK1-CAP have

been excuded from this revision study.
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parameters instability and of revisions to the univariate HP Nairu for the models HP-P-OK2
and HP-P-OK2-CAP. Recursive estimations have been implemented from 1997:1 to 2000:3.
Quasi-real time estimates have not been computed before 1997, in order to keep a sufficiently
large sample for the state-space estimation.

Tables 2.b and 2.c provide essentially two types of results (mean and standard deviation of
revisions), which lead to similar interpretations.

Firstly, the output gaps exhibit positive means in quasi-real time and means near to zero in
final time estimates. This is directly related to the recovery of the European economy in the
years 1998-2000. However, this effect is low for the HP-P-CAP model and is particularly strong
for the Okun’s law based models (HP-P-OK2 and HP-P-OK2-CAP).

Secondly, the standard deviations of the revisions are in general higher than for the univariate
HP filter in the case of the Okun’s law based models (indicators NS in Table 2.c). However,
the model HP-P-CAP performs quite well, better than the univariate HP filter : the HP-P-
CAP gap would be estimated in quasi-real time with a better standard deviation than all other
models. The bad relative performance of the Okun’s law based models can be related to the
impact of the Nairu revisions which were not taken into account in the previous part.

4.3.3 Inflation forecasts

All estimated multivariate HP models relate inflation to the lagged output gap. Thus, their
estimated state-space form can provide forecasts of inflation, conditional to the output gap
smoothed estimates.

To assess such inflation forecasts, the best way consists in comparing their Root Mean Squared
Errors (RMSE) with the RMSE of naive forecasts. Diebold-Mariano test (see Appendix 6.4)
allows to compare the predictive accuracy of the HPMV filter and of naive models of inflation.
RMSE, RRMSE, Diebold-Mariano statistics and their associated probability are presented for
all HPMV models in comparison with two naive benchmarks models in Table 2.d.

When the naive benchmark model is a simple random walk model, all HPMV filters estimates
provide inflation forecasts which are significantly improved : except for the HP-P model, the
null hypothesis of equal predictive power is rejected at a 5% threshold.

Auto-regressive models are more difficult to beat. Consequently, the predictive accuracy of
the models is in most cases not significantly different from the predictive accuracy of the
auto-regressive model. The quite good predictive accuracy of the models HP-P-OK1 and HP-
P-OK1-CAP may be due to the fact that information about inflation is already integrated in
the TV-Nairu estimates.

In conclusion, the HMPV estimated output gaps do not exhibit significant inflation predictive
accuracy. This result is probably related to the low weights of the inflation equations. The
impact of alternative weights on the quality of inflation forecast is analysed in the next part.
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4.4 Impact of varying weights

Tables 3.a , 3.b and the Graph 7 provide the main results associated to the use of alternative
weights of the inflation equation in the case of the HP-P model. Increasing the weight of
the inflation equation in the HPMV optimisation program leads to account for more excess
supply during the periods of decelerating inflation (like in the years 1982-1986 and 1992-1996).
Symmetrically, periods of accelerating inflation (like in the years 1988-1991 and 1999-2000) are
associated to more excess demand. This result is caused by the fact that imposing high values
for the weight of the inflation equation leads to a better fit of the inflation equation, associated
to a higher value of the coefficient of the output gap in the equation. This information is
corroborated by better inflation forecasts of the models based on high weights values of the
inflation equation. For instance, the marginal probability associated to the Diebold-Mariano
statistics that the HPMV has the same predictive accuracy than the auto regressive model
takes the value 6% with a weight of 25, i.e. the lowest value of all models presented in this
paper. But the gain with regard to inflation forecasts is obtained at the cost of higher standard
errors of the output gaps, as both filter and parameter uncertainty increase when high values
for the weights of the inflation equation are imposed : the standard error of the output gap
amounts 0.44% of the standard deviation of the output gap with a weight of 25, to compare to
0.33% with the estimated weight value.

5 Conclusion

This paper presents for the first time estimates of the euro area output gap based on the use of
alternative macroeconomic relationships within a HPMV framework implemented with state-
space techniques. The comparison of the alternative output gaps estimates with the results
obtained with a univariate HP filter shows that integrating macroeconomic information can in
some specific periods significantly modify the appreciation of the output gap level of the euro
area. For instance, all models estimated in the paper exhibit more excess demand at the end of
the eighties and more excess supply in the first half of the nineties. In contrast to many empirical
studies, all parameters of the models have been estimated. As a consequence, it appears that
the estimated weights associated to the economic relationships in the optimisation program of
the HPMV are generally coherent with the calibrated values usually retained in the literature.
The assessment of the reliability of the alternative output gaps and of the revision properties
shows a substantial superiority of the model based on the capacity utilisation rate over the
other models. Okun’s law based HPMV models lead indeed to higher quasi real time revisions
than the univariate HP filter and further work is needed to endogenize the estimation of the
Nairu within the HPMV framework, in order to provide a better assessment of the uncertainty
of the Okun’s law based output gaps and to improve the revision properties of the models.
Although all models improve the accuracy of the inflation forecasts when the benchmark naive
model is a random walk, the inflation forecasts results confirm the superiority of the capacity
utilisation based model.
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6 Appendices

6.1 Kalman filter

A classical Kalman filter (Kalman, 1960) is used to evaluate the state vector SVt given param-
eters, current and past observed values of MVt., in a state-space model of the form:½

SVt = A.SVt−1 + Ut

MVt = B.SVt + C.EVt + Vt

(state equation)
(measurement equation)

(11)

The current estimate and its variance are noted SVt,t and Σt,t. The forecast and the variance
of SV at t+1 given MVt are noted SVt,t+1and Σt,t+1. Assuming such notations, each iteration
of the Kalman filter can be summarised by equations 1 to 5:

1. dSV t,t =dSV t−1,t +Kt(MVt −D.EMVt − CdSV t−1,t)

2. Σt,t = (I −KtC)Σt−1,t

3. dSV t,t+1 = AdSV t,t +B.ESVt

4. Σt,t+1 = AΣt,tA
0
+Qt

5. Kt = Σt−1,tC
0
(CΣt−1,tC

0
+Rt)

−1

6. dSV −1,0 = m and Σ−1,0 = P.

The sixth equation describes initial conditions of the algorithm.

6.2 EM algorithm

The normal likelihood function can be deduced from the Kalman filter evaluation of the state
vector. Parameter estimates for θ = (A,B,C,D,Q,R) are then computed by maximising the
likelihood function L with respect to the unknown parameters. This maximisation is iterated
with a Kalman filter through the EM strategy (Dempster et al., 1977). The EM algorithm
is then an iterative algorithm, which creates a sequence of estimates (θi)i=1,2,... from an initial
condition θ0. Iterating these steps, estimates should converge towards the maximum likelihood
estimators. Each iteration is decomposed into the two following steps:

• Step E : Q(θ, θi) = E(L(y|θ))

• Step M : θi+1 = argmaxθQ(θ, θi)
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6.3 Measures of uncertainty

The uncertainty around the output gap plays a major role in designing the role output gaps
should play in monetary rules. Following Hamilton (1986), this uncertainty has two main
sources, the parameter uncertainty and the filter uncertainty:

E
³
Ct,t(θ̂)− Ct

´2
= E

³
Ct,t(θ̂)− Ct(θ)

´2
+ Σt,t(θ)

with CY
t,t(θ̂) the output gap estimated at t, given both the observed output until the end of the

period T and the parameter estimate θ̂. Σt,t(θ) is the filter uncertainty and the left-hand term
is the parameter uncertainty, noted further ΣP

t,t. The filter uncertainty is directly provided at
each date t by the Kalman filter. But the parameter uncertainty has to be computed separately
with a Monte-Carlo simulation procedure:

• We draw K parameter sets (θk)k=1...K with the law N(θ̂, σ̂2θ)

• We compute with the Kalman filter the corresponding K cycles Ct(θk)

• We deduce for each date t a the parameter uncertainty ΣP
t,t as a mean square error criterion

ΣP
t,t =

1

K

X
k=1...K

h
Ct(θk)− Ct(θ̂)

i2
Moreover, we might be interested in the end-of-sample quality of the estimates, by comparing
the one-sided / filtered estimates Ct,t(θ̂), that policy makers would have had at that time, and

the two-sided / smoothed estimates CY
T,t(θ̂), that can be estimated at the end T of the period.
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This comparison can be evaluated computing the parameter and filter uncertainty of smoothed
estimates (ΣT,t and ΣP

T,t). Moving to the smoothed estimates can strongly decrease the overall
uncertainty.

6.4 Diebold-Mariano test

The forecasting properties of a model (M) can be assessed in comparison with a naive model
(M0), by considering the difference of their squared residuals d̂i = η̂2M,i − η̂20,i. When the

forecasted variable is assumed to be known until a final date T , these residuals η̂2M,i and η̂
2
0,i are

estimated on a forecasting sample [T + n+ 1, T + n+N ]. In this case, n is called the forecast
horizon and N is the number of errors that can be used to compare the forecast accuracy of
the models. For testing the null hypothesis of equal forecasting performance of two models,
Diebold and Mariano (1995) proposed the statistic:

SDM =
d̄p
V (d̄)

d→ N(0, 1)

with d̄ =
1

N

NX
i=1

d̂i and V (d̄) =
1

N

Ã
γ̂0 + 2

NX
i=1

γ̂i

!
27Another end-of-sample uncertainty consists in future data revisions, although they are not considered here.
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where γ̂i, i = 0, ..., n−1 are the estimated autocovariances of the series of the series of forecasting
error differences.

Tables

Models description

Model HP : HP univariate filter.

Model HP-P : HPMV with inflation equation.

Model HP-P-CAP : HPMV with inflation equation and capacity utilisation equation.

Model HP-P-OK1 : HPMV with inflation equation and Okuns’law (TV Nairu).

Model HP-P-OK1-CAP : HPMV with inflation equation, Okuns’law (TV Nairu) and capacity
utilisation equation.

Model HP-P-OK2 : HPMV with inflation equation and Okuns’law (HP Nairu).

Model HP-P-OK2-CAP : HPMV with inflation equation, Okuns’law (HP nairu) and capacity
utilisation equation.
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Main properties of the alternative output gaps

Table 1.a: Parameter estimates of the economic relationships

Models HP HP-P HP-P-CAP HP-P- HP-P- HP-P- HP-P-

OK1 OK1-CAP OK2 OK2-CAP

Inflation

equation

πt−1 0.33 0.30 0.31 0.30 0.34 0.34

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

πt−1 0.25 0.25 0.26 0.26 0.25 0.25

(0.07) (0.06) (0.07) (0.07) (0.09) (0.08)

Yt−1−Y ∗t−1 0.03 0.05 0.03 0.03 0.03 0.04

(0.28) (0.01) (0.02) (0.02) (0.14) (0.09)

St−1 0.08 0.09 0.08 0.08 0.08 0.08

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

St−2 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

(0.03) (0.04) (0.02) (0.02) (0.03) (0.04)

σ2π 3.54e-06 3.54e-06 3.54e-06 3.54e-06 3.54e-06 3.54e-06

(0.00) (0.00) (0.00) (0.00) (0.00)

Okun’s

law

Yt−1−Y ∗t−1 -0.69 -0.74 -0.34 -0.34

(0.00) (0.00) (0.00) (0.00)

σ2unr 7.83e-06 9.89e-06 3.54e-06 3.72e-06

(0.00) (0.00)

Capacity

rate

equation

Yt−Y ∗t 2.36 1.35 1.38

(0.00) (0.00) (0.00)

σ2cap 1.09e-04 5.2e-06 6.13e-04

(0.00)

HP

parameter

σ2∆∆y∗ 7.8 e-08 7.44 e-08 1.68e-07 3.84e-07 3.29e-07 8.48e-08 8.69e-08

(0.00) (0.00) (0.00) (0.00) (0.00)

N.B.: Estimation period : 1980:1 2000.4. Into brackets: P values.
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Table 1.b: Descriptive statistics for the smoothed output gap of the
alternative models (1981:1 2000:4)a

Models (1) (2) (3) (4) (5) (6) (7)

Mean SD Min Max Actual growth SD of growth Unit root

rate of pot. rate of pot. test for output

outputb output gapc

HP 0.02 0.83 -1.98 2.25 2.86 0.14 -3.49***

HP-P -0.02 0.84 -1.98 2.23 2.82 0.14 -3.36***

HP-P-CAP -0.09 1.14 -2.50 2.15 2.88 0.22 -2.44**

HP-P-OK1 -1.89 1.46 -3.90 1.54 1.92 0.13 -1.54

HP-P-OK1-CAP -1.75 1.36 -3.73 1.30 2.02 0.13 -1.53

HP-P-OK2 -0.02 1.08 -1.99 2.43 2.43 0.10 -2.82

HP-P-OK2-CAP -0.01 1.05 -1.73 2.45 2.44 0.11 -2.84***

a: data in the columns (1)- (6) are in % points. Growth rates have been annualised in the column (5).

b: calculated as the growth rate of the trend output at the fourth quarter of the year 2000.

c: ADF Test. Test specification: no constant, no deterministic trend, four lags included.

***, ** , * denote rejection at the 1 (5,10) percent level.

Table 1.c: Estimated weights

Models HP HP-P HP-P-CAP HP-P-OK1 HP-P- HP-P-OK2 HP-P-

OK1-CAP OK2-CAP

Inflation - 2 5 12 10 2 3

equation

Okun’s law - - - 79 53 38 38

equation

Capacity rate - - 3 - 101 0.2

equation

N.B.: Estimation period: 1980:1 2000.4. Weights are calculated for each relationship as the ratio of the
variance of the growth rate of the trend and the variance of the economic relationship. For the inflation
equation weight, to allow a comparison with the literature, weights have been computed for year on
year inflation rates.
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Table 1.d: Values of the weights in the HPMV literature

Empirical study Economic relations weights and smoothing parameters

σ2gap/σ
2
∆∆y∗ Economic relationships weights

Laxton and Tetlow 1992 1600 1

Butler 1996 1600 1

16 000 for the participation rate

10 000 for the labour-output

elasticity (univariate HP filter)

Haltmaier 1996 1600 25 (values between 12-50 tested)

Conway and Hunt 1997 1600 2 (alternative values tested)

De Brouwer 1998 1600 Relative variances

Côté and Hostland 1993 Values between 10 and 100 Not clear

000 tested

500 for output

100 for unemployment

N.B: Weights of the inflation equation in HPMV filters are presented in this table, using year on year
inflation rates. As Haltmaier (1996) uses quarter on quarter inflation rates and, hence, considers for the
inflation equation weights between 200 and 800, these weights have been re-computed here on the basis
of year on year inflation rates.

Assessment of the output gap estimates

Table 2.a: Uncertainty statistics (1981:1 2000:4)

Models HP HP-P HP-P- HP-P- HP-P- HP-P- HP-P-

CAP OK1 OK1-CAP OK2 OK2-CAP

Standard deviation of the output gap

Smoothed output gap 0.83 0.84 1.14 1.46 1.36 1.08 1.07

Filtered output gap 0.94 0.95 1.40 1.54 1.43 0.98 1.02

Standard errors

Smoothed output gap

Total 0.28 0.28 0.24 0.33 0.32 0.16 0.18

Filter 0.28 0.28 0.22 0.16 0.16 0.16 0.16

Parameters 0.00 0.06 0.09 0.27 0.27 0.05 0.09

Filtered output gap

Total 0.54 0.56 0.27 0.52 0.50 0.37 0.38

Filter 0.54 0.55 0.22 0.40 0.40 0.36 0.36

Parameters 0.00 0.10 0.15 0.29 0.28 0.08 0.12

Standard revisions

Smoothed versus filtered 1.09 1.04 0.71 0.44 0.43 0.48 0.47

output gaps

32



Table 2.b: Final and quasi real time output gap
estimates (1997:1 2000:3)

Models MEAN SD MIN MAX COR

HP

Final (smoothed) -0.01 0.51 -0.89 0.88 1

Quasi real time 0.75 0.34 0.04 1.2 0.88

HP-P

Final 0.01 0.54 -0.91 0.95 1

Quasi real time 0.74 0.36 0.01 1.32 0.91

HP-CAP

Final -0.16 0.50 -1.07 0.68 1

Quasi real time 0.04 0.54 -1.26 0.72 0.94

HP-OK2

Final 0.14 0.86 -1.30 1.62 1

Quasi real time 1.70 0.50 0.70 2.51 0.84

HP-OK2-CAP

Final 0.09 0.80 -1.27 1.47 1

Quasi real time 1.29 0.65 -0.20 2.51 0.82

N.B.: MEAN: the mean of the output gap, SD: the standard
deviation, MIN: the minimum value, MAX: the maximum value,
COR: the correlation with the final estimate of the output gap.

Table 2.c : Revision statistics
(final versus quasi real time output

gaps (1997:1 2000:3))

Model MEAN SD NS

HP -0.76 0.26 0.51

HP-P -0.72 0.26 0.47

HP-P-CAP -0.20 0.18 0.35

HP-P-OK2 -1.57 0.51 0.59

HP-P-OK2-CAP -1.20 0.45 0.57

N.B.: MEAN : mean of the revisions, SD: Stan-
dard deviation of the revisions, NS: ratio of the
standard deviation of the revision and the stan-
dard deviation of the final estimate of the output
gap.

33



Table 2.d: Inflation forecast

Model Naive model : AR(2) model Naive model : random walk

RMSE RRMSE D-M P value RMSE RRMSE D-M P value

Stat. Stat.

HP-P 0.187 0.937 -0.789 0.428 0.187 0.799 -2.769 0.006

HP-P-CAP 0.181 0.908 -1.331 0.184 0.181 0.775 -3.074 0.001

HP-P-OK1 0.179 0.899 -1.543 0.122 0.179 0.767 -3.044 0.001

HP-P-OK2 0.185 0.927 -0.885 0.376 0.185 0.792 -2.852 0.002

HP-P-OK1-CAP 0.179 0.899 -1.562 0.118 0.179 0.767 -3.056 0.001

HP-P-OK2-CAP 0.184 0.923 -0.950 0.342 0.184 0.787 -2.912 0.001

Naive 0.199 1.000 0.000 1.000 0.234 1.000 0.000 1.000

N.B. The table compares the one step ahead inflation forecast (conditional to the smoothed state
series) of the alternative models to the one step ahead forecast of two naive models (an AR(2) model
and a random walk). The RMSE (root mean squared error) is the square root of the mean prediction
errors. The RRMSE isthe relative root mean squared error of the models against that of the naive
models. The D-M statistics is the Diebold-Mariano (Diebold and Mariano 1995) test statistics (see
Appendix 6.4). P value is the marginal probability of the Diebold-Mariano test of the null hypothesis
of equal predictive accuracy of the alternative models and of the naive model.

Impact of varying weights

Table 3.a: Parameter estimates of the economic
relationships

Model HP-P Model HP-P Model HP-P

(weight=2) (weight=5) (weight=25)

πt−1 0.33 0.31 0.25

(0.00) (0.00) (0.00)

πt−1 0.25 0.25 0.25

(0.07) (0.01) (0.00)

Yt−1−Y ∗t−1 0.03 0.04 0.06

(0.28) (0.00) (0.00)

St−1 0.08 0.09 0.09

(0.00) (0.00) (0.00)

St−2 -0.05 -0.05 -0.06

(0.03) (0.00) (0.00)

σ2π 3.54e-06 2.35e-06 1.78e-06

(0.00)

HP parameter

σ2∆∆y∗ 7.44 e-08 1.47e-07 4.45e-07

(0.00) (0.00) (0.00)

N.B.: Estimation period: 1980:1 2000.4
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Table 3.b: Properties of the HPMV output gaps for alternative weights

SD Standard errors Standard revision Inflation

(smoothed versus forecast

filtered output gap) RRMSE

Total Filter Parameter AR(2) RW

HP-P (weight = 2) 0.84 0.28 0.28 0.06 1.04 0.94 0.80

HP-P (weight = 5) 0.89 0.37 0.37 0.08 0.96 0.92 0.78

HP-P (weight = 25) 1.13 0.50 0.48 0.14 0.99 0.87 0.74

Graphs of the HPMV output gap estimates
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Figure 1: HP-P model
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Figure 2: HP-P-CAP model
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Figure 3: HP-P-OK1 model
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Figure 4: HP-P-OK1-CAP model
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Figure 5: HP-P-OK2 model
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Figure 6: HP-P-OK2-CAP model
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Figure 7: Output gap of the Euro area (HP-P model) using alternative weights for the inflation
equation Phillips curve
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1 Introduction

Recent work in the macroeconometric literature considers the problem of sum-
marising efficiently a large set of variables and using this summary for a variety of purposes
including forecasting.

Work in this field has been carried out in a series of recent papers by Stock and Watson (1998),
Forni and Reichlin (2000), Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin, Lippi,
and Reichlin (2001). Factor analysis has been the main tool used in summarising the large
datasets.

The main factor model used in the past to extract dynamic factors from economic time series
has been a state space model estimated using maximum likelihood. This model was used in
conjunction with the Kalman filter in a number of papers carrying out factor analysis (see,
among others, Stock and Watson (1989) and Camba-Mendez, Kapetanios, Smith, and Weale
(2001)). However, maximum likelihood estimation of a state space model is not practical when
the dimension of the model becomes too large due to the computational cost. For the case
considered by Stock and Watson (1998) where the number of time series is greater than the
number of observations, maximum likelihood estimation is not practically feasible. For this
reason, Stock and Watson (1998) have suggested an approximate dynamic factor model based
on principal component analysis.

This model can accommodate a very large number of time series and there is no need for
the number of observations to exceed the number of variables. Nevertheless, the principal
component model is not, strictly speaking, a dynamic model. Stock and Watson (1998) have
shown that it can estimate consistently the factor space asymptotically (but the number of time
series has to tend to infinity). In small samples and for a finite number of series, the dynamic
element of the principal component analysis is not easy to interpret. Forni and Reichlin (2000)
suggested an alternative procedure based on dynamic principal components (see Brillinger
(1981, ch. 9)). This method incorporates an explicitly dynamic element in the construction of
the factors.

This paper discusses an alternative method for estimating factors derived from a factor state
space model. This model has a clear dynamic interpretation. Further, the method does not
require iterative estimation techniques and due to a modification introduced, can accommodate
cases where the number of variables exceeds the number of observations.

The computational cost and robustness of the method is comparable to that of principal com-
ponent analysis because matrix algebraic methods are used. The method forms parts of a large
set of algorithms used in the engineering literature for estimating state space models called
subspace algorithms. Another advantage of the method is that the asymptotic distribution
and therefore the standard errors of the factor estimates are available. Further, as the factor
analysis is carried out within a general model, forecasting is easier to carry out than in the
currently available procedures where a forecasting model needs to be specified.

The structure of the paper is as follows: Section 2 describes the elements of the suggested factor
extraction method. Sections 3-5 discuss aspects of the new methodology. Section 6 presents an
application of the method to the extraction of core inflation and forecasting of UK inflation in
the recent past. Section 7 concludes.
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2 The method
We consider the following state space model2.

xt = Cft +Dut, t = 1, . . . , T

ft = Aft−1 +But−1 (2)

xt is an n-dimensional vector of strictly stationary zero-mean variables observed at time t. ft
is an m-dimensional vector of unobserved states (factors) at time t and ut is a multivariate
standard white noise sequence of dimension n. The aim of the analysis is to obtain estimates
of the states ft, for t = 1, . . . , T .

This model is quite general. Its aim is to use the states as a summary of the information available
from the past on the future evolution of the system. A large literature exists on the identification
issues related with the state space representation given in (2). An extensive discussion may be
found in Hannan and Deistler (1988). As we have mentioned in the introduction, maximum
likelihood techniques either using the Kalman filter or otherwise may be used to estimate the
parameters of the model under some identification scheme. For large datasets this is likely to
be computationally intensive. Subspace algorithms avoid expensive iterative techniques and
instead rely on matrix algebraic methods to provide estimates for the factors as well as the
parameters of the state space representation.

There are many subspace algorithms and vary in many respects but a unifying characteristic
is their view of the state as the interface between the past and the future in the sense that the
best linear prediction of the future of the observed series is a linear function of the state. A
very good review of existing subspace algorithms is given by Bauer (1998) in an econometric
context. Another review with an engineering perspective may be found in Van Overschee and
De Moor (1996).

The starting point of most subspace algorithms is the following representation of the system
which follows from the state space representation and the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (3)

where Xf
t = (x

0
t, x

0
t+1, x

0
t+2, . . .)

0 , Xp
t = (x

0
t−1, x

0
t−2, x

0
t−3, . . .)

0 , Ef
t = (u

0
t, u

0
t+1, u

0
t+2, . . .)

0 ,
O = [C 0, A0C 0, (A2)0C 0, . . .]0, K = [B̄, (A− B̄C)B̄, (A− B̄C)2B̄, . . .], B̄ = BD−1 and

E =


D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D


The derivation of this representation is easy to see once we note that (i) Xf

t = Oft + EEf
t

and (ii) ft = KXp
t . The best linear predictor of the future of the series at time t is given by

2Note that the model we present is equivalent to the more common form given by

xt = Cft + ut, t = 1, . . . , T (1)

ft = Aft−1 + vt

as proven in Hannan and Deistler (1988, pp. 17-18).
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OKXp
t . The state is given in this context by KXp

t at time t. The task is therefore to provide
an estimate for K. Obviously, the above representation involves infinite dimensional vectors.
In practice, truncation is used to end up with finite sample approximations given by Xf

s,t =
(x0t, x

0
t+1, x

0
t+2, . . . , x

0
t+s−1)

0 and Xp
q,t = (x

0
t−1, x

0
t−2, . . . , x

0
t−q)

0. Then an estimate of F = OK may
be obtained by regressing Xf

s,t on Xp
q,t. Following that, the most popular subspace algorithms

use a singular value decomposition of an appropriately weighted version of the least squares
estimate of F , denoted by F̂ . In particular the algorithm we will use, due to Larimore (1983),
applies a singular value decomposition to Γ̂f F̂ Γ̂p, where Γ̂f , and Γ̂p are the sample covariances
of Xf

s,t and Xp
q,t respectively. These weights are used to determine the importance of certain

directions in F̂ . Then, the estimate of K is given by
K̂ = Ŝ1/2m V̂mΓ̂

p−1

where Û ŜV̂ represents the singular value decomposition of Γ̂f F̂Γ̂p, Ŝm denotes the matrix
containing the first m columns of Ŝ and V̂m denotes the heading m ×m submatrix of V̂ . Ŝ
contains the singular values of Γ̂f F̂ Γ̂p in decreasing order. Then, the factor estimates are given
by K̂Xp

t . For what follows it is important to note that the choice of the weighting matrices are
important but not crucial for the asymptotic properties of the estimation method. They are
only required to be nonsingular. A second thing to note is that consistent estimation of the
factor space requires that q tends to infinity at a certain rate as T tends to infinity as pointed
out by Bauer (1998, pp. 54). Once estimates of the factors have been obtained and if estimates
of the parameters (including the factor loadings) are subsequently required, it is easy to see
that least squares methods may be used to obtain such estimates. These estimates have been
proved to be

√
T -consistent and asymptotically normal in Bauer (1998, ch.4). We note that

the identification scheme used above is implicit and depends on the normalisation used in the
computation of the singular value decomposition. Finally, we must note that the method is
also applicable in the case of unbalanced panels. In analogy to the work of Stock and Watson
(1998) use of the EM algorithm, described there, can be made to provide estimates both of the
factors and of the missing elements in the dataset.

3 Dealing with large datasets
Up to now we have outlined an existing method for estimating factors which requires that the
number of observations be larger than the number of elements in Xp

t . Given the work of Stock
and Watson (1998) this is rather restrictive. We therefore suggest a modification of the existing
methodology to allow the number of series in Xp

t be larger than the number of observations.
The problem arises in this method because the least squares estimate of F does not exists
due to rank deficiency of Xp0Xp where Xp = (Xp

1 , . . . ,X
p
T )
0. As we mentioned in the previous

section we do not necessarily want an estimate of F but an estimate of the states XpK0. That
could be obtained if we had an estimate of XpF 0 and used a singular value decomposition of
that. But it is well known (see e.g. Magnus and Neudecker (1988) ) that although F̂ may
not be estimable XpF 0 always is using least squares methods. In particular, the least squares
estimate of XpF 0 is given by dXpF 0 = Xp(Xp0Xp)+Xp0Xf

where Xf = (Xf
1 , . . . ,X

f
T )
0 and A+ denotes the unique Moore-Penrose inverse of matrix A.

Once this step is modified then the estimate of the factors may be straightforwardly obtained
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by applying a singular value decomposition to dXpF 0. We choose to set both weighting matrices
to the identity matrix in this case.

4 Number of factors
A very important question relates to the determination of the number of factors, i.e. the di-
mension of the state vector. This issue has only recently received attention in the econometric
literature. Stock and Watson (1998) suggest using information criteria for determining this
dimension. Bai and Ng (2002) provide modified information criteria and justification for their
use in the case where the number of variables goes to infinity as well as the number of observa-
tions. We suggest a simple information theoretic method for determining the number of factors
in our model. Its simplicity comes from the fact that both the number of series and factors are
assumed to be finite.

The search simply involves (i) fixing a maximum number of factors fmax to search over, (ii)
estimating the factors for each assumed number of factors m = 1, . . . ,mmax and (iii) minimising
the negative penalised loglikelhood of the regression

xt = Cf̂t + ut,

i.e. minimising ln|Σ̂m
u | + cT (m) where Σ̂m

u is the estimated covariance matrix of ut and cT (m)
is a penalty term depending on the choice of the information criterion used. The theoretical
properties of the new methodology are discussed in detail in Kapetanios (2002).
We briefly discuss an alternative class of testing procedures for determining the number of
factors prevalent in the state space model literature. The testing procedures are based on the
well known fact that the rank of certain block matrices referred to as Hankel matrices is equal
to the dimension of the state vector. The most familiar Hankel matrix is the covariance Hankel
matrix. The autocovariance Hankel matrix is a block matrix made up of the autocovariances
of the observed process xt. It is given by

Γ1 Γ2 Γ3 . . .
Γ2 Γ3 . . .
Γ3 . . . . . .
...

...
. . .


where Γi denotes the i-th autocovariance of xt. Its finite truncation may be estimated by
1/TXf 0Xp. Tests of rank may be used to estimate the rank of the covariance Hankel ma-
trix from its estimate. A thorough investigation of the properties of the information criteria
and the testing procedures in determining the rank of the Hankel matrix may be found in
Camba-Mendez and Kapetanios (2001b). Further issues are discussed in Camba-Mendez and
Kapetanios (2001a). A related discussion of the tests of rank used may also be found in Camba-
Mendez, Kapetanios, Smith, and Weale (2000).

5 Extensions
The analysis of large datasets based on a state space model and estimated using subspace meth-
ods can be extended in a number of ways. Up to now we have not entertained the possibility of
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idiosyncratic serially correlated errors for particular variables. This extension is straightforward
in the state space model context, as these errors may simply be modelled as extra factors, that
enter one or a few variables. In that sense the analysis does not change. However, one may
wish to draw a more clear distinction between common factors and idiosyncratic errors. Such
a distinction can be accommodated by assuming that the number of variables tends to infinity
following the ideas of Stock and Watson (1998). Crucially, the computational aspects of the
analysis do not change.

Another important extension can be envisaged in terms of developing structural models for large
datasets in the spirit of structural VAR (SVAR) models popularised in the 90’s. Considering
the state space model of the form

xt = Cft + ut, t = 1, . . . , T

ft = Aft−1 + vt (4)

we may distinguish between the shocks ut and vt and attribute structural meaning to linear
combinations of vt following the SVAR literature. Many possible identification schemes are
possible and research in them is carried out in Kapetanios and Marcellino (2002).

6 An Application: Extracting Core Inflation

In this section we provide an application of the dynamic factor methodology to the modelling of
UK core inflation. We take as our measure of inflation the RPIX (RPI minus mortgage interest
payments) inflation used by the Bank of England at the target measure for monetary policy.
Core inflation is a fuzzy concept which has been defined in various ways in the literature.
We will not attempt to provide even a partial review of a huge literature. In general, when
people use the term core inflation they seem to refer to the long-run or persistent component
of the measured price index. A clear definition of core inflation requires a model of how prices
and money are determined in the economy. We choose to follow an atheoretical approach to
the definition of core inflation by specifying it to be the major dynamic factor underlying the
components used to construct the retail price index.

More specifically let the set of individual price component growth rates be denoted by xt.
These growth rates are obtained by differencing the logarithm of the respective component
price index. Then, xt is specified to follow a model of the form (4). Core inflation at time t is
defined to be the first factor in the vector ft as defined by the ordered singular values of the
singular value decomposition of F = OK in (3). This definition although in no way related to
a theoretical economic model is consistent with the prior idea that core inflation is the main
persistent component of inflation.

We fit a state space model to the components of the RPIX price index for the period of January
1987 to August 2002. Monthly data are used. Information on the components used are given
in the data appendix. We set the truncation indices to s = 1 and q = 3 respectively. We note
that q has to tend to infinity as the sample size grows in order to get a consistent estimate of
the factors. We have chosen to set this to 3 because the resulting estimate of core inflation does
not change perceptibly as q is increased from this value. Component series were normalised to
have mean equal to zero and variance equal to one prior to estimation of the factor. We present
RPIX inflation and our measure of the core inflation in Figure 1.
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Figure 1: Observed and core inflation

Note that the core inflation has been normalised to have the samemean and variance as observed
inflation over the sample period. Clearly, the factor model estimate of the core inflation is
smoother than actual observed inflation. However, at business cycle frequencies it exhibits
pronounced cyclicality. The departure from observed inflation in the spike of the late eighties
and early nineties can be traced back to tax changes (including the repeal of the poll tax) in
that period. Our measure of core inflation can explain on average 44% of a given component
series whereas addition of an extra factor raises this to 53%.

Having obtained a means of estimating core inflation we now examine the forecasting abilities
of this measure. In particular we consider three models. One is a simple benchmark AR model
where the lag order is chosen automatically using the Akaike information criterion. The second
is the benchmark model augmented by the growth rate of money and in particular M0. Lag
selection is again carried out by the Akaike information criterion for both inflation and the
money growth rate. Finally, the third model is the benchmark model augmented with the
currently available estimate of the core inflation.

We evaluate the three models over the period June 1998-August 2002. We have allowed for a
year following the introduction of independence for the Bank of England to carry out monetary
policy though an inflation targeting regime. We examine both relative RMSEs compared to the
model which includes the factor and the Diebold and Mariano (1995) test statistic for equality
in predictive ability between two different forecasts. All models are estimated recursively (in-
cluding lag order selection). The forecasts are examined for horizons of 1 to 4 months ahead.
All results are presented in Table 1.
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Table 1: Results on forecasting performance

Horizon DM a DM b RMSE c RMSE d

1 1.42 0.66 0.95 0.68
2 0.13 0.26 0.99 0.98
3 0.48 0.67 0.97 0.92
4 0.61 1.04 0.97 0.89

a Diebold-Mariano test statistics against benchmark
AR model
b Diebold-Mariano test statistics against money
growth rate model
c Relative RMSE compared to benchmark ARmodel.
Values less than 1 indicate superiority of factor model
d Relative RMSE compared to money growth rate
model. Values less than 1 indicate superiority of fac-
tor model

The results show that the factor model can indeed help in forecasting. The factor model
performs 32% better than the money growth model for forecasts one month ahead. The factor
model always has a lower RMSE compared to the other models. Although the factor model
may appear to have a similar performance compared to the AR model the Diebold-Mariano
statistic, although not rejecting in favour of the factor model, indicates that with a probability
value of 0.078 is close to rejection.

7 Conclusion

In this paper we have discussed a new factor based method for forecasting time series introduced
by Kapetanios (2002). This work follows closely in spirit the work of Stock and Watson (1998),
Stock and Watson (1999) and subsequent, as yet unpublished papers by these authors and
their co-authors on the one hand and the work by Forni and Reichlin (2000), Forni, Hallin,
Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin (2001) on the other hand.
The innovation lies in providing an alternative method for obtaining factor estimates.

One strand of the literature on factor extraction relies on explicitly dynamic state space models
to estimate factors via computationally expensive and, in small samples, non-robust maximum
likelihood estimation. The other strand of the literature based on the work of Stock and
Watson (1998) uses principal components to extract the factors. This methodology is robust,
computationally feasible with very large datasets and asymptotically valid for dynamic settings.
Unfortunately, these methods are approximately dynamic in that the dynamic structure of the
factors is not explicitly modelled in finite samples but captured only asymptotically where
both the number of observations and the number of series used, grows to infinity. We propose a
new methodology which while sharing all the advantages of the principal component extraction
method is explicitly dynamic. This method is based on linear algebraic techniques for estimating
the state and, if need be, the parameters of a general linear state space model.

We evaluate the new methodology by investigating a model of core inflation for the UK. The
measure of core inflation obtained is shown have predictive ability for inflation in the UK over
a relatively long evaluation period.
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Forni, M., and L. Reichlin (2000): “Let’s Get Real: A Factor Analytic Approach to Busi-
ness Cycle Dynamics,” Review of Economic Studies, 65(3), 453—473.

Hannan, E. J., and M. Deistler (1988): The Statistical Theory of Linear Systems. John
Wiley.

Kapetanios, G. (2002): “Factor analysis using subspace factor models: Some theoretical
results and an application to UK inflation forecasting,”Working paper no. 466, Queen Mary
University of London, http://www.econ.qmul.ac.uk/papers/docs/wp466.pdf.

Kapetanios, G., and M. Marcellino (2002): “Structural Impulse Response Analysis of
Dynamic Factor Models for Large Datasets,” Mimeo.

Larimore, W. E. (1983): “System Identification, Reduced Order Filters and Modelling via
Canonical Variate Analysis,” Proc. 1983 Amer. Control Conference, 2, 445—451.

Magnus, J. R., and H. Neudecker (1988): Matrix Differential Calculus with Applications
to Statistics and Econometrics. John Wiley.

47



Stock, J. H., and M. Watson (1989): “New Indexes (Sic) of Coincident and Leading Indi-
cators,” NBER Macroeconomics annual, 4, 351—394.

Stock, J. H., and M. W. Watson (1998): “Diffusion Indices,” Forthcoming in Journal of
Business and Economic Statistics.

(1999): “Forecasting Inflation,” Journal of Monetary Economics, 44(2), 293—335.

Van Overschee, P., and B. De Moor (1996): Subspace Identification for Linear Systems.
Kluwer Academic Publishers.

48



Data Appendix

RPIX components and their ONS (Office of National Statistics) codes.
bread DOAA.M
cereals DOAB.M
biscuits DOAC.M
beef DOAD.M
lamb DOAE.M
pork DOAG.M
bacon DOAH.M
poultry DOAI.M
other meat DOAJ.M
fish DOAK.M
butter DOAM.M
oil and fat DOAN.M
cheese DOAO.M
eggs DOAP.M
milk DOAQ.M
milk products DOAR.M
tea DOAS.M
coffee DOAT.M
soft drink DOAU.M
sugar DOAV.M
sweets chocolates DOAW.M
potatoes DOAX.M
vegetables DOAZ.M
other foods DOBD.M
restaurant meals DOBE.M
canteen meals DOBF.M
take aways DOBG.M
beer DOBH.M
wine DOBK.M
cigarettes DOBN.M
other tobacco DOBO.M
rent DOBP.M
council tax DOBR.M
water DOBS.M
repairs and maintenance DOBT.M
DIY DOBU.M
insurance and ground rent DOBV.M
coal DOBW.M
electricity DOBX.M
gas DOBY.M
oil and other fuel DOBZ.M
furniture DOCA.M
furnishings DOCB.M
appliances DOCC.M
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other eqpt DOCD.M
consumables DOCE.M
pet care DOCF.M
postage DOCG.M
telephones DOCH.M
dom services DOCI.M
fees and subs DOCJ.M
clothing men DOCK.M
clothing women DOCL.M
clothing children DOCM.M
clothing other DOCN.M
footwear DOCO.M
personal articles DOCP.M
chemist goods DOCQ.M
personal services DOCR.M
purchase cars DOCS.M
maintenance cars DOCT.M
petrol and oil DOCU.M
tax and insurance DOCV.M
rail fares DOCW.M
bus and coach fares DOCX.M
other travel DOCY.M
audio visual DOCZ.M
CDs tapes DODA.M
toys and sports goods DODB.M
books and newspapers DODC.M
garden products DODD.M
tv licences DODE.M
entertainment and other recreation DODF.M
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1 Introduction

Modern general equilibrium business cycle research is aimed at explaining the fluctu-
ations about a trend of output and its components as well as factors of production, following
Lucas (1977) who defined “business cycles” as “movements about trend in gross national prod-
uct”. Lucas’ definition of the business cycle corresponds to the older concept of growth cycles
(or “deviation cycles”) developed by Mintz (1969). There is an early American tradition for
statistical empirical business cycle research dating back to the work of Mitchell (1913, 1927)
and his associates which culminated in the monumental work “Measuring Business Cycles”
by Burns and Mitchell (1946) who defined business cycles as fluctuations in the level of some
measure of aggregate economic activity. The work of Burns and Mitchell has been continued
by the NBER and they publish a set of widely accepted dates of turning points of the U.S.
business cycle.

The crucial question in modern empirical business cycle research is how to define the trend
and how to extract the trend component from the economic time series so that what is left
is something that can be interpreted as the business cycle component. Hodrick and Prescott
(1980, 1997) developed a statistical definition of the business cycle component (or growth
cycle) and developed a now widely used method for summarizing the dynamics of empirical
facts about growth cycles in the form of sample second moments summarizing the variation
and serial correlation between economic variables.

Since the work of Hodrick and Prescott, a large number of ad hoc statistical methods have been
developed for filtering a stochastic trend from macroeconomic time series. Unfortunately, the
computed second moments of filtered time series depend critically on the filtering method, as
documented by King and Rebelo (1993), Canova (1994, 1998, 1999) and many others. If the
purpose is to “measure business cycles”, as claimed by Hodrick and Prescott (1980, 1997) and
Baxter and King (1999) among others, then we need a method for determining which set of
stylized facts to trust. That is, we need, first, a measure of the true business cycle component,
secondly, an estimate of the actual business cycle component after filtering with some filter
and, finally, a metric for measuring the distance between the true and the estimated business
cycle component. It was shown in Pedersen (2001) that there are no general results about the
distortionary effect of filters since it depends both on the filter being used and the time series
being filtered. It is the goal of this paper to compare the distortionary effect of alternative
filters based on quarterly real GDP for the EU, the Euro-zone, Belgium, Denmark, Finland,
France, Italy, Netherlands, Spain, Sweden, and the UK.

The plan of the paper is as follows. Filtering in the time and frequency domain is treated in
Section 2. A metric for measuring the distortionary effect of filters is presented in Section 3,
and a definition of the business cycle component in Section 4. Alternative filters are compared
in Section 5. Summary and conclusions in Section 6.

2 Filtering

Let {yt}Tt=1 be a nonstationary, univariate time series such as logarithm of quarterly real GDP.
When filtering macroeconomic time series, it is assumed that yt can be decomposed into an
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unobservable trend or growth component, τ t, an unobservable business cycle component, ct, an
unobservable seasonal component, st, and an unobservable irregular component εt

2

yt = τ t + ct + st + εt, (1)

where the different components are defined as cycles with different periods or as specific bands
of frequencies. The unobserved components are assumed to be uncorrelated.

A zero correlation between the growth component and the cyclical component in (1) can be
generated by a standard real business cycle model where stationary technology shocks to the
production possibilities generate stationary fluctuations around a deterministic growth trend.
In that class of models, shocks to the cyclical and secular components are orthogonal. That is
not the case in endogenous growth models where shocks to the trend and the cyclical component
are perfectly correlated. As should be obvious, the decomposition into a trend and a cyclical
component only makes sense if growth is not endogenous.

Filtering is about removing something which is undesirable from the desirable as when filtering
impurities from water or when filtering noise from a signal. Filtering is used widely in economics.
Many signals or information sets are noisy and we need to extract the signal from the noise.
Filtering is thus a way of solving a signal extraction problem. In Lucas (1972), rational agents
solve a signal extraction problem in order to react optimally to an observed price change where
it is unknown whether the price change reflects a change in the general price level or a change
in real demand on the individual market.

To decompose the model (1) into its separate unobserved components is a signal extraction or
filtering problem. Filtering problems can be analyzed both in the time and in the frequency do-
main. Where time is the fundamental unit in the time domain, the frequency is the fundamental
unit in the frequency domain.

2.1 Filtering in the Time Domain

Let {xt}∞t=−∞ be a stationary stochastic process with finite power (finite variance). Suppose
that a new series {yt}∞t=−∞ is constructed as a weighted moving average of lagged and future
values of the input process {xt}∞t=−∞

yt =
∞X

j=−∞
hjxt−j = h(L)xt, (2)

where the filter weights hj are real and do not depend on time, h(L) ≡
P∞

j=−∞ hjL
j is a

polynomial in the lag operator, L, with
P∞

j=−∞ |hj| <∞, a requirement needed to assure that
the variance of yt is finite. We say that yt is a filtered version of xt.

When analyzing filters, we use the following terminology: The filter h(L) is a linear time-
invariant filter (or linear filter or LTI for short) since yt is a linear function of xt and the
weights are independent of time. LTI filters take the form of weighted moving averages. The
filter (2) is a two-sided filter because both past, present, and future values of xt are used.

2Abstracting from a seasonal component if we study seasonally adjusted time series.
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Two-sided filtering corresponds to the concept of smoothing as defined by Anderson and Moore
(1979). We call it a one-sided or backward-looking filter if only past and present terms of xt
are involved. The filter is symmetric when hj = h−j , j = 1, 2, ...

Any LTI filter can be given a transfer function representation, a state space representation,
a vector autoregressive representation, and a spectral representation so all LTI-filters with a
spectral representation can be derived as an unobserved component model with a state space
representation. The limitation of LTI-filters is exactly that they are limited to time-invariant
filters with constant filter weights. This may seem like a critical assumption since business
cycles and growth cycles are far from periodic and it could be argued that business cycles
should be modelled as stochastic cycles.

One can think of yt as the output process of an economic model where {xt}∞t=−∞ is the stochas-
tic shock process and the filter weights h(L) are the economic model. Slutzky (1927, 1937)
showed how filtering by successively summing and differencing a white noise process generates
a time series with cycles - the so-called Slutzky-effect or Yule-Slutzky-effect, Yule (1927). The
importance of that result for business cycle research lies in the fact that, if the economic model
works like the summing and differencing operations, then exposing such a model to white noise
shocks generates time series with cycles. Frisch (1933) shows that a model which consists of
a system of difference and differential equations works like the summing and differencing fil-
ter of Slutzky and thus generates stochastic cycles in model generated time series of output,
consumption, and investments when exposed to random shocks.

Real business cycle theory belongs to the Frisch-Slutzky approach to business cycle research
where a stochastic dynamic general equilibrium model is exposed to an exogenous shock process
and the economic model works like a filter which decomposes output into its components,
consumption and investments.

2.2 Spectral Analysis and Filtering in the Frequency Domain

There is a general result known as the spectral representation theorem which says that
any covariance-stationary stochastic process {yt}∞t=0 can be given a representation expressed in
terms of an infinite weighted sum of (orthogonal) periodic functions of the form cos (ωt) and
sin (ωt), where ω ∈ [−π, π] is the angular frequency measured in radians. Such a representation
is called the spectral representation or Cramér’s representation

yt = µ+

Z π

0

α (ω) · cos (ωt) dω +
Z π

0

δ (ω) · sin (ωt) dω. (3)

The goal of spectral analysis is to determine how important cycles of different frequencies are
in accounting for the behavior of {yt}∞t=0.
Let {yt}∞t=−∞ be a real-valued stationary stochastic process with variance equal to γ0 and
the τ th autocovariance equal to γτ . Let {γτ}∞τ=−∞ be an absolutely summable sequence of
autocovariances and let the autocovariance generating function in the frequency domain be
given by: gy(z) ≡

P∞
τ=−∞ γτz

τ , where the argument of the function, z, is a complex scalar.
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The power spectrum (the power spectral density function) of {yt}∞t=−∞ is given by

Sy (ω) ≡ 1

2π
gy
¡
e−iω

¢
=
1

2π

∞X
τ=−∞

γτe
−iωτ , (4)

where i ≡ √−1.
It is seen from (4) that the spectrum of a stochastic process contains the same information as the
autocovariance generating function since it is simply a linear combination of autocovariances.

The area under the spectrum over the interval [−π, π] is equal to the variance of yt and since
the spectrum is symmetric around ω = 0

var (yt) ≡ γ0 = 2

πZ
0

Sy (ω) dω (5)

and the τth autocovariance is

γτ = 2

πZ
ω=0

Sy (ω) e
iωτdω. (6)

This sheds some light on the interpretation of the variance in the time domain. The variance of a
time series is generally (unless the process is white noise) distributed unevenly over frequencies
where for example the growth component, the business cycle component, and the seasonal
component contribute differently to the variance of yt. The spectrum can be viewed as a device
for decomposing the variance by frequency. If the business cycle component is defined as cycles
between 5 quarters and six years, corresponding to the frequencies π/12 ≤ ω ≤ π/2.5 with
quarterly data, then the variance of the business cycle component (the growth cycle) is

var (ct) = 2

π/2.5Z
ω=π/12

Sy (ω) dω. (7)

A plot of the spectrum against frequencies shows how the variance of yt is distributed over
frequencies, Figure 1.3 It is worth considering three cases:

1. If the estimated spectrum is flat without any peaks and without any clear tendency to
follow a smooth curve, then the time series is close to a white noise.

2. If the time series contains a clear cyclical component at some frequency, then the spectrum
has a tall, narrow peak (theoretically: infinitely tall, infinitely narrow peak, having finite
area). Business cycles are not periodic and no sharp peaks at any frequencies should be
expected.

3. A time series with an important trend component will have a strong peak at the very
low frequencies, known as the ”typical spectral shape”, Granger (1966). If the time series
contains an autoregressive unit root, then the peak will be infinite at zero frequency.

3I use the convention to plot the spectrum on the interval 0 to π because the spectrum is symmetric around
ω = 0.
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2.2.1 Filtering in the Frequency Domain

It is possible to filter in the frequency domain by multiplying the spectrum of the input process
at frequency ω by some non-negative number in order to get the spectrum of the output process
at frequency ω. The filter in the frequency domain is an index with a non-negative real number
at each frequency, and the index is called the power transfer function, denoted by PTF (ω).

Filtering a stationary stochastic process {yt}∞t=−∞ with an LTI filter in the time domain,

ct = C(L) · yt,

where C(L) is a polynomial in the lag operator, has its parallel in the frequency domain where
the spectrum of the output series at frequency ω is the power transfer function of the filter at
frequency ω multiplied by the spectrum of the input series, Sy(ω) at frequency ω

Sc(ω) = PTF (ω) · Sy(ω), (8)

where the power transfer function is the squared frequency response function

PTF (ω) ≡ ¯̄h(e−iω)¯̄2
of the filter.

T h e   t y p i c a l   s p e c t r a l   s h a p e  o f  a n   e c o n o m i c   t im e   s e r i e s

S e a s o n a l
c o m p o n e n t

B u s i n e s s   c y c l e
c o m p o n e n t

G r o w t h
c o m p o n e n t

6   y e a r s 1 . 2 5  y e a r s 1  y e a r

I r r e g u l a r
c o m p o n e n t

Figure 1: Decomposition of the spectrum of an economic time series with the “typical spectral

shape” into bands of frequencies
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2.3 The Effect of Filtering

The effect of linear filtering is twofold: To change the relative importance of the various cyclical
components in (1) captured by the gain, and to induce a phase shift, Figure 2. Let xt be a
complex valued time series with the representation

xt =
X
ω

hwe
iωt.

It can be given a polar decomposition as

xt =
X
ω

|hw| ei(ωt+θ(ω)),

where |hw| is the amplitude and θ(ω) is the phase angle of hω. The frequency response function
can be given a polar decomposition

h(e−iω) = G (ω) · eiPh(ω), (9)

where the absolute value, |G (ω)| , is the gain and Ph (ω) is the phase, then the effect of filtering
xt with a filter in the frequency domain is

h(ω)xt =
X
ω

|hw| ·G(ω) · ei(ωt+θ(ω)+Ph(ω)). (10)

That is, the amplitude at each frequency ω is multiplied by the gain of the filter and the phase
is shifted from θ(ω) to θ(ω) + Ph(ω), Figure 2. Symmetric filters have the attractive property
that the phase shift is zero.
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Figure 2: The effect of filtering: increase in gain and phase shift
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The gain is defined as

G (ω) =
|Scy (ω)|
Syy (ω)

, (11)

which is the ratio between the cross-spectrum between ct and yt to the spectrum of yt which
is the regression coefficient at the ω-frequency of ct on the ω-frequency of yt, and so it can
be interpreted as an expression of how the amplitude of yt is multiplied in contributing to the
amplitude in ct. The gain of a time series measures - at the specified frequency ω - the increase
in amplitude of one series over the other. The phase gives the lead of ct over yt at frequency ω.
A phase diagram is the plot of the phase against frequency and it gives information about the
lag relationship between two series, which series is leading or lagging at frequency ω. There
is a close relationship between the concept of the phase and the business cycle research of
identifying leading indicators.

The action of a filter is completely determined by the gain and phase, the frequency response
function, or the power transfer function of the filter. A plot of the power transfer function
against frequency shows which frequencies are attenuated and which are magnified.

2.4 Ideal Filters

A low-pass filter, denoted by lp, is a filter which allows low frequencies to pass the filter and
removes all the variance above a prespecified cutoff frequency. A high-pass filter by contrast,
hp, is one which allows high frequencies to pass the filter and removes all the variance at
frequencies below a prespecified cutoff frequency. We can use the basic operations of combining
linear filters to construct a high-pass filter from a low-pass filter: hp (ω) = 1− lp (ω). A band-
pass filter, bp, is one which allows a specific band of frequencies to pass and removes higher
and lower frequencies. A band-pass filter can be constructed as the difference between two
low-pass filters: bp (ω) = lpu (ω) − lpl (ω) , where lpu (ω) is the low-pass filter with the upper
cutoff frequency, ωu, and lpl (ω) is the low-pass filter with the lower cutoff frequency, ωl.

It is standard terminology in the filtering literature to define an ideal filter as filters which cuts
off sharply at some cutoff frequency. The power transfer function of an ideal low-pass filter
satisfies

PTF ∗lp (ω) ≡
½
1 if |ω| < ωl

0 if |ω| ≥ ωl
, (12)

the power transfer function of an ideal high-pass filter satisfies

PTF ∗hp (ω) ≡
½
0 if |ω| < ωl

1 if |ω| ≥ ωl
, (13)

and the power transfer function of an ideal band-pass filter satisfies

PTF ∗bp (ω) ≡
 0 if |ω| < ωl

1 if ωl ≤ |ω| ≤ ωu

0 if |ω| > ωu

, (14)

Figure 3.
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Figure 3: The power transfer function of (1) ideal low-pass filter, (2) ideal high-pass filter, and (3)

ideal band-pass filter with cutoff frequencies corresponding to 6 years and 1.25 years

Many filters are approximations either to an ideal high-pass filter or to an ideal band-pass filter,
thus there are two ways of defining the business cycle component:

1. The business cycle component can be defined by filtering the trend, τ t, from the economic
time series and interpreting the remaining components as the business cycle component.
The widely used Hodrick-Prescott filter is often interpreted as an approximation to an
ideal high-pass filter. High-pass filters are often used when filtering seasonally adjusted
time series.

2. The business cycle component can also be defined by filtering the trend and the sea-
sonal and irregular components from the economic time series, leaving the business cycle
component ct.
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The power transfer function of an ideal low-pass filter is unity at zero frequency so that it allows
all the power at zero frequency to pass the filter. That property is satisfied if the sum of the
filter weights in the time domain sum to one

h(1) =
∞X

j=−∞
hj = 1, (15)

and the frequency response function of the filter evaluated at frequency 0, is

h (0) =
∞X

j=−∞
hje

−i0j, (16)

which is equal to one if and only if the sum of the filter weights is one.

For an ideal high-pass filter, the jth weight of the high-pass filter is simply one minus the value
of the jth weight of the low-pass filter.

If the sum of the weights in a symmetric low-pass filter is one, then the sum of the weights in
the corresponding high-pass filter is zero and the power transfer function of an ideal high-pass
filter is zero at zero frequency and it removes any unit root in an I(1) time series.

Multiplying the spectrum in Figure 1 by an ideal band-pass filter gives the spectrum of the
output process, Figure 4.

F i l t e r i n g  w i t h   a n   i d e a l  b a n d - p a s s   f i l t e r

6   y e a r s 1 . 2 5  y e a r s 1  y e a r

1

0

S p e c t r u m   o f  
b u s i n e s s   c y c l e
c o m p o n e n t

Figure 4: The effect of filtering with an ideal band-pass filter
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Applying an ideal filter to the spectrum of any stochastic process which is not white noise has
the consequence that the variance and autocovariance of the filtered process generally change
relative to the input process

πZ
0

2Sy (ω) e
iωτdω = γτ 6=

πZ
0

PTF ∗hp(ω)2Sy (ω) e
iωτdω. (17)

The same is true for the cross-correlation between different time series.

The point is that a change in the measured population second moments of filtered and unfiltered
time series cannot be interpreted as evidence of a distortionary effects of a filter, as do King
and Rebelo (1993), Guay and St-Amant (1997), and Ehlgen (1998), since population moments
change when filtering the time series, even when filtering with an ideal filter.4

2.5 Optimal Filtering

An optimal filter is one which is best in a certain sense and optimal filtering is about minimizing
the mean square error of the business cycle component. Let {c∗t}Tt=1 be the ”true” business cycle
component of a time series {yt}Tt=1 and let {ĉt}Tt=1 be its estimate. An optimal business cycle
filter in the time domain, according to Wiener (1949), Whittle (1983), and King and Rebelo
(1993), is one which minimizes the mean square error

MSE =
1

T

TX
t=1

(ĉt − c∗t )
2 . (18)

Let the true business cycle component be the result of filtering {yt}Tt=1 with a true business cycle
filter (say, an ideal high-pass filter or an ideal band-pass filter), c∗t = C∗ (L) yt, where C∗ (L) is
the true business cycle filter in the time domain and let {ĉt}Tt=1 be the result of filtering {yt}Tt=1
with some distorting business cycle filter, ĉt = Ĉ (L) yt, where Ĉ (L) is some estimated business
cycle filter, then the metric (18) can be rephrased as

MSE =
1

T

TX
t=1

h
Ĉ (L) yt − C∗ (L) yt

i2
. (19)

Optimal filtering is about choosing the filter, Ĉ (L), which minimizes the mean square error
(19) for the time series yt. This is a filtering or signal extraction problem.

5 Assume that yt can
be decomposed into a trend and a cyclical component,

yt = τ t + ct,

4The only exception to this rule is when filtering a white noise process since the variance of a white noise
process is constant at all bands of frequencies.

5The signal extraction problem for the case where the two unobserved components are independent and
stationary was solved independently by Wiener (1949) and by Kolmogorov in two papers published in French
and German in 1939 and 1941, Bell (1984).
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then Whittle (1983) shows that the optimal symmetric linear signal extraction filter of the
cyclical component in the time domain satisfies

C(L) =
gc(L)

gτ(L) + gc(L)
,

where gc(L) is the time domain autocovariance generating function of the true cyclical com-
ponent and gτ(L) is the time domain autocovariance generating function of the true trend
component.

Since we do not know the autocovariance generating function of the true trend and business cycle
component, we need to impose some identifying restrictions in order to estimate the cyclical
component. It has been common to solve such signal extraction problems with the Kalman
filter, Kalman (1960), or the Wiener-Kolmogorov filter, by formulating general unobserved
component models and estimate the trend component and the cyclical component by imposing
sufficient ad hoc identifying restrictions in order to estimate the unobserved components. King
and Rebelo (1993) derive the optimal filter when both the cyclical component and the trend
component are assumed to be generated by stationary ARMA-processes with known variances
of the innovations which are assumed to be white noise and orthogonal for the two unobserved
stochastic processes. Bell (1984) shows how to extend the signal extraction problem to non-
stationary time series analyzed by Harvey (1985), Watson (1986), and Harvey and Jaeger (1993)
and others. Kaiser and Maravall (2001) show how this can be done for a general unobserved
component model, like (1), when the observed time series, yt, follows a general ARIMA model.

Any such model based approach relies on arbitrary identifying assumptions about which we
have no or very little a priori information. This gives rise to a major weakness with this
approach, namely that it is difficult if not impossible to evaluate an unobserved component
estimation procedure and it is difficult to compare different models.

2.6 Finite Time Approximations to Ideal Filters

There is another approach to optimal filtering developed by Koopmans (1974) based on a
approximation to an ideal filter using a Fourier series and then using the inverse discrete
Fourier transform to generate the filter weights in the time domain. This method is no less ad
hoc than the model based approach since it is based on the ad hoc assumption, that the true
business cycle filter is an ideal high-pass filter or ideal band-pass filter.

Koopmans (1974) showed how it is possible to construct an ideal low-pass filter in the time
domain as an infinite dimensional symmetric linear time-invariant (LTI) filter

τ ∗t =
∞X

j=−∞
h∗jyt−j , (20)

with the filter weights, h∗j , satisfying
P∞

j=−∞
¯̄
h∗j
¯̄
< ∞. The filter weights are found by the

inverse discrete Fourier transform of the frequency response function of an ideal low-pass filter.
Let the frequency response function of an ideal low-pass filter be

h∗(e−iωj) =
∞X

j=−∞
h∗je

−ijω, (21)
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with coefficients determined from the inverse discrete Fourier transform of the frequency re-
sponse function

h∗j =
1

2π

πX
−π

h∗e−iωjeiωjdω, j = 0,±1, 2, ... (22)

=

½
ωl/π for j = 0
sin (jωl) /πj for j = ±1, 2, ... .

It is not possible to construct an ideal filter with only a finite number of observations but it is
possible to construct a finite sample ”optimal approximation” to the ideal low-pass filter as a
finite dimensional moving average filter where the trend is given by the symmetric linear filter

τ t =
KX

j=−K
ajyt−j . (23)

There is a remarkable result saying that the optimal approximation to the ideal low-pass filter
for given lag length K is constructed by simply truncating the ideal filter weights h∗j from (22)
at lag K6 so that

aj =

½
h∗j for j = 0,±1, 2, ...,K
0 for j > K

. (24)

The power transfer function of a finite sample approximation to an ideal high-pass filter is
plotted in Figure 5. The approximation to an ideal high-pass filter should improve as K
increases. That is not necessarily the case for small changes in K, Pedersen (1999). The
approximation does not mirror the ideal high-pass filter very well near the cutoff frequency
for low values of K. The filter behaves like damped sinusoids for frequencies higher than ωl.
The poor approximation near the cutoff frequency is typical of Fourier series approximations to
functions with discontinuities, known as the Gibbs phenomenon, Brockwell and Davis (1996).

3 The Distortionary Effect of Filters

A filter is distorting compared with an ideal filter when it cannot cut off sharply at any pre-
specified cutoff frequency. The distortionary effect of filters may take several forms. In general,
a filter is distorting by passing (leaking) frequencies which it was supposed to attenuate and
compressing frequencies which should pass the filter, Figure 6, therefrom the terms leakage and
compression.7

6Koopmans (1974, ch. 6) and Baxter and King (1999).
7The term leakage is used in the spectral analysis literature. The term compression is - I believe - introduced

by Baxter and King (1999).
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Figure 5: The power transfer function of a finite sample optimal approximation to an ideal

high-pass filter with different truncation lags

The terms leakage and compression can be given a precise definition and measured in the
frequency domain. The size of the leakage and compression of a filter is twice the absolute
value of the area between the power transfer function of an ideal filter and the power transfer
function of a distorting filter, which is approximately

Leakage and compression =
X
ω∈W

|PTF (ω)− PTF ∗ (ω)| · 2 ·∆ω, (25)

where PTF ∗ (ω) is the power transfer function of an ideal business cycle filter at frequency ω,
where ω is n discrete equally spaced values between zero and π, ω ∈W = (ω1 < ω2 < ... < ωn),
with ω1 = 0 and ωn = π, PTF (ω) is the power transfer function of some distorting business
cycle filter, and ∆ω = ωi − ωi−1, i = 2, ..., n.8

A special case of the distortionary effect of filters occurs if the power transfer function of a filter
has cycles in which case the filter imposes spurious cycles on the filtered time series even when
filtering a white noise process, the Slutzky-effect.

The Hodrick-Prescott filter (HP-filter) has been criticized by Harvey and Jaeger (1993), Cogley
and Nason (1995), Park (1996), Guay and St-Amant (1997), Ehlgen (1998), and Kaiser and
Maravall (2001) for inducing spurious cycles in filtered time series with the ”typical spectral
shape” of Granger (1966) and Cogley and Nason (1995) argue that the resulting ”stylized facts”
are rather ”stylized artifacts” since they are merely the result of the filter and not of the time
series itself.

8The first and last observation in the series ∆ω is multiplied by 0.5.
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By making a clear distinction between the effect of filtering with an ideal filter and with a
distortionary filter, it is shown in Pedersen (2001) that the spuriousness critique rests on an
inadequate definition of the Slutzky effect - a definition which has the unfortunate consequence
that even an ideal high-pass filter induces a Slutzky effect.

There is no Slutzky effect in the HP filter when defining the Slutzky effect as cycles in the power
transfer function of a filter. Besides, the Slutzky-effect is just a special case of a more general
pattern of distortions and there is no reason to be more concerned about the Slutzky-effect
than of any other pattern of distortions if the purpose of filtering is to compute business cycle
stylized facts. A filter may be highly distorting without inducing spurious cycles for example
by involving a dramatic re-weighting of frequencies compared with the ideal filter or it may be
very little distorting even though there is a clear Slutzky-effect if the Slutzky-effect occurs at
frequencies where the input time series has very little power. The leakage and compression of
a filter is not a measure of the distortionary effect of a filter. The distortionary effect of a filter
depends both on the power transfer function of the filter and on the spectrum of the filtered
time series, that is, the leakage and compression at frequency ω is weighted by the relative
power of the input series at frequency ω.

3.1 A Metric for Measuring the Distortionary Effect of Filters

It is not possible to measure the distortionary effect of a filter in the time domain when we only
have a finite number of observations. This problem mirrors the impossibility of constructing
an optimal filter in the time domain with a finite number of observations. With an infinite
number of observations, the ideal cyclical component (defined as cycles with a period shorter
than some prespecified cutoff frequency) is

C∗ (L) yt =
∞X

j=−∞

¡
1− h∗j

¢
yt−j, (26)

with filter weights given by (22) and the estimated or finite sample approximation to the ideal
cyclical component is

Ĉ (L) yt =
KX

j=−K

¡
1− h∗j

¢
yt−j. (27)

The mean square error

MSE =
1

T

TX
t=1

³
Ĉ (L) yt − C∗ (L) yt

´2
=

1

T

TX
t=1

"
KX

j=−K

¡
1− h∗j

¢
yt−j −

∞X
j=−∞

¡
1− h∗j

¢
yt−j

#2
(28)

includes a sum of infinite terms.
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Figure 6: The power transfer function of two ideal business cycle filters and of two distorting filters

Let the ideal high-pass filter (13) or ideal band-pass filter (14) define the ideal business cycle
filter. Let PTF ∗ (ω) be the power transfer function of such an ideal business cycle filter at
frequency ω, where ω ∈ W = (ω1 < ω2 < ... < ωn), with ω1 = 0 and ωn = π, and let PTF (ω)
be the power transfer function of some distorting business cycle filter. The spectrum of the
true business cycle component is given by

S∗c (ω) = PTF ∗ (ω) · 2 · Sy (ω)

and the spectrum of the estimated business cycle component is

Sc (ω) = PTF (ω) · 2 · Sy (ω) .

The area under the integral
R π
0
2S∗c (ω) dω =

R π
0
PTF ∗ (ω) · 2 · Sy (ω) dω is the variance of the

true business cycle component.

By using a discrete approximation of frequencies, the distortionary effect of a filter is measured
as the sum9 of the absolute value of the difference between the spectrum of the true business
cycle component and the spectrum of the distorted business cycle component at frequency ω
multiplied by the size of the grid on ω: ∆ω = ωi − ωi−1, i = 2, ..., n10

Q =
X
ω∈W

|Sc (ω)− S∗c (ω)| ·∆ω, (29)

9Actually an integral but we approximate the metric using a discrete set of values of ω.
10The first and last observation in the series ∆ω is multiplied by 0.5.
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or rephrased as

Q =
X
ω∈W

|PTF (ω)− PTF ∗ (ω)| · 2 · Sy (ω) ·∆ω, (30)

It is seen from (30) that the distortionary effect of a filter depends on the power spectral
density of the input process just as the MSE depends on yt in (19). This is an important
insight since it implies that we cannot in general measure the distortionary effect of a filter by
the power transfer function and minimizing the leakage and compression of a filter is not in
general equivalent to minimizing the distortionary effect of a filter.

If the spectrum is close to zero at frequencies where a filter is highly distorting, then the
distortionary effect of the filter is small and vice versa. Most macroeconomic time series which
have the ”typical spectral shape” of Granger (1966) have most of their power at the very low
growth frequencies so that the deviation of the power transfer function of a distorting filter
from that of an ideal business cycle filter at low frequencies results in greater distortions than
a quantitatively similar deviation at high frequencies.

It implies that different filters may be optimal for different time series or for the same time series
for different countries. Specifically, the smoothing parameter of the Hodrick-Prescott filter, λ,
should be determined as the value which minimizes the distortionary effect of the HP-filter for
each country, just as the cut-off frequency of Baxter and King’s (1999) band pass filter could
depend on the country.

The distortionary effect of a filter is twice the absolute value of the area between the ideal
filtered spectrum and the distortionary filtered spectrum, as illustrated for the case of the
HP-filter in panel 2 in Figure 7.

The Q-statistics, (30), measures approximately twice the absolute value of the area between
the two filtered spectra, panel 3 in Figure 7. Twice the absolute value of the area has the
interpretation of the variance of the error as the MSE in (18).

The weights at frequency ω in (30) can be normalized with the effect that they sum to unity

Qw =
X
ω∈W

|PTF (ω)− PTF ∗ (ω)| · v (ω) , (31)

where the weights, v(ω), are determined as the ratio of the power spectral density of the input
process, Sy (ω) , at frequency ω to the variance of the series. The discrete sum of twice the
power spectral density function over the frequencies ω ∈W is approximately the varianceX

ω∈W
2 · Sy (ω) ·∆ω ' γ0,

and the filter weights at frequency ω are constructed as follows:

v(ω) =
2 · Sy (ω) ·∆ωP

ω∈W 2 · Sy (ω) ·∆ω
.

A new set of filter weights are constructed for each stochastic process. If the filter weights are
equal, then this corresponds to filtering a white noise process where all frequencies have equal
weight.
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Figure 7: The distortionary effect of the HP-filter

4 Defining and Measuring the Business Cycle Compo-

nent

The first and most important problem in empirical business cycle research is that of defining
the business cycle component. There seems to have emerged a consensus about a statistical
definition of the business cycle component in the macroeconomic and general equilibrium busi-
ness cycle literature where a vast majority of researchers define the business cycle component
either as an ideal high-pass filter or as an ideal band-pass filter. The two most commonly
used filters are the Hodrick-Prescott filter (HP-filter) and Baxter and King’s (1999) band-pass

68



filter. The HP-filter has been interpreted as an approximation to an ideal high-pass filter by
Prescott (1986) and King and Rebelo (1993) and Baxter and King’s (1999) band-pass filter
is constructed as an approximation to an ideal band-pass filter. Those filters are also widely
used in empirical business cycle research in many international organizations, central banks,
and government agencies.

Furthermore, a consensus seems to have developed about the duration of the business cycle
component. A majority of researchers have defined the business cycle component as growth cy-
cles with a duration less than eight years or between 1.5 and eight years. The Hodrick-Prescott
(1980, 1997) filter with a value of the smoothing parameter λ = 1600 with quarterly data has
been interpreted as an approximation to an ideal high-pass filter eliminating frequencies of 32
quarters or greater, Prescott (1986) and King and Rebelo (1993) and Baxter and King (1999)
extract cycles with a duration between 1.5 and eight years.

Researchers relying on other methods seem to share this view of the duration of growth cycles.
Englund, Persson, and Svensson (1992) and Hassler, Lundvik, Persson, and Söderlind (1994)
use band-pass filters in the frequency domain to extract cycles with a duration between three
and eight years, Canova (1998) defines the business cycle component as cycles with periods
between 1.25 and 7.5 years, Burnside (1998) defines the business cycle component as cycles
with periods between 1.5 and eight years, and King and Rebelo (1999) define the business cycle
component as ”those fluctuations in economic time series that have a periodicity of eight years
or less.”

However, there is no independent measurements underlying that view. The myth of an eight
year business cycle component is often based on Burns-Mitchell (1946) measurements of the
duration of classical business cycles which is measured in the level of aggregate economic activ-
ity and which is influenced by economic growth. A long period of economic growth is defined
by Burns and Mitchell (1946) as an intracycle trend and measured as a part of the expansion
phase. By contrast, the duration of growth cycles should be measured after detrending the
data, Pedersen (2002).

It has not been uncommon to confuse the two concepts of ”business cycles”, and Canova (1999)
compares the selection of turning points of growth cycles derived with a variety of filters with
turning points in classical business cycles. That is of course an invalid testing procedure because
statistics of two very different concepts of the ”business cycle” are compared.

When the distortionary effect of a filter depends both on the transfer function of the filter and
on the time series being filtered, then we need measurements on the duration of growth cycles
in each country in order to determine the cutoff frequency of an ideal business cycle filter for
each country. The duration of growth cycles can be measured as the time distance from peak
to peak or from trough to trough in the business cycle component after detrending the data.

Turning points are identified in classical business cycles by Burns and Mitchell (1946) and their
methods is continued by the NBER and since 1980 by its business cycle dating committee. The
major difficulty with replicating the NBER method and use it for different countries is that the
method is not well defined and relies on judgment by the researcher. Bry and Boschan (1971)
developed a computer algorithm for the determination of turning points in individual time
series which can be used to determine turning points in business cycles based on quarterly real
GDP. The procedure has been modified based on modern filtering theory and programmed in
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MATLAB, Mathworks (2002).11 The computer algorithm is approximating the NBER selection
of turning points based on a single reference series, quarterly real GDP. The selected turning
points for the U.S. are close to the turning points selected by NBER, Elmer and Pedersen
(2002). When identifying turning points in detrended time series, I use the same definition
and the same programmed method for determining turning points as when analyzing classical
business cycles, as do Mintz (1969, 1972, 1974) and Pagan (1997).

The computer algorithm is approximating the NBER selection of turning points based on a
single reference series, real GDP. First, tentative peaks (P) and troughs (T) are determined in
a highly smoothed time series, and subsequently the dating of turning points is refined based
on less smoothed series. Each phase (peak to trough or trough to peak) must have a duration
of at least six months and a cycle from peak to peak or from trough to trough must have a
duration of at least 15 months. By using this computer algorithm, we avoid the difficulties of
replicating the analysis of the NBER Business Cycle Dating Committee. Secondly, the same
criteria for selecting turning points are applied for all countries. Finally, we avoid judgement,
so that scientific replication is made possible.

The duration of growth cycles cannot be measured directly since the business cycle component
is unobservable and it is necessary to detrend the time series of quarterly real GDP be3fore
measuring the duration of growth cycles but by detrending the data, we define the business
cycle component which we want to measure. That seems like an unsolvable problem. It is not,
however, if economic fluctuations are not equally spaced over frequencies, that is, if the peaks
and troughs of growth cycles are concentrated within a specific band of frequencies. That should
not be a controversial assumption. It is widely believed that even though business cycles are
far from periodic, quarterly real GDP does have a concentration of power at specific business
cycle frequencies, Granger (1966), Sargent (1987), and King and Watson (1996). If that is the
case, then it might be possible to remove low frequency fluctuations with a high-pass filter and
measure the duration of growth cycles.

The initial detrending is done with the HP-filter with a low cutoff frequency. The cutoff of
the HP-filter is not sharp, it passes frequencies which it was supposed to suppress, and it
removes part of fluctuations which was supposed to pass the filter. The measurement of the
duration of the true business cycle component is thus distorted but the bias goes both ways.
The leakage biases the measurement towards longer growth cycles and the compression biases
the measurement towards shorter growth cycles. It is not known which effect will dominate.
However, in order to minimize the risk of removing too much of growth cycle frequencies and
expose the results to the criticism of being biased towards shorter cycles by construction, I
measure the duration of the business cycle component after filtering with cutoff frequencies
corresponding to 20, 18, 16, 14, 12, and 10 years.

The critical assumption is that economic fluctuations are not equally spaced over frequencies.
If the variance of a stationary economic time series is equally spaced over frequencies (like white
noise), then it would be impossible to apply this measurement method. If such a process was
filtered with an ideal high-pass filter with a cutoff frequency corresponding to, say, 14 years,
then the cyclical component would display cycles with a duration up to 13.5 years, filtering
with a cutoff frequency corresponding to 12 years would generate cycles with a duration up
to 11.5 years etc. I do not find evidence of such a pattern. By contrast, the identification of

11This is joint work with Anne Marie Elmer, Elmer and Pedersen (2002).
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turning points in growth cycles is in general quite robust to the definition of the business cycle
component and the initial detrending, Table 3.

In order to detrend with the HP-filter with cutoff frequencies corresponding to 20, 18, 16, 14,
12, and 10 years, I need first to compute the optimal value of λ in the HP-filter for each of the
countries and for each of the cutoff frequencies. The determination of λ∗ follows the steps:

1. An ARIMA(p, d, q)-model is fitted to the logarithm of quarterly real GDP for each coun-
try. All combinations of models up to d = 0, 1 and p = q = 4 are estimated, and the
model with the best fit is chosen. The ARMA-model is estimated with RATS, Estima
(2000), using a Gauss-Newton algorithm. Let an ARMA(p, q) process take the form

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q, (32)

with its transfer function representation given by

yt =
1 + θ1L+ θ2L

2 + ...+ θqL
q

1− φ1L− φ2L
2 − ...− φpL

p
· εt (33)

2. The theoretical spectrum is computed with a version of the autoregressive spectral estima-
tion method of Parzen (1969) and Berk (1974), which allow for general ARMA-processes,
as in Hamilton (1994, ch. 6). The frequency response function is given by

h
¡
e−iω

¢
=
1 + θ1e

−iω + θ2e
−2iω + ...+ θqe

−qiω

1− φ1e
−1iω − φ2e

−2iω − ...− φpe
−piω

and the spectrum of yt is given by

Sy (ω) =
1

2π

µ
1 + θ1e

−iω + θ2e
−2iω + ...+ θqe

−qiω

1− φ1e
−1iω − φ2e

−2iω − ...− φpe
−piω

¶
·
µ
1 + θ1e

iω + θ2e
2iω + ...+ θqe

qiω

1− φ1e
iω − φ2e

2iω − ...− φpe
piω

¶
· σ2 (34)

3. The optimal value of the smoothing parameter λ in the HP-filter is computed as the
value, λ∗, which minimizes (31) for the cutoff frequencies corresponding to 20, 18, 16, 14,
12, and 10 years of an ideal high-pass filter.

The optimal values of λ are reported in Table 1 and 2. It is worth noting that the standard value,
λ = 1600, comes close to being optimal when defining the cyclical component as growth cycles
with a duration shorter than nine years and not eight years as is a standard interpretation. A
value of λ = 1000 comes closer to being optimal for most countries, when the business cycle
component is defined as cycles with a duration shorter than eight years. Spain, EU, and Finland
have generally lower values corresponding to longer growth cycles. It is to be expected that the
EU average has longer cycles than the individual countries since the economic fluctuations in
individual EU countries have been far from perfectly correlated in the period 1960-2002.
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Table 1: The minimum distorting value of λ
in the HP-filter

EURO EU BEL DNK FIN FRA

3 years 18 18 32 22 12 24

4 years 59 52 83 67 52 71

5 years 145 115 185 160 125 165

6 years 310 230 360 330 250 340

7 years 580 420 650 610 480 620

8 years 1000 710 1090 1040 820 1050

9 years 1610 1140 1720 1660 1340 1680

10 years 2460 1750 2600 2530 2070 2550

11 years 3625 2575 3775 3700 3100 3725

12 years 5125 3700 5325 5225 4450 5275

13 years 7050 5150 7300 7200 6200 7250

14 years 9500 7000 9800 9700 8400 9800

15 years 12600 9400 12900 12700 11200 12800

16 years 16300 12400 16600 16500 14700 16700

18 years 20400 26200 26600 26400 24000 26800

20 years 31800 39800 40400 40200 37000 40800

Table 2: The minimum distorting value of λ
in the HP-filter

UK ITA NLD SPA SWE
3 years 18 18 25 11 19

4 years 56 58 73 34 58

5 years 135 145 170 90 140

6 years 290 310 340 200 300

7 years 540 580 630 390 560

8 years 940 1000 1060 690 960

9 years 1530 1600 1690 1160 1550

10 years 2360 2460 2560 1850 2390

11 years 3475 3625 3750 2800 3525

12 years 4975 5150 5300 4075 5000

13 years 6850 7100 7250 5750 6900

14 years 9300 9600 9800 7900 9400

15 years 12300 12600 12800 10600 12300

16 years 16000 16400 16600 14000 16100

18 years 25800 26400 26600 23200 25800

20 years 39400 40400 40600 36000 39400

4.1 The Duration of Growth Cycles

I have no knowledge of other studies asking the question about the duration of growth cycles.
There is a large literature on the duration of classical business cycles, Burns and Mitchell
(1946), Zarnowitz (1992), Watson (1994), Diebold and Rudebusch (1990, 1992, 1993, 1999).
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The duration of growth cycles in each country is measured as the number of quarters from
peak to peak or from trough to trough in quarterly real GDP after removing low frequency
movements with the HP-filter.

There is an element of judgment in the determination of the maximum duration of growth
cycles since there is no true way of detrending before identifying peaks and troughs of the
growth cycle. Fortunately, the results are quite robust to the detrending method for many
countries, Table 3. The maximum duration of any growth cycle in EU, Eurozone, Belgium,
Finland, France, Italy, Sweden, and the UK is almost independent of the cutoff frequency of
the HP-filter. We only find a large difference for Spain and with a difference of three quarters
for Denmark and Netherlands.

For Denmark, we get the counterintuitive result that we identify a longer growth cycle with
the higher cutoff frequencies than with the one corresponding to 16 years, and the longest cycle
is chosen. The longest growth cycle in the Netherlands is 24 quarters when we filter with a
cutoff frequency corresponding to 16, 14, and 10 years but it is 27 quarters when filtering with
a cutoff frequency corresponding to 12 years. The value 24 quarters is chosen. The biggest
difference between the maximum duration of growth cycles is found in Spain, where it is 46
quarters for the 20 year cutoff frequency but 26-27 quarters for the 16-18 year cutoff frequency
and 19 quarters for the 14, 12, and 10 year cutoff frequency. The value 26 quarters is chosen.

I have in general chosen the growth cycle corresponding to the 14-16 year cutoff frequencies in
Table 3, when in doubt, the only exception being the Netherlands. The minimum distorting
value of λ in the HP-filter is around 16000 for a cutoff frequency corresponding to 16 years. The
HP-filter with λ = 16000 leaves 92 percent of the 8-year cycle but it also includes 68 percent of
12-year cycles, which means that the measurements are biased heavily towards longer cycles.
This business cycle component is in the following defined as growth cycles with a duration
shorter than or equal to 6.25 years for the EU, 3.5 years for the Eurozone, 4 years for Belgium,
5.5 years for Denmark, 7 years for Finland, 4.25 years for France, 4.5 years for Italy, 6 years
for the Netherlands, 6.5 years for Spain, 4.5 years for Sweden, and 5.25 years for the United
Kingdom, Table 4.

Table 3: Maximum duration of growth cycles with cutoff frequency
corresponding to 20, 18, 16, 14, 12, and 10 years,

measured in quarters

20 years 18 years 16 years 14 years 12 years 10 years

EU 26 26 25 25 25 25

Eurozone 13 14 14 13 13 13

Belgium 16 16 16 16 16 16

Denmark 24 24 19 22 22 22

Finland 28 28 29 28 28 28

France 17 17 17 16 16 16

Italy 18 18 18 18 18 18

Netherlands 27 27 24 24 27 24

Spain 46 27 26 19 19 19

Sweden 18 18 18 18 18 16

UK 21 21 21 21 21 21
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Table 4: Definition of business cycle component and
the optimal value of λ in the HP-filter

Cutoff frequency Optimal value of

Quarters λ in HP-filter
EU 25 270

Eurozone 14 35

Belgium 16 85

Denmark 22 235

Finland 28 475

France 17 90

Italy 18 95

Netherlands 24 345

Spain 26 280

Sweden 18 90

UK 21 165

The large difference between the EU and the Eurozone countries may be caused by the different
time periods covered. The EU data are for 1960.1-2002.2 and the Eurozone data are for the
period 1991.1-2002.2.

The growth cycles are all shorter than the usual eight year definition of the business cycle
component and similar results are found for the US, Canada, Japan, Australia, Austria, Korea,
and Norway, Pedersen (2002).

A large number of empirical studies of international business cycles use the same value, λ =
1600, for all countries, Blackburn and Ravn (1991a, 1992), Backus and Kehoe (1992), Backus,
Kehoe and Kydland (1992, 1993, 1995), Danthine and Donaldson (1993), Fiorito and Kollintzas
(1994), OECD (2002) and others, but the distortionary effect of a filter depends both on the
time series being filtered as well as on the power transfer function of the filter so different
values of λ should be chosen for different countries - and in particular when growth cycles have
different durations across countries. The optimal values of λ for the different countries are
reported in Table 4.

5 Alternative Linear Business Cycle Filters

We have now the three ingredients for comparing alternative detrending techniques: (1) a
metric for measuring the distortionary effect of filters, (2) an ad hoc statistical definition of
the true business cycle component, and (3) an estimate of the business cycle component, the
estimated spectrum of real GDP for each of the 11 countries and aggregates.

The filters studied are all linear, time-invariant filters: the first difference filter (FD), Blanchard
and Fischer’s (1989) ARIMA(1, 1, 2)-filter (BLFI), the Hodrick-Prescott filter (HP) with λ =
1600 and with the optimal value λ∗ for each country, a finite sample optimal approximation to
an ideal high-pass filter with the Baxter-King-constraint that the sum of the coefficients sum to
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zero (BKhp), Baxter and King’s (1999) band-pass filter (BKbp), and a band-pass filter based
on the Hodrick-Prescott filter (HPbp).12

5.1 First Difference Filter

An often used method for transforming I(1)-series to stationary time series is to take the first
difference of the logarithm of the series. The first difference filter attenuates the low frequencies
and amplifies higher frequencies. The power transfer function of the first difference filter is
computed as follows

H∆ (ω) =
¡
1− e−iω

¢ ¡
1− eiω

¢
= 1− e−iω − eiω + 1

= 2− 2 cos(ω). (35)

5.2 Blanchard and Fischer’s ARIMA Filter

Blanchard and Fischer (1989) propose to estimate the trend component as an ARIMA (1, 1, 2)-
model and they estimate the following model for U.S. quarterly log of real GDP for the period
1947:4-1987:2

∆yt = .006 + .24∆yt−1 + εt + .08εt−1 + 0.24εt−2.

Blanchard and Fischer’s filter can be formulated as a sequential application of first, the first
difference filter, and next the trend is an ARMA(1, 2)-process. The power transfer function of
the first difference filter is given by (35).

The frequency response function of the trend component, the ARMA(1, 2)-filter

G(ω) =
(1 + .08e−iω + .24e−2iω)

(1− .24e−iω)
,

so the frequency response function of the business cycle component is

C(ω) ≡ 1−G(ω) = 1− (1 + .08e−iω + .24e−2iω)
(1− .24e−iω)

,

and the power transfer function of the business cycle component is

|C(ω)|2 =
¯̄̄̄
1− (1 + .08e−iω + .24e−2iω)

(1− .24e−iω)

¯̄̄̄2
,

The power transfer function of the business cycle component of the ARIMA(1, 1, 2)-filter is
likewise the product of the power transfer function of the first difference filter and the power
transfer function of the ARMA(1, 2)-filter

HBLFI (ω) =

¯̄̄̄
1− (1 + .08e−iω + .24e−2iω)

(1− .24e−iω)

¯̄̄̄2
· [2− 2 cos(ω)] , (36)

12Details on the filters and on the computation of the power transfer function are given in Pedersen (1999),
available from the author upon request together with MATLAB-files.
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5.3 The Hodrick-Prescott Filter

The Hodrick-Prescott filter computes a stochastic trend {τ t}Tt=1 by minimizing the sum of
squared deviations of a time series from its trend (yt − τ t)

2 subject to the constraint that the
sum of the squared second differences is not too large

min
{τ t}Tτ=1

TX
t=1

(yt − τ t)
2 + λ

T−1X
t=2

[(τ t+1 − τ t)− (τ t − τ t−1)]
2 . (37)

The first term is a measure of ”goodness-of-fit” and the second term is a measure of the
”degree-of-smoothness” which penalizes decelerations in the growth rate of the trend compo-
nent. Variations in the smoothing parameter λ alters the trade-off between the goodness-of-fit
and the degree-of-smoothness.

Differentiating (37) with respect to τ t, the cyclical HP filter is

C (L) ≡ λ(1− L)2 · (1− L−1)2

λ(1− L)2 · (1− L−1)2 + 1
=

λL−2(1− L)4

λL−2(1− L)4 + 1
, (38)

with the power transfer function as the square of the absolute value of the frequency response
function13

HHP (ω) =

¯̄̄̄
¯ λ(1− e−iω)2 · (1− eiω)

2

λ(1− e−iω)2 · (1− eiω)2 + 1

¯̄̄̄
¯
2

=

¯̄̄̄
¯ 4λ [1− cos (ω)]2
4λ [1− cos (ω)]2 + 1

¯̄̄̄
¯
2

. (39)

5.4 Optimal approximation to an Ideal High-Pass Filter

An optimal approximation to an ideal low-pass filter was defined by the filter weights given
by (22). Baxter and King (1999) impose the constraint that the filter weights of the low-pass
filter sum to one in order for the high-pass filter to have zero gain at zero frequency. In order
to remove a unit root, the approximated low-pass filter is imposed the constraint that the sum
of the weights is unity in which case the corresponding high-pass filter has zero gain at zero
frequency. Baxter and King therefore impose the side constraint that αj (ω) = 0 which implies
that

αj = hj + θ, j = 0,±1, 2, ..., K (40)

where θ is a constant which depends on the lag length K

θ =
1−PK

j=−K hj

2K + 1
.

13The HP filter was first analyzed in the frequency domain by Singleton (1988), King and Rebelo (1989,1993)
and Blackburn and Ravn (1991b).
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The power transfer function of a moving average filter with K lags is given by

HMA (ω) =

¯̄̄̄
1−

µ
1

2K + 1

¶
·

αKe
−iωK + αK−1e−iω(K−1) + ...

+α2e
−i2ω + αe−iω + 1 + α1e

iω + ...+ αKe
iωK
¯̄2

and with the coefficients given by (40). I report the results for K = 12, 16, and 20.

5.5 Baxter and King’s Band-Pass Filter

Baxter and King’s (1999) band-pass filter is constructed as the difference between two optimal
approximated low-pass filters with the constraint that the filter weights sum to zero. Baxter
and King recommend to use the value K = 12 for quarterly data. A higher value of K, should
give a better approximation to an ideal filter but limits the number of observations available
to the researcher. I report the results for K = 12, 16, and 20. The upper cut off frequency
corresponds to five quarters and the lower is determined by the duration of the growth cycle,
given in Table 4.

5.6 Band-Pass Filter based on the Hodrick-Prescott Filter

I construct a band-pass filter based on the Hodrick-Prescott filter as a cascaded HP-filter.
First, the series is filtered with the HP-high-pass filter with a low cutoff frequency, and next
the ”cyclical component” is filtered with a HP low-pass filter with a high cutoff frequency.14

The power transfer function of this band-pass filter is the product of the power transfer function
of the high-pass and the low-pass filters. The lower and upper values of λ in the two low pass
filters are determined simultaneously as the minimum distorting values for each country.

5.7 Results

The distortionary effects of the filters are reported in Table 5 and 6. The results depend on the
time series being filtered and therefore depend on the country. There are no general results.

However, the first difference filter (FD) is highly distorting and it involves a dramatic re-
weighting of frequencies. It furthermore induces a phase shift. Blanchard and Fischer’s (1989)
filter is also highly distorting, it has a clear Slutzky effect, and it also induces a phase shift.

14A Hodrick-Prescott band-pass filter can also be constructed as a linear combination of two low-pass filters.
This sequential filter is slightly less distorting.
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Table 5: The distortionary effect of alternative business cycle filters

Eurozone EU Belgium Denmark Finland France

First difference filter 0.111 0.068 2.480 0.605 0.155 35.385

Blanchard-Fischer 0.105 0.063 2.490 0.563 0.150 22.807

HP, λ = 1600 0.250 0.054 1.699 0.363 0.090 16.790

HP, λ = λ∗ 0.044 0.025 0.514 0.174 0.061 4.959

BKhp, K=12 0.030 0.033 0.469 0.195 0.076 4.501

BKhp, K=16 0.026 0.022 0.359 0.143 0.067 3.346

BKhp, K=20 0.022 0.019 0.324 0.120 0.048 3.172

BKbp, K=12 0.034 0.031 0.542 0.197 0.077 4.313

BKbp, K=16 0.030 0.022 0.519 0.135 0.064 3.927

BKbp, K=20 0.025 0.019 0.419 0.135 0.051 3.324

HP-bandpass 0.054 0.029 1.135 0.233 0.069 7.928

Table 6: The distortionary effect of alternative business cycle filters

Italy Netherlands Spain Sweden United Kingdom

First difference filter 10.176 23.135 4.730 0.154 0.200

Blanchard-Fischer 10.349 18.640 4.299 0.141 0.172

HP, λ = 1600 15.056 7.660 4.738 0.192 0.162

HP, λ = λ∗ 4.311 4.523 2.263 0.053 0.061

BKhp, K=12 3.666 5.318 3.040 0.046 0.066

BKhp, K=16 2.989 4.347 2.210 0.037 0.046

BKhp, K=20 2.699 3.364 1.624 0.034 0.043

BKbp, K=12 3.545 5.684 2.808 0.044 0.062

BKbp, K=16 3.124 4.078 2.100 0.040 0.044

BKbp, K=20 2.774 3.734 1.646 0.035 0.046

HP-bandpass 5.101 6.758 2.382 0.067 0.077

It is worth noticing how the HP-filter with the optimal values of λ in general are much less
distorting than the HP-filter with the standard value λ = 1600. this shows that it is worth the
effort to compute the optimal value of λ.

The Baxter-King approximated high-pass filter (BKhp) with the recommended value K = 12
is often about as good as the HP-filter with the optimal value and the performance of BKhp
improves considerably when increasing K to 20.

Baxter and King’s (1999) band-pass filter is generally superior to the band-pass filter based on
the HP-filters.

When comparing the distortionary effect of filters, we have so far neglected the endpoint prob-
lems of the HP filter which arise because the HP filter is an infinite dimensional moving average
filter in the time domain. Baxter and King (1999) recommend to cut off the first and last three
years of observations when using the HP filter to minimize the endpoint problems. This makes
it comparable with BKhp and BKbp for K = 12. The distortionary effect of the endpoint
problems can be computed with the metric (31).
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Figure 8: The power transfer function of filters for the UK

6 Summary and Conclusions

It has been common in modern business cycle research to detrend macroeconomic time series
before analysis. It is possible to compare the distortionary effect of alternative filters for any
given ad hoc definition of the ”true” business cycle component. That should be a great help in
choosing among the many available business cycle filters.

There are unfortunately no general results about the distortionary effect of filters apart from
the fact that it depends on the time series being filtered and that different filters may be optimal
for different countries or different time series. In particular, when filtering with the Hodrick-
Prescott filter, the value of the smoothing parameter should be adjusted to the time series or
country. It is not recommended to use the standard value λ = 1600 for all countries. The value
λ = 1600 is close to being the optimal value for many countries when defining the business cycle
component as cycles with a period up to nine years. Measurements of the duration of growth
cycles in the EU countries show, however, that growth cycles are in general much shorter.
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Data Appendix

The data are quarterly real GDP for the EU (1960:1-2002:2), the Eurozone (1991:1-2002:2) and
for a number of individual EU-countries: Belgium (1980:1-2002:2), Denmark (1977:1-2002:2),
Finland (1975:1-2002:2), France (1960:1-2002.2), Italy (1970:1-2002.3), the Netherlands (1960:1-
2002.3), Spain (1970:1-2002:2), Sweden (1980:1-2002:2), and United Kingdom (1955:1-2002.3).
The majority of the time series are from EcoWin. Some of the time series have been combined
from different sources, presumably after changes in base year.
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1 Introduction

In the last decade, the development of new modern tools, especially regarding non-
linear modeling, has allowed a renewed interest in the empirical cyclical analysis and especially
in de-trending techniques and cyclical turning point identification. The literature on this issue is
gaining momentum. But there is a challenge ahead of us to disseminate those new tools among
potential users and at the same time, to make them sufficiently transparent and understandable.

This paper is a point of view of practitioners, halfway between academic and official public
research and private users in the business community2. Its aim is to present some point of
views on the question of detecting and dating the global economic cycle and to offer some
tentative comparisons on the main available methods used today. A comparative assessment
on parametric and non-parametric methods for dating the euro-zone cycle will be presented.

2 Objectives

2.1 Distinction between dating and detecting

First of all, we want to insist on the separate issue of dating and detecting. To hazard a
comparison, it is almost the same difference than between estimating and predicting.

Even if the past is by definition totally known, the timing of past turning points has to be
estimated. This latter estimation can be carried out either by some reasonable non-parametric
method (graphically or by using a pattern recognition algorithm), or by a model aiming at
replicating this past reality. The “best” model has to be found to reach this objective, which
means the best specification able to reproduce this precise stylized fact. But to test the validity
of the model, we need to know this stylized fact, i.e. the past chronology of turning points. It
seems therefore that there is an intrinsic contradiction in using models for dating. We will try
to discuss this issue in the present paper. Of course, at the same time, the parameters have
to be estimated efficiently although there are convergence problems. But, as stated by Pagan
(2001), we must “test the model’s fit in a number of directions that are meaningful in terms
of the objective of the modeling”. This can be done by simulating the estimated model and
deriving estimates. Regarding turning points, which cannot be among the model parameters,
they are not measured easily as stylized facts. Other stylized facts like the phase duration and
amplitude may also be an objective for validating the models (Clements and Krolzig, 2000).

For the ex-post dating of turning points, various approaches are available. If an expert commit-
tee in the United States is in charge of the dating, Romer and Watson (1994) argued in favor
of a systematic method to dating past turning points. The Bry and Boschan (1971) procedure
has been used worldwide. Apart from this non-parametric approach, Markov-switching models
may be used to dating (Harding and Pagan, 2001, and Krolzig, 2001). Dating seems easy
because the past is known by definition. It is true if dating is a concept clearly defined as the
peaks and troughs of a series with some censoring rules. This is what has been done for some

2The COE, attached to the Paris Chamber of Commerce and Industry, is one of the leading centres in France
for economic analysis and forecasting (www.coe.ccip.fr).
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decades now in the United States and regularly applied to other countries. The difficulty relates
to the identification of the series on which the rule is applied. If GDP were the ideal series,
the algorithm could be applied without any question. The only issue would be to make the
estimate after clearing seasonality and irregularities and to define minimum censoring criteria
(duration, intensity). But it is not the case so that the exercise is done on several coincident
series at the same time, which makes the exercise more difficult.

Dating through a parametric model appears quite challenging. Therefore, the finding of Hamil-
ton in its 1989 seminal paper was quite interesting. But the conclusion has been somewhat
misleading because there is no reason why this kind of model would, by chance, result in the
identification of those turning points. The hypothesis of two regimes is not equivalent to the
distinction between recessions and no recessions. And we do not see why this should be the
case.

We will give an example of two different economies with different turning points but leading
to the same regime-switching model. As a matter of fact, the re-estimation of the Hamilton
model later on was quite disappointing and showed that it was not coinciding with official dating
anymore. So we will reach the conclusion that this kind of model cannot be used to make a
dating of cycles without a clear economic interpretation of the regimes. And therefore, the use
of non-parametric methods like the Bry and Boschan (1971) algorithm is the best approach.

We may also think that the definition of recessions might change overtime. Even if recessions
have not vanished as some economists were predicting, we may think, if we consider the last
US recession, that it has been a mild recession ant that it has not implied a recession in
Europe. Only Germany has been facing a short recession. In Europe, we may say that it was
a “borderline recession”. As a matter of fact, in many countries, the annual GDP growth rate
went down to about 0%, therefore well below the tendencial growth rate.

On the contrary, detection is rather a prediction issue. Real—time estimate of turning points
cannot be exact because the identification of a turning point depends on future developments,
which are unknown. For example, a censoring rule insists on a minimum duration of 6 months
for a recession. This is why the NBER takes so much time to issue its dating. Let us take
the example of the recession onset in the USA in April 2002. A real-time (filtered) probabil-
ity of recession given in that moment by a Markov-Switching model (leading to an emitted
recession signal given at that moment by any decision rule) would more likely be interpreted
as a prediction. Conversely, the probability estimated by that model computed in November
2002 would not be a prediction but an estimate. The filtered probability includes a component
due to the unknown future. Detection models may minimize a clear objective, which may be
different from the classical maximum likelihood objective. For example, there may be a need
to minimize the number of false signals.

The detection of turning points faces the problem of using data in real time with the difficult
issues of edge effects and data revision. It can be thought of as a nowcasting challenge. A
turning point may be considered as an event modeled as a binary variable. In this sense,
the detection is the probability estimation of the event with an attached decision rule. The
detection of leading indicator cycle turning points may be useful to forecast the turning points
of the global economy. Markov-switching models are among recent tools for detecting turning
points. But the probabilistic approach of Neftçi (1982) is also appealing. Probit and logit
models may also be used for that purpose. Finally, pattern recognition procedures have been
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also proposed. There is quite an exciting development in models aiming at detecting turning
points.

Detecting (including anticipating) has a much more intense statistical content because it in-
cludes some “predicting” work. In this case, the question is to find the best model to detect
as quickly as possible and with the best performance the coming or current turning points. In
that respect model-based approaches may be much more powerful than ad-hoc non-parametric
rules. For example regime-switching models may be used efficiently to provide efficient signals.
But other semi-parametric methods (pattern recognition algorithms or Neftçi’s model) may
also be powerful. In the case of Markov-switching models, the filtered (real time) probability
is more important than the smoothed probability signals because those models are used for
prediction purposes. We reach the idea that the best model to predict may not be the best
model to explain, and vice-versa.

2.2 Why an official dating is important

Statistical offices have the natural goals of producing and disseminating statistical information
among users. This information must meet several well-known criteria, among which: quality,
accuracy, timeliness and consistency. In addition, it is now a common practice to disseminate
time series data corrected from seasonal variations. First, it prevents the users from doing the
correction themselves. Second, it prevents the use of alternative methods, which may result in
various estimates while a consensus is more effective. However, alternative methods still exist
between countries. The convergence towards a consensual method among countries in Europe,
which is encouraged by Eurostat, is a progress towards harmonization.

However, the question of method convergence is gaining complexity when we turn to the issue
of trend extraction and characterization of cycles. Even more complex is the issue of identifying
turning points in cycles, i.e.: dating, detecting or forecasting turning points. In this case, it
is needed to clearly define the concepts before reviewing the rather large spectrum of available
approaches. There is a growing demand from private as well as from public users for this kind
of information to improve decision-making. This is why we will see a multiplication of new
tools on that issue, which can be disseminated more quickly through the Internet channel.

Statistical offices may investigate those topics to see if a convergence may be found on a best
common approach. But time will be needed, first to identify the concepts and the definitions
and second to explore the different techniques available. This will be a step further beyond the
correction for seasonal variations or adjustment for trading days towards a better understanding
of the evolution of a series around its trend or the comovement of several series around their
common trend.

The turning point is a concept, which will have to be clearly defined. Arthur M. Okun (1960),
in his famous paper on the appraisal of turning point predictors, had warned, « distinguishing
wiggles from genuine turning points is a serious and difficult problem ». The tradition in
the last fifteen years has been to distinguish classical cycles from growth cycles. We need to
find criteria to characterize turning points of those cycles and avoid focus on short-term lived
fluctuations.

Dating cycles finally is geared toward two main objectives: to provide the basis for economic
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cyclical analysis and to serve as a reference chronology to validate models aiming at “detecting”
turning points (Markov-Switching models for example). It could even act as an input in max-
imization procedures in order to find the best model (Probit models and pattern recognition
models for example)

3 Transversal issues

3.1 What cycle and what turning points: The ABCD approach

First, there is a question of definition. In particular, the « business cycle » may either be the
« generic » term for economic fluctuations or refer to the fluctuations of the level of the series.
In academic literature, this difference is rarely made. In the present study we will distinguish
the classical business cycle from the growth cycle (deviation from trend). Refer to the following
Figure 1 for the three possible representations: classical cycle (in level), growth cycle (deviation
to trend) and growth rate cycle.

The cycle can be defined and estimated in various ways with, for each definition, a different
dating of cyclical turning points. It is important to insist on this aspect because the interpre-
tation of turning point signals given by coincident or leading indices will depend crucially on
the definition adopted. Unfortunately, there is no unique and recognized terminology to name
those cycles. This entails potential confusion for users of indicators available on the market.

We propose a distinction and a terminology based on the dominant tradition that can be met in
most empirical works: business cycle and growth cycle. However, it is interesting to distinguish
three types of cycles (see Figure 1 for a school case, Figures 2 and 4 for an application on the
American economy and Figure 3 for an application on the euro-zone economy). We present in
detail these kind of cycles below, as well as our ABCD approach (see also Anas and Ferrara,
2002b). First, the business cycle is meant to reproduce the cycle of the global level of activity
of a country. It is the most common definition in the economics literature. The turning
points of that cycle (named B for peaks and C for troughs in Figure 1) separate periods of
negative growth (recessions) from periods of positive growth (expansions). In real life, a period
of negative growth will be admitted as a recession if it respects minimum criteria relative to
duration and intensity as well as a sufficient diffusion in the economy (symmetric criteria for
expansions). For example, even if growth has become negative in the euro-zone at the end of
2001, this episode did not last long enough to be qualified with certainty as a recession.

The second cycle, largely discussed in Europe, is the growth cycle, introduced by the OECD in
the 1960’s. This cycle can be defined as the deviation of the reference series (GDP for example)
to the trend, though it is difficult to define and estimate. The expression “growth cycle” is not
a correct one because it creates confusion with the cycle of the growth rate (discussed below).
The growth cycle turning points (named A for peaks and D for troughs in Figure 1) has a
clear meaning. Peak A is reached when the growth rate decreases below the trend growth rate.
Symmetrically, the trough is reached when the growth rate overpasses it again. In other words,
the peak is reached when the first derivative of the deviation to trend becomes null, i.e. when
the derivative of the series (representing the instantaneous growth rate) equals the derivative
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of the trend (or the slope of the trend if this one is linear as we assume in the school case
presented in Figure 1).

Figure 1: Evolution of cycles and the ABCD approach
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Since we need to give a name to those downward and upward phases, we will speak respectively
of slowdown and rebound. In French, there is an easy word to refer to the corresponding
turning points (“points de retournement conjoncturels”) but the translation in English is more
complex.

The third cycle we may consider is the growth rate cycle (meaning the cycle of the growth
rate). The peak (point α in Figure 1) represents the maximum growth rate. On the contrary
the trough (point β in Figure 1) indicates that the growth rate has reached its lower value and
is increasing again. It is difficult to give a name to those phases.

Indeed, it is hazardous to speak of slowdown when the growth rate begins to decrease. For
example, when the growth rate decreases from 4% to 3% in Europe, it is not a slowdown because
growth remains above the trend growth: it is only a slowdown of growth. On the contrary, a
renewed increase in growth is not a signal of rebound. Maybe this is what happened in Europe
at the beginning of 2002 with a clear upturn of the growth rate but no exit of the growth cycle.
On the contrary, it seems that the American economy went out, not only from the recession
but also from the growth cycle descending phase.

When the growth rate goes up from —2% to —1%, it corresponds to a phase of decreasing activity
(recession) even if the growth rate goes up. Unfortunately, practitioners concentrate most of the
time on this cycle. The calculation (on GDP most of the time) is often made on a year-to-year
basis and sometimes on a quarterly basis (but more volatile).

However, those calculations have drawbacks relative to the instantaneous growth rate. The
year-to-year estimate has a lot of inertia relative to the instantaneous rate and therefore adjust
with a delay to the inflexions of growth, notably around peaks and troughs (see Figure 1). If
the quarterly change does not have this drawback of inertia, it is nevertheless more volatile,
incorporating short-term irregular effects (not seasonal effects because GDP is most of the time
corrected from seasonal variations). As regards the underlying instantaneous rate cycle, filtered
from short-term perturbations, it is too difficult to estimate.

The ABCD approach considered here is based on the following two principles:

a. The turning points (TP hereafter) detection issue must be considered as the progressive
follow-up of the cyclical movement. Instead of concentrating on one TP (a peak for
example), it is more informative to consider that the downward movement will first ma-
terialize in a peak of the growth rate (point α). Then, if the slowdown gains in intensity,
the growth rate will decrease below the trend growth rate (point A) and finally, if it is
really deteriorating, the growth rate will become negative (point B) provoking a recession.
We get a non-symmetric chronology for upward phases: first exit of the growth rate cycle
(point β), second exit of recession (point C) and finally of the growth cycle (point D)

b. We consider that the cycle in growth rates is not a good indicator of future economic cycles.
First, it is subject to erratic movements as well as to very short-life fluctuations due to
transitory events producing false alarms and making the peak lead extremely unstable,
which removes any practical interest for the signal. This is why we consider that the
detection of α and β is not always useful nor informative, even if practitioners, market
economists or officials often use it for their diagnosis. We prefer to detect points A and
B, which announce respectively downward phases of growth cycle and classical cycle.
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However, if the slowdown does not gain in intensity to become a recession, then point A
will not be followed by point B. We call the follow-up of those points (A and B for peaks
and C and D for troughs) the ABCD strategy for TPs analysis. We will concentrate on the
dating, detection and prediction of those TPs. Let’s recall that α (growth rate cycle peak)
is not necessarily followed by A (growth cycle peak) and could be quickly followed by β.
In this case, it creates a weak fluctuation, which does not provoke a sufficient decrease
of growth to go below the trend growth rate. This was the case in 1998-99 in the USA
during the Asian crisis when the industrial sector underwent a small recession but which
did not get diffused to the whole economy, partly due to the reduction in international
commodities prices. This is what also happened in France where economists spoke of
an “air pocket” (trou d’air). Equally, a slowdown will not translate automatically into
a recession. The USA experienced a slowdown without recession in 1994-95 but the
slowdown starting in May 2000 translated into a recession 10 months later, in early 2001.
Meanwhile in Europe, the slowdown did not translate into a recession.

From an economic point of view, it is important to rapidly detect the most pertinent turning
points, in order to help public decision making as well as private actor investment decisions.
There is a risk of autorealisation process or overreactions.

Nowadays, the Internet channel allows for quick and complete information among users and it
is going to be very difficult to slow this process. The multiplication of signals and indicators
may or may not be efficient to help users. They will have to decide which indicators to choose
or to find the market consensus.

Early signals may be useful to policy makers to take steps sufficiently in advance to avoid the
worsening of the economic situation because it takes some time before those measures have an
economic impact (3 to 4 quarters for monetary decisions).

3.2 What exactly is detection?

The concept of detection is not commonly used in statistics or in economics. It relates etymo-
logically to the research of an object or phenomena which is “hidden”. The detection relates to
the research or estimation of a “hidden” event. Under this definition the detection of a turning
point is strictly the research and identification of a turning point which has just occurred or is
happening in the present time.

However, a wider definition may include, besides the turning point identification in real time, the
ex-post dating since, in the past, turning points, even not “hidden”, are not clearly observable
and need to be estimated. Also, a more general definition could include the detection of coming
turning points, i.e. the predictions of turning points in the short term. We adopt below this
wide vision of the detection issue of turning points.

Let us review the specific issues when identifying successively past, present and future turning
points.

There is always the double issue of selecting the adequate series (one or more) used to detect
and the selection of the appropriate method (respectively univariate or multivariate). The
global performance will depend on both choices.
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Figure 2: Evolution of the US cycle over the 1986-1992 period and the ABCD approach
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Figure 3: Evolution of the euro-zone cycle over the 1987-1994 period and the ABCD approach
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Figure 4: Evolution of the US cycle over the 1997-2002 period and the ABCD approach
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3.2.1 Dating the cycles

The detection of past turning points is not easy. In the United States, the NBER’s Business
Cycle Dating Bureau’s Committee is widely recognized as the authority for determining the
peaks and troughs of the classical business cycle. There is a substantial delay, however, before
the announcement of those dates. For example, the July 1990 peak was announced in April
1991 and the March 1991 trough only in December 1992. It seems however that the NBER
business cycle dating procedure has not been homogenous over time. The Economic Cyclical
Research Institute (ECRI), a private body in the USA created by G. Moore, is also proposing
a dating chronology for a large number of countries. But those dating are neither official nor
without critics (Artis, 2002, recently re-estimated the dating of the UK Business Cycle based
on monthly GDP estimate). The ECRI also proposed a dating of the growth rate cycle, often
confused with a dating of the growth cycle.

In other countries there is no official dating of the classical business cycle. The main issue is
the definition of criteria used to recognize an economic fluctuation as a cycle. The Conference
Board refers to the 3D’s rule (diffusion, deepness, and duration). The dating process, once
completed, should be definitive. Therefore, there is a need to avoid absolutely cases of false
signals (observe that, on the contrary, it may happen in “real-time detection”). To be sure it
is not the case, some delay is necessary to see whether the basic criteria for cycle identification
are fulfilled (3 D’s for example). But, above all, it is necessary that the data used for dating
are definitive, i.e. will not be revised any more. This is one of the striking reasons why dating
takes some time.

If dating the classical business cycle is not so easy, then dating the growth cycle is even more
difficult since the series must first be de-trended. Moreover, the way the series is seasonally
adjusted (directly or indirectly for geographic aggregates like euro-zone indicators) and previ-
ously adjusted for calendar effects may impact on the dating (see for example Astolfi, Ladiray
and Mazzi, 2001, and Lommatzsh and Stephan, 2001). It may therefore happen that different
estimates are available on the market.

The objective of dating is more academic that policy-oriented because of the long delay needed
accomplish the dating. However, this dating provides an official reference chronology, which
allows the measurement of cyclical parameters useful for economic analysis. It above all allows
for detection model testing or econometric cyclical modeling validation.

3.2.2 Real time detection

If the use of quarterly GDP series may be sufficient to provide a dating of the past turning
points (but this is denied by the NBER Dating Committee), it is clearly not operational in
real time. GDP is only available on a quarterly basis with a delay of one to three months,
sometimes with significant revisions. GDP is not a good candidate to assess turning points in
real time. Thus, the use of other series is unavoidable. Alternatively, one can use a GDP proxy
commonly called a coincident index (estimated by use of diverse linear methods). Stock and
Watson (1989) revived consideration on co-movement of variables along the cycle by introducing
a dynamic factor model in order to extract a common factor. In this case, methods have to be
determined to estimate the probability of a turning point of this common factor. In this respect,
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Diebold and Rudebush (1996) recently proposed to mix together dynamic factor models and
regime-switching (see also Kim and Nelson, 1998). If no coincident indices are used, other
generally non-linear methods may directly produce the probability of a turning point, like, for
example, the multivariate extension of the Hamilton Markov-Switching regime model proposed
by Krolzig (1997) and the Markov-switching approach combined with the COE probability
aggregation procedure (Anas and Ferrara, 2002a).

An obvious problem is the degree of data revisions. But other issues must be addressed. The
edge effect is crucial as the future helps to understand current changes in trends or regimes.
There may be two categories of edge effects, the one derived when detrending series by using
filters and a pseudo edge effect in the use of Markov-Switching models (filtered probability versus
smoothed probability). For example, in real time a filtered probability may overpass 50% and
send a signal of regime change, while later, the dating based on smoothed probabilities will
change the date.

3.2.3 Short-term prediction of a turning point

The timing of the prediction is very important. It is quite difficult to predict turning points in
the medium or long term (over 9 months). Even if economic imbalances sometimes make an
adjustment plausible or necessary in the future, it is difficult or even impossible to predict when
this adjustment will occur. This question is related to the duration dependence of recession’s
issue and there is no clear definite answer as yet. As a matter of fact, this kind of predictions
must take account of exogenous variables, sometimes impossible to predict (external shocks
like the September 11, 2001 terrorist attack on New York and Washington for example) and
also of future economic policies. In this respect, macroeconomic models are able to design
various scenarios in the future based on different sets of assumptions on exogenous variables
and policies around the “most probable” scenario.

In the short-term, however, the turning point prediction is or should be easier because, except
for important and sudden external shocks, foreseeable changes in economic policies should not
reverse the course of economic development due to the impact delay of these measures and the
inertia of economic evolution. This is why there is a trend today to complement macroeconomic
modeling with short-term leading or coincident indicators. This is done by early detection
(prediction) or real time detection. The importance for economic policy is obvious: when
slowdowns are predicted, recessions could be avoided or smoothed out by adequate economic
policy (but others may think those recessions should not be avoided). In addition, it allows
economic private agents to effectively adjust their consumption or investment (but others think
it may aggravate the cyclical change or create self-fulfilling expectations), all the more so that
agents are not quite rational, according to the last Nobel price in economics.

It is quite difficult to present a classification of all available methods to predict or detect in real
time the cyclical turning points. Anticipation of turning points may be possible either because
of the existence of leading indicators whose specific turning points precede the global turning
points we try to forecast or because the turning point is happening after a progressive slowdown
of the series. In other words, the first or second derivatives may be used for anticipating turning
points, but unfortunately at the risk of a false signal. In the latter case, we are close to a real-
time detection to identify as soon as possible a coming or current global turning point with a
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minimum risk of error.

But the common feature of all those methods is the need to validate a reference chronology.

Two different approaches are possible. First, find a model and measure ex-post the performance,
preferably in a dynamic way, by comparing the resulting predictions with the chronology. This
is done with Probit and Markov-switching models. Secondly, include a maximization objective
in the estimation of the model directly linked to the purpose: predicting efficiently with the
minimum number of false signals. In the second category, the models are less explicative and
do not have any purpose of analytical explanation but aims at predicting in the most efficient
way.

The approach may be univariate or multivariate. In the univariate case, the model (Probit,
Nefçi (1982), Hamilton (1989)) may be applied to a coincident index or to an estimate of the
comovement. In the multivariate case, there may be an estimate of the common regime and
the co-movement (for example, VAR models in the Stock and Watson (1989) approach, co-
movement in dynamic factor models) or an aggregation of probabilities weighted by first type
and second type errors (Anas, 1997, Anas and Nguiffo-Boyom, 2001). All those models are
competing and it should be possible to compare their performance if their output is clearly un-
derstandable. Already, real-time results on turning points prediction are available on some web
sites, such as James Stock’s (http://ksghome.harvard.edu/~.JStock.Academic.Ksg/), Marcelle
Chauvet’s (http://faculty.ucr.edu/~chauvet/mc.htm) and COE’s one (http://www.coe.ccip.fr).

It is worth mention the comparison made by Chen (2002) between the ad-hoc Conference rule
and the use of recession probabilities generated by a Markov-switching model. He started his
study on the observation that the 3 D’s rule suggested by the Conference Board missed the
most recent peak in 2001.

3.3 Detecting with comovement extraction

The “Business Cycle Dating Committee” in USA stated “the Committee gives relatively little
weight to real GDP because it is only measured quarterly and it is subject to continuing large
revisions”. This is why it made an “expert judgment” based on four series.

Many attempts have been made to extract the co-movement of representative coincident series.
The co-movement was already stated in Burns and Mitchell’s pioneer work (1946). For that
purpose, coincident and leading indices were calculated (OECD, Conference Board). More
recently, the co-movement has been estimated through factor analysis, either static or dynamic.
The method was first applied on a limited number of series (small data mode) and thereafter on
big data sets (Watson, 2000, or Altissimo et al., 2001, leading to the EuroCoin project). But,
a method will still have to be used to identify the turning point of this series. Either a non-
parametric method with an ad-hoc rule (Okun rule, Conference Board rule) or an algorithm
(Bry and Boschan), or by inducing probabilities through a Markov-switching approach (the
two-step analysis proposed by Diebold and Rudebush, 1996).

Another interesting approach is the direct multivariate approach. In a non-parametric scheme,
it is difficult to combine the signals of different series. This is what the NBER Committee
tries to do based on expertise. In a parametric scheme, the probability may be calculated by
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aggregating the signal probabilities of the different indicators (COE approach using first risk and
second risk estimates) or by using a multivariate model estimating directly the common regime
probabilities (MSVAR of Krolzig, 1997, or Kim and Nelson model, 1998). The application
of this approach to big datasets in order to simultaneously extract the co-movement and the
regime-switching process will be a tedious effort ahead of us. We will not discuss here if these
models can be used for dating or detecting.

Lastly, there is a category of methods clearly designed to detect TP’s (predict or detect in real
time) and may have a multivariate form, they are considered as pattern recognition models
(Oller, 2002 and Keilis-Borok et al., 2000).

4 Methods for dating turning points

There have been many attempts to establish turning point dates by translating the graphical
inspection approach into an algorithm. The most famous one is the Bry and Boschan (1971)
procedure, still in use in many countries and academic works when estimating business cycle
turning points. Apart from these non-parametric approaches, a great number of parametric
models have been developed lately to date turning points of the classical business cycle, based
mainly on the Markov-Switching model proposed by James Hamilton (1989). An important
feature is that all these procedures must be flexible enough to take into account certain char-
acteristics of the cycle such as non-linearity of the process and different durations, amplitudes
and cumulative movements of its phases (Harding and Pagan, 2001). We classify these dating
procedures in two distinct groups: a) non-parametric procedures; b) parametric procedures.

We will keep this distinction throughout this paper and will now describe both approaches
precisely, as well as their major advantages and drawbacks.

4.1 Non-parametric procedures

The first non-parametric procedure consists in examining the relevant time series to locate the
peaks and troughs visually (graphical approach). Although not sufficient, this naive procedure
can sometimes lead to fruitful results and can be seen as a primary filter.

4.1.1 Dating algorithm

For the most part, non-parametric procedures in turning point dating are based on recognition
pattern algorithms. Such algorithms need to perform the following tasks at least:

1. outliers should be disregarded;

2. irregular movements in the series should be excluded;

3. determination of a potential set of turning points;
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4. a procedure for ensuring that peaks and troughs alternate;

5. a set of rules that re-combine the turning points established after steps three and four in
order to satisfy pre-determined criteria concerning the duration and amplitude of phases
and complete cycles.

The predetermined criteria involved in the fifth step of this previous algorithm are referred to
as censoring rules. The main censoring rules concern the duration of phases and cycles. For
example, dating the business cycle implies the two following rules:

- a phase must last at least six months;

- a complete cycle must have a minimum duration of fifteen months.

However, it appears that the dating results are very sensitive to the choice of the minimum
duration phase, as we will see in section 3. For example, when dating the growth cycle, these
two previous rules have to be less restrictive; especially the minimum duration of a phase, which
is generally set to 12 months.

Some other censoring rules may also be considered:

- in the presence of a double turning point, the last turning point must be chosen;

- turning points within six months of the beginning or end of the series are disregarded.

Regarding the third step of the algorithm, several ways allow the identification of the potential
turning points. We present three of the most frequently used in practice. First, let us note (yt)t
the time series of interest and adopt the following convention, for all date t: ∆yt = yt − yt−1
and for each integer k, ∆kyt = yt − yt−k. The best known approach, widely released in the
media to detect real time peaks and troughs in the classical cycle is the following:

Peak at t : {∆yt+1 < 0,∆yt+2 < 0}
Trough at t : {∆yt+1 > 0,∆yt+2 > 0} (1)

This rule has been attributed to Arthur Okun by Harding and Pagan (1999). It means that a
recession involves at least two quarters of negative growth. This rule is generally applied to the
quarterly GDP. Another approach can be found in Wecker (1979) and has been used in Pagan
(1997):

Peak at t : {∆yt > 0,∆yt+1 < 0,∆yt+2 < 0}
Trough at t : {∆yt−1 < 0,∆yt < 0,∆yt+1 > 0} (2)

This second rule is also generally applied to the quarterly GDP to identify peaks and troughs
in the classical cycle. Lastly, the third approach describes the heart of the Bry and Boschan
(1971) algorithm and is given by:
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Peak at t : {yt > yt−k, yt > yt+k, k = 1, . . . ,K}
Trough at t : {yt < yt−k, yt < yt+k, k = 1, . . . ,K} (3)

where K = 2 for quarterly time series and K = 5 for monthly time series. All these three
approaches are based on a variation in growth rates over a bandwidth in comparison with an a
priori threshold set to zero. The choice of the threshold value is somewhat natural in this case.

4.1.2 Multivariate framework

It must be pointed out that this kind of pattern recognition algorithm is well designed to
provide a turning points dating chronology when applied to a single time series. However, in
economic cycles analysis, an important feature to be considered is the concept of co-movement,
pointed out by Burns and Mitchell (1946) in their seminal work. Co-movement refers to the fact
that most macroeconomic time series evolve together along the cycle. That is, the practitioner
is placed into a multivariate framework. Generally, non-parametric datings are applied to
a univariate time series representing the co-movement, such as GDP, industrial production
or indexes stemming from dynamic factor analysis (see for example the Euro-COIN indicator).
However, these previous proxies are often criticized and their use can sometimes lead to spurious
cycles. As an application, in section 3 of this paper, we try to use the industrial production as
a proxy of the whole production.

Therefore, practitioners prefer to have a global overview of what is going on by considering a
set of series. For instance, the Dating Committee of the NBER considers a small set of four
monthly time series (industrial production, employment, real income and wholesale-retail sales)
to construct the business cycle chronology of the American economy. In this case, the difficulty
lies in the summary of the diverse turning point dates obtained. The aggregation procedure
consists more of ad hoc rules and experts claims than a rigorous mathematical algorithm. Thus,
this class of procedure suffers under a lack of transparency. It is indeed a hard task to reproduce
exactly the procedures and the dating results provided by the NBER or the Conference Board.

Another issue linked to the multivariate framework is specific to large economic areas including
several national economies. In order to provide a turning point chronology, is it more appro-
priate to analyse the economies of each country of the zone (indirect approach), or the whole
economy of the zone directly (direct approach)?

Regarding the indirect approach, the most difficult part is the way to aggregate the multivariate
information. Once we get a turning point chronology for each country of the euro-zone, it is
necessary to define a way to summarise this information to provide a chronology for the euro-
zone. Some criteria have been proposed in literature. For instance, Krolzig and Toro (2001)
argue that Europe is considered to be in recession if at least half of the countries are in recession.
However, it seems that this criterion is rather arbitrary and is not based on economic rationale.
Another approach would be to weight the information of each country by a measure representing
the importance of an economy in the whole euro-zone.

Consequently, it is worth noting that in the multivariate framework, non-parametric procedures
are very difficult to adapt.
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4.2 Parametric procedures

Parametric dating procedures are based on statistical modeling of a given set of selected time
series. Therefore, if we consider a single time series (GDP, IPI or any coincident index), it
involves univariate modeling and if we consider more than a single series, it involves multivariate
modeling. In this section, we consider only hidden Markov-chain models, as for instance the
model proposed by James Hamilton (1989). Although other time series parametric models
are sometimes used (Logit and Probit models, for example), the most often used model is the
Markov-Switching regime.

4.2.1 The Markov-Switching model

The Markov-switching regime model (MS hereafter) has been introduced by James Hamilton
(1989) in order to take into account a certain type of non-stationarity inherent to some economic
or financial time series that cannot be caught by classical linear models. Having observed that
such time series frequently exhibit shifts in mean, Hamilton’s original idea was to model these
non-stationary time series by using a piecewise stationary linear process. It is often assumed
that the observed time series are approximated by an autoregressive process, whose parameters
evolve through time. Moreover, their evolution is ruled by an unobservable variable which
in turn follows a first order K-state Markov chain, independent of past observations on the
observed time series.

Markov-switching models have been extensively used in practice, we refer, for example, to Anas
and Ferrara (2002a) for a review of applications in the macroeconomic field and to Franses and
van Dijk (2001) for a review in applications in the financial field. Regarding the theoretical
aspects of the model, we refer mainly to the monography of Hamilton (1994) and to Krolzig
(1997) for multivariate generalizations.

We recall the main definitions related to the MS model. The Markov-switching process of
Hamilton, (Yt)t, in the case of an VAR(p) process, is given by the following equations:

Yt − µ (St) =

pX
j=1

φj (St) (Yt−j − µ (St−j)) + εt (4)

where (εt)t is a Gaussian white noise process with finite variance σ
2 (St) and where the unob-

servable variable St = 1, ..,K is supposed to represent the current state of the economy. This
previous form is known as the mean adjusted form of the MS(K)-VAR(p) model. Another well
known, but different, specification of the model is the intercept form and we refer to Krolzig
(1997) for a description.

Moreover, the whole specification of Markov-switching model needs the specification of (St)t as
a K-state first order Markov chain. That is, the value of the time series St, for all t, depends
only on the last value St−1, i.e., for i, j = 1, . . . , K:

P (St = j|St−1 = i, St−2 = i, . . .) = P (St = j|St−1 = i) = pij. (5)
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The probabilities (pij)i,j=1,...,K are called transition probabilities of moving from one state to
the other. Obviously, we get for i, j = 1, . . . ,K:

pX
j=1

pij = 1. (6)

4.2.2 Estimation

We are now interested in parameter estimation of a MS(K)-VAR(p) process and in the esti-
mation of the probability of being in a given regime. Let (y1, . . . , yT )t be an observed time
series with finite sample size T generated by a MS(K)-VAR(p) process. We assume that the
parameter θ to be estimated. The parameter estimation method generally used is the classical
maximum likelihood estimation (MLE hereafter) method, based on the assumption that the
white noise process (εt)t in equation (4) is a Gaussian process. Furthermore, the Markov chain
(St)t is supposed to be independent of εt0 , for all t and t

0
. The MLE method is somewhat

classical in the statistical literature, but in this case the main difficulty stems from the fact
that the latent process St cannot be observed and has therefore to be estimated, for all dates t.
The MLE method aims at finding the parameter θ so that the conditional log-likelihood L(θ)
is maximum, with L(θ) expressed as :

L(θ) =

pX
j=1

log f (xt/Ft−1, θ) , (7)

where, for all t, Ft denotes the vector of observations obtained through date t and where
f(xt/Ft−1, θ) is the conditional density of the MS(K)-VAR(p) model.

Some practical experiences have shown that the likelihood function of an MS model is ill
behaved, exhibiting some local maxima. Therefore, the choice of the starting values of the al-
gorithm is crucial to find the global maximum. Some empirical studies carry out ML estimation
of the parameters by implementing the Expectation-Maximisation (EM) algorithm proposed by
Hamilton (1990). This algorithm has been proved to be more robust to the initial parameters
values.

Thus, the log-likelihood L(θ) can be evaluated for a given parameter θ. However, the evaluation
of the conditional log-likelihood L(θ) asks for the knowledge of P (St = i/Ft−1, θ), for i = 1, 2.
This estimation is computed by using properties inherent to Markov chains: this is the forecast
of being in the state i given the information through date t − 1. This estimated probability
P (St = i/Ft−1, θ), for i = 1, 2, is referred to as the filtered probability of being in state i.
The conditional probability of being in the state i can be computed, given all the available
information through date T . This probability P (St = i/FT , θ), for i = 1, ..,K, is referred to as
the smoothed probability of being in state i.

4.2.3 Dating and validation

Once one has estimated the parameters from the data, we get as a by-product the filtered
probability P (St = i/Ft, θ) and the smoothed probability P (St = i/FT , θ) at every time t. This
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latter probability is then used to classify the observations between regimes. A simple rule is to
assign the observation at time t to the regime with the highest smoothed probability:

i∗ = ArgmaxP (St = i/FT , θ). (8)

For the simplest case of two regimes, the rule consists in assigning the observation to the regime
i with P (St = i/FT , θ) > 0.5. It is also possible to date turning points following this algorithm:

Peak at t : {P (St+1 = 1|y1, . . . , yT .) < 0.5, P (St = 1|y1, . . . , yT .) > 0.5}
Trough at t : {P (St+1 = 1|y1, . . . , yT .) > 0.5, P (St = 1|y1, . . . , yT .) < 0.5}

This algorithm simply means that a turning point is a change in regime. It is worth noting
that the choice of the threshold 0.5 is “natural” and may lead to controversy.

However, a validation stage is needed to test the ability of the model to replicate business cycle
characteristics (Krolzig and Toro, 1999 and Harding and Pagan, 2001). Indeed, the regime
estimates, and therefore the implied dating, do not have spontaneously a clear interpretation.
A priori, there is no reason why the estimated regimes would coincide with the economic cycles
phases. To illustrate this idea, we first have estimated a Markov-switching model on the US
GDP quarterly growth rate, over the period 1948-Q3 to 2002-Q3. The model is quite simple,
without any autoregressive terms and with a constant variance across both regimes (model 1).
We applied the same model to the same series increased uniformly by 1% (model 2). As can be
seen in the Figure 5, the periods of negative growth rates are obviously more seldom. Therefore,
if we refer to the classical definition of recessions, the number of recessions in both series is
different. For example, in the second case, there is no recession in 1990-91, nor in 2001. When
we estimate the models, we clearly see that the estimated smoothed probabilities are equal. As
far as the parameters are concerned, only the regimes average is modified, as can be seen in
Table 1. The growth rate of high regime (expansion) is increased by 1% from 1.2% to 2.2%
(see Table 1) while the negative growth rate of recession (-0.1%) becomes positive (0.9%).

Table 1: MS(2) model on US
GDP: estimated coefficients

Model 1 Model 2
µ1 -0.1% 0.9%
µ2 1.2% 2.2%
p11 0.77 0.77
p22 0.92 0.92
σ 0.85 0.85
Note: Growth rate (model 1) versus
growth rate raised by 1% (model 2)

This previous example demonstrates that the Markov-switching model is not able to distinguish
periods of recessions, as defined by common tradition. It only separates regimes in accordance to
the specification of the model. This separation will be different if we change the specification:
variances depending on regimes, time-varying transition probabilities, autoregressive terms,
etc.....
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Figure 5: US GDP growth rate versus growth rate raised by 1%, from 1948 —Q3 to 2002-Q3

It is note sure that we may find the best specification by minimising criteria like AIC or BIC,
based on the residual variance. On the contrary, many alternative models, i.e. representations,
are possible. For example, it seems that there are equivalent combinations of estimates of
autoregressive terms and transition probabilities. Both parameters try to capture the time
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dependence of data.

This does not prevent us from finding a plausible specification, which replicates reasonably the
official dating in the past. In that case, we may say that the model is well fine-tuned and could
help in the future to date the cycle. But what do we gain by doing that? We just replicate
a mechanism, which gives good results. There is no clear advantage in doing that. The fact
that the official dating could have been replicated by this kind of model is satisfactory because
it shows that there probably exists an underlying cyclical process which can be statistically
represented. The clear advantage of such model, which usefully replicates dating, is to become
a good instrument to detect the cycle in real time.

Another clear illustration of the difficulty in finding the adequate model to replicate the business
cycle is found looking for the GDP euro-zone Markov-switching model. Replicating the simple
Markov-switching model with one autoregressive lag estimated by Krolzig (2001) over the period
1982-Q2 to 2000-Q4 and extended until 2002-Q2, we find a recession in 2001 (see Figures 6 and
7). This is puzzling since no recession has been observed recently in Europe.

We may underline two phenomena. First, the fragile estimation of the model, the period of
estimation only incorporates two recession episodes (one at the beginning of the period may
not be well defined) which does not allow for a robust estimation of transition probabilities.
In econometric models, there is a need for sufficient observations but in a Markov-switching
model, what is important is the number of regimes observed. The second observation is related
to the instability of the parameters.

If we begin the model estimation in 1970, the presence of a third recession (linked to the first
oil shock) changes the estimation of the parameter and the clearer distinction of recession in
terms of negative growth rate imply a “no-recession” in 2001.

It is interesting to see what changes when we consider a third regime, starting the sample
data in 1980. If we consider three regimes instead of two, we observe that the model does
not capture the 2001 recession (see Figure 8). Those apparently contradictory results seem
puzzling, but the results depend clearly on the specification of the model. We need to find the
best representative model, that is the best to replicate the past dating.

The use of a third regime is generally made with another objective. For example, Krolzig
(2001) mentions that on the period starting in 1970, there in an issue when working in a
multivariate approach with several European countries including Southern countries (Spain
and Italy particularly) because those countries had much higher growth rates in the 1970’s.

Therefore, the third regime is only capturing this “time” regime, or in other words, it is a way
to deal with the non-stationarity in mean of the series. Starting in the 1980’s, he does not need
this third regime anymore to capture this effect. But a third regime may have another objective:
to make a better separation between cycles, to help classify the intermediate cycle (the growth
cycle) and to estimate the business cycle more clearly. Those examples show the difficulty in
finding the adequate specified model to replicate the dating chronology. The objective may
be other than replicating the dating, it could be the representation of “stylised facts” of the
business cycle as was done for example by Clements and Krolzig (2000).
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Figure 6: Smoothed probabilities of regimes of an MS(2) model applied to the euro-zone GDP from
1980-Q1 to 2000-Q4
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Figure 7: Smoothed probabilities of regimes of an MS(2) model applied to the euro-zone GDP from
1980-Q1 to 2002-Q2
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Figure 8: Smoothed probabilities of regimes of an MS(3) model applied to the euro-zone GDP from
1980-Q1 to 2002-Q2

By using numeric simulations on an estimated model, they try to assess if some stylised facts,
like phases durations, are respected. Whatever the objective, the idea is to find the best
specification to reach the objective. Therefore, there is no reason why an MS model would
provide directly the dating of the business cycle. Hamilton model estimated in the 1989 paper
was able to replicate the dating. But if we were controversial, we would say that it could have
been by chance since there was no optimisation for that purpose. Finally, what happened is
that a few years later, when the model was re-estimated, it did not work anymore and the
specification had to be changed by adding a third regime or by introducing variable transition
probabilities. Therefore, those models are not able to produce an optimal dating but we may
find a specification, which helps to reproduce the dating. This is almost a calibration of the
model. It is interesting because it gives a theoretical foundation for the existence of pseudo-
cycle in series, represented by a stochastic process, argument which have been developed by
James Hamilton in an answer to Don Harding3. But what is more important is that those
models that give a reasonable representation of the business cycle can be used thereafter for
prediction or real-time detection of turning points.

3See James Hamilton’s web page http://www.econ.ucsd.edu/~jhamilto/.
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5 Comparison of non-parametric and parametric meth-
ods in dating the cycle: application to the case of the
euro-zone

In this section, a comparative assessment of non-parametric and parametric methods is carried
out on real data. Especially, we compare a version of the Bry and Boschan approach with
a Markov-Switching model in order to date the growth and business cycles of the euro-zone
industrial production index. The data set used is the monthly euro-zone industrial production
index (IPI) from January 1971 to August 2002. The series is seasonally adjusted and is presented
in Figure 9. Note that we could have used GDP to describe the co-movement of the whole
economy. One of the drawbacks is that GDP is sampled on a quarterly basis; a monthly
dating is more accurate (the OECD uses both GDP and the industrial production to produce
a monthly reference chronology, see OECD, 2002). Moreover, it is often difficult to get a long
historical record of GDPs at the desired frequency and some statistical procedures, such as
back-calculations, are needed. The choice of the series is not important insofar as the objective
is to compare the methods. It is also assumed that there is a convergence in the cyclical
movements of the European countries and we therefore use the European aggregate as a proxy
for the co-movement.

5.1 Model specification

We describe precisely both parametric and non-parametric methods developed in this applica-
tion to date the turning points of the growth and business cycles.

5.1.1 Non parametric procedure

The non-parametric procedure developed in this section is based on the following algorithm:

- the IPI series has not been corrected from outliers;

- irregular movements in the series are excluded by using a 3-terms centred moving average
(the dating chronology does not seem to be so sensitive to the degree of smoothing, the
results obtained with a 3-terms and a 5-terms moving average are similar);

- a potential set of turning points on the time series of interest (yt)t is determined by using the
following rule, which is the heart of the Bry and Boschan (1971) algorithm:

Peak at t : {yt > yt−k, yt > yt+k, k = 1, . . . , K}
Trough at t : {yt < yt−k, yt < yt+k, k = 1, . . . , K},

where K = 5, as usual for monthly time series.

- a procedure for ensuring that peaks and troughs alternate is developed by using the following
rule:
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(i) in the presence of a double through, the lowest value is chosen

(ii) in the presence of a double peak, the highest value is chosen

- the censoring rules concerning the duration of phases and cycles are the following:

(iii) a phase of the cycle must last at least six months

(iv) a complete cycle must have a minimum duration of fifteen months

(v) turning points within six months of the beginning or end of the series are disregarded.

Note that we let the same minimum duration phase of six months for both growth and classical
cycles.

Concerning the growth cycle turning points chronology, we consider two different de-trending
methodologies: the Baxter-King and the Hodrick-Prescott filters (respectively BK and HP
hereafter).

Note that the growth cycle extracted from the HP filter has to be smoothed to extract the
irregular component while the growth cycle extracted from the BK filter hasn’t.

From a technical point of view, we keep cycles with a period lying between 1.5 and 8 years
regarding the BK filter, and regarding the HP filter the arbitrary constant λ is set to 300 000.

1975 1980 1985 1990 1995 2000

70

80

90

100

110

120

Figure 9: Monthly IPI in the euro-zone 1971-M1 to 2002-M8
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5.1.2 Parametric procedure

In order to identify a posteriori the turning points of the euro-zone business and growth cycles,
a Markov-Switching model is applied to the euro-zone industrial production index growth rate
over three months.

In economics, the unobservable variable describing the regimes, denoted (St)t, is often supposed
to represent the current state of the economy. Thus, a 2-state Markov chain is generally used
in applications, that is, for all t, the time series St takes value 1 when the economy is in
contraction and value 2 when the economy is in expansion. However, some authors found
evidence in favour of a three-regime model for the business cycle (Sichel (1994), Boldin (1996),
Clements and Krolzig (1998), Krolzig and Toro (1999) and Layton and Smith (2000)). Either
the expansion phase can be separated into a regular growth phase and a high growth phase,
or the contraction phase can also be separated into a slowdown phase and a recession phase.
Therefore, the number of states must be discussed before the modelling and asks for a statistical
test. Unfortunately, as noted by Hamilton (1994, p. 698), the assumption that the process
describing the data presents a given number K of regimes cannot be tested using the usual
likelihood ratio test, because some of the classical regularity conditions are not fulfilled. The
most efficient specification test is the one proposed by Hamilton (1996), who takes the (K−1)-
state model as the null hypothesis and conducts a variety of tests to check whether a K-state
model is needed.

Our aim is to develop a single model for dating simultaneously the growth and classical cycles.
Therefore, our choice is to consider a three-regime Markov-Switching model (MS(3)) with the
hope that each regime will have the following economic interpretation :

• low regime (St = 1): the economy is in recession (low phase of the classical cycle)
• intermediate regime (St = 2): the growth rate of the economy is below its tendencial
growth rate (low phase of the growth cycle without recession)

• high regime (St = 3): the growth rate of the economy is over its tendencial growth rate
(high phase of the growth cycle)

Note that the present interpretation of the three regimes implies a constant long-term growth
rate over the whole sample period.

The chosen MS model is specified as having a different variance for each regime and no autore-
gressive lag. Regarding the autoregressive order p, the original Hamilton p = 4 choice was often
criticised in the literature, because the autoregressive parameters are proved to be frequently
significantly equal to zero. Even if they are significant, Lahiri and Wang (1994) have shown
that imposing any degree of autoregression in the errors on the basic MS model deteriorates
the performances in terms of turning point detection. Lastly, we try some different values of p,
p = 1, 2, 3, 4, and it turns out that the choice p > 0 strongly deteriorates the interpretability of
the model.

Parameters are estimated bymaximum likelihood estimation trough the expectation-maximisation
(EM) algorithm, as in the paper of Hamilton (1990). Practically, the estimation is carried out by
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using the MSVAR module for Ox (see Doornik (1999)) developed by H. M. Krolzig . Estimated
parameters of the model are presented in Table 2.

In order to provide a dating chronology, we get the three smoothed probabilities of being in
each regime, denoted P (St = i|y1, . . . , yT ), for i = 1, 2, 3, to classify the observations between
regimes (see Figure 10). Regarding the decision rule, we retain a classification, which consists
to assign the observation at time t to the regime with the higher probability, i.e.:

i∗ = ArgmaxP (St = i p y1, . . . , yT ).

5.2 Results

We now present the results of an estimated turning points chronology for the industrial pro-
duction in the euro-zone by applying both parametric and non-parametric methods. We will
first consider the classical cycle and then the growth cycle.

We start with the application of the three-regime Markov-switching model MS(3) on the
monthly industrial production in the euro-zone (3-months growth rate).

Parameter estimates are presented in Table 2. Persistence is quite high since the probability of
staying in the same regime overpass 80% in the three regimes. The transition probability from
a high regime to a low regime is quasi null, which means that before entering into recession,
the euro-zone industrial production first decelerates.

On the contrary, from low regime to high regime, the transition probability is 5% while it is
14% to the intermediate regime. As can be observed in Figure 10, only once, in 1975, the
recovery was very strong.

The average duration of recessions is around 8 months and 5 months for high and low growth
regimes. The respective unconditional probabilities (38% and 12%) are logically inversely re-
lated.

Table 2: Estimated parameters for a MSH(3)-AR(0) model applied
to the IPI growth rate over 3 months from 1971-M1 to 2002-M8

Pi1 Pi2 Pi3 Duration Uncond. prob.
Regime 1 0.8139 0.1410 0.0451 5.37 0.1230
Regime 2 0.0460 0.8663 0.0877 7.48 0.4970
Regime 3 0.0001 0.1292 0.8707 7.73 0.3801

Parameters Estim. value S.E. estim.
µ1 -0.0198 0.0033
µ2 0.0018 0.0014
µ3 0.0168 0.0016
σ1 0.0142
σ2 0.0092
σ3 0.0100
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As concerns the intermediate regimes, the quite high unconditional probability (50%), relative
to an average duration of only 7.5 months, is due to the more frequent growth cycles than busi-
ness cycles over this period of time. The annualised average growth rates in low, intermediate
and high regimes are -8%, 0.8% and 6.8% respectively.

The volatility is larger in the recession regime, which is a usual result. The transitory gaps in
the original series (as for instance in the beginning of 1979) can be seen as outliers and entail
the occurrence of regimes with a very short duration.

Since we did not correct previously for outliers, we imposed that a regime should last at least
two months in order to be recognised as a cycle phase.

5.2.1 The industrial business cycle

Regarding the non parametric approach, it is worth saying that, as usual, the duration of the
low phases of the business cycle seems to be only a few months, which is clearly lower than
the one of high phases. Therefore, the censoring rule (iii) related to the minimum duration of
a phase of the cycle strongly conditions the turning points chronology. For example, Table 3
presents the dating results for different minimum duration values.
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Figure 10: Smoothed probabilities of being in a given regime for monthly IPI in the euro-zone
1971-M1 to 2002-M8
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Table 3: Non parametric industrial business cycle dating for
the euro-zone according to the censoring rule on minimum

duration of cycle phases (1971-M1 to 2002-M8)

2 months 4 months 6 months 8 months
Peak B M5 1974 M5 1974 M5 1974 M5 1974
Trough B M8 1975 M8 1975 M8 1975 M8 1975
Peak B M1 1977 M1 1977 M1 1977
Trough C M7 1977 M7 1977 M7 1977
Peak B M2 1980 M2 1980 M2 1980 M2 1980
Trough C M10 1980 M10 1980 M10 1980 M10 1980
Peak B M10 1981 M10 1981 M10 1981 M10 1981
Trough C M11 1982 M11 1982 M11 1982 M11 1982
Peak B M1 1984 M1 1984
Trough C M5 1984 M5 1984
Peak B M1 1991
Trough C M4 1991
Peak B M2 1992 M2 1992 M2 1992 M2 1992
Trough C M6 1993 M6 1993 M6 1993 M6 1993
Peak B M1 1996
Trough C M3 1996
Peak B M6 1998 M6 1998 M6 1998
Trough C M1 1999 M1 1999 M1 1999
Peak B M1 2001 M1 2001 M1 2001 M1 2001

Obviously, when the minimum duration is small, a lot of mini-cycles are taken into account.
It is interesting to note, that a minimum duration of 8 months implies an industrial business
cycle dating similar to the global business cycle dating (see for instance Anas, 2000, Harding
and Pagan, 2001 or Krolzig, 2001). That is the reason why IPI is often chosen as a monthly
proxy of GDP in empirical studies.

However, this proxy must be carefully considered insofar as the part of industrial production
in the whole economic production is decreasing in the euro-zone. The results provided by
the parametric method are very similar to those obtained with the non- parametric (with a
minimum duration phase of 6 months) method, excepted at the end of the sample (see Table
4). Indeed, the industrial recession due to the Asian crisis during the second semester of 1998
is not signalled by the Markov-switching model.

Therefore, the specification of the model should be changed if we want to identify the Asian
crisis. Several modifications have been used regarding the autoregressive degree, but it has not
changed the dating.

However, we noticed an instability of the model. Indeed, if we limit the period of estimation
to 1980-2002, then the model is able to identify the industrial recession due to the Asian crisis.
Therefore, we illustrate again the idea that the dating is not a natural outcome of the Markov-
switching model and there is a need to validate the model with an outside dating.
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Table 4: Parametric industrial business
cycle dating for the euro-zone

(1971-M1 to 2002-M8)

Peak B M8 1974
Trough C M8 1975
Peak B M2 1977
Trough C M7 1977
Peak B M4 1980
Trough C M10 1980
Peak B M5 1982
Trough C M8 1982
Peak B M4 1992
Trough C M2 1993
Peak B M10 2001
Trough C M12 2001

Regarding the last recession, there is a clear peak given for January 2001 with the non-
parametric method, whatever minimum duration value we select. In November 2002, there
was not yet any sign of exit of the industrial recession. By contrast, the Markov-switching
model has some difficulty to recognise a recession: the signal is given lately in December 2001
and did not last more than two months. A recession signal was coming at the start of 2001 but
did not materialise because there was a pick-up in growth starting at spring.

Without the terrorist attack of September 2001, the industrial recession in the euro-zone might
have been avoided. That external shock explains the renewed surge in the recession probability
at the end of 2001, as can be seen in Figure 10.

It must also be noted that the timing of turning points is not the same in both methods. The
dates of peaks in the business cycle provided by the MS model are lagged with a lag varying
between 1 and 9 months, while the dates of troughs are slightly advanced.

5.2.2 The industrial growth cycle

The growth cycles extracted by using the BK and HP filters are presented in Figure 11 and are
quite similar. The BK filter provides more or less the same turning points dating than the HP
filter, as it can be seen in Table 5, but identifies two supplementary “mini-cycles” in 1981 and
1991.

The non-parametric dating of the growth cycle is also very close to the parametric dating
obtained with the 3-regimes Markov-switching model, excepted during the 1980’s when the
European cycle was more erratic.

Generally, it appears that parametric and non-parametric methods tend to provide similar
results when applied to growth cycle series. This is perhaps due to the fact that the growth
cycle possesses a quite symmetrical behaviour, contrary to the business cycle.
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Table 5: Industrial growth cycle dating for the euro-zone over the
period 1971-M1 to 2002-M8

Non parametric BK Non parametric HP Parametric MS model
Trough D M5 1971
Peak A M2 1974 M2 1974 M1 1974
Trough D M7 1975 M8 1975 M9 1975
Peak A M11 1976 M12 1976 M1 1977
Trough D M12 1977 M2 1978 M7 1978
Peak A M12 1978
Trough D M3 1979
Peak A M1 1980 M2 1980 M2 1980
Trough D M3 1981
Peak A M10 1981
Trough D M12 1982 M11 1982 M9 1983
Peak A M1 1984
Trough D M5 1984
Peak A M10 1985 M3 1986 M10 1984
Trough D M5 1987 M2 1987 M9 1987
Peak A M7 1990 M1 1991 M12 1989
Trough D M4 1991
Peak A M12 1991
Trough D M7 1993 M7 1993 M12 1993
Peak A M3 1995 M1 1995 M1 1995
Trough D M12 1996 M12 1996 M1 1997
Peak A M2 1998 M2 1998 M3 1998
Trough D M3 1999 M3 1999 M4 1999
Peak A M10 2000 M11 2000 M12 2000

Lastly, note that, regarding the last growth cycle, there is quite a similitude in the peak dating
in the last quarter of 2000 but it seems to be too soon to date the last trough.

6 Conclusion

There is a need to define clearly the concepts of cycles, turning points and turning point
detection. There is a distinction to be made between ex-post dating and detecting (the latter
including real time detecting and predicting). It seems recommendable to concentrate on the
follow-up of growth cycle and business cycle turning points (ABCD approach).

The traditional non-parametric approach has been challenged in the last 10 years by the new
class of Markov-switching regime models.

It seems advisable for dating purpose to have an expert analysis based mainly on non-parametric
methods like the Bry and Boschan (1971) algorithm, at least for the business cycle. This is due
to the necessary calibration of models on dating.
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Figure 11: Growth cycle of the monthly IPI in the euro-zone from 1971-M1 to 2002-M8

However, for dating growth cycle, MS models seem more competitive. Concerning detection,
those new models may be very competitive and should benefit from the new comovement
extraction tools, on small or big data sets. Those models will have the purpose to detect in the
most efficient way the turning points without necessarily replicating other stylized facts. From
a practical point of view, we propose the recommendations synthesised in Table 6.

118



Table 6: Final recommendations

Dating Detecting
Non-parametric Yes Maybe

(for business and growth cycle)
Parametric No (for business cycle) and Yes

maybe for growth cycle (for business and growth cycle)
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NON-PARAMETRIC TURNING POINT DETECTION, DATING RULES
AND THE CONSTRUCTION OF THE EURO-ZONE CHRONOLOGY 1

Don Harding2

The University of Melbourne

Turning points mark the onset of decisive macroeconomic change. As such they are inherently non-

parametric concepts. Three markers of what might be considered as decisive change are suggested

and translated into non-parametric procedures for locating turning points. These lead to the classical

cycle where turning points are marked by sustained falls or rises in the level of economic activity;

the growth cycle where turning points are marked by sustained falls or rises in the growth rate of

economic activity about its trend rate; and the acceleration cycle where turning points are marked by

sustained accelerations or decelerations in the growth rate of economic activity. There are a number

of pitfalls in calculating the growth cycle as a decision the must be made about which part of the

permanent component of economic activity is to be labeled as the trend. These pitfalls are identified,

a rationale is given for only considering the deterministic part of the permanent component as trend

when studying business cycles and diagnostic procedures are suggested to aid those who ignore this

advice and seek to also treat as “trend” the stochastic part of the permanent component. Parametric

methods of detecting turning points are briefly considered and procedures suggested for comparing

them with those obtained from non parametric procedures. Methods for aggregating turning points

are suggested. Finally, the procedures discussed in this paper are applied to develop a Euro Area

chronology and the result is compared with the chronology obtained from EuroCoin.

1The empirical estimates in this paper are preliminary and may change if more suitable data is obtained.
2This paper draws on work undertaken jointly with Adrian Pagan. However, the views expressed here are

my own and I am solely responsible for any errors.
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1 Introduction

Turning point, a stationary point on a curve that is either a maximum or a
minimum. The New Penguin Dictionary of Science
Turning point, point in place, time, development, etc., at which decisive change

occurs. The Concise Oxford Dictionary.

The two definitions given above capture the essence of turning points. The New Penguin
definition relates turning points to local maxima and minima in some ordered series Yt. The
Concise Oxford definition adds to this by suggesting that not all local maxima and minima
should be considered as turning points rather only those at which decisive change occurs should
be given that title.

What constitutes decisive change is then the key issue to be resolved prior to formalizing and
implementing a definition of turning points. Three markers that are based on successively
weaker notions of what constitutes decisive change are presented in Section 2 where they are
also formalized into non parametric procedures for locating turning points. Many business
cycle researchers become involved in unnecessary and often counterproductive efforts to remove
a permanent component from the data prior to business cycle analysis. Thus Section 2 also
provides a brief discussion of the pitfalls in attempts to removing the permanent component of
a series prior to locating turning points in that series.

These procedures for locating turning points are also applied in Section 2 to construct GDP-
based business cycle chronologies for several European economies and the Euro area as a whole.
In parametric models it is common to equate decisive change with regime change. A popular
example of this approach is provided by Hamilton (1989) in which a regime change occurs via
a shift from a high to low trend rate of growth, the switch being turned on and off by a binary
Markov process. The Markov switching (MS) approach is discussed in Section 3 where it is
shown that it can also be interpreted in terms of local maxima and minima in some series.
Thus, the difference between the MS and non parametric approaches lies firstly in the series
in which local maxima and minima are located and secondly in the criteria that are used to
determine what constitutes decisive change in that series.

Once turning points have been located in several series it is of interest to investigate whether
there exists a common cycle and to study the synchronization between the common cycle
and the specific cycles from which it was constructed. Section 4 sets out the procedure for
aggregating turning points developed in Harding and Pagan (2000). This procedure is applied
to European data in Section 5 to obtain an Euro Area reference cycle. The common cycle located
by aggregating turning points is compared with the common cycle located in the aggregate of
Euro area GDP. Conclusions are presented in Section 7.

2 Three non-parametric definitions of turning points

It is useful to start by considering the non-parametric description of the specific cycle for a
single series Yt, t = 1..T . If Yt > 0 for all t then, it is convenient to work with yt = ln(Yt).
I will assume for convenience of exposition that E∆yt = α1 a constant over t = 1, .., T and
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will refer to τ t ≡ y0 + α1t as the linear deterministic part of the permanent component of yt.
With these preliminaries in place I proceed in Sections 2.1, 2.2 and 2.3 to discuss the classical,
growth and acceleration cycles respectively that are based on successively weaker notions of
what constitutes decisive change.

2.1 The classical cycle

The strongest notion of decisive change occurs when a series changes direction so that yt is a
local maxima or minima. The dates at which these local maxima and minima occur may be
represented by a pair of binary series CCPt and CCTt where

3

CCPt = 1 (yt > Max{yt−k, ., yt−1, yt+1, ..yt+k})

CCTt = 1 (yt < Min{yt−k, ., yt−1, yt+1, ..yt+k})
It is useful to note that this definition can also be expressed in terms of long differences viz,

CCPt = 1 (0 > Max{yt−k − yt, ., yt−1 − yt, yt+1 − yt, ..yt+k − yt})

CCTt = 1 (0 < Min{yt−k − yt, ., yt−1 − yt, yt+1 − yt, ..yt+k − yt})
Turning points defined in this way are said to be from the classical cycle that was studied by
Burns and Mitchell. The last date before yt shows a sustained decline (rise) is referred to as
the classical cycle peak (trough).

This definition is sufficiently general as to accommodate business cycles arising from highly non-
linear deterministic data generating processes as well as the more familiar stochastic processes
in which shocks are the driving force. Where shocks are taken to be the driving force of
fluctuations the classical cycle peak marks the onset of negative shocks that are so large
relative to the trend rate of growth that the series falls for a substantial period of time. The
date at which this sequence of large negative shocks ends is referred to as the classical cycle
trough4.

Classical cycle chronologies are maintained by:

• The National Bureau of Economic Research (NBER) for the United States.

• The Conference Board (TCB) for the United States and eight other countries, four of
which are European.

• The Economic Cycle Research Institute (ECRI) for the United States and seventeen other
countries seven of which are European.

3I use the notation that 1(S) is an indicator statement that takes the value 1 if the statement S is true and
zero otherwise.

4In the case of a non-linear deterministic data generating process the criteria for determining classical cycle
peak and trough mark out particular regions of R2k+1.
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All of the classical cycle chronologies mentioned above are obtained by procedures that aggre-
gate the turning points located in several series to obtain a reference cycle.

An algorithm to construct a reference cycle by aggregating turning points is presented in Section
4 and applied in Section 5. Classical cycle chronologies based on turning points in GDP were
constructed for European Countries and the Euro Area by Harding and Pagan (2001) and are
presented below.

2.1.1 Representing the cycle by a binary series

An important innovation of Wesley Mitchell’s was to represent the classical cycle by a binary
variable St that takes the value one in expansions and zero in contractions. St can be obtained
from the binary series that locate peaks and troughs via the following recursion

St = St−1 (1− CCPt−1) + (1− St−1)t−1CCTt−1 (1)

where the initial value is chosen so that S1 = 1 if the first turning point is a peak and S1 = 0
otherwise.

The recursion (1) provides a useful tool for understanding the properties of the classical cycle.

For example, taking the unconditional expectation of St and making use of the notation that
E {CCPt−1|St− 1 = 1} = p and E {CCTt−1|St−1 = 0} = q and the assumption that ESt =
ESt−1, yields

ESt = ESt−1 (1− CCPt−1) + E (1− St−1)t−1CCTt−1
= Pr (St−1 = 1)E {(1− CCPt−1) |St−1 = 1}

+Pr (St−1 = 0)E {CCTt−1|St−1 = 0}
= ESt (1− p) + (1− ESt) q

=
q

p+ q

which shows how the Pr (St = 1) is related to the unconditional probabilities of peaks and
troughs.

2.1.2 Classical cycle turning points for Euro Area GDP and selected European
economies

The BBQ algorithm with k = 2 was used to obtain classical cycle turning points in Euro area
GDP and in the GDP of selected European economies 5. The results are summarized in Figure
1 where peaks are shown by ”up-spikes” and troughs by “down spikes”.

5Data for Euro Area GDP was taken from Fagan, Henry, and Mestre (2001). Data on individual countries
was taken from the OECD data base. In the case of Germany the statistics for unified Germany prior to
usinfication were constructed by splicing the West German and unified Germany series in that database. The
data runs from first quarter 1970 to the last quarter 1998. This data was used because the data supplied by
Eurostat was not seasonally adjusted and was therefore unsuitable for business cycle analysis.
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Figure 1: Classical cycle turning points in Euro Area GDP and in GDP of selected European
economies, 1970.1 to 1998.4

Each turning point is labeled with the date at which it occurs. A striking feature of the data
is the seeming synchronization of turning points.

The degree of synchronization can be measured by the concordance index that was advocated
in Harding and Pagan (2002b) and that has the form

Î =
1

T
{

TX
t=1

SxtSyt +
TX
t=1

(1− Sxt)(1− Syt)}. (2)

Following Harding and Pagan (2000) Equation (2) can be reparameterised as

Î = 1 +
2

T

TX
t=1

SxtSyt − µ̂Sx − µ̂Sy

= 1 + 2ρ̂Sσ̂Sxσ̂Sy + 2µ̂Sxµ̂Sy − µ̂Sx − µ̂Sy (3)

where ρ̂S is the estimated correlation coefficient between Sxt and Syt.

Harding and Pagan Harding and Pagan (2000) argue that since the concordance index is also
monotonic in ρS, it is natural to shift attention away from the former to the latter i.e. to focus
upon the correlation between the two states Sxt and Syt.

They suggest that two cycles are perfectly positively synchronized when ρS = 1, perfectly nega-
tively synchronized when ρS = −1 and unsynchronized when ρS = 0.
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Table 1: Concordance indexes and correlations of
cycles in GDP for selected European countries

GER FRA ITA SPA NET AU EU

GER
. . . 0.91 0.87 0.83 0.83 0.88 0.91

FRA 0.64
. . . 0.90 0.91 0.87 0.94 0.97

ITA 0.52 0.52
. . . 0.87 0.84 0.91 0.91

SPA 0.29 0.43 0.42
. . . 0.84 0.90 0.90

NET 0.27 0.14 0.22 0.10
. . . 0.88 0.90

AU 0.53 0.68 0.59 0.48 0.36
. . . 0.97

EU 0.67 0.85 0.58 0.44 0.40 0.83
. . .bµS 0.83 0.92 0.85 0.90 0.91 0.88 0.90bσS 0.14 0.07 0.13 0.09 0.08 0.10 0.09

Hence one will generally wish to test if ρS = 0 using ρ̂S. They also suggest a test of synchroniza-
tion for several series viz suppose there are series x1t, ..., xnt which will have associated specific
cycles Sjt, j = 1, ..., n.

Let the correlation matrix of the n series, Sjt, be C1...n. Then perfect synchronization of the
n cycles would have |C1...n| = 0 and no synchronization would have |C1...n| = 1.The statisticsnbI,bρS, bµS, bσSo are reported in Table 1; the concordance statistic bI is above the diagonal whilebρS is below the diagonal, bµS and bσS are in the bottom two rows of the table. Reported values of
the concordance statistic are large but caution needs to be exercised in interpreting this result
since it may reflect the high probabilities of being in expansion. The correlation are immune
from that criticism and are somewhat reduced in magnitude. But caution needs to also be
used in interpreting the bρS since Sxt and Syt are serially correlated and heteroscedastic thus
allowance must be made for these features of the data generating process when constructing
tests about the degree of synchronization.

Procedures for construction heteroscedasticity and autocorrelation (HACC) robust estimates
of the variance of bρS are discussed in Harding and Pagan (2000). Standard and HACC robust
t-statistics for the null of no bivariate synchronization are reported in Table 2 where the HACC
tests use a Bartlet window and a lag length of 10 quarters. The standard t-statistics are above
the diagonal and the HACC robust t-statistics are below the diagonal. Clearly, the correction
for serial correlation makes a great difference; the robust t-statistics suggest that there is weak
evidence for bivariate synchronization in the group of four countries Germany, France, Italy
and Austria. The determinant of the correlation matrix for the six countries is 0.11 with p-
value=0.14 which means that we cannot reject the null hypothesis of no synchronization for
the Euro Area classical cycle as a whole.6. The determinant of the sub correlation matrix for
Germany, France, Italy and Austria is 0.18 with p-value=0.07. This later statistic suggests that
there is weak evidence for a common classical cycle for these four countries. The existence and
nature of this common cycle will be explored further in Section 5 where these turning points
are aggregated to obtain a Euro Area classical reference cycle.

6The p-value is based on the simulated distribution of the determinant. See Harding and Pagan (2000) for
details.
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Table 2: Standard and robust t-statistics for the null
hypothesis of non correlation of classical cycle

states in GDP for selected countries

GER FRA ITA SPA NET AU EU

GER
. . . 8.86 6.57 3.32 2.98 6.76 9.70

FRA 1.90
. . . 6.52 5.14 1.53 10.10 17.66

ITA 2.10 1.90
. . . 4.98 2.43 7.97 7.66

SPA 1.39 1.66 1.32
. . . 1.05 5.9 5.31

NET 1.39 0.70 1.31 1.04
. . . 4.12 4.70

AU 2.13 1.89 2.12 1.83 1.68
. . . 16.03

EU 2.13 1.88 2.14 1.79 1.63 2.03
. . .

2.2 The growth cycle

A weaker notion of what constitutes decisive change occurs where the growth rate of the series
moves above or below the trend rate of growth α1. The turning points of the growth cycle are
defined by the pair of binary series GCPt and GCTt

GCPt = 1

µ
0 > Max{yt−i − yt

i
− α1, ...,

yt+i − yt
i

+ α1, for i = 1, .., k}
¶

(4)

GCTt = 1

µ
0 < Min{yt−i − yt

i
− α1, ...

yt+ki − yt
i

+ α1, for i = 1, .., k}
¶

(5)

The growth cycle is so named because growth cycle peaks (troughs) chronicle the dates at which
growth moves from above (below) the trend rate to below (above) the trend rate of growth.
Since zt = yt − Tt equations 4 and 5 can be rewritten in terms of local maxima and minima in
the deviation from trend series zt, viz

GCPt = 1 (zt > Max{zt−k, ., zt−1, zt+1, ..zt+k}) (6)

GCTt = 1 (zt < Min{zt−k, ., zt−1, zt+1, ..zt+k}) (7)

The growth cycle was first studied by Ilse Mintz Mintz (1969), Mintz (1972) and Mintz (1974).
Interpreted in terms of a stochastic data generating process growth cycle turning points
chronicle dates at which there is an onset and then cessation of negative shocks that are so
large relative to zero that the detrended series falls for a substantial period of time implying
that the growth rate of the series also falls below the trend rate of growth. The last date before
the onset of these negative shocks is the growth cycle peak and the last date before they
cease is the growth cycle trough.

The Centre for International Business Cycle Research (CIBCR) and is successor ECRI used to
maintain a growth cycle chronology and at various times the NBER has maintained a growth
cycle chronology. Few chronologies of the growth cycle are now maintained on a regular basis
and neither ECRI nor the NBER now maintain such a chronology. The main difficulty in
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maintaining a growth cycle chronology relates to the selection of the procedures to be used for
estimating the trend Tt that is to be removed from yt to yield the deviation from trend zt. ECRI
and CIBCR used the phase average trend (PAT) method that was developed at the NBER by
Boschan and Ebanks (1978). The PAT procedure computes a rough trend by interpolating a
straight line between the midpoints of classical cycle phases and then ”smooths” out the kinks
in the rough trend via a centred moving average.7 This method of construction means that
computation of the phase average trend at t can only be computed after the next classical
turning point after t has been located a feature that is limiting for timely calculation of growth
cycle turning points

There are several feasible alternatives to the phase average trend method. The method I prefer
is as follows, assume that E∆yt is constant for t = 1, ..., T and employ a linear time trend
with growth rate E∆yt. In some cases it is desirable to control for time variation in rates of
population growth in this case if Nt is the population and nt = ln(Nt) then, assuming that
E0 (∆yt −∆nt) is a constant it may be useful to use Tt = nt + E0 (∆y −∆n) t as a measure
of trend. In this vein one could also seek to adjust the trend for changes in productivity and
or changes in the participation rate. The key points here are firstly that in most cases it is
neither necessary nor desirable to go beyond removal of the deterministic part of the permanent
component when undertaking business cycle analysis and secondly where a stochastic part of
the permanent component is removed it is helpful if that component is easily identified with
some economically meaningful concept such as population or labour productivity.

Attempts to do more than that advocated above to extract the permanent component from
time series is an unnecessary diversion and a source of confusion in business cycle analysis.
However, such attempts at removing the permanent component are commonplace and the next
sub section therefore provides a digression on the pitfalls in such procedures and suggests some
diagnostics to avoid those pitfalls.

2.2.1 A digression on the pitfalls in filtering and detrending data for business
cycle analysis

Typically attempts at removing a time varying trend start with a decomposition of yt into Tt+
Ct+ It where these components are ”trend”, ”cycle” and ”irregular” respectively. The ”trend”
is then identified with the permanent component and various filters have been suggested to
remove the permanent component, see Hodrick and Prescott (1997), Christiano and Fitzgerald
(1998), Corbae, Ouliaris, and Phillips (2002). There are two complaints that one might make
about this practice of filtering out the permanent component. The more important complaint
is that several theories, most notably that associated with the RBC school, hold as a core belief
that permanent shocks play a role in causing the business cycle. Removing the permanent
component means that we are no longer studying the business cycle envisaged by these models.
The less significant complaint is that the permanent component is not unique since the sum of
any I(0) series and an I(1) series is I(1). This lack of uniqueness results in a proliferation of
filtering methods. All of this is unnecessary since one can study the classical cycle in the level

7Computer code in the language GAUSS is available from the author to construct a phase average trend
using the method described in Boschan and Ebanks (1978). The phase average trend procedure is applied to
European data in Harding and Pagan (2001) where the growth cycle obtained via several detrending procedures
are compared.
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of the series which does not require any filtering or one can study the growth cycle using the
procedures discussed above to remove only the deterministic part of the permanent component
or one can study the acceleration cycle that is defined in Section 2.3 below.

Since there is considerable emphasis placed on filtering and detrending techniques at this col-
loquium it is worth point to the pitfalls in that approach. A common approach is to employ
the following “structural” model8

yt = ypt + zt (8)

ypt = µt + ypt−1 +
y
t , var ( y

t ) = σ2y (9)

µt = µt−1 +
µ
t , var ( µ

t ) = σ2µ (10)

zt = φ1zt−1 + φ2zt−2 +
z
t , var ( z

t ) = σ2z (11)

where zt is identified with the ”cycle” and y
p
t with the ”trend”. The naming of (8) to (11) as a

”structural” model suggests that some other source of information has been used to identify the
trend and cycle. To study whether this interpretation is is warranted Pagan (2002) examines
a particular example of this model where the estimated parameters are given in Table 3.

Pagan simulated this model and applied the BBQ algorithm to the simulated data for three
series {yt, ypt , zt}. The results are reported in Table 4.
It is evident that

... in terms of cycle durations there is absolutely no difference between the cycles
in any of the series so it seems quite misleading to label one of them zt as ”cycle”
and the other ypt as ”trend”. The only distinction is in their amplitudes and that
simply depends upon the relative variances of each series. Since

var (yt) > var (zt) > var (ypt )

so to are the amplitudes ranked. Source: Pagan (2002).

Thus, if filtering procedures are to be employed to remove the permanent component of a
series prior to locating turning points then a minimum requirement should be to use the BBQ
algorithm as a diagnostic tool to check whether the researcher is warranted to attach the ”trend”
label to the permanent component and the ”cycle” label to the difference between yt and the
permanent component.

Table 3: Estimated parameters for
the “structural” model

bσ2y bσ2µ bσ2z bφ1 bφ2
0.607 0.00091 0.301 1.401 -0.531

8This example is taken from Pagan (2002).
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Table 4: Simulated properties of “trend”, “cycle”
and actual series for “structural” model

yt ypt zt
Contraction duration 5.5 5.5 5.5

Expansion duration 5.5 5.5 5.5

Contraction amplitude -3.2 -1.9 -2.6

Expansion amplitude 3.2 1.9 2.6

2.2.2 Growth cycle turning points for Euro Area GDP and selected European
economies

A linear deterministic trend was removed from Euro Area GDP and the GDP of selected
European economies, the procedures discussed above were applied to obtain the growth cycle
for each of these series. The results are summarized in Figure 2. The concordance indices
and the correlations between growth cycle states are reported in Table 5 below using the same
format of presentation as for Table 5. These suggest quite high degrees of synchronization but
as discussed in the case of the classical cycle one needs to make allowance for serial dependence
and heteroscedasticity.
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Figure 2: Growth cycle turning points for Euro Area GDP and selected European economies,
1970.1 to 1998.4
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Table 5: Concordance indexes and correlations
of growth cycles in GDP for selected

European countries

GER FRA ITA SPA NET AU EU

GER
.. . 0.66 0.66 0.67 0.62 0.66 0.68

FRA 0.34
. . . 0.80 0.63 0.63 0.53 0.73

ITA 0.31 0.61
. . . 0.66 0.72 0.60 0.78

SPA 0.34 0.27 0.31
. . . 0.83 0.80 0.83

NET 0.24 0.27 0.45 0.65
. . . 0.75 0.83

AU 0.31 0.11 0.19 0.60 0.51
. . . 0.70

EU 0.38 0.47 0.55 0.66 0.66 0.42
. . .bµS 0.56 0.45 0.51 0.56 0.53 0.66 0.49bσS 0.25 0.25 0.25 0.25 0.25 0.23 0.25

Standard and HACC robust t-statistics, constructed in line with the earlier discussion, are
reported in Table 6 presented on the same basis as in Table 2. Again the HACC correction
matters a lot as evidenced by the difference between the standard and HACC robust t-statistics.
The evidence on the bivariate tests is somewhat more strongly in favour of synchronization of
Euro Area growth cycles than it was for synchronization of classical cycles. This conclusion
is supported by the determinant of the correlation matrix which is 0.135 with p-value= 0.006.
Thus in later sections I will extract via non parametric methods a common growth cycle for
the Euro Area as a whole.

Table 6: Standard and robust t-statistics for the
null hypothesis of non correlation of growth
cycle states in GDP for selected countries

GER FRA ITA SPA NET AU EU

GER
.. . 3.95 3.52 3.83 2.63 3.48 4.48

FRA 2.29
. . . 8.26 3.08 2.97 1.16 5.68

ITA 2.00 2.80
. . . 3.52 5.40 2.13 7.13

SPA 2.18 1.71 2.00
. . . 9.33 8.07 9.52

NET 1.54 1.71 2.47 2.96
. . . 6.38 9.39

AU 1.80 0.82 1.69 2.68 2.64
. . . 5.03

EU 2.29 2.31 2.68 2.90 2.77 2.28
. . .

2.3 The acceleration cycle

The weakest notion of decisive change considered in this paper occurs where the growth rates
accelerates or decelerates so that letting wt = yt−yt−l be the l period growth rate of yt, turning
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points are defined mathematically by the pair of binary series ACPt and ACTt

ACPt = 1 (wt > Max{wt−l, ., wt−1, wt+1, ..wt+l})
ACTt = 1 (wt < Min{wt−l, ., wt−1, wt+1, ..wt+l})

Rewriting and in terms of long differences yields

ACPt = 1 (0 > Max{wt−l − wt, ., wt−1 − wt, wt+1 − wt, ..wt+l − wt})
ACTt = 1 (0 < Min{wt−l − wt, ., wt−1 − wt, wt+1 − wt, ..wt+l − wt})

Thus the acceleration cycle gets its name because the peak measures the date at which growth
rates stop increasing and begin to decrease.

Similarly, the trough measures the date at which growth rates stop decreasing and begin to
increase.9 The acceleration cycle turning points chronicle dates that mark the onset and then
cessation of negative shocks that are sufficient to cause the growth rate to accelerate The
last date before (after) the onset (cessation) of these negative shocks is referred to as the
acceleration cycle peak (trough).

The acceleration cycle has become rather popular. The Economic Cycle Research Institute
(ECRI) dates such a cycle for 18 economies including seven European economies. However,
ECRI uses the name growth rate cycle rather than acceleration cycle for this chronology adopt-
ing the definition that

“growth rate cycle downturns are pronounced, pervasive and persistent declines
in the growth rate of aggregate economic activity. The procedures used to identify
peaks and troughs in the growth rate cycle are entirely analogous to those used to
identify business cycle turning points, except that they are applied to the growth
rates of the same time series, rather than their levels”
Source: http://www.businesscycle.com/research/intlcycledates.php#.

This terminology is undesirable as it runs the risk of creating confusion with the growth cycle
as defined earlier.

An example of such confusion is provided by the authors of EuroCoin who state that

We define a recession, for example, as a prolonged period of declining growth
in the cyclical component of GDP (as measured by the movements of EuroCoin).
Analogously, an expansion is a prolonged period of increasing growth. Troughs and
peaks are defined as the ending points of expansions and recessions respectively
(sic), ie as points of minimal or maximal growth.
Source: http://www.cepr.org/Data/eurocoin/indepth/

Now this is clearly a definition of an acceleration cycle in my terminology or a growth rate cycle
in the ECRI terminology but the authors of EuroCoin go on to say

9The Economic Cycle Research Institute, New York, refers to the acceleration cycle as the cycle in the growth
rate. However, this terminology runs the risk of being confused with the growth cycle.
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Our definition of recession, expansion, peaks and troughs correspond to the so
called ”growth cycle”.
Source: http://www.cepr.org/Data/eurocoin/indepth/

Which is clearly in conflict with their earlier statement.

2.3.1 Acceleration cycle turning points for Euro Area GDP and selected European
economies

Acceleration cycle turning points for selected European countries and for Euro Area GDP are
presented in Figure 3. The concordance indices and the correlations between acceleration cycle
states are reported in Table 7 on the same basis as for Table 5. Clearly, on both measures
there is substantial synchronization, in the sample, between the acceleration cycles of Euro
Area economies. However, as with the other cycles we need to adjust for serial dependence
before coming to a strong view as to the extent of synchronization.

Standard and HACC robust t-statistics for the null hypothesis of no synchronization are re-
ported in Table 8 where there is evidence of a common Euro Area acceleration cycle. The
determinant of the correlation matrix for the six countries is 0.342 with p-value 0.013 which
again provides support for a Euro area acceleration cycle. In later sections an attempt will be
made to extract this common acceleration cycle.
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Figure 3: Acceleration cycle for Euro Area GDP and for selected European economies, 1970.1 to
1998.4
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Table 7: Concordance indexes and correlations
of acceleration cycles in GDP for selected

European countries

GER FRA ITA SPA NET AU EU

GER
.. . 0.74 0.71 0.56 0.63 0.63 0.76

FRA 0.48
. . . 0.70 0.63 0.66 0.61 0.82

ITA 0.41 0.39
. . . 0.66 0.64 0.70 0.75

SPA 0.13 0.25 0.33
. . . 0.66 0.63 0.70

NET 0.27 0.32 0.29 0.32
. . . 0.63 0.63

AU 0.27 0.21 0.39 0.25 0.25
. . . 0.63

EU 0.52 0.64 0.50 0.40 0.25 0.25
. . .bµS 0.53 0.50 0.52 0.45 0.48 0.48 0.52bσS 0.25 0.25 0.25 0.25 0.25 0.25 0.25

2.4 The choice of window width k

So far we have seen that one dimension of the concept of decisive change can be framed in
terms of whether level, deviation from trend, or growth rate of a series that shows a fall. A
second dimension can be framed in terms of how sustained are the movements in the series.
This is captured by the window width k. The choice of k can be made on various grounds.
Harding and Pagan (2002b) suggest choosing k with reference to the work of Bry and Boschan
(1971) who designed a dating algorithm to formalize the procedures of the NBER business cycle
dating committee. In the Bry Boschan program k = 5 for monthly data and thus Harding and
Pagan (2002b) choose to set k = 2 for quarterly data in their Bry Boschan Quarterly (BBQ)
program10.

Table 8: Standard and robust t-statistics for the
null hypothesis of non correlation of acceleration
cycle states in GDP for selected countries

GER FRA ITA SPA NET AU EU

GER
.. . 5.84 4.75 1.41 2.97 2.97 6.39

FRA 2.30
. . . 4.52 2.75 3.59 2.32 8.89

ITA 2.55 2.30
. . . 3.67 3.18 4.55 6.10

SPA 0.88 1.81 2.12
. . . 3.57 2.71 4.61

NET 2.01 1.96 2.35 2.03
. . . 2.72 2.75

AU 1.83 1.54 2.38 1.78 2.18
. . . 2.75

EU 2.34 2.95 2.65 2.52 1.72 1.64
. . .

10A gauss program BBQLite that allows the user to choose the definition of a turning point, the window
width k and the censoring procedures is available on request from the author.
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2.5 Censoring procedures

The choice of window width k is not sufficient to ensure that only sustained movements in
a series are classified as turning points. The problem can be illustrated with reference to
the classical cycle trough. Suppose that yt < Min{yt−k, ., yt−1, yt+1, ..yt+k} and thus the for-
mulas set out earlier seeks to locate a trough at date t. Now it is possible that yt+1 >
Max{yt−k+1, ., yt, yt+2, ..yt+k+1} and thus the definitions given earlier would suggest locating
a peak at t+1 now if the period of the data were annual this might be entirely appropriate but
if the data is quarterly or monthly then it is unlikely that anyone would consider the movement
sufficiently decisive as to mark a turning point. For this reason it is necessary to apply cen-
soring procedures to ensure that expansion and contraction phases of the business cycle have
a minimum length of k periods. The BBQ program extends to quarterly data the gauss code
developed by Watson (1994) for censoring business cycle chronologies in the manner of Bry and
Boschan. These procedures are discussed in Harding and Pagan (2002b).

2.6 Stylized relation between classical, growth and acceleration turn-
ing points

Figure 4 provides a stylized representation of the three types of turning point identified above.
As can be seen from Figure 4 each of these concepts measures a particular aspect of the business
cycle.

y(t)=z(t)+T(t) {Classical cycle}
w(t)=y(t)-y(t-k) {Acceleration cycle}
z(t)=series with trend removed {growth cycle}
T(t) {Deterministic Trend}

CCP
CCT

GCP
ACP

GCT ACT

CCP Classical cycle peak
CCT Classical cycle trough
GCP Growth cycle peak
GCT Growth cycle trough
ACP Acceleration cycle peak
ACT Acceleration cycle Trough

CCP

ACT

ACP GCP

Figure 4: Stylized representation of classical, growth and acceleration cycle turning points

136



3 Parametric definitions of turning points

The non parametric approach to turning point detection given in the last section has been
questioned by Diebold and Rudebusch who state that

Because it is only within a regime-switching framework that the concept of a
turning point has intrinsic meaning. . . . .In linear frameworks, by way of contrast,
there are no turning points or switch times, in probabilistic structure. One can,
of course define turning points in terms of features of sample paths, but
such definitions are fundamentally ad hoc” (emphasis added) Because it is
only within a regime-switching framework that the concept of a turning point has
intrinsic meaning. . . . .In linear frameworks, by way of contrast, there are no turning
points or switch times, in probabilistic structure. One can, of course define
turning points in terms of features of sample paths, but such definitions
are fundamentally ad hoc” (emphasis added) Diebold and Rudebusch (1999)

The essence of the complaint just cited is that non-parametric definitions of turning points lack
generality – the dictionary meaning of ad hoc. Harding and Pagan Harding and Pagan (2002a)
explore the validity of this position by examining the simplest version of a regime switching
model popularized in Hamilton (1989). The model is

∆yt = µ0 + µ1ζt + σet (12)

Pr
¡
ζ t = 1|ζt−1 = 1

¢
= p (13)

Pr
¡
ζt = 1|ζt−1 = 0

¢
= q (14)

where ζ t = 1 denotes the high growth state (µ0 < µ1) which is taken to be an expansion while
ζt = 0 denotes contraction. The parameters µ0, µ1, σ, p and q are estimated from the data.

Filtered Pr (ζt = 1| {∆y1,..,∆yt}) and smoothed Pr
³
ζ t = 1| {∆yt}Tt=1

´
probabilities of being

in expansion are then produced as a by product of the estimation procedure. The smoothed
probabilities can be used to construct turning points via a rule that a turning point occurs

if Pr
³
ζt = 1| {∆yt}Tt=1

´
crosses over some critical value which is typically chosen to be one-

half. Let the pair of binary variables MSPt and MSTt take the values 1 in peaks and troughs
respectively and zero elsewhere. Then,

MSPt = 1{Pr(ζt+1 = 1|{∆yt}Tt=1) < 0.5,Pr(ζt = 1|{∆yt}Tt=1) > 0.5}
(15)

MSTt = 1{Pr(ζt+1 = 1|{∆yt}Tt=1) > 0.5,Pr(ζt = 1|{∆yt}Tt=1) < 0.5}.

3.1 The relationship between parametric and non parametric defi-
nitions of turning points

The {MSPt,MSTt} are the parametric analogues of the {CCPt, CCTt} that were obtained via
the non parametric methods described earlier. This suggests that we might seek to find simple
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expression for the parametric Markov switching rules so that they can be compared with the
non parametric rules obtained earlier. Harding and Pagan Harding and Pagan (2002a) show
how to do this. For the specific case where the parameter estimates are p= they show that
a first order approximation to the MS rule () is

peak at t if

½
0.15∆yt+1 + 0.06(∆yt +∆yt+2) < 0.22,
0.15∆yt + 0.06(∆yt−1 +∆yt+1) > 0.22

¾
(16)

trough at t if

½
0.15∆yt+1 + 0.06(∆yt +∆yt+2) > 0.22,
0.15∆yt + 0.06(∆yt−1 +∆yt+1) < 0.22

¾

Evidently, to a first order of approximation the Hamilton MS dating rule is based on growth
rates of GDP and the window width is 2 quarters – the same as that used in the non parametric
BBQ rule that was discussed earlier. While there is no simple relation between the BBQ rule
and the first order approximation to the MS rule the basis for a comparison can be made by
writing 0.15∆yt+1 + 0.06(∆yt +∆yt+2) < 0.22 as

0.03∆yt+1 + 0.06 (∆yt+1 +∆2yt+2) + 0.06∆yt < 0.22 (17)

The sufficient condition for the BBQ rule to locate a peak at t is that ∆yt+1 < 0 and ∆yt+1 +
∆2yt+2 < 0 thus, a sufficient condition for the two rules to give exactly the same turning point
would be 0.03∆yt+1+ 0.06∆yt < 0.22 . In many instances this condition will be met but one
can imagine circumstances where ∆yt+1 is negative but small while ∆yt is large and positive
and thus the two rules will produce different outcomes in these circumstances.

Interest also centres on the quality of the approximation to the MS dating rule. It is shown
in Harding and Pagan (2002a) that for the parameters obtained for US GDP a second order
approximation will be an accurate estimate of the smoothed the probability that the economy
is in expansion. That second order approximation yields the rule that one should place a peak
at date t if (the rule for a trough is symmetric)

0.16∆yt+1 + 0.07 (∆yt +∆yt+2) + 0.02 (∆yt−1 +∆yt+3) < 11

and

0.16∆yt + 0.07 (∆yt−1 +∆yt+1) + 0.02 (∆yt−2 +∆yt+2) > 11

Notice that the second order approximation to the MS rule includes ∆yt+3 and thus involves
a wider window width than does the BBQ rule or the first order approximation to the MS
rule. Moreover, higher order approximations will involve larger window widths. The important
practical implication of this is that as new data points are added to the sample Pr(ζT−δ =
1|{∆yt}T+1t=1 ) may well ”wriggle”about thus those who seek to date the cycle in real time with
MS techniques will typically need to wait longer before calling a turning point than will agencies
that use non parametric methods such as the BBQ rule.
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3.2 An illustrative example using the MS model to date the sunspot
cycle

Some further indication of the methodological and practical problems with the using MS dating
methods can be considered using the MS model to date the sunspot cycle. The cycle in the
average number of sunspots is well know and is shown in Figure 5. It is evident that the graph
of the sunspot number shows a number of decisive changes of direction that we would consider
as turning points It is therefore of some interest to explore how adequately the parametric MS
model detects these turning points.

To do this the following MS model was fit to the sunspot data yielding the parameters in Table
9.

yt − µt = φ1
¡
yt−1 − µt−1

¢
+ φ1

¡
yt−2 − µt−2

¢
+ σtet et˜N (0, 1)

µt = µ0 (1− ζt) + µ1ζt
σt = σ0 (1− ζ t) + σ1ζt
p11 = Pr

¡
ζt = 1|ζt−1 = 1

¢
p00 = Pr

¡
ζt = 0|ζt−1 = 0

¢

The smoothed probability of being in the high growth state is plotted together with the sunspot
number in Figure 6. It is evident that the MS approach does reasonably well at detecting
turning points in the sunspot number for the 18th century but does rather poorly in the 19th

and 20th century. This serves to provide a warning that even though the MS approach my
prove adequate in sample at detecting turning points there is no warrant that it will prove to
be adequate in the future.

In summary, the MS approach suffers from several defects. First, it is not very transparent
although the procedures that are described briefly above and more fully in Harding and Pagan
(2002a) serve to make the MS approach more transparent in the sense that they allow it to
be compared to the more transparent non parametric approach discussed in Section 2 above.
Second, when the approximate parametric rules are discovered they are not very intuitive unlike
the non parametric ones. Third, the MS rules are very model and sample specific features that
are undesirable in producing a business cycle chronology.

Table 9: Estimated parameters for markov switching
model of sunspot number

Parameter µ0 µ1 φ1 φ1 σ0 σ1 p00 p11
Estimate 0.3947 0.5807 1.4061 -0.6840 0.0097 0.0629 0.9126 0.7051

standard error 0.0324 0.0532 0.0419 0.0421 0.0018 0.0156 0.0288 0.1331

139



0

20

40

60

80

100

120

140

160

180

200

1700 1750 1800 1850 1900 1950 2000
Year

A
ve
ra
ge

 n
um

be
r o
f s
un
sp
ot
s

Figure 5: Annual average number of sunspots, 1700 to 1995
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140



4 Procedures for aggregating turning point information

So far we have considered two dimensions of the notion of what constitutes decisive change.
The first was in terms of whether there was a fall (rise) in a) the level of a specific series; the
detrended series; or its k period growth rate. The second dimension of decisive change was in
terms of how sustained was the change in direction. The third dimension of what constitutes
decisive change relates to how pervasive is that change. If change is pervasive then we would
expect to see several series show like turning points at about the same time. That is we would
expect to see synchronization of turning points across a range of series that measure economic
activity.

Burns and Mitchell (1946, p13) provide a starting point for a definition of what constitutes a
set of synchronized cycles with the observation that:

At an early stage of the investigation we thought it prudent to compare the spe-
cific cycles in numerous series. Rough tabulations of specific cycle turns suggested
that they clustered around certain months, which usually came in years when busi-
ness annals reported a recession or revival.

The notion of clusters of turning points is visually appealing but requires careful definition
in order to quantify precisely the phenomenon that the eye identifies. Procedures Burns and
Mitchell had and their followers at the NBER business cycle dating committee have a long
history of interpreting such visual information. Non parametric procedures to extract and
codify the rules implicit in the NBER approach were written down by Harding and Pagan
(2000) and coded into the computer language GAUSS.

Described in words the algorithm proceeds in the following three stages

1. At date t find the number of months to the nearest peak (trough) for each series. This
gives a vector of dimension K. The median of the elements in this vector is then found.
The interpretation of this median is that, at time t, it is the median distance to the
nearest peak. Designate this item at time t by mt.

2. Step 1 is done for each t producing mt(t = 1, ..., T ). The series mt is then examined and,
wherever a local minimum is encountered, this is taken to be a candidate for a turning
point in the reference cycle.

3. The candidate turning points are then modified in two ways. First, owing to the fact
that mt is discrete, it may be necessary to break ties e.g. mJ+1 and mJ may be equal
and one has to decide whether it is J or J +1 that is the turning point. In this situation
the algorithm looks at higher percentiles than the median until a unique local minimum
is found. We feel this appeal to clustering in higher order percentiles is a natural way to
resolve any non-uniqueness of the local median. Second, turning points may need to be
re-combined so that peaks and troughs alternate.

Those procedures were found by Harding and Pagan (2000) to be successful at replicating several
judgemental reference cycle chronologies and were found to be useful in extracting a common
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cycle in industrial production in 12 countries and also a common stock price cycle for Australia,
the United Kingdom and the United States. The next section applies this algorithm to obtain
the classical, growth and acceleration reference cycles in GDP for the six Euro economies.

5 Obtaining a Euro area reference cycle

5.1 Classical cycle

Earlier we found that the statistical evidence rejected a common classical cycle in the six Euro
Area countries but weakly favoured a common cycle in Germany, France, Italy and Austria.
The common classical cycle extracted for these four countries is reported in Table 10. Where
the dates of peaks and troughs are given along with a measure of the tightness of each cluster
of turning points. The later is reported as the median distance in months from the common
cycle turning point to each of the specific cycle turning points in the cluster. As can be seen
the clusters for the classical cycle are tight with the largest distance being 3 months.

Table 10: Common classical cycle for Germany,
France, Italy and Austria

Peaks Troughs

Date Tightness of cluster Date Tightness of cluster

1974.9 0 1975.3 0

1980.3 0 1980.12 0

1981.12 3 1982.12 0

1992.3 0 1993.5 1.5

The correlations between the common classical cycle and the specific cycles in each country
and for Euro Area GDP are reported in Table 11. The finding that the German cycle is not
correlated with the common cycle might seem surprising at first but one should remember that
the tests relate to instantaneous synchronization and it is likely that the German cycle either
leads or lags the common cycle. Tests for the presence of such leads and lags can be performed
but are not undertaken in this paper for reasons of time and space.

Table 11: Selected statistics on the correlation between the common classical
cycle for Germany, France, Italy and Austria with Euro Area specific cycles

GER FRA ITA SPA NET AU EU

Correlation with reference cycle -0.00 0.80 0.79 0.58 0.37 0.36 0.69
Robust t-statistic -0.00 2.42 2.00 2.32 1.61 1.42 2.36

5.2 Growth cycle

The tests reported earlier supported the existence of a common Euro Area growth cycle. The
common growth cycle extracted for the Euro Area is reported in Table 12. As can be seen from

142



the table the growth cycle turning points are not as tightly clustered as were the classical cycle
turning points.

Table 12: Common growth cycle for Germany,
France, Italy and Austria

Peaks Troughs

Date Tightness of cluster Date Tightness of cluster

1971.4 15 1972.7 13.5

1974.6 3 1975.7 1.5

1977.2 1.5 1977.9 3.0

1980.3 0 1983.1 1.5

1984.2 1.5 1985.5 4.5

1986.7 1.5 1987.3 0.0

1990.3 0 1993.11 1.5

1994.11 4.5

The correlations between the common cycle and the specific cycles in each country and for Euro
Area GDP are reported in Table 13. With the exception of France all of the correlations of the
specific cycles with the classical cycle are statistically significant. Although the German cycle
is negatively correlated with the common cycle but as discussed above this most likely reflects
differences in the lead of the German cycle over the common cycle an issue that requires further
investigation.

5.3 Acceleration cycle

As with the growth cycle, the tests reported earlier support the existence of a common Euro
Area acceleration cycle. The common cycle extracted from the data is reported in 14 where it
is evident that the clusters of turning points are rather tight.

Table 13: Selected statistics on the correlation between the common
growth cycle for Germany, France, Italy and Austria with

Euro Area specific cycles

GER FRA ITA SPA NET AU EU

Correlation with reference cycle -0.35 0.25 0.30 0.41 0.60 0.68 0.45

Robust t-statistic -2.13 1.74 2.01 2.62 3.43 3.87 2.99

143



Table 14: Common acceleration cycle for Germany,
France, Italy and Austria

Peaks Troughs

Date Tightness of cluster Date Tightness of cluster

1972.12 0 1971.8 1.5

1976.6 0 1975.6 0

1979.12 3 1977.9 0

1981.11 1.5 1980.12 0

1983.12 0 1982.9 3

1985.12 3 1984.12 0

1989.7 4.5 1986.12 3

1991.11 1.5 1991.3 3

1994.9 0.0 1992.12 0

1996.10 1.5

The correlations between the common acceleration cycle and the specific acceleration cycles are
generally high and statistically significant. Again the exception is Germany and as mentioned
above this most likely reflects differences in the lead of the German economy over the Euro
Area an issue that needs further investigation.

6 EuroCoin

EuroCoin is a non parametric coincident index of economic activity that emerged from the work
of Forni, Hallin, Lippi, and Reichlin (1999b) and Forni, Hallin, Lippi, and Reichlin (1999a).
Figure 7 is taken from the CEPR web page and shows EuroCoin plotted against the raw
(seasonally unadjusted) growth rate in Euro Area GDP.

Evidently, EuroCoin is smoother than the raw GDP growth measure but this in part reflects the
fact that the GDP data is quarterly and seasonally unadjusted. A more informative comparison
would be between EuroCoin and seasonally adjusted GDP interpolated to a monthly basis.
EuroCoin finds peaks at 1989.2, 1994.10 and 1997.11 and troughs at 1992.11 and 1995.11
which differ somewhat from the acceleration cycle turning points reported earlier on the basis
of my measure of Euro Area GDP. Ultimately one will need to obtain measures of Euro Area
GDP on a common basis before being able to compare the common cycle found via EuroCoin
with the common cycle found via the non parametric procedures that I discuss above.

Table 15: Selected statistics on the correlation between the common
acceleration cycle for Germany, France, Italy and Austria

with Euro Area specific cycles

GER FRA ITA SPA NET AU EU

Correlation with reference cycle 0.03 0.51 0.61 0.57 0.34 0.44 0.32

Robust t-statistic 0.16 3.1 3.56 3.44 2.41 2.91 2.66
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Figure 7: EuroCoin and quarterly GDP

7 Conclusions

Non parametric procedures to locate turning points have been developed and applied to Euro
Area data. However, a more comprehensive dataset is required to fully implement the proce-
dures developed in this paper.
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In this paper we advocate a parametric approach to the construction of turning point

chronologies for the euro-zone business cycle. In generalization of Hamilton (1989), the

Markov-switching vector autoregressive (MS-VAR) model is utilized for the analysis of

the business cycle, providing the mechanism for identifying peaks and troughs of the

business cycle. Building upon ideas developed in Krolzig (1997a) and Artis, Krolzig,

and Toro (2004), the approach for the constructing the turning point chronology consists

of (i) modelling the euro-zone business cycle as a single common factor generated by a

hidden Markov chain, (ii) fitting a congruent statistical model to the data, (iii) deriving

the conditional probabilities of the regimes ‘expansion’ and ‘recession’ from the estimated

model, (iv) classifying each point in time to the regime with the highest probability, and

(v) dating the turning points of the business cycle. The MS-VAR also provides measures

of uncertainty associated with the turning point chronology, facilitates real-time detection

of business cycle transitions, and offers a well-developed theory for the prediction of the

business cycle. Examining the properties of the proposed dating procedure, we show that

aggregation and model misspecification can severely hamper the detection of business

cycle turning points. In the empirical part, the MS-VAR approach is applied to three

multi-country data sets consisting of real GDP and industrial production growth rates

of 12 euro-zone countries (in total) over the period from 1973 to 2002. Although the

empirical models are found to be sensitive to data quality (with seasonal adjustment,

outlier correction and smoothing being all influential), the estimated models were found

useful for the assessment of business cycle synchronization among the EMUmember states,

and for the construction of a turning point chronology of the euro-zone business cycle.
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1 Introduction

The creation of the euro zone with begin of Stage Three of the Economic and Monetary Union
(EMU) on 1 January 1999 has raised several important issues. Among them, one of paramount
relevance concerns the economic convergence of the EMU member states. A strong indicator
for convergence is the existence of a common euro-zone business cycle. Furthermore, business
cycle synchronization constitutes a pre-condition for symmetry of the effects of monetary policy
in the euro zone. The presence of a common euro-zone business cycle implies the coincidence
of business cycle turning points in the countries of the euro-zone. The detection of its turning
points of the common cycle is, therefore, crucial for monetary policy making in the union.

There is a huge literature evaluating the degree of business cycle synchronization in the EMU.
Among others, Artis, Krolzig, and Toro (2004) conclude that ‘the conception of a common or
“European” business cycle is an intelligible one’. Building upon that result, this paper deals
with the construction of a turning point chronology for the euro-zone business cycle. A para-
metric approach is advocated for doing so, which consists of first fitting a congruent statistical
model to the data, and then utilizing the estimated coefficients for the classification of observa-
tions as ‘recession’ or ‘expansion’ ; the implied dating of the turning points finally constitutes
the business cycle chronology. The approach is based on the Markov-switching time series
model innovated by Hamilton (1989) in his analysis of the US business cycle and generalized in
Krolzig (1997b) to a Markov-switching vector autoregressive model, which will be used for the
modelling and dating of the euro-zone business cycle. In the framework considered here, the
euro-zone business cycle is defined as the common factor of the macroeconomic fluctuations in
the countries of the euro-zone, and it is assumed that the transition of its phases are generated
by an unobservable stochastic process, which is a hidden Markov chain.

The paper proceeds as follows. First, in § 2 we discuss the Markov-switching time series model
and its application to the modelling of the business cycle. Commencing from the univariate
Hamilton (1989) model of the US Business Cycle, the Markov-switching vector autoregres-
sive (VAR) model of the business cycle is presented. Then, § 3 considers the construction of
turning point chronologies with Markov-switching models. We present the regime inference in
Markov-switching VAR models and discuss how the derived regime probabilities can in turn
be used to date the turning points of the business cycle, finally producing the turning point
chronology. We also point out three distinctive advantages of the MS-VAR approach: the pro-
vision of an uncertainty measure as a by-product of the regime classification, the possibility
of real-time detecting of turning points, and a well-developed theory of the prediction of the
business cycle. In § 4 the properties of the proposed regime classification rule are evaluated for
univariate and multivariate Markov-switching models. We analyze the effects of business cycle
synchronization and regime-dependent heteroscedasticity on the classification procedure, and
show that aggregation obstructs the detection of turning points, when the variable are driven
by a common business cycle. Section 5 presents an empirical analysis of the euro-zone busi-
ness cycle. Starting with a review of the literature featuring Markov-switching studies of the
European business cycle, we discuss the empirical modelling approach used in this paper, and
present results for three Markov-switching VAR models of the euro-zone business cycle using
quarterly OECD GDP data (1973-2002), OECD industrial production data (1974-2002), and
Eurostat GDP data (1980-2002), respectively. After having established evidence for business
cycle synchronization in the euro area, the estimated models are used for the construction of
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turning point chronologies of the euro-zone business cycle. Finally § 6 concludes.

2 Business Cycle Modelling with Markov-switching Vec-

tor Autoregressions

Recent theoretical and empirical business cycle research has revived interest in the co-movement
of macroeconomic time series and the regime-switching nature of macroeconomic activity. The
general idea behind regime-switching models of the business cycle is that the parameters of
a time series model of some macroeconomic variables depend upon a stochastic, unobservable
regime variable st ∈ {1, . . . ,M} which represents the state of business cycle. The number of
regimes, M , is often assumed to be two reflecting economic expansions and contractions.

The Markov-switching autoregressive time series model has emerged as a leading approach for
the detection and dating of business cycle turning points. Since Hamilton’s (1989) application
of this technique to measure the US business cycle, there has been a number of subsequent
extensions and refinements (see Krolzig (1997b) for an overview). We first present the original
contribution of Hamilton, then consider the multivariate generalization, and finally discuss its
application to the business cycle.

2.1 Hamilton’s Model of the US Business Cycle

In the original contribution of Hamilton (1989), contractions and expansions are modelled as
switching regimes of the stochastic process generating the growth rate of real output ∆yt:

∆yt − µ(st) = α1 (∆yt−1 − µ(st−1)) + . . .+ α4 (∆yt−4 − µ(st−4)) + ut. (1)

In (1), the two regimes are associated with different conditional distributions of the growth
rate of real output, where the mean growth rate µ depends on the state or ‘regime’, st. For a
meaningful business cycle model, the mean growth rate should be negative in the first regime,
µ1 < 0 (‘recession’), and positive in the second, µ2 > 0 (‘expansion’). The variance of the
disturbance term, ut ∼ NID(0, σ2), is assumed to be the same in both regimes.
The stochastic process generating the unobservable regimes is an ergodic Markov chain defined
by the constant transition probabilities:

p12 = Pr( recession in t | expansion in t− 1),
p21 = Pr( expansion in t | recession in t− 1),

The transition probabilities have to be estimated together with the parameters of equation (1).

By inferring the probabilities of the unobserved regimes conditional on the available information
set, it is possible to reconstruct the regimes and to date the turning points of the business cycle.
Hamilton was able to show that his model is able to track the NBER reference cycle very closely.
This suggests that the Markov-switching approach should also be useful for the modelling and
dating of the euro-zone business cycle.
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In the literature (see the review in § 5.1), univariate Markov-switching models like the one in (1)
have been applied to aggregated euro-zone data (with mixing results). However, it is important
to note that, by definition, univariate Markov-switching models as proposed by Hamilton (1989)
are only able to capture some of the stylized facts of the business cycle. They can represent
the non-linearity or asymmetry stressed in some part of the literature, but obviously, they are
unable to reflect the idea of co-movement among time economic series. This is particularly
important in the context of the euro-zone since there is a genuine interest in assessing the
synchronization of the business cycles among the euro-zone countries.

In this paper, we think of the euro-zone business cycle as a common cyclical feature of the
macroeconomic dynamics in the EMU member states. It is a common factor, which shares
all the properties of the regime variable in (1) by being generated by a hidden Markov chain.
We shall therefore utilize multivariate generalizations of Hamilton’s approach for the modelling
of the euro-zone business cycle using real GDP and industrial production time series for the
countries of the euro-zone (to be presented in § 5). Identifying the transitions of the regime
variable will give us the turning points of the common cycle component of the EMU member
states leading towards a chronology of the euro-zone business cycle. Next, we introduce the
statistical model: the Markov-switching Vector Autoregression. Its interpretation as a business
cycle model follows in § 2.3).

2.2 Markov-switching Vector Autoregressive Models

Like other regime-switching models, the Markov-switching vector autoregressive (MS-VAR)
model is a vector autoregressive process of the observed time series vector yt = (y1t, . . . , yKt)

0,
whose parameters are, at least partly, unconditionally time-varying but constant when condi-
tioned on an unobservable discrete regime variable st ∈ {1, . . . ,M}:

yt − µ(st) = A1(st) (yt−1 − µ(st−1)) + . . .+Ap(st) (yt−p − µ(st−p)) + ut, (2)

where ut is a Gaussian error term conditioned on st: ut|st ∼ NID(0,Σ(st)). A p-th order,
M -state Markov-switching vector autoregressive model of a Kdimensional time series vector is
denoted MS(M)—VAR(p). The parameter matrix shift functions µ(st), A1(st), . . . ,Ap(st) and
Σ(st) describe the dependence of the VAR parameters µ, A1, . . . ,Ap and Σ on the regime
variable st as in:

µ(st) =


µ1 = (µ11, . . . , µK1)

0 if st = 1,
...
µM = (µ1M , . . . , µKM)

0 if st =M.

(3)

The decisive characteristic of a Markov-switching model is that the unobservable realizations of
the regime st ∈ {1, . . . ,M} are generated by a discrete time, discrete state Markov stochastic
process, which is defined by its transition probabilities:

pij = Pr(st+1 = j|st = i),
MX
j=1

pij = 1 for all i, j ∈ {1, . . . ,M}. (4)

It is usually assumed that the Markov process is irreducible and ergodic.
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In the model (2) there is an immediate one—time jump in the process mean after a change in the
regime. Frequently, it is more plausible to assume that the mean smoothly approaches a new
level after the transition from one state to another. In such a situation, the following model
with a regime-dependent intercept term ν(st) could be used:

yt = ν(st) +A1(st)yt−1 + . . .+Ap(st)yt−p + ut. (5)

In contrast to linear time-invariant VAR models, the mean adjusted form (2) and the intercept
form (5) are not equivalent. They imply different dynamic adjustments of the observed variables
after a change in regime. While a permanent regime shift in the mean µ(st) causes an immediate
jump of the observed time series vector onto its new level, the dynamic response to a once-and-
for-all regime shift in the intercept term ν(st) is identical to an equivalent shock in the white
noise series ut.

The MS-VAR model allows for a great variety of specifications. In principle, it would be possi-
ble to alternate the specification of the regime generating process (i) by making all parameters
time-varying and (ii) by introducing separate regimes for each equation (or even for each pa-
rameter). But, this is not a practicable solution as the number of parameters of the Markov
chain grows quadratic in the number of regimes and coincidently shrinks the number of obser-
vations usable for the estimation of the regime-dependent parameters. For these reasons, we
prefer to impose the assumption of a common regime variable generating simultaneous regime
shifts in all equations of the system, i.e. identical break-points for all variables and parameters,
and also to restrict the number of regime-dependent parameters.

In empirical research, only some parameters will be conditioned on the state of the Markov chain
while the other parameters will be regime invariant. In order to establish a unique notation for
each model, we specify with the general MS(M) term the regime-dependent parameters:

M Markov-switching mean ,
I Markov-switching intercept,
A Markov-switching autoregressive parameters,
H Markov-switching heteroscedasticity.

The MS-VAR model provides a very flexible framework which allows for heteroscedasticity,
occasional shifts, reversing trends, and forecasts performed in a non-linear manner. The model
can be easily extended for the presence of cointegration (see Krolzig (1996), for the statistical
analysis of these systems and Krolzig (2001a), for applications to the business cycle). In business
cycle analysis, the focus is on models where the mean (MSM(M)—VAR(p) models) or the
intercept term (MSI(M)—VAR(p) models) are subject to occasional discrete shifts creating
episodes of economic expansion versus contraction or stagnation. Regime-dependent covariance
structures are often required to model changes in the correlation structure or the considered as
additional features.

2.3 MS-VAR Models of the Business Cycle

We start by presenting a simple, multivariate extension of Hamilton’s original model in (1).
Since we are interested in modelling the business cycle, only shifts in the vector of mean growth
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rates µ(st) are considered:

∆yt − µ(st) = A1 (∆yt−1 − µ(st−1)) + . . .+Ap (∆yt−p − µ(st−p)) + ut, (6)

where the error term ut is again Gaussian: ut|st ∼ NID(0,Σ). The MSM(M)-VAR(p) charac-
terizes business cycles as common regime shifts in the stochastic process of some macroeconomic
time series. In the context of this paper, those are the growth rates of macroeconomic activity
in the euro-zone countries.

MS-VAR models are by no means restricted to the presence of two regimes as assumed by
Hamilton (1989). In practice, two-regime models exhibiting episodes of ‘recession’ and ‘ex-
pansion’ may not congruent since, for example, structural change may require to allow for
multiple expansionary regimes such as ‘high growth’ and ‘low growth’ (see, inter alia, Krolzig
(2001a)). Also, note that without further restrictions on the matrix of transition probabilities,
for M > 2, the model does not impose a sequential ordering of the regimes (e.g., a rigid phase
structure of business cycle). In (6) each regime, say st = m, is associated with a particular
mean vector µm = (µ1m, . . . , µKm)

0 such that E [∆y|st = m] = µm. As a normalization, the
regimes are ordered with increasing mean, i.e. kµ1k < kµ2k . Identification requires that for
all m ∈ {1, . . . ,M} there exist at least one k ∈ {1, . . . ,K} such that µkm 6= µ1i for all i 6= m.
Assume, for instance, that the mean growth rates are identical for all countries, µkm = µm for
all k and m. Then, in the case of M = 2: µ1 < 0 < µ2 implies that latter regime represents
the expansionary phase and the former the recessionary phase of the classical business cycle.
Suppose now that 0 < µ1 < µ2, then the two regimes correspond to the phases of the growth cy-
cle. When the growth rates vary across countries, the distinction between classical and growth
cycles can be more difficult. In general, we will require that at least some country-specific
mean growth rates are negative during recessions. A stronger condition may demand that a
well defined index or aggregate of yt contracts during recessions: E[yat |st = 1] = a0µ1 < 0,
where yat = a

0yt with a > 0 and 10a = 1 . Similar criteria can be applied to distinguish the
phases of the growth cycle, i.e. a0µ2 > a

0µ1 > 0.

Despite its simplicity, the model is able to capture the non-linear, regime-switching, and the
common factor structures of the business cycle simultaneously. The design of the model allows
the identification and analysis of the latent euro-zone cycle, while restricting the propagation
of country-specific shocks to the vector autoregression. In other words, the hidden Markov
process is not informative about the propagation of business cycles across countries. Modelling
the ‘business cycle’ as a common factor implies that the countries share the same turning points.
However, this does not presuppose that all countries are synchronized with the common cycle,
i.e. it is feasible that some countries — but not all — are unaffected by shifts in regime: µkm = µk
for all m. Clearly, the model would not be identified if this were true for all k. A more flexible
approach can be found in Phillips (1991) and Hamilton and Lin (1996), where some variables
might precede others in their cycle or different variables follow completely different Markov
processes. Given the relatively large number of countries considered and our special interest in
the phenomenon of a common euro-zone cycle, introducing separate Markov processes for each
country is not very appealing within the modelling strategy outlined here. In other instances,
however, it may be appropriate to allow more than one state variable, such that each variable
may respond to a specific state variable.2 It is worth pointing out that if (6) were formulated

2Considering two-country two-regime models of monthly growth rates of industrial production in the US,
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as an MSI(M)—VAR(p) model, regime shifts would cause lagged responses of the variables in
the system, so that some countries would react faster to business cycle transitions than others.

In many regards, Markov-switching VAR models can be considered as rather straightforward
multivariate generalizations of the univariate Markov-switching model originally proposed by
Hamilton (1989) for the US business cycle. This also helps to explain some of their distinctive
attributes: they are foremost statistical models designed to learn the features of the business
cycle from the data. As statistical representations of the business cycle, they require minimal
theoretical prior information about the relevant macroeconomic structures. The common factor
hypothesis is such an identifying assumption: one regime variable drives the business cycle
transitions in the variables of the system. Given the minimal input of identifying assumptions
regarding the regime generating process, the interpretation of its realization as the ‘business
cycle’ must be based on similarities with a reference cycle. This may be called an ‘ex-post
identification of the business cycle’. The other important assumption made in Markov-switching
models says that the latent regime variable is generated by a Markov chain. This allows the
‘reconstruction’ of the evolution of the regime (e.g., as the time path of the ‘probability of
being in a recession’) by solving a signal-extraction problem. If the business cycle is a common
feature of the vector of economic time series, then modelling the system does not only reflect the
basic definition of the business cycle, but also enhances the extraction of the common ‘business
cycle’ component from the variables. In the next two sections, we explore this issue further by
discussing the regime inference in MS-VAR models, its exploitation for the construction of a
turning point chronology as well as the properties of resulting regime classification.

3 Constructing the Turning Point Chronology

For an estimated MS-VAR model, the construction of a business cycle chronology consists of
three major steps:

i. Regime inference: identification of the unobserved regime variable st from the information
set YT

• Filtering: Pr(st|Yt);

• Smoothing: Pr(st|YT );

• Predicting: Pr(st+h|YT ).

ii. Construction of the business cycle chronology

• Regime classification using a classification rule based on Pr(st|YT ): ŝt;

• Dating the turning points.

iii. Control of the regime classification

the UK, Germany and Japan, Phillips (1991) assumes separate Markov chains for the business cycle of each
country. Interestingly, in none of the estimated models, the null hypothesis of perfectly correlated regime shifts
could be rejected which supports the presumptions made here.
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• Uncertainty: Pst 6=ŝt Pr(st|YT );

• Reliability:kPr(st|YT )− Pr(st|Yt)k ;
• Robustness;
• Parameter constancy.

iv. Implications for real-time turning point detection.

3.1 Regime Inference in MS-VAR Models

The framework for the statistical analysis of MS-VAR models is the state-space form, where the
VAR of yt conditional on the state variable st in equation (6) forms the measurement equation,
and the hidden Markov chain in equation (4) is the transition equation of the state variable
(see Krolzig (1997b), ch.2, for more details). In the following, we only give a brief introduction
to the calculation of the filtered and smoothed regime probabilities, which are essential for the
dating of the business cycle with MS-VAR models.

3.1.1 Filtering

The filtering algorithm is usually associated with Hamilton (1989), but it can be traced back
to earlier statistics literature including Baum and Petrie (1966) and Lindgren (1978). The aim
of the filter is to infer the probability distribution of the unobserved regime variable st given
the currently available information set Yt.

Let p(yt|st,Yt−1) denote the probability density of observing yt conditional on the regime
variable st, and Pr(st|st−1) the transition probability from regime st−1 to st. By invoking the
law of Bayes, the (posterior) probability Pr(st|Yt) of the regime variable st conditional on all
available information at time t is given by:

Pr(st|Yt) = Pr(st|yt,Yt−1) =
p(yt|st,Yt−1) Pr(st|Yt−1)

p(yt|Yt−1)
, (7)

where the predicted regime probability Pr(st|Yt−1) is the prior probability of regime st given the
information set of the previous period and p(yt|Yt−1) is the marginal density of yt conditional
on the information set Yt−1. The predicted regime probabilities can be calculated as:

Pr(st = j|Yt−1) =
MX
i=1

MX
j=1

pij Pr(st−1 = i|Yt−1),

which in turn are used in the derivation of the predicted density of yt :

p(yt|Yt−1) =
MX
j=1

p (yt, st = j | Yt−1) =
X
st

p(yt|st,Yt−1) Pr(st|Yt−1). (8)

Using (7) the filtered regime probabilities for a sample YT = (yT , . . . ,y1) can be calculated
by a forward recursion for t = 1, . . . , T initialized by some estimate of the initial value s0 of

154



the regime variable. Suppose, for example, p = 0 and M = 2 where one regime represents
‘recession’ and the other ‘expansion’, then the filter recursion in (7) can be simplified to the
following odds ratio of the regimes:

Pr(‘recession’ at time t|Yt)

Pr(‘expansion’ at time t|Yt)
=
p(yt|‘recession’)
p(yt|‘expansion’)

Pr(‘recession’ at time t|Yt−1)
Pr(‘expansion’ at time t|Yt−1)

.

The probability of a recession given all available information at time t depends (i) on the
relative likelihood of observing yt in a recession versus in an expansion and (ii) on the relative
likelihood of a recession given the history of yt, namely the information set Yt−1 available in
the previous period.

3.1.2 Smoothing

The filter recursions deliver estimates for st,with t = 1, . . . , T, based on the available informa-
tion up to time point t. This is a limited information technique, as we have observations up to
t = T . Thus, the regime inference can be improved further by using future observations of yt,
in which case the resulting regime probabilities, Pr(st|Ys) with s > t, are called ‘smoothed ’.
The smoothing algorithm gives the best estimate of the unobservable state at any point within
the sample.

In the following, we discuss how the sample information Yt+1.T = (y0t+1, . . . ,y
0
T )
0 neglected

so far is incorporated into the full-sample inference about the unobserved regime st. The
smoothing algorithm proposed by Kim (1994) may be interpreted as a backward filter that
starts at the end point, t = T, of the previously applied filter. The full—sample smoothed
inferences Pr(st|YT ) are found by starting from the last output of the filter Pr(sT |YT ), and
then by iterating backward from t = T − 1 to t = 1.
The algorithm exploits the identity:

Pr(st|YT ) =
X
st+1

Pr(st, st+1|YT )

=
X
st+1

Pr(st|st+1,YT )Pr(st+1|YT ). (9)

For pure VAR models with Markovian parameter shifts, the probability laws for yt and st+1
depend only on the current state st, but not on its history. Thus, we have:

Pr(st|st+1,YT ) ≡ Pr(st|st+1,Yt,Yt+1.T )

=
p(Yt+1.T |st, st+1,Yt)Pr(st|st+1,Yt)

p(Yt+1.T |st+1,Yt)

= Pr(st|st+1,Yt).

It is, therefore, possible to calculate the smoothed probabilities Pr(st|YT ) by getting the last
term from the previous iteration of the smoothing algorithm, Pr(st+1|YT ), while it can be
shown that the first term can be derived from the filtered probabilities Pr(st|Yt):

Pr(st|st+1,Yt) =
Pr(st+1|st,Yt)Pr(st|Yt)

Pr(st+1|Yt)

=
Pr(st+1|st)Pr(st|Yt)

Pr(st+1|Yt)
. (10)
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The recursion is initialized with the final filtered probability vector Pr(st|YT ):

Pr(st|YT ) =
MX

st+1=1

Pr(st+1|st)Pr(st|Yt)

Pr(st+1|Yt)
Pr(st+1|YT ). (11)

Recursion (11) describes how the additional information Yt+1.T is used in an efficient way to
improve the inference on the unobserved state st:

Pr(st|YT )

Pr(st|Yt)
=

MX
st+1=1

Pr(st+1|st)Pr(st+1|YT )

Pr(st+1|Yt)
. (12)

If at time t + 1 the full information inference, Pr(st+1|YT ), coincides with its prediction,
Pr(st+1|Yt), then knowing the future of yt does not help to improve the regime inference
at time t. Hence the filtering solution Pr(st|Yt) is not updated: Pr(st|YT ) = Pr(st|Yt).

In the case of two regimes, say ‘recession’ (st = 1) and ‘expansion’ (st = 2) , we have that:

Pr(‘recession’ at time t|YT )

Pr(‘recession’ at time t|Yt)

= p11
Pr(‘recession’ at time t+ 1|YT )

Pr(‘recession’ at time t+ 1|Yt)
+ p12

Pr(‘expansion’ at time t+ 1|YT )

Pr(‘expansion’ at time t+ 1|Yt)
(13)

= p11
Pr(‘recession’ at time t+ 1|YT )

Pr(‘recession’ at time t+ 1|Yt)
+ (1− p11)

1− Pr(‘recession’ at time t+ 1|YT )

1− Pr(‘recession’ at time t+ 1|Yt)
.

It can be shown that iff p11 > p21, i.e., whenever the probability of staying in a recession is
greater than the probability of moving from an expansion to a recession, Pr(‘recession’ at time t+
1|Yt) is a monotonically increasing function in Pr(‘recession’ at time t+1|Yt). In other words,
if new information will make the researcher believe that the probability of a recession in t+ 1
is greater than expected at time t, she will update her beliefs about the past by increasing
the probability that the economy has already been in a recession at time t. Finally, note
that the difference between the two measures indicates the amount of revisions in the regime
classification, when new observations become available.

3.2 Constructing the Turning Point Chronology

3.2.1 Classification of the Regimes

In Markov-switching models, the classification of the regimes and the dating of the business
cycle amounts to assigning every observation yt to a regime ŝt ∈ {1, . . . ,M}. The rule that is
applied here maps yt to the regime with the highest smoothed probability:

ŝt = arg max
1,...,M

Pr(st | YT ) (14)

At each point in time, the smoothed regime probabilities are calculated as described in §3.1,
i.e. the inference is made using the whole set of data points, and each observation is matched
with the most likely regime.
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In the simplest case of two regimes, the classification rule proposed rule in (14) simplifies to
assigning the observation to the first regime if Pr(st = 1 | YT ) > 0.5 and to the second if
Pr(st = 1 | YT ) < 0.5, which was proposed in Hamilton (1989). For the purpose of business
cycle analysis, this rule might also be applied to multi-regime models (M > 2) when, for
instance, regime 1 captures ‘recessions’ and the remaining regimes (st = 2, . . . ,M) can be
aggregated to the superstate ‘expansion’ with each regime representing different phases of an
expansion.

3.2.2 Dating the Business Cycle Turning Points

The regime classification procedure allows dating the turning points of the business cycle by
identifying the transitions of the regime variable. Suppose again that there are two-regimes:
‘recession’ (st = 1) and ‘expansion’ (st = 2). Then, the peak date denotes the period t just
before the beginning of a recession, i.e. Pr(‘recession’ at time t | YT ) < 0.5 and Pr(‘recession’
at time t+ 1 | YT ) > 0.5; the trough is the last period of the recession:

Peak at t = τ ⇐⇒ ŝτ = 2 and ŝτ+1 = 1

Trough at t = τ ⇐⇒ ŝτ = 1 and ŝτ+1 = 2.

It would also be feasible to impose the additional condition that each recession and expan-
sion should prevail for at least two quarters, which would add a certain smoothness to the
regime classification. A chronology of the turning points of the euro-zone business cycle will be
discussed in § 5.5 (see Tables 9 and 10).

3.3 Quantifying the Classification Uncertainty

An important advantage of the MS-VAR model is its ability not only to classify observations,
but also to quantify the uncertainty associated with the produced business cycle chronology. If
we attach the observation at time t to the regime ŝt according to rule (14), then an appropriate
measurement of the classification uncertainty is given by:

M

M − 1
X
i6=ŝt

Pr(st = i|YT ),

where 1 − 1/M is the maximal uncertainty when all regimes m = 1, . . . ,M are possible with
the same probability 1/M . Hence, the proposed measurement is bounded between 0 and 1.
Obviously, we get for M = 2, that the probability of a wrong classification, which is given by
the complementary probability, is normalized to 2 Pr(st 6= ŝt|YT ).

A different measure of uncertainty is given by the difference of the filtered and smoothed
probabilities of a recession, which reports the update of the regime inference as new information
becomes available. This is crucial for the reliability of real-time detection of business cycle
transitions with MS-VAR models, which we discuss next.

157



3.4 Real-Time Detecting of Turning Points

The proposed approach supports the identification of business cycle turning points without a
lag. The filtered regime probability Pr(sT |YT ), which coincides with the smoothed probability
of sT for the sample YT , constitutes the optimal regime inference for given data set. When
additional data become available, the regime inference will be updated by the smoothed regime
probabilities, Pr(sT |YT+j) with j > 0. In other words, we can interpret the new datings as a
‘real-time’ classification of the euro-zone business cycle, which only uses the information up to
turning point.3

To gauge the reliability of the filtered regime probabilities in identifying new turning points,
the resulting regime classification could be compared to the business cycle chronologies derived
from the smoothed regime probabilities, which use the full-sample information.

3.5 Predicting the Business Cycle

Detecting recent regime shifts is essential to predict MS-VAR processes. A useful framework
for the prediction of future regimes is the VAR(1) representation of the hidden Markov chain,
where the discrete state variable st is substituted by the unobservable state vector ξt consisting
of M binary indicator variables:

ξt =
£
I(st = 1) · · · I(st =M)

¤0
.

Let ξt be an (M × 1) vector whose ith element is unity when st = i, and zero otherwise. Then,
the hidden Markov chain can be written as:

ξt+1 = Fξt + vt+1, (15)

where vt+1 is a martingale difference sequence and F = P
0 is called the ‘transition matrix’. This

representation allows the application of the well-established theory of forecasting linear systems
to the problem of calculating future regime probabilities (see Krolzig (1997b)). If the Markov
chain is ergodic, i.e. there does not exist an absorbing state, the process in (15) is stationary
and will revert to its mean E [ξt] = ξ̄, where ξ̄ is the vector of ergodic regime probabilities.

Since st is unobservable, so is ξt. Therefore we have to utilize the filter in (7) again, and work
with the vector of filtered regime probabilities ξ̂t|t instead:

ξ̂t|t =
£
Pr(st = 1|Yt) · · · Pr(st =M |Yt)

¤0
.

By using the linearity of the transition equation (15), the h-step prediction of ξt+h follows as:

ξ̂t+h|t = F
hξ̂t|t. (16)

The predictive value of the regime inference, at the time when the prediction is made, depends
positively on the persistence of the regime generating process. Under ergodicity, the regime
probabilities converge to the unconditional ones:

lim
h−→∞

Fhξ̂t|t = ξ̄.

3We still employ the full-sample parameter estimates.
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For a two regime model, these ergodic probabilities are given by:

ξ̄1 =
p21

p12+p21
and ξ̄2 =

p12
p12+p21

.

While the future distribution of the regimes is well defined, the model is less suited to forecast
future turning points. In two regime model of § 2.1, ‘peaks’ (transitions from regime 2 to 1)
and ‘troughs’ (transitions from regime 1 to 2) will on average occur with same probability:

Pr(st = 1, st+1 = 2) = ξ̄1p12 =
p21p12
p12+p21

= ξ̄2p21 = Pr(st = 2, st+1 = 1).

A related question is when the next turning point is likely to occur. Therefore it is useful to
know the average duration h of ‘expansions’ and ‘contractions’, which is given by:

E[h1] =
1

1− p12
and E[h2] =

1

1− p21
.

Due to the stationary VAR(1) representation of an ergodic Markov chain, MS-VAR processes
have short memory. The longer the forecast horizon, the better the linear approximation of
the optimal predictor and the greater the potential unpredictability of (detrended) economic
time series (see Krolzig (2003b), for further details on predicting MS-VAR processes). Finally,
it is worth noting that the MS-VAR’s ability of forecasting business cycle transitions can be
enhanced further by making the transition probabilities time-varying (see, inter alia, Diebold,
Lee, and Weinbach (1994)).

4 Properties of the Regime Classification Rule

In the following, we analyze the properties of the regime classification rule derived in the
previous section. We are particularly interested in the dependence of the regime classification
on (i) our beliefs regarding the state of the economy in the previous period and (ii) the current
realization of the variables of interest. For sake of simplicity, we restrict our analysis to the ‘real-
time’ classification problem (filtering) and ignore the effects of future observations. We also
abstract from estimation uncertainty by analyzing the situation when the true data generating
process is an MS-VAR and the parameters are known. First, we consider a univariate Markov-
switching model, and then the system case.

4.1 Univariate Markov-Switching Models

4.1.1 Analytics

The model we analyze here is kept general by defining it in terms of the conditional density of
the variable of interest, yt, in the two regimes, which in the context of business cycle analysis
are supposed to represent recessions and expansions.

159



Regime 1 (Recession):

p (yt | Yt−1, st = 1) =
1

σ1
φ

µ
yt − µ1t

σ1

¶
= f1(yt | Yt−1).

Regime 2 (Expansion):

p (yt | Yt−1, st = 2) =
1

σ2
φ

µ
yt − µ2t

σ2

¶
= f2(yt | Yt−1).

where µ2t > µ1t with µ2t being positive, and µ1t being negative if regime 1 is supposed to
represent contractions in economic activity rather than low growth episodes; φ(·) is the standard
normal pdf.

As discussed in § 3.2, the observation of yt will be classified as belonging to the regime 1, iff:
Pr(st = 1 | Yt)

Pr(st = 2 | Yt)
=

f1(yt|Yt−1) Pr(st = 1 | Yt−1)
f2(yt|Yt−1) Pr(st = 2 | Yt−1)

> 1.

Under the assumed normality of f1(yt | Yt−1) and f2(yt | Yt−1), it can be shown that a linear
discrimination rule emerges when the two regimes are homoscedastic, σ21 = σ22 = σ2 :

yt <
1

2
(µ2t + µ1t) +

σ2

µ2t − µ1t
ln π, (17)

where π = (Pr(st = 1|Yt−1)/[1− Pr(st = 1|Yt−1)]) is the logit of the predicted probability of a
recession formed at time t− 1. Whenever yt is less than the specified threshold, yt is classified
as belonging to the regime 1. The lower yt, the higher the chance that the economy is in the
state of a recession. The threshold depends on the parameters of the model and the predicted
regime probabilities.

Suppose now that the two regimes are heteroscedastic: σ21 6= σ22. Then, the condition for a
recession is quadratic in yt:

(ω − 1) y2t − 2 (ωµ2t − µ1t) yt > − ¡ωµ22t − µ21t
¢
+ σ21 (lnω − 2 ln π) , (18)

where ω = σ21/σ
2
2. If ω < 1, the recessions are declared if yt is in the interior region (y

−
t , y

+
t )

with the threshold values:

y±t =
ωµ2 − µ1
ω − 1 ±

√
ω

ω − 1
p
(ω − 1)σ2 lnω − 2(ω − 1)σ2 ln π + (µ2 − µ1)

2

Otherwise, recessions are found in the outer regions of R. This highlights the danger of making
both the first and second conditional moment of yt regime dependent. Great care is required to
ensure that the regime classification is economically meaningful (see Example 4 for a bivariate
illustration).

Example 1: Hamilton Model

We evaluate the properties of the regime classification procedure in a simplified variant of
Hamilton’s business cycle model discussed in § 2.1:
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Regime 1 (Recession):

(yt | Yt−1, st = 1) ∼ N(−0.4, 0.52).

Regime 2 (Expansion):

(yt | Yt−1, st = 2) ∼ N(+1.2, 0.52).

Markov chain (Transition probabilities):

p11 = Pr(st = 1 | st−1 = 1) = 0.7,

p22 = Pr(st = 2 | st−1 = 2) = 0.9.

Expansions are more persistent than recessions. For the transition probabilities given, the
ergodic probability of a recession is 0.25.

The mechanics of the result in (17) are illustrated in Figure 1. The first panel shows the
conditional density of the variable of interest, yt, in recessions (st = 1) and in expansions
(st = 2). Suppose now that the regime probabilities at time t − 1 are known. Then the
predicted regime probabilities, Pr(st|Yt−1), result as follows:

Pr(st = 1 | Yt−1) = 0.7Pr(st−1 = 1 | Yt−1) + 0.1Pr(st−1 = 2 | Yt−1),
Pr(st = 2 | Yt−1) = 0.3Pr(st−1 = 1 | Yt−1) + 0.9Pr(st−1 = 2 | Yt−1),

where we used that Pr(st = j | Yt−1) =
PM

i=1 pij Pr(st−1 = i | Yt−1).

The predicted density of yt is given by equation (8) as:

p(yt | Yt−1) =
MX
j=1

Pr(st = j | Yt−1)fj(yt|Yt−1),

which is a mixture of normals. In the second panel of Figure 1, the predicted density is
plotted for different values of the filtered probability of a recession in the previous period,
Pr(st−1 = 1 | Yt−1) = w1t. Those determine the weights of the two Gaussian densities of yt
conditioned on st:

p(yt | Yt−1) = [0.1 + 0.6w1t]f1(yt|Yt−1) + [0.9− 0.6w1t]f2(yt|Yt−1).

The third panel shows the resulting filtered probability of a recession (st = 1) given the observed
value of yt according to (7). Finally notice how the classification rule proposed in (14) implies
a unique threshold y∗ such that for yt < y∗ (yt ≥ y∗), the econometrician would conclude that
the economy is in the state of a recession (expansion).
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Figure 1: Regime inference in univariate Markov-switching models

4.2 Regime Classification in an MS-VAR Model

4.2.1 Analytics

We now extend the analysis of the regime classification in Markov-switching models, applied so
far to univariate models, to the vector case. Consider the following two-regime MS-VAR with:

Regime 1 (Recession):

(yt|Yt−1, st = 1) ∼ N(µ1t,Σ1);

Regime 2 (Expansion):

(yt|Yt−1, st = 2) ∼ N(µ2t,Σ2),

where µ2t > µ1t is the conditional mean of yt.

As in § 4.1.1, the observation of yt = (y1t, . . . , yKt)
0 will be classified as belonging to the regime 1

iff the likelihood of regime 1 is greater than the likelihood of regime 2:

Pr(st = 1 | Yt)

Pr(st = 2 | Yt)
=

f1(yt|Yt−1) Pr(st = 1 | Yt−1)
f2(yt|Yt−1) Pr(st = 2 | Yt−1)

> 1.
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Under normality of f1(yt|Yt−1) and f2(yt|Yt−1), parametric conditions can be derived for the
values of yt leading to the conclusion that the economy is stuck in a recession. If the two
regimes are homoscedastic, i.e. Σ1 = Σ2, it can be shown that again a linear discrimination
rule results (see Krolzig (2003a), for details):

(µ2t − µ1t)0Σ−1yt <
1

2

¡
µ02tΣ

−1µ2t − µ01tΣ−1µ1t
¢
+ ln π, (19)

where π = Pr(st = 1|Yt−1)/ [1− Pr(st = 1|Yt−1)] . For bivariate processes, K = 2, with a
diagonal variance-covariance matrix,i.e. σkl = 0 for k 6= l, the rule can be further simplified to:

b0tyt < ct, (20)

with: bt =
£
σ−21 (µ1.2t − µ1.1t),σ

−2
2 (µ2.2t − µ2.1t)

¤0
,

ct =
1

2

µ
µ21.2t − µ21.1t

σ21
+

µ22.2t − µ22.1t
σ22

¶
+ ln

µ
Pr(st = 1|Yt−1)

1− Pr(st = 1|Yt−1)

¶
.

The linearity of the divide between recessions and expansions can be easily spotted in the
examples given in Figures 4 and 7, which will be discussed next. For a heteroscedastic error
process, Σ1 6= Σ2, the condition for a recession is quadratic in yt; this will be investigated
further in the fourth example (see, also, Figure 10).

It is worth remembering that the regime classification rule (19) for MS-VAR models is inde-
pendent of the weight of any country in the index. Indeed, scaling one of the countries would
result in exactly the same regime classification. However, note that larger countries tend to
be associated with less noisy time series than smaller countries. Fluctuations in the former
countries will deliver clearer signals and, therefore, will usually have a stronger impact on the
regime probabilities. Furthermore, the stronger the country is synchronized with the common
business cycle and the more pronounced the cycle affects the country’s economy; the higher is
the weight of the country in the discriminator function.

This has serious implications for business cycle analysis with aggregated data (see Krolzig
(2003a)). The question is whether the aggregation of the country data yt = (y1t, . . . , yKt)

0 to
an index yat affects the efficiency of the detection of business cycle turning points, when yt is
generated by an MS-VAR as defined in (6). In other words, can the aggregate yat be a sufficient
statistic for ŝt? It can be shown that the answer to this question depends on:

Pr (st|yat ) = Pr (st|Yt) , (21)

which is investigated in Krolzig (2003a). In the case of a heteroscedastic error term, any linear
aggregation of the data yat = a

0yt must clearly be inefficient.

4.2.2 Example 2: Bivariate Markov-Switching Model

The regime classification in MS-VAR models is illustrated by three variations of a bivariate
MS-VAR process, which generalizes the univariate business cycle model considered earlier. We
can think here of two countries driven by the same business cycle, such that ykt denotes the
growth rate of output in country k ∈ {1, 2}. We assume that the distribution of yt = (y1t, y2t)0
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is Gaussian in both regimes, and that output contracts by 0.4 percent per quarter in recessions
and grows by 1.2 percent in expansions. The standard deviation of output growth is 0.5 percent
in both regimes.

Regime 1 (Recession):

(yt | st = 1) ∼ N
µ· −0.4
−0.4

¸
,

·
0.52 0
0 0.52

¸¶
.

Regime 2 (Expansion):

(yt | st = 2) ∼ N
µ·

1.2
1.2

¸
,

·
0.52 0
0 0.52

¸¶
.

The hidden Markov chain generating the regimes is chosen to reflect the properties of the US
business cycle as found in Hamilton (1989):

p11 = Pr(st = 1 | st−1 = 1) = 0.7,

p22 = Pr(st = 2 | st−1 = 2) = 0.9.

Figure 2 plots the probability density function (pdf) of yt in recessions, st = 1 : f1(yt|Yt−1),and
in expansions, st = 2 : f2(yt|Yt−1). Given the state of the business cycle, the density of y1t and
y2t is simply Gaussian with mean vector µ1 or µ2, and variance matrix Σ.

Since the regime itself is unobservable, our knowledge of the distribution of yt given the infor-
mation available at time t−1 is in fact much more limited. The predicted density of yt plotted
in Figure 3 is a mixture of normals:

p(yt | Yt−1) = w1tf1(yt|Yt−1) + (1− w1t)f2(yt|Yt−1),

where w1t denotes the weight attached to conditional pdf of regime 1 at time t.

recession : p ( y t |Y t − 1 ,s t = 1 )

-2
0

2-2

0

2

0.
25

0.
50

expansion : p (y t |Y t − 1 ,s t = 2 )
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2-2

0

2

0.
25

0.
50

Figure 2: Probability density of yt in recessions and expansions
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The weight w1t of regime 1 is given by its predicted regime probability, Pr(st = 1 | Yt−1), which
is determined by the regime inference at time and the structure of the matrix of transition
probabilities:

Pr(st = 1 | Yt−1) = p11 Pr(st−1 = 1 | Yt−1) + p21 Pr(st−1 = 2 | Yt−1)
= p21 + (p11 − p21) Pr(st−1 = 1 | Yt−1).

Using (7), we can use this information to calculate the filtered probability of the regimes —
shown in Figure 4 for regime 2:

Pr(st = 2|yt,Yt−1) =
(1− w1t) f2(yt|Yt−1)

w1t f1(yt|Yt−1) + (1− w1t) f2(yt|Yt−1)
.

The Pr(st = 2|yt,Yt−1) = 0.5 isolate, which gives the classification into recessions and contrac-
tions, is a linear function of y1t and y2t.

4.2.3 Example 3: Lack of Business Cycle Synchronization

Here, we alternate Example 2 by limiting the business cycle to the first variable:

µ1 =

· −0.4
1.2

¸
, µ2 =

·
1.2
1.2

¸
.

The same calculations as in the previous example apply. Since the mean growth rate of the
second variable is unaffected by shifts in the regime variable st, we have that the unconditional
pdf of y1t and y2t shown in Figure 5, just shifts in the horizontal direction whenever there
is a transition in the state of the business cycle. The resulting predicted density depicted in
Figure 6 is clearly seen to be bimodal with both modes lying on a horizontal line.

Figure 7 again plots the filtered probability of an expansion (regime 2) at time t conditional on
the probability of a recession (regime 1) at time t−1 and the realizations of y1t and y2t.We are
again interested in what we can learn about the state of business cycle from the observed values
of y1t and y2t. It turns out that y2t does not contribute to the understanding of the underlying
state of the economy. The reason for this is that since y2t does not depend on st, observing y2t
can not reveal any information about the current realization of st:

Pr(st|y1t, y2t,Yt−1) = Pr(st|y1t,Yt−1).

Hence, modelling y2t does not contribute to the solution of the signal extraction problem. The
regime inference just depends on y1t in the same way as in the simplified Hamilton model
considered in Example 1.
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Figure 3: Predicted density of yt given Yt−1 and the probability of recessions at time t− 1
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Figure 4: Filtered probability of regime 2 (expansion) inferred from the observation of yt
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Figure 5: Probability density of yt in recessions and expansions for µ1.1= µ1.2
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Figure 6: Predicted density of yt given Yt−1 and the probability of recessions at time t− 1 for
µ1.1= µ1.2
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4.2.4 Example 4: Regime-Dependent Heteroscedasticity

This final example highlights the potential dangers in interpreting Markov-switching models
as representations of the business cycle when they are characterized by time-varying volatility
(regime-dependent variances).4

The MS-VAR here differs from the model in the second example by allowing for regime-
dependent heteroscedasticity:

Σ1 =

·
0.52 0
0 0.52

¸
, Σ2 =

·
0.82 0
0 0.82

¸
.

So the expansionary regime is characterized by a higher variance. The mean vectors are un-
changed:

µ1 =

· −0.4
1.2

¸
, µ2 =

· −0.4
1.2

¸
.

The conditional density of y1t and y2t in the two regimes is depicted in Figure 8.

If the regime were known, the conditional variance of yt would be higher in recessions than
in expansions. This is, however, not so trivial when we have to rely on statistical inference
regarding the unobserved regime variable.

The predicted density of yt given its history and the probability of regime 1 at time t − 1 is
shown in Figure 9. The pdf is bimodal, with the weight of the two conditional densities being
determined by w1t = Pr(st = 1 | Yt−1). So the conditional variance of y1t and y2t is given by:

Var [ykt|Yt−1] = Est {Var [ykt|st,Yt−1]}+ Varst {E [ykt|st,Yt−1]}
= w1tσ

2
1 + (1−w1t)σ22 + w1t(µ1−E [ykt|Yt−1])2 + (1−w1t)(µ2−E [ykt|Yt−1])2

= σ22 + (σ
2
1 − σ22)w1t + (µ1 − µ2)

2(1− w1t)w1t

= 0.64− 2.56w1t + 2.17w21t.

It is highest for Pr(st = 1 | Yt−1) ≈ 0.424, or in other words when the available information at
time t−1 is inconclusive regarding the current state of the economy: Pr(st−1 = 1 | Yt−1) ≈ 0.54.
This is expressed in Figure 9 in the widespread distribution of probability mass for Pr(st−1 =
1 | Yt−1) = 0.5.

4Similar problems can result from making the VAR coefficients regime dependent.
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Figure 7: Filtered probability of regime 2 (expansion) inferred from the observation of yt for
µ1.1= µ1.2
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Figure 8: Probability density of yt in recessions and expansions for Σ2> Σ1
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The signal extraction problem has become more complicated when compared to the previous
examples. Due to the regime-dependent heteroscedasticity, regime 1 exhibits not only lower
mean growth rates than regime 2, but also a lower variance. In general, negative growth rates
signal recessions (regime 1). However, if the observed growth rates of y1t and y2t become
increasingly low (i.e. negative), the filter reinterprets the situation: while yt appears to be an
outlier from the perspective of regime 1, it is still quite likely under regime 2 due to its greater
variance. This in turn makes regime 2 look more likely to prevail. The outcome of the filter
is recorded in Figure 10, which displays the probability of regime 2. It is worth remembering
that great care is needed when interpreting the business cycle features of an MS-VAR model
with switching variance or switching coefficients.

4.3 Summary

The results derived here have decisive implications for the detection of business cycle turning
points:

i. Importance of parsimony and meaningfulness of the regimes.

ii. General inefficiency of aggregation.

iii. The stronger the country is synchronized with the common business cycle and the more
pronounced the cycle affects the country’s economy, the higher is the weight of the country
in the regime classification.

iv. Regime classification is independent of the size of the countries or their weight in an index
or aggregate (such as euro-zone GDP).

The importance of these issues will become evident in the following empirical analysis of the
euro-zone business cycle.

5 The Euro-Zone Business Cycle

Throughout in this paper, we emphasized the importance of modelling systems for the con-
struction of turning point chronologies of the euro-zone business cycle. In § 2 we argued that
the euro-zone business cycle constitutes a common feature of the macroeconomic dynamics in
the EMU member states. In contrast to the analyses of aggregated euro-zone data, this no-
tion is reflected in Markov-switching vector autoregressive models of macroeconomic activity
in euro-zone countries. The results derived in § 4 provided further reasons for analyzing sys-
tems instead of aggregates, foremost the missing invariance of the regime classification under
aggregation. In this section we will first discuss various empirical Markov-switching models
of the European (EU/EMU) business cycle proposed in the literature. We then present the
empirical modelling approach, which will be applied to three different statistical measures of
macroeconomic activity in EMU member states. Finally, we present the empirical results of
this paper derived from the estimated Markov-switching vector autoregressive models of the
euro-zone business cycle.
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Figure 9: Predicted density of yt given Yt−1 and the probability of recessions at time t− 1 for
Σ2> Σ1
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Figure 10: Filtered probability of regime 2 (expansion) inferred from the observation of yt for
Σ2> Σ1
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5.1 Markov-Switching Studies of the European Business Cycle

Recent years have seen an increasing attempt to investigate international business cycles with
modern non-linear time series models. First contributions to the analysis of international
business cycles with Markov-switching models were made by Phillips (1991) and Filardo and
Gordon (1994). With the Treaty of Maastricht, the focus shifted towards the analysis of business
cycle synchronization in the European Union, and later in the euro zone. Table 1 gives an
overview on the recent literature on Markov-switching models of the European Business Cycle.

Artis, Krolzig, and Toro (2004) investigated the existence and identification of a European
Business Cycle by analyzing monthly industrial production data of nine EU countries from
1970M01 to 1996M12.

Two important issues arose in their investigation: (i) the convergence process of Southern
Europe and (ii) the secular decline of the mean growth rates in the post-Bretton Woods era.
Analyzing GDP data for six EU countries from 1970Q3 to 1995Q4, Krolzig (2001a) concludes
that two-regime models representing contractions and expansions are inconsistent with these
two stylized facts of the post-war economic history of Western Europe. Krolzig and Toro (2000)
compare the ‘classical’ approach proposed in Burns and Mitchell (1946) of dating and analyzing
the business cycle with the Markov-switching approach as its ‘modern’ alternative.

By using the model’s regime probabilities as an optimal statistical inference of the turning
point of the European business cycle, they demonstrate the capacity of the MS-VAR approach
to generate the stylized facts of the classical cycle in Europe. These studies have in common
the presence of a third regime, which however is rarely found after 1980.

We can therefore presume that for data beyond that period two-regime models provide an
adequate description of the business cycle. Consequently, Krolzig (2001b) have fitted two-
regime Markov-switching models to aggregated euro-zone real GDP data and disaggregated
single-country euro-zone for the 1980Q2 to 2000Q4 period. Recessions in the euro-zone are
found from 1980Q1 to 1981Q1 and 1992Q3 to 1993Q2. Also, Peersman and Smets (2001) find
that a two-regime MS-VAR model delivers reasonable results for quarter-to-quarter growth
rates of detrended industrial production in seven euro-area countries of the period 1978Q4 —
1998Q4.

In Figure 11, the (smoothed) probability of a recession in the studies of Artis, Krolzig, and Toro
(2004), Krolzig and Toro (2000), and Krolzig (2001b) is plotted. When taking account of the
different sample periods involved, the regime classifications consistently support the presence
of three major recessions in the periods 1973/74, 1980-82 and 1991 to 1994, though there is
increased uncertainty regarding the recession in the 1990s. Anas and Ferrara (2002) extend the
univariate analysis of Krolzig (2001b) up to 2002Q2.

Using aggregated euro-zone GDP data, they discover a more recent recession starting in 2001Q1,
with somehow different results when analyzing euro-zone IIP data. In the following, we recon-
sider the issue by analyzing three new multivariate data sets. An important question we will
investigate is whether the turning point chronology remains robust when more recent economic
data are considered.
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Table 1: MS-Studies of the European business cycle

Model Data M Sample DE FR IT ES NL BE AT FI PT GR IE LU UK

MSIH(3)-VAR(4)(22) GDPa 3 ’73.3-’02.1 + + + + + — + — — — — — —

MSM(2)—VAR(2)(23) IIPa 2 ’74.1-’02.1 + + — + — + + — + + — + —

MSI(2)—VAR(2) (24) GDPb 2 ’80.3-’02.1 + + + + + + — + — — — — —

Krolzig (2001b) (K2) GDP 2 ’80.2-’00.4 + + + + + + + + — — — — —

Peersman and

Smets (2001) (PS) IIP 2 ’78.4-’98.4 + + + + + + + — — — — — —

Artis

et al. (2004) (AKT) IIP 3 ’70.1-’96.12 + + + + + + + — + — — — +
Krolzig and
Toro (2000) (KT) GDP 3 ’70.3-’95.4 + + + + — — + — — — — — +

Krolzig (2001a)

Krolzig (2001b) (K1) GDPc 2 ’80.2-’00.4

Anas and

Ferrara (2002)∗ (AF1) GDPc 2 ’80.1-’02.2

Anas and

Ferrara (2002) (AF2) IIPc 3 ’71.1-’02.8

Notes: Anas and Ferrara (2002) also consider a three-regime model which is less robust. M: number of
regimes. +: country is included. - country is excluded. IIP: industrial production index. GDP: gross
domestic product (real). a: OECD. b: Eurostat.c: agg..

5.2 The Empirical Modelling Approach

In this paper, we follow the modelling approach taken in Krolzig (1997a), featuring a data-
driven model specification as the basis for the derivation of economically meaningful results.
For the dating of the European (EU) business cycle, Artis, Krolzig, and Toro (2004) proposed
the following empirical modelling procedure:

i. Data transformation

• Seasonal adjustment (here: X-12-ARIMA);
• Outlier correction (here: PcGets);
• Smoothing (e.g., centered MA of monthly data);
• Differencing.

ii. Preliminary data analysis

• Co-switching analysis (using univariate Markov-switching models);
• Co-integration analysis (using linear VAR models).

iii. Markov-switching vector autoregressions

• Maximum Likelihood estimation;

• Specification analysis.
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iv. Constructing the turning point chronology

• Regime inference: filtering and smoothing;
• Business cycle chronology: regime classification and turning point dating;
• Control of the regime classification;
• Turning point detection.It is beyond the scope of this paper to discuss all the issues
involved. The construction of the turning point chronology has been presented
in the previous sections of this paper. A general overview and discussion of the
econometric issues can be found in Krolzig (1997b). Readers, who might want to
get some impression involved in practical use of these models, are referred to Artis,
Krolzig, and Toro (2004).

Here we shall focus on the Maximum Likelihood (ML) estimation of the parameters of the
MS-VAR model.5 For the sample YT = (y0T , . . . ,y

0
1)
0 and initial values (y0, . . . ,y1−p)0, the

likelihood function is given by:

L(λ) =
TY
t=1

MX
i=1

f(yt | Yt−1;θm,θc) Pr(st = i | Yt−1;λ),

where f(yt | Yt−1;θm, θc) is the pdf of yt in regime m, fm(yt | Yt−1). The parameter vector
λ = (θ1, . . . , θM ;θc; {pij}; s0)0 includes:

{pij} set of free transition probabilities,
θm vector of regime-dependent VAR parameters,
θc vector of regime-invariant (common) parameters,
s0 initial state of the regime variable.

Note that in MSM-VAR models (with switching means), the problem becomes more involved
since yt does not only depend on st, but also on st−1, . . . , st−p. Due to the structure of the
likelihood function, the first order conditions of the ML estimator are highly non-linear. So
any estimation procedure is faced with the typical problems of non-linear optimization.

The Expectation-Maximization (EM) algorithm considered by Hamilton (1990) is a very robust
technique to derive the ML estimates.

5We assume throughout that the data generating process is stationary, i.e. the Markov chain is ergodic
and the roots of the characteristic VAR polynomial are outside the unit circle (see Krolzig (1996), for Markov-
switching vector equilibrium correction models for cointegrated variables).
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Figure 11: Classifications of the euro-zone business cycle in the literature: the probability of a

recession

It consists of zigzag procedure iterating between an Expectation step, which runs the regime
inference given the parameters of the previous iteration, and a Maximization step, which in
turn uses the resulting smoothed regime probabilities to perform the parameter estimation:

i. Transition probabilities:

p̃
(n)
ij =

PT−1
t=1 Pr

³
st = i, st+1 = j | YT ; λ̃

(n−1)´
PT−1

t=1 Pr
³
st = i | YT ; λ̃

(n−1)´ .

ii. VAR parameters:

θ̃
(n)

i = argmax
θi

TX
t=1

ln f(yt | Yt−1;θm,θc) Pr
³
st = i | YT ; λ̃

(n−1)´
;

θ̃
(n)

c = argmax
θi

TX
t=1

MX
i=1

ln f(yt | Yt−1;θm, θc) Pr
³
st = i | YT ; λ̃

(n−1)´
.

iii. Initial State:
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(a) ergodic regime probability: p̃
(n)
i,0 = Pr

³
st = i | λ(n−1)

´
;

(b) ML estimate: s̃(n)0 = argmaxs0∈{1,...,M} L
³
θ
(n−1)
1 , . . . , θ

(n−1)
M ;θ(n−1)c ; {p(n−1)ij }; s0

´
;

(c) backcasting: p̃
(n)
i,0 = Pr

³
s0 = i | YT ; λ̃

(n−1)´
.

It can be shown that the estimates in (i) and (ii) converge to the ML estimator of the parameters
of the MS-VAR. All the computations reported in this paper were carried with the MSVAR
class for Ox (see Krolzig (1998), and Doornik (2001)).

5.3 Markov-Switching Models of the Euro-Zone Business Cycle

5.3.1 A Three-Regime Model of Real GDP Growth (1973-2002)

We start by applying the MSVAR approach to the disaggregated real GDP growth in the
euro-zone. The quarterly, seasonally adjusted data from 1973Q3 to 2002Q1 are drawn from
the OECD Main Economic Indicators data base. Since cointegration analysis gave no clear
indication of the presence of a cointegrating vector, all variables are modelled in first differences.
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Figure 12: GDP growth data (OECD) and their common cycle
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Thus, ∆yt is the vector of GDP growth rates of Germany (DE), Finland (FI), France (FR), Italy
(IT), Spain (ES), the Netherlands (NL) and Austria (AT). Given the findings in the literature
– particularly the observation made in (Krolzig and Toro 2000) and (Krolzig 2001a) that the
catching-up process of the Mediterranean countries in the 1970s constitutes a third regime,
which is fundamentally different from the traditional business cycle concept – we consider a
three-regime MS-VAR model with regime-dependent intercepts and variance:

∆yt = ν(st) +A1∆yt−1 +A4∆yt−4 + ut, ut|st ∼ NID(0,Σ(st)). (22)

According to the mnemonic proposed in §2.2, the model is denoted MSIH(3)-VAR(4). The
maximum lag-order is four; the autoregressive parameters at lag 2 and 3 were found to be
insignificant and have been dropped from the model. Graphs of the time series reporting real
GDP growth for the six euro-zone countries under consideration can be found in Figure 12.
Even after the outlier correction with PcGets (see Hendry and Krolzig (2001)), there are still
some possible outliers remaining, which could affect the ability of the MS-VAR to extract the
common business cycle component from the variables.

The estimated parameters are presented in Table 2. Recessions are more pronounced in Ger-
many, the Netherlands and Austria. Interestingly, these countries had de facto a monetary
union for almost the entire sample period, with the Austrian and Dutch central bank shad-
owing the Bundesbank’s monetary policy and the exchange rates moving in the narrowest of
bands.

One might wonder whether this indicates an increase in business cycle symmetry in monetary
unions. All countries exhibit higher growth rates in the third regime, which can be thought of
as a ‘high-growth regime’. For most countries it is also associated with an increased volatility
of growth. This, however, is not the case for Germany where the standard errors appear to be
regime-invariant.

The matrix of estimated transition probabilities is given by:

[p̃ij ] =

 0.768 0.136 0.096
0.042 0.943 0.016
0.096 0.101 0.803

 ,
where pij = Pr(st = j|st−1 = i).

From the estimated transition probabilities, the measures of the persistence of the regimes can
be deduced, which are summarized in Table 3.

The expected number of quarters a recession prevails (duration) and the unconditional (ergodic)
probability of recessions. Whereas recessions (regime 1) have an expected duration of 4 quarters,
regimes 2 and 3 prevails 17 and 5 quarters, respectively. The unconditional probability of a
recession is 18%.

The contribution of the common business cycle to the process of economic growth in the six
euro-zone countries is depicted in Figure 12. Major differences in the mean growth rate across
regimes are evident. But there are also differences with regard to the countries. For example,
some countries recover faster from the 1992/93 recession than others. Particularly, the German
economy appears to be falling behind its historical record of economic growth in expansions.
Overall, the euro-zone cycle is most closely matched by the Dutch growth rates.
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Table 2: ML estimate of the MSIH(3)-VAR(4) of
real GDP growth (1973Q3− 2002Q1)

DE FR IT ES NL AT

Mean growth rate (intercept)

Recession -0.122 0.148 0.142 0.065 -0.265 -0.098

Expansion 0.666 0.491 0.617 0.697 0.906 0.871

High growth 0.861 0.616 1.354 0.947 1.117 1.159

Short-run dynamics

DE 0.053 -0.092 0.147 -0.094 -0.220 -0.112

FR 0.044 -0.195 -0.368 0.141 -0.354 0.805

ES 0.251 0.557 -0.019 0.243 0.399 0.639

IT -0.276 0.031 0.124 -0.014 -0.057 -0.916

NL -0.041 -0.074 -0.020 -0.070 -0.284 -0.114

AT -0.076 -0.078 -0.002 -0.155 0.282 -0.353

Standard errors

Recession 0.832 0.329 0.588 0.671 0.983 0.612

Expansion 0.851 0.434 0.592 0.539 0.630 0.820

High growth 0.765 0.503 0.817 0.604 1.395 1.386

The coefficients of the short-run dynamics report Â1 + Â4.

5.3.2 An MS-VAR of Growth in Industrial Production (1974-2002)

Next we check if we can confirm our previous findings when macroeconomic activity is measured
by indices of industrial production (IIP) for eight EMU member states: Germany (DE), France
(FR), Spain (ES), Belgium (BE), Austria (AT), Portugal (PT), Greece (GR) and Luxembourg
(LU). The sample period again is 1974Q1 to 2002Q1. The data drawn from the OECD database
are plotted in Figure 13.

The time series exhibit a more erratic behavior than the GDP growth rates, which might
indicate the presence of outliers. It could also be due to moving-average errors, which have
been dealt with in (Artis, Krolzig, and Toro 2004) by pre-smoothing.

In contrast to (Artis, Krolzig, and Toro 2004), we failed in finding a meaningful three-regime
model of the euro-zone business cycle. Interestingly, the problems in modelling euro-zone IIP
growth are also reflected in (Anas and Ferrara 2002), who analyze aggregated IIP data for the
euro-zone.

Table 3: Regime properties of the MSIH(3)-VAR(4)
of real GDP growth (1973Q3− 2002Q1)
observations ergodic probability expected duration

Regime 1 22.0 0.181 4.32

Regime 2 73.0 0.678 17.43

Regime 3 20.0 0.141 5.07
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Figure 13: IIP growth data (OECD) and their common cycle

We therefore invoke the classical two-regime model. An MSM(2)-VAR(1) model with shifts in
the mean growth rate of industrial production is considered:

∆yt − µ(st) = A1 (∆yt−1 − µ(st−1)) + ut, ut|st ∼ NID(0,Σ), (23)

where ∆yt is an (8 × 1) vector of IIP growth rates and st ∈ {1, 2} is again generated by a
hidden Markov chain. The regimes are distinguished by the vectors µ1 and µ2 defining the
mean growth rates of ∆yt in ‘contractions’ and ‘expansions’.

The estimated parameters are displayed in Table 4. Regime 1 is associated with contractions
in industrial production in all considered countries but Greece, where output stagnates. The
transition probabilities are estimated as:

[p̃ij] =

·
0.709 0.291
0.047 0.953

¸
,

resulting in the regime properties reported in Table 5. The persistence of recessions is in line
with the results for MS-VAR model of GDP growth.
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Table 4: ML estimate of the MSM(2)-VAR(2) in
industrial production (1974Q1− 2002Q1)
DE FR ES BE AT PT GR LU

Mean growth rate

Recession -1.341 -0.583 -0.812 -1.645 -0.184 -1.287 0.092 -2.979

Expansion 0.576 0.464 0.618 0.414 0.849 1.140 0.492 0.891

Short-run dynamics

DE -0.149 0.192 -0.101 -0.020 0.374 -0.306 0.347 0.002

FR -0.015 -0.282 -0.254 0.361 0.178 0.189 0.432 0.271

ES 0.238 0.385 0.322 0.258 0.225 0.223 -0.198 0.137

BE 0.005 0.052 -0.041 -0.356 -0.061 -0.091 -0.189 0.116

AT 0.362 0.036 0.251 0.444 -0.105 0.289 -0.254 0.258

PT -0.064 -0.086 -0.114 -0.071 0.029 -0.037 0.047 -0.024

GR 0.189 0.190 0.368 0.043 0.144 0.161 -0.079 -0.029

LU -0.084 0.080 -0.081 -0.024 0.107 -0.027 0.041 -0.147

Standard errors

σ 1.321 0.956 1.337 1.915 1.338 1.881 1.888 2.503

The coefficients of the short-run dynamics report Â1 + Â2.

Visual inspection of the smoothed probabilities of recessions plotted in Figure 15 reveals a much
shorter recession in the 1980s, no recessionary tendencies in 1986/87, and strong indication of
a recession in 1998/99. Due to the pronounced difference to the regime classification produced
by the previous model and the limited data quality, we have investigated the robustness of
the results by the removing Luxembourg (LU) from the system. The revised model fails in
detecting the recession in the early eighties. Recessions are called for the periods 1974Q1 −
1975Q2, 1992Q2−1993Q2 and finally for 2001Q2−2001Q4. The lack of robustness is a reason
for concern. The results derived from this model, therefore, should be considered with some
caution.

5.3.3 A Two-Regime Model of GDP Growth (1980-2002)

As the third model we analyze GDP growth data provided by Eurostat over the period 1980Q3
— 2002Q1 plotted in Figure 14. The data are seasonally adjusted by X-12-ARIMA and outlier
corrected using PcGets. We are again interested in detecting the shifts in the mean growth
rate of real DGP representing turning-points of the euro-zone business cycle. The cycle is
characterized by smoother transitions than in the IIP case, so we use a model with switching
intercepts. Given the evidence in the literature, it can be assumed that for sample period
considered here, two-regime models are an adequate description of the business cycle.

Table 5: Regime properties of the MSM(2)-VAR(2)
in industrial production (1974Q1− 2002Q1)
observations ergodic probability expected duration

Regime 1 15.5 0.138 3.44

Regime 2 97.5 0.862 21.39

180



Table 6: ML estimate of the MSI(2)-VAR(1) of real
GDP growth (1980Q3− 2002Q1)
DE FR IT ES NL BE FI

Mean growth rate (intercept)

Recession 0.162 0.245 0.020 0.220 -0.051 0.049 -0.400

Expansion 0.734 0.568 0.647 0.874 1.008 0.532 0.895

Short-run dynamics

DE -0.056 -0.155 -0.011 -0.245 0.316 0.124 -0.326

FR -0.079 -0.232 0.036 0.183 0.435 0.064 0.251

IT 0.244 0.124 -0.188 0.065 -0.106 0.112 -0.111

ES 0.220 0.206 0.100 -0.100 -0.018 0.097 0.282

NL -0.117 -0.090 -0.053 -0.153 -0.344 -0.081 -0.079

BE -0.031 0.241 0.137 0.300 -0.243 -0.168 0.156

FI -0.335 -0.061 -0.063 0.018 -0.135 -0.121 -0.068

Standard errors

σ 0.750 0.522 0.537 0.652 0.852 0.777 0.897

A first-order model with shifts in the intercept is used:

∆yt = ν(st) +A1∆yt−1 + ut, ut|st ∼ NID(0,Σ). (24)

The ML estimates of this MSI(2)-VAR(1) model are reported in Table 6.The estimated transi-
tion probabilities are given by:

[p̃ij] =

·
0.898 0.102
0.053 0.947

¸
,

implying the regime properties reported in Table 7.

Only in the case of Finland and the Netherlands, real GDP contracts in the first regime.
Figure 14 reveals that the very severe recession in Finland during the early nineties is indeed
the mostly remarkable feature of the data set. In contrast, the Markov component of GDP
growth is positive for all other euro-zone countries over the entire sample period. It is therefore
more appropriate to think of this model as a representation of the euro-zone growth cycle.
This finding is confirmed by the surprisingly high estimate of the expected duration of the
‘low-growth’ regime. The average duration of a regime 1 is with 10 quarters twice as long as
the ‘euro-zone recessions’ found by the first two models. However, the estimated duration is
very similar to the result in Anas and Ferrara (2002), when analyzing aggregated euro-zone
GDP data. Also, the probabilities of the ‘low-growth’ regime follow closely their results (see
Figure 15). Apart from the outlier in 1986Q1, there are three distinguished recessions within
the sample period: 1981Q1− 1983Q1, 1990Q2− 1993Q1, and 2001Q2− 2002Q2.

Table 7: Regime properties of the MSI(2)-VAR(1)
of real GDP growth (1980Q3− 2002Q1)
observations ergodic probability expected duration

Regime 1 24.8 0.3405 9.78

Regime 2 62.2 0.6595 18.93
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Figure 14: GDP growth data (Eurostat) and their common cycle

In § 5.5, we will compare the regime classifications derived here to the business cycle chronologies
proposed in the literature. Next, we investigate the degree of business cycle synchronization in
the three estimated models of the euro-zone business cycle.

5.4 Business Cycle Synchronization

The synchronization of the business cycles in the EMU member states is an important indicator
for the optimality of a single monetary policy.

A lack of business cycle synchronization within the euro area could complicate the operation
of monetary policy in the union. For non-member states, it constitutes a negative indicator for
joining EMU. Therefore, business cycle synchronism deserves careful screening.

Here we analyze whether the cyclical shifts in the mean growth rate of the euro-zone countries
are traceable to the exposed common euro-zone cycle.

The hypothesis of a common euro-zone cycle is investigated by testing for the significance of
the regime shifts in the mean growth rate of the economies in the euro-zone. Under the null
hypothesis, the mean growth rate of country k in recessions (regime 1) is identical to its growth
rate in expansions (regime 2): µk1 = µk2 for k = 1, . . . , K.

182



Since the regime-dependent means in the remaining equations of the system are unrestricted,
the model is identified under the null hypothesis. Hence, the tests are nuisance parameter free
and classical likelihood theory can be invoked.

The asymptotic null distribution of the Wald test is χ2(r), where r = 1 is the number of linearly
independent restrictions.

Since testing for the number of regimes is a difficult enterprise in Markov-switching models,
it is important to note that we are here only interested in showing that individual euro-zone
countries share the inferred cycle as episodes of economic expansion and contraction (or stag-
nation). In contrast, formal tests of the Markov-switching model against linear alternatives are
confronted with unidentified nuisance parameters under the null, hampering the applicability
of conventional testing procedures. Suppose a two-regime model with Markov-switching means
is subjected to the test hypothesis µ1 = µ2.

Then, the transition probabilities p12 and p21 are not identified. Standardized likelihood ratio
(LR) tests designed to deliver (asymptotically) valid inference have been proposed by Garcia
(1998).

Hansen’s approach delivers a bound on the asymptotic distribution of the standardized LR
test, but the test is conservative, tending to be under-sized in practice and of low power, and
computationally demanding. In comparison, the tests presented here can be easily implemented
(see Krolzig (1997b), ch.7, for details) and were found useful in empirical research.

Table 8 reports the results of the Wald specification tests for the regime invariance of the mean
growth rates for the three models discussed in this paper.

Table 8: Wald tests of the regime-invariance hypothesis

Model MSIH(3)-VAR(4) MSM(2)-VAR(2) MSI(2)-VAR(1)

Data GDP growth IIP growth GDP growth

Source OECD OECD Eurostat

Sample 1973Q3-2002Q1 1974Q1-2002Q1 1980Q3-2002Q1

Test A χ2(1) B χ2(1) C χ2(2) A χ2(1) B χ2(1)
DE 13.62 0.02 0.82 36.46 16.27 0.03 11.79 0.06 5.70 1.69

FR 13.16 0.03 0.93 33.32 16.07 0.03 7.51 0.61 4.23 3.95

IT 14.04 0.02 2.36 12.39 17.71 0.01 14.77 0.01

ES 9.32 0.23 13.14 0.03 25.94 0.00 9.60 0.19 11.03 0.09

NL 24.43 0.00 0.39 53.00 25.05 0.00 15.75 0.01

BE 2.30 12.91 22.04 0.00

AT 28.07 0.00 0.69 40.34 30.39 0.00 3.68 5.50

FI 4.02 4.48

PT 4.80 2.83

GR 0.38 53.34

LU 8.93 0.28

System 180.21 0.00 57.32 0.00 659.50 0.00

The reported system tests are free of nuisance paraneters since the regimes are identified under
the null by switching covariance matrices Σi 6= Σj for i 6= j. The degree of freedoms are 6 and
12, respectively. m.s.l. of the χ2 statistics have been multiplied by 100. A states for the test for
µ1 = µ2, B states for the test for µ2 = µ3 and C states for the test for µ1 = µ2 = µ3.
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In particular:

i. MSIH(3)-VAR(4) of GDP growth (OECD data): the test hypothesis νk1 = νk2 is strongly
rejected for all countries and the system as a whole. However, the support for a third
regime is not very strong. Only in the case of Spain (ES), the differences in the regime-
dependent intercept turn out to be statistically significant.6 Due to the regime dependence
of the variance matrices, also system tests of the form ν1 = ν2 = ν3 are free of nuisance
parameters. The test results provide strong support for the presence of regime shifts in
the mean growth rate of the analyzed economies.

ii. MSM(2)-VAR(2) of IIP growth (OECD data): the test hypothesis of regime-invariant
means, µk1 = µk2, is strongly rejected for Germany (DE), France (FR), Spain (ES) and
Luxembourg (LU). It can also be rejected for Portugal (PT), with Austria (AT) being a
marginal case. Belgium (BE) and Greece (GR), however, are not significantly affected by
the euro-zone growth cycle.

iii. MSI(2)-VAR(1) of GDP growth (Eurostat data): the regime-invariance hypothesis µk1 =
µk2 can be rejected for all countries, though the common cycle is less pronounced in
Germany (DE), France (FR) and Austria (AT).

Overall, the notion of a common euro-zone business cycle is justified.There is overwhelming
evidence for the relevance of the identified euro-zone growth and business cycles. With the
exception of Greece, the common cycle contributes to the mean growth rate in all countries of
the euro-zone.

5.5 Turning Point Chronologies of the Euro-Zone Business Cycle

As discussed in § 3, the construction of a turning point chronology with Markov-switching
models is based on the time paths of the smoothed regime probabilities, which are a by-product
of the EM algorithm. For the dating of the euro-zone business cycle, we start by reconsidering
the smoothed and filtered regime probabilities derived with the three models considered above.

The regime probabilities are plotted in Figure 15; the filtered ones are shown with bars, and
the smooth ones are represented by a bold line. It is worth recalling that the filtered regime
probability can be understood as an optimal inference on the state variable (whether the sys-
tem is in a boom or recession) at time t using only the information available up to this point
in time, i.e. Pr (st = m | Yt), where m stands for a given regime; the smoothed regime prob-
ability is the optimal inference on the regime at time t using the full sample information YT :
Pr (st = m | YT ). The difference between the two measures indicates the amount of revisions
required when new observations become available.

The classification of the regimes and the dating of the business cycle amounts to assigning yt to
the regime m with the highest smoothed probability. The resulting chronology of the euro-zone
business cycle is reported in Table 9 for the three measures of macroeconomic activity analyzed

6Note, however, that regime 3 is also characterized by a sharply increased volatility for Italy (IT), the
Netherlands (NL) and Austria (AT).
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in this paper. The peak P date denotes the period t just before the beginning of a recession,
i.e. Pr(‘recession’ at time t | YT ) < 0.5 and Pr(‘recession’ at time t+1 | YT ) > 0.5; the trough
T is the last period of the recession.

Table 9: Datings of the euro-zone business cycle

Model MSIH(3)-VAR(4) MSM(2)-VAR(2) MSI(2)-VAR(1)

Data GDP growth IIP growth GDP growth

Source OECD OECD Eurostat

Sample 1973Q3-2002Q1 1974Q1-2002Q1 1980Q3-2002Q1

Cycle Peak Trough h Peak Trough h Peak Trough h

A 1974Q2 1975Q1 0.75 1974Q1 1975Q3 1.50

B

C 1979Q4 1981Q3 1.75 1980Q1 1980Q3 0.50 1980Q4 -

D 1981Q4 1982Q4 1.00 - 1983Q1 2.25

E 1986Q2 1987Q1 0.75

F 1992Q1 1993Q3 1.50 1992Q1 1993Q1 1.00 1990Q1 1993Q1 3.00

G 1998Q2 1999Q1 0.75

H 2001Q1 [2002Q2] 1.25

In italics period before the beginning or at the end of the sample; h Duration of recessions in years.

Table 10: Datings of the euro-zone business cycle in the literature

K1 K2† A1 A2

Cycle P T h P T h P T h P T h

A 74M8 75M8 1.00

B 77M2 77M7 0.41

C 80Q1 81Q1 1.00 80Q1 81Q1 1.00 80Q1 82Q4 3.00 80M4 80M10 0.50

D 82M5 82M8 0.25

E

F 92Q1 93Q1 1.00 92Q2 93Q3 1.25 92Q1 93Q2 1.00 92M4 93M2 0.83

G

H 01Q1 02Q2 1.00 01M10 01M12 0.17

AKT KT∗ PS

Cycle P T h P T h P T h

A 74M7 75M7 1.00 74Q1 75Q2 1.25

B

C 79M10 - 80Q1 - 79Q4 -

D - 82M8 2.83 - 82Q4 2.75 - 83Q1 4.25

E 85Q4 87Q1 1.25

F 90M9 92M9 2.00 92Q2 93Q2 1.00 90Q1 92Q3 2.50

G 95Q2 96Q1 0.75

H

In italics period before the beginning or at the end of the sample; h Duration of recessions in years; *
Dummy variables being 1 in 1984Q2 and 1987Q1 and -1 in the subsequent period included; Dummy
variables being 1 in 1987Q1 and 1987Q1 and -1 in the subsequent period included.
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Figure 15: Regime probabilities

The derived business cycle chronologies should be compared with the datings in Table 10,
which reports the datings of the European business cycle derived from Markov-switching models
proposed in the literature (see the overview in Table 1 of § 5.1).
Given the lack of an NBER-type reference cycle for the euro zone, it is worth to elaborate the
robust features of the euro-cycle datings in the literature and to compare them to the turning
points of the euro-zone business cycle identified in this paper. The most striking result is that
the GDP data based business cycle classifications of Krolzig (2001b) and Anas and Ferrara
(2002) coincide when the different sample length is taken into consideration.

In contrast, the MS-AR mode considered by Anas and Ferrara (2002) for euro-zone IIPgenerates
recessions which are too short and too frequent.

The main difference with regard to the results of Artis, Krolzig, and Toro (2004), Krolzig and
Toro (2000) and Krolzig (2001a)} is the relative short expected duration of recessions. As
these papers find some indication for incomplete business cycle synchronization, the prolonged
duration of recessions may reflect the need to subsume the UK and continental cycle.

An outlier is marked by the study of Peersman and Smets (2001) as the common cycle identified
in their study has more the characteristics of a growth cycle. As can be seen in Table 10, their
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(growth) ‘recessions’ have much a longer duration and are found much more frequently.

Altogether, we can conclude that a robust pattern in the chronologies of the euro-zone business
cycle produced by Markov-switching models has emerged.

The turning point chronology of the euro-zone business cycle is dominated by three recessions:

i. the recession following the 1973/74 oil price shock (from 1974Q2/Q3 to 1975Q1/Q3);

ii. possibly a double dip recession in the early eighties (1980Q1/1981Q1 to 1982Q4/1983Q1),
coinciding with Volcker disinflation in the US;

iii. a recession in the early nineties (1990Q2/1992Q2 to 1993Q1/Q3) associated with greater
uncertainty regarding its dating, presumably caused by monetary tightening and fiscal
expansion in the aftermath of the German reunification;

iv. there is some indication of a euro-zone recession commencing in 2001Q2

Some differences in the precise dating of the turning points remain. Among other causes, they
are likely due to the choice of the measure of macroeconomic activity and the set of countries,
for which the data have been available. In line with the literature7, we have identified various
characteristics of the data that matter for the construction of the business cycle chronology:

i. Provision of data for the largest possible set of countries;

ii. Availability of long historic time series;

iii. Data frequency;

iv. Pre-filtering:

• seasonal adjustment;

• outlier correction;

• smoothing (for monthly data sets).

The importance of the quality of the data for the dating of the euro-zone business cycle un-
derlines the pivotal role of Eurostat in the creation and distribution of high-quality statistical
data for the EMU member states. The case for further research is clearly granted.

7For example, it is well known that seasonal adjustment procedures can severely affect the determination of
business cycle turning points (see, inter alia, Astolfi, Ladiray, and Mazzi (2001), and Lommatzsch and Stephan
(2001)).
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6 Conclusions

In this paper, we have addressed the issue whether Markov-switching vector autoregressive
models can be used for the extraction and dating of the euro-zone business cycle. We have
shown that this generalization of the approach innovated by Hamilton in his analysis of the US
business cycle allows the identification of a common business cycle in the euro zone. The regime
identification scheme distinguished between states of recession and expansion in the euro area,
where different expansionary regimes may be considered to embed structural change.

The main features of the proposed MS-VAR modelling procedure are:

i. Approach

• Congruent statistical model of the time series of interest;
• Meaningful definition of a common (euro-zone) business cycle.

ii. Business chronologies

• Dating of turning point based on the smoothed probability of being in a recession;
• Multi-regime models feasible.

iii. Advantages of the regime-switching approach

• Quantification of the uncertainty associated with the regime classification;
• Detection of new turning points in real time;
• Systematic revision when new data arrive.

iv. Advantages of modelling systems

• Euro-zone business cycle as a common feature of the macroeconomic dynamics in the
EMU member states;

• Missing invariance of regime classification under aggregation.

The empirical analysis consisted in fitting an MS-VAR model to a system of real GDP or IIP
growth rates of EMU member states. The models have been found statistically congruent and
economically meaningful, though room for improvements and refinements remains. The results
shed light on the issue of which countries drive the euro-zone cycle. We have been able to
demonstrate the relevance of the common cycle for all EMU member states except Greece.
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So the evidence for the presence of a common, Markovian euro-zone business cycle shared by
the EMU member states is very robust. The estimated Markov-switching VAR models were
then used to construct turning point chronologies of the euro-zone business cycle, differing
regarding the measurement of macroeconomic activity, the set of countries available, and the
time period considered. While the pattern of recessions and expansions is robust, differences in
the precise dating of events have been acknowledged. In this context, we have also emphasized
the importance of data quality. Altogether, we believe that the findings of this study justify a
recommendation of the Markov-switching vector autoregressive model for the construction of
turning point chronologies of the euro-zone business cycle.
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1 Introduction

Minimising income inequality across its members has long been a declared objective of
the European Union. In particular, promoting convergence of income in levels (or at least the
conditions for that to be obtained) has been the justification for the establishment first, of
Structural Funds (the largest of which the European Regional Development Fund established
in 1975) and, more recently (1993), of the Cohesion Fund. The latter is specifically directed at
poorer countries (Greece, Ireland, Portugal and Spain) and was set up with the purpose of mak-
ing compatible the EMU budgetary discipline requirements and the continued infrastructure
investment requirements in these countries, which the EU deems as necessary for convergence
to take place. As Boldrin and Canova (2001) point out, what this implies about the view
underlying EU policies is that deepening economic and monetary integration, by itself, leads to
divergence of income levels across Europe; see also Martin (2000). However, this view stands
at odds with neo-classical growth theories. As economic and monetary integration deepens and
free movement of goods, people and capital becomes a reality across Europe, the preconditions
for such theories are more likely to be met. As such, the theoretical prediction would be one of
convergence not divergence.

Which view is correct is not only of theoretical interest but also has important policy impli-
cations. If the EU view is correct, the creation of EMU means that incentives for structural
adjustment are needed for catching up to take place.2 Given the loss of national monetary poli-
cies and the strict budgetary requirements limiting national public spending, European-wide
redistribution would be the only option. Indeed, a substantial part of EU’s resources is al-
ready directed at sustaining cohesion: Boldrin and Canova (2000) find that, over the 1986-1999
period, it is close to 8% of the Community’s GDP.

Given such vast policy implications, the need to verify the validity of the underlying premise
is obvious. Stylised facts on growth and convergence are needed to answer questions such as:
are Euro-zone economies converging to a single steady state distribution or are they cluster-
ing around different states? Were they diverging before the establishment of Structural and
Cohesion funds? Is there any visible effect of the latter on the growth dynamics of poorer
countries?

However the fact remains that the existing literature on European convergence - mirroring
the situation throughout the entire growth empirics literature- has reached no agreement on
what the European record really is. This stems mainly from the use of different methods; see
Durlauf and Quah (1999) for a review and criticism of the empirical literature. Thus while
the early cross-sectional approach of Barro and Sala-i-Martin (1992) concluded in favour of
absolute but slow convergence in Europe, panel models with fixed effects have suggested very
fast convergence towards different steady states. Finally, following the time-series/cointegration
approach proposed in Bernard and Durlauf (1995, 1996), Tsionas (2000) applies a battery of
unit-root/stationarity tests to conclude that both divergence and convergence are possible: ‘the
results are mixed and depend critically on the type of test employed’.

2The Delors Report of 1989 makes this clear, stating that with deeper integration ‘transport costs and
economies of scale would tend to favor a shift in economic activity away from less developed regions (...) to the
highly developed areas (...). The economic and monetary union would have to encourage and guide structural
adjustment which would help poorer regions catch up with the wealthier ones’.
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As we have argued elsewhere (see Harvey and Carvalho (2002) and Carvalho and Harvey (2002))
we believe that rather than adding yet another set of regressors or testing in a vacuum, present-
ing the stylised facts on growth and convergence is of more value both for the development of
meaningful theories and for policy decisions. This response is in line with the growing dissatis-
faction on the current state of growth empirics and Durlauf’s (2001, p 68) call for econometrics
to ‘clarify how empirical workers should elucidate data patterns and draw inferences concern-
ing growth’. The aim of the present paper is to establish stylised facts about convergence in
Euro-zone countries both with respect to long-run income levels and to cycles. Distinguishing
trends from cyclical movements is essential to an effective study of convergence. The analysis
is based on a new multivariate unobserved components model in which convergence compo-
nents are combined with a common trend and similar cycles. These convergence components
are formulated as a second-order error correction mechanism which ensures that the extracted
components change smoothly thereby giving a clearer decomposition into long-run movements
and cycles. Furthermore the second-order mechanism is able to capture temporary divergence,
something that is a feature of the Euro-zone data. Because the cross-section is relatively small,
we are able to properly account for the cross-correlations across regions. The statistical treat-
ment of the model is based on the state space form. Parameters are estimated by maximum
likelihood and components are extracted by the Kalman filter and associated smoother.

The plan of the paper is as follows. In Section 2 we review the main ideas of structural time
series models and show how a multivariate model handles balanced growth. Section 3 sets out
the convergence model. Following the preliminary analysis of trends in per capita income in the
Euro-zone countries in Section 4, this model is fitted to two groups in Section 5. The growth
paths of the two groups are then compared. Section 6 examines the evidence for convergence
in cycles. Section 7 assesses the extent to which unit root and co-integration tests can provide
meaningful evidence on convergence, while Section 8 concludes.

2 Structural time series models and balanced growth

2.1 Univariate models

The local linear trend model for a set of observations, yt, t = 1, .., T, consists of a stochastic
trend and an irregular component, that is

yt = µt + εt, t = 1, ..., T, (1)

where the trend,µt, receives shocks to both its level and slope so

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2η),
βt = βt−1 + ζt, ζt ∼ NID(0, σ2ζ),

(2)

where the irregular, level and slope disturbances, εt,ηt and ζt, respectively, are mutually in-
dependent and the notation NID (0, σ2) denotes normally and independently distributed with
mean zero and variance σ2. If both variances σ2η and σ2ζ are zero, the trend is deterministic.
When only σ2ζ is zero, the slope is fixed and the trend reduces to a random walk with drift.
Allowing σ2ζ to be positive, but setting σ

2
η to zero gives an integrated random walk trend, which
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when estimated tends to be relatively smooth. The model is often referred to as the ‘smooth
trend ’ model.

The statistical treatment of unobserved component models is based on the state space form
(SSF). Once a model has been put in SSF, the Kalman filter yields estimators of the components
based on current and past observations. Signal extraction refers to estimation of components
based on all the information in the sample. It is based on smoothing recursions which run
backwards from the last observation3. Predictions are made by extending the Kalman filter
forward. Root mean square errors (RMSEs) can be computed for all estimators and prediction
or confidence intervals constructed.

The unknown variance parameters are estimated by constructing a likelihood function from the
one-step ahead prediction errors, or innovations, produced by the Kalman filter. The likelihood
function is maximized by an iterative procedure. The calculations can be done with the STAMP
package of Koopman et al (2000). Once estimated, the fit of the model can be checked using
standard time series diagnostics such as tests for residual serial correlation.

Distinguishing a long-term trend and from short-term movements is important. Short-term
movements may be captured by adding a serially correlated stationary component, ψt, to the
model. Thus

yt = µt + ψt + εt, t = 1, ..., T (3)

An autoregressive process is often used for ψt. Another possibility is the stochastic cycle ψt

ψ∗t

 = ρ

 cosλc sinλc

− sinλc cosλc

 ψt−1

ψ∗t−1

+
 κt

κ∗t

 , t = 1, ..., T, (4)

where λc is frequency in radians and κt and κ∗t are two mutually independent white noise
disturbances with zero means and common variance σ2κ. The period corresponding to λc is 2π/λc.
For 0 ≤ ρ < 1, the process ψt is stationary with zero mean and variance σ

2
ψ = σ2κ/(1− ρ2); see

Harvey (1989, p60). The reduced form is an ARMA(2, 1) process in which the autoregressive
part has complex roots. The complex root restriction together with the smooth trend restriction
often allows a clearer separation into trend and cycle.

2.2 Multivariate models

Suppose we have N time series. Define the vector yt = (y1t, .., yNt)
0 and similarly for µt,ψt

and εt. Then a multivariate UC model may be set up as

yt= µt+ψt+εt, εt ∼ NID(0,Σε), t = 1, ..., T, (5)

where Σε is an N ×N positive semi-definite matrix. The trend is

µt = µt−1+ βt−1+ ηt, ηt ∼ NID(0,Ση) (6)

βt = βt−1+ ζt, ζt ∼ NID(0,Σζ),

3In a smooth trend model with a signal-noise ratio, σ2ζ/σ
2
ε, of 1/1600, the extracted trend corresponds to

the trend obtained by the Hodrick-Prescott (HP) filter for quarterly data.
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With Ση = 0, we get the smooth trend model. With Σζ = 0, we get the random walk plus
drift.

The similar cycle model, introduced by Harvey and Koopman (1997) is ψt

ψ∗t

 =
ρ
 cosλc sinλc

− sinλc cosλc

⊗ IN
 ψt−1

ψ∗t−1

+
 κt

κ∗t

 , t = 1, ..., T, (7)

where ψt and ψ
∗
t are N × 1 vectors and κt and κ

∗
t are N × 1 vectors of the disturbances such

that

E(κtκ
0
t) = E(κ∗tκ

∗0
t ) = Σκ, E(κtκ

∗0
t ) = 0, (8)

where Σκ is an N ×N covariance matrix. The model allows the disturbances to be correlated
across the series. Because the damping factor and the frequency, ρ and λc, are the same in all
series, the cycles in the different series have similar properties; in particular their movements
are centred around the same period. This seems eminently reasonable if the cyclical movements
all arise from a similar source such as an underlying business cycle. Furthermore, the restriction
means that it is often easier to separate out trend and cycle movements when several series are
jointly estimated.

The common cycle model of Vahid and Engle (1993) assumes perfect correlation between cycles.
This is a very strong restriction. The recent paper by Carlino and Sill (2001) uses the method-
ology of Vahid and Engle (1993) to decompose series on US regions into common trends and
common cycles. In Carvalho and Harvey (2002) we explain why we do not find the resulting
cycles particularly plausible.

2.3 Stability and balanced growth

The balanced growth UC model is a special case of (5):

yt = iµt+α+ψt+εt, , t = 1, ..., T, (9)

where µt is a univariate local linear trend, i is a vector of ones, and α is an N × 1 vector of
constants. If µt is initialised with a diffuse prior, then α must be subject to a constraint so
it contains only N − 1 free parameters, for example there may be one zero entry. Note that
although the levels may be different, the slopes are the same, irrespective of whether they are
fixed or stochastic.

A balanced growth model implies that the series have a stable relationship over time. This
means that there is a full rank (N − 1)×N matrix, D, with no null columns and the property
that Di = 0, thereby rendering Dyt jointly stationary. In other words it removes the common
trend, µt. The rows of D may be termed balanced growth co-integrating vectors. Typically each
row will contain a one, a minus one and zeroes elsewhere. For example, one country may be
used as a benchmark.
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3 Convergence models

The multivariate convergence model proposed by Carvalho and Harvey (2002) is

yt = α+βit+ µt +ψt+εt, t = 1, ..., T (10)

with α0i = 0 and
µt = Φµt−1 + ηt, V ar(ηt) = Ση (11)

or
∆µt = (Φ− I)µt−1 + ηt.

Each row of Φ sums to unity, Φi = i. Thus setting λ to one in (Φ−λI)i = 0, shows that Φ has
an eigenvalue of one with a corresponding eigenvector consisting of ones. The other roots of Φ
are obtained by solving |Φ− λI| = 0 ; they should have modulus less than one for convergence.
If we write

φ
0
∆µt = φ

0
(Φ− I)µt−1 + φ

0
ηt

it is clear that the N × 1 vector of weights, φ, which gives a random walk must be such that
φ
0
(Φ− I) = 00. Since the roots of Φ0 are the same as those of Φ, it follows from writing

(Φ0−I)φ = 0 that φ is the eigenvector of Φ0 corresponding to its unit root. This random walk,
µφt = φ

0
µt, is a common trend in the sense that it yields the common growth path to which

all the economies converge. This is because limj→∞Φj = iφ
0
; the proof follows along the

same lines as that for a well-known result on ergodic Markov chains as given, for example, in
Hamilton (1994, p681). The common trend for the observations is a random walk with drift,
β, and with α0φ = 0 each element of α is a deviation from the common trend.

The homogeneous model has Φ =φI+ (1−φ)iφ0, where i is an N×1 vector of ones, φ is a scalar
convergence parameter and φ is an N × 1 vector of parameters with the property that φ0i =1.
It is straightforward to confirm that φ is the eigenvector of Φ0 corresponding to the unit root.
The convergence parameter and the elements of φ, denoted φi, i = 1, ..., N are estimated by
maximum likelihood in the usual way by using the Kalman filter; the trend components are
initialised with a diffuse prior. It is assumed that |φ| ≤ 1, with φ = 1 indicating no convergence.
The φi parameters are constrained to lie between zero and one and to sum to one by maximising

the log-likelihood with respect to N unconstrained parameters, ai, that are linked to the φ
0
is

by the equations φi = a2i /
P

a2i , i = 1, .., N.

Each trend can be decomposed into the common trend and a convergence component. The
vector of convergence components is

µ†t = µt − iµφt
= Φµt−1 − iµφt−1 + ηt − iηφt = φ(I− iφ0)µt−1 + ηt − iηφt

so
µ†t = φµ†t−1 + η†t , t = 1, ..., T.

where η†t = ηt − iηφt. Writing
∆µ†t = (φ− 1)µ†t−1 + η†t , (12)
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shows that each relative growth rate depends on the gap between the series in question and the
common trend. Substituting into (10) gives

yt = α+βit+ iµφt + µ
†
t +ψt+εt, t = 1, ..., T

Once convergence has taken place, the model is of the form (9), but with an additional stationary
component µ†t .

The smooth convergence model is

yt = α+ µt +ψt+εt, t = 1, ..., T (13)

with α0i = 0 and

µt = Φµt−1 + βt−1
βt = Φβt−1 + ζt

The forecasts converge to those of a smooth common trend, but in doing so they may exhibit
temporary divergence; see Harvey and Carvalho (2002).

In scalar notation the homogeneous model can be expressed in terms of the common trend,
µφ,t, and convergence processes, µ

†
it = µit − µφ,t, i = 1, ...,N, by writing

yit = αi + µφ,t + µ†it + ψit + εit, i = 1, ...,N, (14)

where Σαi = 0 and

µ†it = φµ†i,t−1 + β†it, i = 1, ..., N, |φ| < 1 (15)

β†it = φβ†i,t−1 + η†it, (16)

where the initial conditions, µ†i0, i = 1, .., N − 1, are fixed and
µφt = φµφt−1 + βφt−1
βφt = φβφ,t−1 + ηφt.

Note that the N − th series ( or indeed any series) can be constructed from the others as

µ†Nt = −φ
−1
N

N−1X
i=1

φiµ
†
it with φN = 1−

N−1X
i=1

φi.

and similarly for β†Nt.

4 Stylised facts on trends and convergence in Euro-zone

Countries

In this section we use the multivariate model of sub-section 2.2 to display the stylised facts
concerning trends and convergence in real per capita incomes in eleven Euro-zone countries:
Austria (AU), Belgium (BE), Finland (FI), France (FR), Germany (GE), Greece (GR), Ire-
land (IR), Italy (IT), Netherlands (NE) Portugal (PO) and Spain (SP). Out of the present
membership of the Euro-area, only Luxembourg is not included as no data are available.
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4.1 Data and estimation

Data were obtained from the GGDC Total Economy Database, 2002, at the University of
Groningen and the Conference Board 4. All series are expressed in 1990 US dollars converted
at ‘Geary-Khamis’ purchasing power parities and log-transformed. Figure 1 shows annual
observations from 1950 to 1997. The German data refers to West Germany. After 1997 data
is only available for Germany as a whole and this is why we concentrated our analysis on the
period up to that point.

Estimation of all the new model was done using program routines written in the OX 3.0 lan-
guage (Doornik, 1999) with use being made of the SSfPack package for state space algorithms
of Koopman, Shephard and Doornik (1999). Some of the more standard models were esti-
mated using the STAMP package of Koopman et al (2000). All parameters were estimated by
maximum likelihood as described in Section 2 and variances are reported multiplied by 105.
The estimated covariance matrices are reported by showing the variances on the main diagonal
while the entries above contain the cross-correlations. The components shown in the figures
are extracted by the state-space smoothing algorithm. Comparisons with US regions refer to
the results in Carvalho and Harvey (2002).
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Figure 1: Annual series (1950-1997) for Euro-area countries

4For full description of the dataset refer to http://www.eco.rug.nl/ggdc
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4.2 Trend growth and income inequality

Figure 2 shows the trends, eµit|T , obtained by fitting a simple multivariate smooth trend plus
cycle model. These slowly changing trends indicate the long-run movements from which we
can start to assess any tendencies towards convergence or divergence.
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Figure 2: Smooth trends for Euro-zone countries

The first point to note is the existence of subgroups, or clusters, within the Euro-zone: a
high-income group, consisting of traditional core countries (GR, FR, BE, NE), together with
some peripheral countries (IT, AU, FI), and a low income group made up of poorer peripheral
countries (PT, SP, GR). The outlier is Ireland, which cannot be labeled with certainty as a
member of either group given its growth dynamics. Otherwise, this subgrouping is well defined
and remarkably stable throughout the second half of the twentieth century. The three poorest
and the seven richest countries in 1950 still had that status at the end of the nineties.

The second point to note is that the extracted trends clearly show the three distinct epochs of
economic growth: 1950-1972; 1973-1979 and 1980-1997. These standard subdivisions in post-
war European economic history correspond to the ‘Golden Age’, the shocks of the 1970s and
the ensuing period of stabilisation and restructuring; see Crafts and Toniolo (1996). Table 1
below documents the average trend growth rates for each of the Euro-zone countries and for
each subgoups.
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Table 1: Average trend growth rates for Euro-zone countries

1950-1997 1950-1972 1973-1979 1980-1997

Austria 3.57% 5.10% 3.35% 1.80%

Belgium 2.70% 3.51% 2.71% 1.70%

Finland 3.19% 4.38% 2.65% 1.94%

France 2.81% 4.09% 2.54% 1.36%

Germany 3.00% 4.71% 2.51% 1.09%

Greece 3.79% 6.15% 3.12% 1.15%

Ireland 3.38% 2.99% 3.21% 3.93%

Italy 3.47% 4.94% 2.95% 1.86%

Netherlands 2.57% 3.57% 1.90% 1.62%

Portugal 4.03% 5.51% 2.49% 2.81%

Spain 3.72% 5.72% 1.99% 1.95%

7 richest, average 3.04% 4.33% 2.66% 1.63%

3 poorest, average 3.85% 5.79% 2.53% 1.97%

Taking the information in Figure 2 and Table 1 together, it is clear that: 1) the poorest subgroup
has, over the entire period, a higher trend growth rate; 2) this higher average trend growth rate
is a product of the strong catching-up process during the Golden Age5.

These two facts largely explain the findings in cross-sectional studies, such as Sala-i-Martin
(1996), supporting β-convergence in Europe throughout the post-war period and its absence
from the 1970s onwards. Table 1 also sheds some light on (limited) mobility in income per-
capita ranking within each group.

Thus, for example Austria’s and Portugal’s superior growth performance leads to their overtak-
ing of Finland and Greece respectively. On the other hand, Ireland’s idiosyncratic behaviour is
singled out: it is both the only country to miss out on the Golden Age and the best achiever
over the 1980-1997 period.

Further insights on the evolution of income inequality across the Euro-zone can be gained by the
plotting the cross-sectional standard deviation of the smoothed trend components, SD(eµit|T ).
This is done in Figure 3, where we also plot the analogous series for the 8 US Census regions,
as well as those of subgroups both within Europe and US.

Some interesting facts arise from Figure 3. The first is that overall Euro-zone trend dispersion
(solid line) has in the last half-century. As was clear from the analysis of Table 1, this is mainly
the result of the Golden Age period. One important factor is trade liberalisation process, set
in motion in the 1960s both within the EEC and EFTA and between the two organisations; see
Ben-David (1993). However the fact remains that, by the end of the nineties, inequality across
the Euro-zone was still above that of the US regions (dotted line) in the 1950s. The analysis
of inequality within the two subgroups in Europe allows us to qualify the last statement.

5Calculations by the authors show that this catching-up process is largely limited to the 60s. During the 50s
the high income group actually grows faster due to the high growth rates of Austria, Germany and Italy, i.e.
reconstruction efforts still appear to matter in explaining the 1950s relative performance.
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Figure 3: Evolution of global and subgroup cross-sectional standard deviations in Euro-zone and US

From Figure 3, it is clear that inequality within the groups is much lower than it is overall.
In particular, inequality within the high-income group (box line) has been falling steadily and
since the mid-eighties it has been below that of the US regions. Within the low-income group,
inequality in the 1950s was relatively low and no downward trend can be observed in the data.
Nevertheless, it is still the case that relative to the US benchmark, inequality within both
groups of countries is not very different.

4.3 Convergence and multiple steady states

The preliminary investigation of stylised facts on trend growth in within current Euro-zone
countries indicates the existence of two convergence clubs6, plus Ireland. If this is the case,
convergence tests and models based on the assumption of a common growth path will be
inadequate and could lead to misleading inferences being drawn. What we need to do is to
investigate the case for absolute convergence within the two groups and relative convergence
between the groups.

6Durlauf and Johnson (1995) identify four different regimes (determined by initial conditions) in the
Summers-Heston dataset. They find that these regimes are associated with different aggregate production
functions and hence, the assumption of a common long-run growth path is untenable. Their partition of the
eleven Euro-zone countries is the same as the one noted in the previous subsection. Thus, Greece, Portugal,
Spain (and Ireland) are classified as intermediate-output countries with high literacy rates while the remaining
seven are included in the high-output group.
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5 Fitting convergence models

Based on the analysis of the previous section, we proceed by fitting convergence models, as
described in section 3, to the rich and poor subgroups rather than to the Euro-zone as a whole.

Recall that this specification not only allows us to separate trends and cycles but also separates
out the long-run balanced growth path from the transitional (converging) national dynamics,
thus permitting a characterisation of convergence stylised facts.

The results reported are for the homogeneous model with smooth convergence, (13), and abso-
lute convergence, that is αi = 0, i = 1, ...,N. We analyse each sub-group in turn.

5.1 High-Income Group

Figure 4 below displays the estimated common trend, µφ,t, together with the estimated trends
for each country while Figure 5 shows the smoothed estimates of the convergence components,
µ†i,t, for the seven Euro-zone high-income countries [AU, BE, FI, FR, GE, IT, NE].

The convergence parameter, φ, was estimated7 as 0.938 while the common trend weights, φi,
are given by:

φAU φBE φFI φFR φGE φIT φNE

0.01 0.06 0.45 0.02 0.03 0.40 0.03

The within-group convergence is shown in Figures 4 and 5, with all seven countries significantly
narrowing their gap towards the common balanced growth path.

The large weights assigned to Finland and Italy in constructing the common trend means
that the future growth path depends primarily on extrapolating the trends in these two coun-
tries. In other words these two relatively poorer countries within the high-income group act as
benchmarks to which all the other high-income countries converge.

This may seem surprising at first. Why doesn’t Germany dominate, for example? A glance
at Figure 4 gives the answer. The German growth rate has been gradually slowing down,
particularly after re-unification, and at the end of the sample the trend is almost flat.

If we were to extrapolate there would be almost no growth.

7The convergence parameter in a first-order error correction model, (12), will typically be higher.
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Figure 4: Converging trends and balanced growth path for the high income group

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

 -0.1

0.0

0.1

0.2

0.3

0.4

Convergence_AU
Convergence_FI
Convergence_IT
Convergence_GE

Convergence_BE
Convergence_FR
Convergence_NE

Figure 5: Convergence components for high-income group
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The convergence components are not monotonic over time and so the fact that the model allows
a degree of divergence is important. During the 1950s and early 60s at least two distinct type
of dynamics should be singled out. One is dominated by the strong effects of reconstruction in
Austria, Italy and Germany and the other by relatively slower adjustment in France, Belgium
and the Netherlands; further details can be found in Crafts and Toniolo (1996) and the refer-
ences therein. In contrast the late 1960s and 1970s appear to bring a halt in the convergence
process across the entire high-income group. This process is resumed in the 1980s before and
again slowing down in the 1990s.

Further insights on cross national correlations can be gained by analysing the variance-covariance
matrix of the converging trends, eΣζ . Two subgroups, with relatively high, positive within-
correlations and relatively low (or negative) across-correlations appear to emerge. On the one
hand a group formed by Belgium, France, Netherlands and, to a smaller extent, Italy and on
the other hand, a group formed by Austria, Germany and possibly Finland.
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The forecasts of the convergence components will tend to zero as the lead time goes to infinity.
The second-order ECM allows some divergence before convergence eventually takes place; see
the model fitted to the US and Japan in Harvey and Carvalho (2002). In Figure 5 all the con-
vergence components are pointing in the direction of zero and a straightforward extrapolation
suggests that the economies will be close to convergence after about ten years.

5.2 Low-Income Group

We now turn to the converging dynamics within the low income group [GR, PO, SP]. Ireland is
excluded due to its idiosyncratic behaviour: it is difficult to classify it as a low income country
given its position both at the beginning and end of the sample8. Figures 6 and 7 below present
the common trend and convergence components respectively.

The convergence parameter was estimated as φ = 0.937, and the common trend weights, φi
given by:

φGR φPO φSP
0.48 0.36 0.17

.

8Taking the Irish performance after the end of our sample (1997) only serves to confirm this assumption as
the gap between Ireland and the three low income countries grows even larger.
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Figure 6: Common trend and converging trends for low-income group
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Figure 7: Convergence components for low income group
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The sign of the convergence parameter is consistent with within-group convergence and similar
in magnitude to the high-income group. The cross-correlations in the covariance matrix of the
converging trends, eΣζ are shown below. 10.0 0.89 0.95

17.5 0.99
22.8

 GR
PO
SP

.

All the pairwise correlations are greater than the BE-FR correlation, the largest in the high-
income group. The magnitude of the convergence components is smaller and more stable for
these three low income countries. However, Figure 7 illustrates the point that a relatively stable
cross-sectional standard deviation does not necessarily imply that there are no intra-distribution
dynamics; see Quah (1996) and Durlauf and Quah (1999). Thus, Greece and Portugal alternate
their ranking over the sample period: Greece starts off as the poorest economy, rapidly overtakes
Portugal, but is subsequently overtaken by Portugal in the 1980s. Indeed the main conclusion
to be drawn from the plots of the convergence components is that since that mid-eighties the
gap between Spain and Portugal has narrowed considerably, while Greece has diverged. This
throws some doubt on the coherence of the group.

5.3 Divergence or relative convergence in the Euro-zone?

Having characterised the within-group convergence dynamics we now proceed with a between
groups analysis. The key question is whether the common trends estimated for each group
indicate relative convergence. In order to investigate this issue, a bivariate convergence model
is fitted to the two common trends. Since we are dealing with extracted trends, eµit, the aim is
to perform the decomposition:eµit = eαi + eµφ,t + eµ†it, i = LI,HI (17)

with µφ,t and µ†it defined as in (14) and LI and HI denoting low income and high income,
respectively.

When the model is fitted with no restrictions on φLI and φHI , the estimate of φHI is zero,
indicating that the high-income trend can be treated as benchmark. Table 2 below shows
the parameter estimates for the absolute and relative convergence versions of this benchmark
model. It is convenient to standardise the intercepts in the relative convergence model by
setting eαHI = 0; there is then absolute convergence when eαLI = 0.

Table 2: Estimates for bivariate convergence model fitted to smoothed trends

Absolute Relative
Hyperparameters LI HI LI HI

Convergence σ2ζ(×105) 6.85 .54 6.51 .54eφ 0.939 0.916

Gap eαLI 0(fixed)
−0.337
(0.168)

Fit logL 366.56 367.92
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Two main points should be noted from Table 2. First, the estimate of φ is less than one and so
is consistent with convergence of the low-income trend towards the high income trend. Second,
the estimate of αLI is negative and its ‘t-statistic’ is statistically significant

9 at the 5% level.

This implies that the trend forecasts of the low income countries are converging to a growth
path, eµHI,t + eαLI , that is parallel to that of the high income countries but lies below it.

Figure 8 shows a plot of eµHI,t + eα, labelled ‘common trend’, together with the two group
common trends. The convergence component, eµ†LI,t = eµLI,t− (eµHI,t+ α), is shown in Figure 9.

It can be seen that relative convergence had taken place by the early seventies. The gap appears
to be permanent and the long-run implication is that each of the low income countries will have
a per capita income that is almost 30% below that in the high income group.

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
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8.25

8.50

8.75

9.00

9.25

9.50

9.75 Trend_High_Income
Common_Trend

Trend_Low_Income

Figure 8: Common trend and trends for low income and high income group

9The LR statistic is not significant however. Since a good deal of the variation has been removed by
smoothing, tests of significance should only be regarded as giving a rough indication of the underlying situation.
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Figure 9: Convergence component for low income group

6 Cycles

The other aspect of convergence concerns cycles. In order to investigate this issue we looked
at the five core economies of France, Germany, Belgium, Netherlands and Italy to see to what
extent the business cycle movements had converged. All of these countries are in the rich
group. We have excluded Austria and Finland as they are relatively recent entrants into the
EC. Fitting a multivariate STM to the five series using the STAMP package of Koopman et
al (2000) gave very similar results to fitting the convergence model reported in sub-section 5.1
and it is quite adequate for the purposes of extracting cycles. The model consisted of smooth
trends, similar cycles and irregular components.

Focussing attention on the cycle, the estimates of the damping factor, ρ, and the period were
found to be 0.87 and 7.86 years respectively. The variances and cross-correlations are shown
below.

BE
FR
GE
NE
IT

15.1 .75 .79 .55 .28
12.2 .78 .45 .34

24.8 .72 .35
25.6 .26

31.6
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In our study of US regions we performed a principal components analysis on the correlation
matrix and showed that the biggest component accounted for over 90% of the variation. This
was not surprising in view of the fact that the majority of pairwise correlations were greater
that 0.9.

The issue here is somewhat different in that our interest is on the extent to which the cycles
have come closer together. Figure 10 shows the smoothed estimates of the cycles. While the
dispersion at the beginning is quite large, the cycles are almost perfectly co-ordinated by the
end of the 1990s. Figure 11, which plots the standard deviation of the five cycles over time,
tells the same story.

As part of the convergence process, the cycle cross-correlations may well have changed over
time so the figures above have to be regarded as averages in some sense.

Estimating the model over the period starting in 1970 gave estimates of ρ and the period equal
to 0.90 and 5.90 years respectively. As can be seen below, the cross-correlations are much
bigger.

BE
FR
GE
NE
IT

29.8 .88 .64 .78 70
19.1 .78 .86 .69

9.5 .75 .55
25.1 .53

23.7

As it stands, the cycle model does a good job of picking up the convergence, but if it were to
be used to generate converging cycles, it would have to incorporate a mechanism that allowed
the cross-correlations to tend gradually towards unity.

The same model was also fitted to three poorer countries, Greece, Portugal and Spain. The
damping factor and the period were found to be 0.81 and 7.29 years, while the cycle variances
and cross-correlations are

GR
PO
SP

22.3 .43 .20
67.8 .05

23.7

The relatively low value of ρ indicates that the cycles are not particularly well-defined. This
is especially true of Spain. The low correlations between Spain and the other two countries
indicates little coherence. Portugal’s cycles are quite pronounced, with the variance being three
times what it is in most countries.

The cycles are shown in Figure 11. Despite the low coherence in the period as a whole, it can
be seen that they are converging towards the end of the period, with a pattern not dissimilar
to that in the core group.

Finally a cycle was extracted for Ireland by modelling it jointly with Germany. This gave a
moderately high correlation of 0.79 but with Ireland having a much larger variance of 49.6
(×10−5). The extracted cycles are shown in Figure 12. The most striking feature is the higher
amplitude of the Irish cycle, even in recent years.
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7 Testing re-visited

As was noted earlier, standard unit root tests give a confused message with regard to conver-
gence. This section examines some of the issues in testing for convergence in the light of the
descriptive results of the last two sections. In doing so we draw on the recent investigation by
Harvey and Bates (2003).

The first point to note is that the standard augmented Dickey-Fuller (ADF) test, with a constant
included, has very low power. This can be illustrated by applying the test to the series on The
Netherlands minus Italy. A graph shows very clear convergence. In 1950 the difference (in logs)
between the two series was 0.534, corresponding to The Netherlands having a per capita income
1.7 times that of Italy, while in 1997, the gap was 0.105, corresponding to a ratio of 1.11. Yet
the ADF test fails to reject. For example, with one lagged first difference10, the t−statistic is
-2.14, as against a 10% critical value of -2.60.

This is despite the fact, that, an initial value away from the mean actually helps to increase
power. If the constant is dropped from the ADF regression, as is appropriate for a test of
absolute convergence, then, with one lag, the t−statistic is -2.52, as against a 5% critical value
of -1.96.

Thus dropping the constant leads to a rejection of the null of no convergence at the 5% level
of significance. The t-statistic is not quite significant at the 1% level, but if the information in
all five core countries is pooled by forming a set of four contrasts with Italy, the multivariate
homogeneous Dickey-Fuller t-test, studied in Harvey and Bates (2003), shows a very strong
rejection11. Taking the observations from 1960 (since there is some divergence before 1960,
although not between The Netherlands and Italy); the t−statistic, with one lag, is −3.04 while
the 1% critical value (for T = 100) is −2.58.
If all seven rich countries are considered, the rejection is even stronger as the t−statistic is
-4.27. On the other hand if the constant is included, even the multivariate tests are unable to
reject at the 10% level12. Note that because the test takes account of cross-correlations between
the series, it is invariant to the choice of benchmark.

Testing in the low income group gives a less clear picture, as one might expect from the earlier
analysis. Pairwise tests are unable to reject the null of no convergence, even with the constant
excluded, and pooling the data does not help13.

10The result is relatively insensitive to the number of lags. For example with three lags t = −2.41. (These
additional lags are not statistically significant at the 10% level.)
11A LR test of the null hypothesis that the four contrasts are nonstationary is unable to reject at the 5%

level of significance; whether or not intercepts are included makes no difference to the conclusion. Such a result
is consistent with the simulations in Harvey and Bates (2003), which indicate that the LR test can have very
low power relative to the multivariate homogeneous Dickey-Fuller t-test.
12For 5 and 7 countries the t-statistics were -2.26 and -2.25 respectively. The 10% critical values - from table

3 of Harvey and Bates(2003) are -3.73 and -4.26 respectively.
13The t—statistic, with no constant, for Greece-Spain with one lag is only -0.069, while Portugal-Spain is

-0.924 and -1.070 if a constant is added.
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Figure 10: Cycles extracted from five core countries
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Figure 11: Standard deviation of cycles extracted from five core countries
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Figure 12: Cycles for Greece, Portugal and Spain
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Figure 13: Cycles for Ireland and Germany
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The trace likelihood ratio test of Johansen (1988) may be used, as in Bernard and Durlauf
(1995), to try to detect the number of co-integrating relationships and hence the number of
clubs. However, the test is likely to have low power and hence to indicate too many clubs.
For example with the five core countries, again from 1960, the test, based on a model with
an unrestricted constant14 and two (p) lags, cannot reject the null hypothesis of five common
trends, against the alternative that there are fewer, at the 5% level of significance when the
degrees of freedom correction is used. In other words it indicates that there is no co-integration
and no convergence clubs (with more than one member). With no degrees of freedom correction,
four trends cannot be rejected. The results, obtained from the PcFIML program of Doornik
and Hendry (2000), are shown in the Table below; R is the number of co-integrating vectors
so 5−R is the number of (common) trends. The max test, not shown in the table, could not
reject five trends even without the degrees of freedom correction.

Table 3: Trace LR statistic for
co-integration with (T −Np) and
without (T ) d.o.f. correction

R T T −Np 5% cv
0 70.57* 52.00 68.5
1 42.79 1.53 47.2
2 19.74 14.54 29.7
3 8.56 6.31 15.4
4 0.11 0.08 3.8
* indicates a rejection at the 5% level
of significance

8 Conclusion

Preliminary analysis from fitting a multivariate structural time series model to the eleven Euro-
zone countries indicates two possible convergence clubs, one a high income group, consisting
of the five core economies plus Austria and Finland, and a low income group, made up of
Spain, Greece and Portugal. Ireland seems to follow its own growth path. The multivariate
convergence model is successful in separating trends from cycles and capturing the absolute
convergence in the two groups. The evidence for convergence in the second group is less
compelling, but the assumption of a single common trend is not unreasonable. The groups
themselves appear to have converged in the relative sense. If this is correct, the implication is
that the average per capita income in the poor group will remain almost 30% below that of the
high group.

The cycles in the core high income group show a remarkable coherence in recent years, with
the group standard deviation having fallen dramatically. There is less coherence in the poor
group, though again there is evidence of a movement towards the same cycle as the rich group
in recent years.

14This is appropriate (except possibly for R = N − 1) since the series are assumed to have drifts but no time
trends in the co-integrating relationships. It could be argued that if clubs exhibit absolute convergence then
constants should be excluded from the co-integrating relationships but this is not a standard constraint.
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From the methodological point of view, the series illustrate the futility of trying to infer anything
about convergence using Dickey-Fuller tests with constant included. However, it is possible to
sensibly test against absolute convergence by dropping the constant and additional power is
gained by pooling the information in several converging series. The likelihood ratio tests for
co-integration appear to be of little use as a means of detecting the number of convergence
clubs.

References

Barro, R. J., and X. Sala-i-Martin (1992): “Convergence,” Journal of Political Economy,
100, 223-251.

Barro, R. J., and X. Sala-i-Martin (1995): Economic Growth. Boston, MA: McGraw-
Hill.

Ben-David, D. (1993): “Equalizing exchange: trade liberalization and convergence,” Quar-
terly Journal of Economics, 108, 653-79.

Bernard, A., and S. Durlauf (1995): “Convergence in international output,” Journal of
Applied Econometrics, 10, 97-108.

Bernard, A., and S. Durlauf (1996): “Interpreting tests of the convergence hypothesis,”
Journal of Econometrics, 71, 161-173.

Boldrin, M., and F. Canova (2001): “Inequality and convergence: reconsidering European
regional economic policies,” Economic Policy, 32, 207-53.

Carlino, G., and K. Sill (2001): “Regional income fluctuations: common trends and
common cycles,” Review of Economics and Statistics, 83.

Carvalho, V. M., and A. C. Harvey (2002): “Growth, cycles and convergence in US
regional time series,” DAE Working paper 0221, University of Cambridge.

Crafts, N., and G. Toniolo (1996): Economic Growth in Europe since 1945. Cambridge:
Cambridge University Press.

Doornik, J. A. (1999): Ox: An Object-Oriented Matrix Language. 3rd edition. London:
Timberlake Consultants Press.

Doornik, J. A., and D. F. Hendry (2000): PcFIML. London: Timberlake Consultants
Ltd.

Durlauf, S. N., and P. A. Johnson (1995): “Multiple regimes and cross-country growth
behaviour,” Journal of Applied Econometrics, 10, 365-84.

Durlauf, S. N., and D. Quah (1999): “The new empirics of economic growth,” in Handbook
of Macroeconomics, Volume 1, Chapter 4, ed. by J. B. Taylor and M. Woodford. Elsevier
Science.

Hamilton, J. D. (1994): Time series analysis, Princeton: Princeton University Press.

214



Harvey, A. C. (1989): Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge: Cambridge University Press.

Harvey, A. C., and D. Bates (2002): “Multivariate unit root tests and testing for conver-
gence,” DAE Working paper 0301, University of Cambridge.

Harvey, A. C., and V. M. Carvalho (2002): “Models for converging economies,” DAE
Working paper 0216, University of Cambridge.

Harvey, A. C., and S. J. Koopman (1997): “Multivariate structural time series models,”
in System dynamics in economic and financial models, ed. by C. Heij et al.. Chichester:
Wiley and Sons. pp. 269-298

Johansen, S. (1988): “Statistical analysis of cointegration vectors,” Journal of Economic
Dynamics and Control, 12, 13-54.

Koopman, S. J., A. C. Harvey, J. A. Doornik and N. Shephard (2000): STAMP 6.0:
Structural Time Series Analyser Modeller and Predictor. London: Timberlake Consultants
Ltd.

Koopman, S. J., N. Shephard and J. A. Doornik (1999): “Statistical algorithms for
models in state space form using SsfPack 2.2,” (with discussion) Econometrics Journal, 2,
107-160.

Martin, R. L. (2001): “EMU versus the Regions? Regional Convergence and Divergence in
Euroland,” Journal of Economic Geography, 1, 51-80.

Sala-i-Martin, X. (1996): “Regional cohesion: evidence and theories of regional growth and
convergence,” European Economic Review, 40, 1325-52.

Tsionas, M. G. (2000): “Real convergence in Europe: How robust are econometric infer-
ences?,” Applied Economics, 32, 1475-82.

Vahid, F., and R. F. Engle (1993): “Common trends and common cycles,” Journal of
Applied Econometrics, 8, 341-360.

215



Eurostat Colloquium

Modern Tools For Business Cycle Analysis

Luxembourg, 28 and 29 November 2002
Session on “Cyclical Convergence and Forecasting”

FORECASTING MONTHLY MACROECONOMIC VARIABLES
FOR THE EURO AREA

By Massimiliano Marcellino1,2

IEP- Bocconi Univerisity, IGIER and CEPR

We fit a variety of linear, non-linear and time-varying models to monthly Euro-area

macroeconomic variables, obtained through two alternative aggregation schemes. Since

non-linear models often over-fit in sample, we assess their relative performance in a real

time forecasting framework. It turns out that in many cases linear models are beaten by

non-linear specifications, a result that questions the use of standard linear methods for

forecasting and modeling Euro-area variables.

Keywords: European Monetary Union, Forecasting, Time-Varying models, Non-linear
models, Instability, Non-linearity,

JEL classification: C2, C53, E30.

1I am grateful to Jim Stock and Mark Watson for several conversations on the topics ad-
dressed in this paper, and for making available the GAUSS programs that form the basis of the
code used in this paper. Participants at the Eurostat colloquium on ”Modern tools for business
cycle analysis” also provided valuable comments. The usual disclaimers apply.
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1 Introduction

In general, complicated time series models tend to fit well in sample, better than linear
specifications, because of their greater flexibility. Yet, often the resulting models are too specific
for the particular estimation sample, and their good performance is not replicated out of sample,
in a forecasting context. For example, Stock and Watson (1999) found only minor gains from
complicated models for forecasting about 200 macroeconomic variables for the US, on average
linear specifications were quite good, and pooled forecasts even better.

On the other hand, the fact that Euro-area series are an aggregate of national series which likely
present structural breaks and nonlinear features because of the many changes that affected
the European countries in the recent past indicates that nonlinear models could have a true
advantage over simpler specifications.

The two previous considerations suggest to run the model comparison exercise, but ranking the
models on the basis of their out of sample performance in a pseudo real time context. Marcellino
(2002a, 2002b, 2002c) conducted a similar comparison but focusing either on single European
countries or on quarterly Euro area series. The main result was that on average linear models
or pooling methods were still the best, but non-linear specifications were forecasting well for a
good percentage of the macroeconomic variables under analysis. Basically, while linear models
forecast reasonably well for all the series, non-linear models are quite good for some series but
quite bad for others, so that on average they are beaten by simpler methods.

In this paper we evaluate whether this is the case also for monthly Euro-area variables, obtained
by two alternative aggregation procedures. Specifically, Marcellino, Stock and Watson (2001)
use constant aggregation weights, proportional to the real GDP share in 1995, to construct
monthly series for the period 1982:1-1997:8. The resulting series are rather close to the official
Eurostat variables over the ‘90s. From their dataset, we analyze industrial production (IPMSW)
and consumer prices (CPIMSW), while we do not consider the unemployment rate since the
series starts later on. Instead, Beyer, Doornik and Hendry (2001) adopt a more sophisticated
aggregation procedure, which is based on the aggregation of growth rates of the variables, with
time-varying weights, whose evolution depends also on the behavior of the exchange rate. The
Euro zone aggregate growth series are then cumulated to obtain the levels of the variables. The
method yields real gdp (YERBDH), the gdp deflator (YEDBDH) and M3 (M3BDH), monthly,
over the period 1980:1-1999:2.

We compare three main forecasting methods. The linear method, which includes autoregressive
(AR) models, exponential smoothing and random walk models. The time-varing method, which
includes time-varying AR models and smooth transition AR models. The non-linear method,
that includes artificial neural network models. Within each method we consider several alter-
native specifications, for a total of 58 models, and different forecast horizons. We then add to
the comparison three common forecast pooling procedures, that yields a total of 74 competing
forecasts.

The forecasts are described in details in Section 2. Their relative performance is evaluated in
Section 3 for the two datasets. Section 4 summarizes the main findings of the paper and offers
suggestions for further extensions.
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2 Forecasting methods

We consider forecasting models of the type

yht+h = f (Zt; θht) + εt+h, (1)

where yt is the variable being forecast, h indicates the forecast horizon, Zt is a vector of predictor
variables, εt is an error term, and θh is a vector of parameters, possibly evolving over time.
Forecasting methods differ for the choice of the functional form of the relationship between
yt+h and Zt, f . Within each method, different models are characterized by the choice of the
regressors Zt and the stationarity transformation applied to yt.

The h-step forecast is byht+h = f
³
Zt;bθht´ , (2)

with associated forecast error
et+h = yht+h − byht+h. (3)

When yt is treated as stationary, it is y
h
t+h = yt+h, while if yt is I(1) then y

h
t+h = yt+h−yt. Besides

computing results for both cases, we also consider a pre-test forecast where the decision on the
degree of integration of yt depends on a unit root test. Pre-testing often improves the forecasting
performance, see e.g. Diebold and Kilian (2000). Specifically, we use the Elliot, Rothenberg
and Stock (1996) DF-GLS statistics, which performed best in the simulation experiments in
Stock (1996). Note that et+h = yht+h−byht+h, independently of whether yt is treated as stationary
or not, so that forecast errors from the three different cases (stationary, I(1) and pre-test) can
be directly compared.

To mimic real time situations, for each variable, method and model the pre-test for unit root,
estimation, and model selection are repeated each month over the forecasting period.

Because of the short sample available, we consider forecast horizons, h, of 1, 3 and 6 months.
When h is larger than one, the “h-step ahead projection” approach in (1), also called dynamic
estimation (e.g. Clements and Hendry (1996)), differs from the standard approach of estimating
a one-step ahead model, and iterate it forward to obtain h-step ahead predictions. The h-step
ahead projection approach has two main advantages in this context. First, the impact of
specification errors in the one-step ahead model can be reduced by using the same horizon for
estimation as for forecasting. Second, simulation methods are not required to obtain forecasts
from non-linear models. The resulting forecasts could be slightly less efficient, see e.g. Granger
and Terasvirta (1993, Ch.8), but the computational savings in our real time exercise with many
series and models are substantial.

In few cases there are problems with the estimation of the non-linear models, which then yield
very large forecast errors. We introduced an automatic forecast trimming procedure, in order
not to bias the comparison against these methods. In particular, when the absolute value of a
forecasted change is larger than any previously observed change, a no change forecast is used.

Let us now describe first the forecasting methods and models, and then the pooling procedures
we compare. More details can be found in Stock and Watson (1996, 1999), Marcellino (2002a,
2002b, 2002c).
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Linear methods

Autoregression (AR). Though very simple, these models have performed rather well in forecast
comparison exercises, see e.g. Meese and Geweke (1984), or Marcellino, Stock and Watson
(2001) for the Euro area. The f function in (1) is linear, and Zt includes lags of the y variable
and a deterministic component. The latter can be either a constant or also a linear trend. The
lag length is either fixed at 4, or it is chosen by AIC or BIC with a maximum of 6 lags. Given
that the variable yt can be treated as stationary, I(1), or pre-tested for unit roots, overall we
have 18 models in this class.

Exponential smoothing (ES). Makridakis et al. (1982) found this method to perform rather
well in practice even though, from a theoretical point of view, it is optimal in the mean square
forecast error sense only when the underlying process follows a particular ARMA structure,
see e.g. Granger and Newbold (1986, Ch.5). We consider both single and double exponential
smoothing, which are usually adopted for, respectively, stationary and trending series. Estima-
tion of the parameters is conducted by means of (recursive) non-linear least squares (see e.g.
Tiao and Xu (1993)). The third model in this class is given by a combination of the single and
double models, based on the outcome of the unit root test.

Non-linear methods

Time-varying autoregression (TVAR). Following Nyblom (1989), we let the parameters of the
AR model evolve according to the following multivariate random walk model:

θht = θht−1 + uht, uht ∼ iid
¡
0, λ2σ2Q

¢
(4)

where σ2 is the variance of the error term εt in (1), Q = (E (ZtZt))
−1, and we inspect several

values of λ: 0 (no variation), 0.0025, 0.005, 0.0075, 0.01, 0.015, or 0.020. We consider first a
specification with a constant, 3 lags and λ= 0.005, and then we allow for AIC or BIC selection
of the number of lags (1, 3 or 6) jointly with the value of λ. In each case, yt can be either
stationary, or I(1) or pre-tested, so that we have a total of 9 TVAR models. The models are
estimated by the Kalman filter.

Logistic smooth transition autoregression (LSTAR). The generic LSTAR model can be written
as

yt+h = α0ζt + dtβ
0ζt + εt+h, (5)

where dt = 1/ (1 + exp (γ0 + γ1ζt)) and ζ t = (1, yt, yt−1, . . . , yt−p+1) if yt is treated as stationary
or ζt = (1,∆yt,∆yt−1, . . . ,∆yt−p+1) if yt is I(1). The smoothing parameter γ1 regulates the
shape of parameter change over time. When γ1 = 0 the model becomes linear, while for
large values of γ1 the model tends to a self-exciting threshold model, see e.g. Granger and
Terasvirta (1993), Terasvirta (1998) for details. For models specified in levels we consider the
following choices for the threshold variable in dt: ζ t = yt, ζt = yt−2, ζt = yt−5, ζt = yt − yt−6,
ζt = yt − yt−12. For differenced variables, it can be ζt = ∆yt, ζt = ∆yt−2, ζt = ∆yt−5,
ζt = yt − yt−6, ζt = yt − yt−12. In each case the lag length of the model was either 1 or 3 or 6.
We report results for the following models: 3 lags and ζt = yt (or ζt = ∆yt for the I(1) case);
3 lags and ζt = yt−6; AIC or BIC selection of both the number of lags and the specification
of ζt. In each case, yt can be either stationary, or I(1) or pre-tested, so that overall there are
12 LSTAR models. Estimation is carried out by (recursive) non-linear least squares, using an
optimizer developed by Stock and Watson (1999).
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Artificial neural network (ANN). ANN models can provide a valid approximation for the gen-
erating mechanism of a vast class of non-linear processes, see e.g. Hornik, Stinchcombe and
White (1989), and Swanson and White (1997) for their use as forecasting devices. The sin-
gle layer feedforward neural network model with n1 hidden units (and a linear component) is
specified as:

yt+h = β00ζ t +
n1X
i=1

γ01ig (β
0
1ζt) + εt+h, (6)

where g (x) is the logistic function, g (x) = 1/ (1 + ex). Even more flexibility can be obtained
with the double layer feedforward neural network with n1 and n2 hidden units:

yt+h = β00ζt +
n2X
j=1

γ2ig

Ã
n1X
i=1

β2jig (β
0
1iζt)

!
+ εt+h. (7)

We report results for the following specifications: n1 = 2, n2 = 0, p = 3 (recall that p is number
of lags in ζt); n1 = 2, n2 = 1, p = 3; n1 = 2, n2 = 2, p = 3; AIC or BIC selection with
n1 = (1, 2, 3), n2 = (1, 2 with n1 = 2), p = (1, 3). For each case yt can be either stationary,
or I(1) or pre-tested, which yields a total of 15 ANN models. The models are estimated by
(recursive) non-linear least squares, using an algorithm developed by Stock and Watson (1999).

No- change

No change (NC). The random walk based forecast is simply byt+h = yt. Notwithstanding its
simplicity, in a few cases it was found to outperform even forecasts from large-scale structural
models, see e.g. Artis and Marcellino (2001).

Pooling procedures

Linear combination forecasts (C). These forecasts are weighted averages of those described so
far:

byt+h = MX
m=1

km,h,tbyt+h,m, km,h,t = (1/msfem,h,t)
w /

MX
j=1

(1/msfej,h,t)
w (8)

where m indexes the models, km,h,t denotes the weights, and msfe indicates the mean square
forecast error. Bates and Granger (1969) showed that the weighting scheme that minimizes the
msfe of the pooled forecasts involves the covariance matrix of all the forecast errors, which is
unfeasible in our case because M is very large. Hence, following their suggestion, the weight
of a model is simply chosen as inversely proportional to its msfe, which is equivalent to setting
w = 1 in equation (8). We also consider the cases w = 0, equal weight for each forecast, and
w = 5, more weight for the best performing models. Moreover, we analyze separately pooling
the linear models only, the non-linear models only, and all the models. Thus, overall we have
9 linear combination forecasts.

Median combination forecasts (M). These are the median forecasts from a set of models, and are
computed because with non-Gaussian forecast errors linear combinations of the forecasts are
no longer necessarily optimal. As in the previous method, we distinguish among three groups
of models: linear, non-linear, and all models. Thus, we have 3 median combination forecasts.
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Predictive least squares combination forecasts (PLS). In this approach the model is selected on
the basis of its past forecasting performance over a certain period, that for us is one year. Thus,
the model that produced the lowest msfe over the past year is used as the forecasting model,
and the choice is recursively updated each month over the forecast period. We compute 4 of
these forecasts, that differ for the set of models compared: all models, all linear models, all
non-linear models, all models plus the linear and the median combination forecasts.

The 58 models and the 16 pooling procedures to be used in the forecast comparison exercise
are summarized in Table 1.

3 Forecast comparison

To compare the competing forecasts we need to choose a loss function. We define the loss from
forecast m for variable n as

Losshn,m =
1

T − h

T−hX
t=1

|et+h,n,m|ρ , (9)

where et+h is the h-step ahead forecast error, and ρ can be equal to 1, 1.5, 2, 2.5 or 3. The
values ρ = 1 and ρ = 2 correspond to the familiar choices of, respectively, the mean absolute
error (mae) and the mean square forecast error (msfe) as the loss function. We can now use
the loss function in (9) to rank the forecasts described in the previous section for the different
variables of interest.

As mentioned in the Introduction, the BDH and MSW datasets are monthly. The former
includes the GDP (YERBDH), the GDP deflator, and M3 (M3BDH), and the forecasting
period is 1991:1-1999:2 with estimation starting in 1980. The latter includes the consumer price
index (CPIMSW) and industrial production (IPMSW), and the forecasting period is 1993:1-
1997:8 with estimation starting in 1982. In both cases the forecasting horizons we consider are
h = 1, 3, 6 months.

Table 2 reports the best 5 forecasting models for the BDH variables. For YERBDH there is a
clear preference for ANN models, with some pooled forecasts in the top-5 for longer forecast
horizons. The performance of ANN models is also good for YEDBDH and M3BDH, though
smooth transition models or pooling is preferred for YERBDH when h = 1 and for M3BDH
when h = 3, 6. It is worth mentioning that in general the ranking of the models is not affected
by the value of ρ.

The results for the MSW variables are summarized in Table 3. For CPI the outcome is similar
to the BDH case, with pooling procedures ranked first for h = 1 and ANN models for h = 3, 6.
For IP the results are more varied depending on the value of ρ, with the robust finding that
linear models do not perform well.

The poor performance of the linear models is actually the most interesting finding of the
analysis. The fact that nonlinear models are particularly good for the BDH dataset is likely
due to the time-varying weights used in the aggregation process, but the good performance for
the MSW series, which are obtained with constant weights, indicates that some of the national
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series also present nonlinear features, which is in line with the findings in Marcellino (2002a,
2002b).

4 Conclusions

In this paper we have provided a thorough analysis of the relative merits of linear, time-varying,
non-linear and pooled forecasts for aggregate monthly Euro-area macroeconomic variables.
The main result is that for several variables forecasts from linear models can be substantially
improved upon.

This finding is interesting for policy purposes, but also more generally for empirical macroe-
conomic analysis. For example, it suggests that measures of persistence based on linear spec-
ifications can be inappropriate, as well as impulse response functions. Also, the use of GMM
for the estimation of EMU forward looking Taylor rules is questionable, since the relationship
between future values of inflation and the instruments can be non-linear or time-varying.

The main limitation of the current analysis is that it lacks a theoretical economic explanation
for the results. The many changes that affected the economies now in the EMU can explain the
failure of the linear model, but they do not provide a clear indication on the pattern of time
variation of the parameter or the type of non-linearity to be included in the statistical models
for the EMU variables. Further research in this area is required.
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Table 1: Forecasting models

A. Linear methods

ARF(X,Y,Z) Autoregressive models (18 models)

X = C (const.) or T (trend)

Y = 0 (stationary), 1 (I(1)), P (pre-test)

Z = 4 (4 lags), a (AIC), b (BIC)

EX(X) Exponential smoothing (3 models)

X = 1 (single), 2 (double), P (pre-test)

B. Non-linear methods

ARTVF(X,Y,Z) Time-varying AR models (9 models)

X = C (const.)

Y = 0 (stationary), 1 (I(1)), P (pre-test)

Z = 3 (3 lags), a (AIC), b (BIC)

LS(X,Y,Z) Logistic smooth transition (6 models)

X = 0 (stationary), 1 (I(1)), P (pre-test)

Y = transition variable, 10 ( ), 06 ( )

Z = 3 (p, lag length)

LSF(X,W) Logistic smooth transition (6 models)

X = 0 (stationary), 1 (I(1)), P (pre-test)

W = a (AIC on transition variable and p), b (BIC)

AN(X,Y,Z,W) Artificial neural network models (9 models)

X = 0 (stationary), 1 (I(1)), P (pre-test)

Y = 2 (n1)

Z = 0, 1, 2 (n2)

W = 3 (p, lag length)

ANF(X,S) Artificial neural network models (6 models)

X = 0 (stationary), 1 (I(1)), P (pre-test)

S = a (AIC on n1, n2, p), b (BIC)

C. No Change

NOCHANGE No change forecast (1 model)

D. Pooling

C(X,Y) Linear combination (9 forecasts)

X = 1 (combine A,B,C), 2 (A only), 3 (B only)

Y = 0, 1, 5 (weight, w in equation (8))

M(X) Median combination (3 forecasts)

X = 1 (combine A,B,C), 2 (A only), 3 (B only)

P(X) Predictive least square combination (4 forecasts)

X = 1 (combine A,B,C), 2 (A only), 3 (B only), A (A,B,C,D)
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Table 2: Best models for each variable with different
loss functions, BDH dataset

Var/ρ 1.00 1.50 2.00 2.50 3.00

yerbdp h=1 ANFPa ANF1a ANFPa ANFPa ANFPa
h=3 ANF0b ANF0b ANF0b ANF0b ANF0b
h=6 ANF0a ANF0a ANF0a ANF0a ANF0a

h=1 ANF1a ANFPa ANF1a ANF1a ANF1a
h=3 ANF0a ANF0a ANF0a ANF0a ANF0a
h=6 ANF0b ANF0b ANF0b ANF0b ANF0b

h=1 ANP223 ANP223 ANF1b AN1223 LSF0b
h=3 P3 P3 P1 P1 P1
h=6 AN0213 AN0213 AN0213 AN0213 AN0213

h=1 ANFPb AN1223 AN1223 ANP223 AN1223
h=3 P1 P1 P3 P3 P3
h=6 P1 P1 P3 P3 P3

h=1 AN1223 ANF1b ANP223 ANF1b ANF1b
h=3 PA PA PA PA PA
h=6 P3 P3 P1 P1 P1

yedbdh h=1 LSF0a LSF0a LSF0a LSF0a LSF0a
h=3 ANF0a ANF0a ANF0a ANF0a ANF0a
h=6 ANF0a ANF0a ANF0a ANF0a ANF0a

h=1 P3 P3 P3 P3 P3
h=3 ANF0b ANF0b ANF0b ANF0b ANF0b
h=6 ANF0b ANF0b ANF0b ANF0b ANF0b

h=1 P1 P1 P1 P1 P1
h=3 P1 P1 P1 P1 P1
h=6 P1 P1 P1 P3 P3

h=1 PA PA PA PA PA
h=3 P3 P3 P3 P3 P3
h=6 P3 P3 P3 AN0223 AN0223

h=1 LSF0b LSF0b LSF0b LSF0b LSF0b
h=3 PA PA PA PA PA
h=6 AN0223 AN0223 AN0223 P1 P1

m3bdh h=1 P1 AN0223 ANF0b ANF0b ANF0b
h=3 LSF0b LSF0b LSF0b LSF0b LSF0b
h=6 P1 ANF0a P3 ANF0a P1

h=1 P3 P3 ANF0a ANF0a ANF0a
h=3 LSF0a LSF0a LSF0a LSF0a LSF0a
h=6 ANF0a P3 P1 P1 P3

h=1 AN0223 P1 P1 P3 P3
h=3 ANF0a ANF0a C3001 C3001 C3001
h=6 P3 P1 ANF0a P3 ANF0a

h=1 LSF0a ANF0b P3 P1 P1
h=3 AN0213 AN0213 ANFPa ANFPb C1001
h=6 AN0223 ANF0b AN0223 AN0223 ANF0b

h=1 LSF0b ANF0a AN0223 AN0223 AN0223
h=3 ANF0b ANF0b ANF1a ANF1b ANF1a
h=6 ANF0b AN0223 ANF0b ANF0b AN0223

Notes: See Table 1 for the definition of the models. The loss function is
Lhn,m = ((Loss

h
n,m)/(Loss

h
n,1)), Loss

h
n,m = (1/(T−h))

PT−h
t=1 |et+h,n,m|ρ, where

the benchmark model is ARFC04 and et+h is the h-step ahead forecast error.
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Table 3: Best models for each variable with different
loss functions, MSW dataset

Var/ρ 1.00 1.50 2.00 2.50 3.00

cpimsw h=1 P3 PA P3 AN0223 AN0223
h=3 AN0203 ANF0a ANF0a ANF0a ANF0a
h=6 AN0223 AN0223 AN0223 AN0223 AN0223

h=1 P1 P1 P1 P1 P3
h=3 ANF0a AN0223 AN0223 AN0223 AN0203
h=6 ANF0b ANF0b ANF0b ANF0b ANF0b

h=1 AN0223 AN0223 PA P3 PA
h=3 AN0223 AN0203 AN0203 AN0203 AN0223
h=6 ANF0a ANF0a ANF0a ANF0a ANF0a

h=1 PA P3 AN0223 PA P1
h=3 ANF0b ANF0b ANF0b ANF0b ANF0b
h=6 EX2 EX2 EX2 EX2 EXP

h=1 AN0203 ANF0a AN0203 ANF0a AN0203
h=3 EXP EXP EXP EX2 EX2
h=6 EXP EXP EXP EXP EX2

ipmsw h=1 EXP ANP223 LSFPa LSF1a LSP103
h=3 C2000 C2000 C2000 ARTVFC1b ARTVFCPb
h=6 C1000 C1000 C2000 ARFT0b ARFT04

h=1 EX2 AN1223 LSF1a LSP103 LS1103
h=3 ARFCPa C2001 C2001 ARTVFC1a ARTVFC1b
h=6 C1001 C1001 C2001 ARFT04 ARFT0b

h=1 ARFT04 LSP103 LSP103 LSFPa LSF1a
h=3 ARFC14 ARFC14 ARTVFCPb ARTVFCPb ARTVFCPa
h=6 C3001 C2000 LS1103 ARFT0a ARFT0a

h=1 AN1223 LS1103 LS1103 LS1103 LSFPa
h=3 ARFCP4 ARFTPa ARTVFC1a ARTVFCPa ARTVFC1a
h=6 C3000 C2001 LSP103 C2000 LS1103

h=1 ANP223 LSF1a ANP223 AN1223 ANF1b
h=3 ARFTP4 ARFCP4 ARTVFC1b ARFTP4 ARFT04
h=6 LS1063 C3001 C1001 LS1103 LSP103

Notes: See Table 1 for the definition of the models. The loss function is Lhn,m =

((Losshn,m)/(Loss
h
n,1)), Loss

h
n,m = (1/(T − h))

PT−h
t=1 (et+h,n,m)

ρ, where the benchmark
model is ARFC04 and et+h is the h-step ahead forecast error.
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1 Introduction

A popular interpretation of the traditional Burns-Mitchell definition of a business
cycle is of comovement among individual economic variables. Although this interpretation has
been challenged recently, see Harding and Pagan (2002b), the existence of a ‘common’ Euro-
zone business cycle requires the individual business cycles of the 12 Euro-zone countries to be
synchronised.

Optimists might like to believe there is an emerging common cycle, but empirical evidence for
a common cycle certainly is mixed. Consider, for example, the controversy initiated by Artis
and Zhang (1997, 1999) and Inklaar and de Haan (2001) - while Artis and Zhang (1997, 1999)
conclude that Euro-zone business cycles have become more synchronised, Inklaar and de Haan
(2001) using the same, but updated, data reach the opposite conclusion. The importance of
establishing whether there is a common Euro-zone business cycle derives from the view that
a common cycle is a prerequisite for the successful operation of economic and monetary union
(EMU) in Europe, for example see Christodoulakis, Dimelis, and Kollintzas (1995). The design,
and implementation, of monetary policy in the Euro-zone is complicated in the absence of a
common Euro-zone business cycle.

In this paper we use over 40 years of monthly industrial production data to re-examine whether
the business cycles of the 12 current Euro-zone economies have become more synchronised,
or correlated, over time.2 Following Massmann and Mitchell (2002b), we generalise previous
work by (i) computing standard errors associated with the correlation coefficients by using a
generalised method of moments estimator, (ii) considering a series of rolling windows, rather
than simply computing bilateral correlation coefficients for a small number of sub-periods [Artis
and Zhang (1999) consider two periods, Inklaar and de Haan (2001) four] and (iii) proposing
a summary statistic to capture counties’ bilateral correlation coefficients. Furthermore, and
importantly given the controversy over the appropriate definition of a business cycle, see inter
alia Harding and Pagan (2002b), we consider a range of alternative measures of the business
cycle.

One prominent view is that an economic time series can be decomposed into the sum of trend
and cyclical components, the cyclical component commonly referred to as the ‘growth’ cycle.
However, disagreement remains over how the trend component should be identified and esti-
mated; a range of parametric and non-parametric algorithms have been considered, see Canova
(1998a, 1998b) and Massmann, Mitchell, and Weale (2002, 2003) for more details. Canova
(1998a, 1998b) and Massmann and Mitchell (2002a, 2002b) find business cycle inference to
be sensitive to the de-trending method employed. An alternative view recently re-expressed
by Harding and Pagan (2002b) rejects the concept of a trend-cycle decomposition and, in line
with the NBER and Burns-Mitchell, defines the ‘classical’ business cycle in terms of the turning
points of the original data series. Crucially this method does not rely on the estimation and
extraction of a trend series.

Since we can imagine the situation where Euro-zone business cycles are uncorrelated but are

2Alternative multivariate approaches, rather than examining the correlation between individual business
cycles, test whether a common factor drives them, for further discussion see Vahid and Engle (1993), Forni,
Hallin, Lippi, and Reichlin (2000) and Harding and Pagan (2000). The existence of a common factor implies
individual business cycles are correlated.
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moving ‘closer’ together, due to less pronounced cyclical volatility, we also examine whether
Euro-zone business cycles have moved closer together over time. Specifically, we consider the
root mean squared difference between the Euro-zone growth business cycles, expressed as a
percentage of potential or trend output, for a series of rolling windows. This is important since
even if Euro-zone business cycles are uncorrelated, and so on this basis there is no evidence for
a common Euro-zone business cycle, we should expect the harmful effects of common policy to
be mitigated if Euro-zone business cycles are converging in the sense of becoming closer. For
a related exercise assessing the compatibility of the UK with Euro-zone business cycles, see
Massmann and Mitchell (2002a).

The plan of the paper is as follows. Section 2 describes the data that we use in our empirical
analysis. In Section 3 an overview is given of the alternative measures of both the ‘growth’ and
‘classical’ business cycle that we consider. Section 4 presents the metric we use to summarise
whether Euro-zone business cycles are becoming increasingly correlated. Empirical results are
presented in Section 5 and Section 6 concludes.

2 Data

The data used for our empirical analysis are the natural logarithms of the industrial production
indices (IIP) of Austria, Belgium, Finland, France, Germany, Greece, Italy, Luxembourg, the
Netherlands, Portugal and Spain, as compiled and seasonally adjusted by the OECD. The data
set is an updated version of that employed by Artis and Zhang (1997, 1999)3 as well as Inklaar
and de Haan (2001). The data are monthly and the sample period is 1962-1 to 2002-5.

The use of industrial production data for business cycle analysis is justified by appealing to
the historically strong correlation, importantly in growth rates given their trending nature, of
industrial production and gross domestic product (GDP), the preferred measure of ‘aggregate
economic activity’, see Harding and Pagan (2002b). In contrast to GDP data, monthly observa-
tions on industrial production are available on a consistent basis for most OECD countries back
to the 1960s. With over 40 years of data we can meaningfully identify and estimate business
cycles. Note, however, that there are reports that the historically close relationship between
industrial production and GDP has weakened. If confirmed, this would clearly make it more
debatable whether meaningful inference about GDP can be made.

Like Artis and Zhang, we also, in selected cases, consider a control group (the US) to ascertain
whether any conclusion about the Euro-zone is spurious and is in fact a property of world
business cycles and not specific to the Euro-zone.

We considered the impact outliers might have on the level of the data series. This is important
because aberrant observations can distort inference. In particular, we used the automatic
procedure of the TRAMO-SEATS software package, see Gomez and Maravall (1998), to detect
and remove any outlying observations in the data series. Non-outlier corrected results, however,
are qualitatively similar to those presented below.

3We are very grateful to Mike Artis for making the series available to us.
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3 Identifying the business cycle

The conclusions of Artis and Zhang (1997, 1999) and Inklaar and de Haan (2001) about Euro-
pean business cycles make recourse only to a subset of the many measures of the business cycle.
We consider a larger set of popular measures of the growth cycle, cf. Canova (1998a). Attention
is restricted to univariate detrending methods. Additionally, we consider both parametric and
nonparametric methods of identifying classical business cycles, based on an analysis of turning
points. Let us consider the detrending algorithms, that yield the growth cycles, first.

3.1 ‘Growth’ business cycles

Trend-cycle decompositions are usefully grouped into parametric and non-parametric de-trending
algorithms.4 The former are based on an estimated parametric statistical model, while the latter
are motivated on a more ad hoc and intuitive basis.

3.1.1 Parametric measures of the growth cycle

Three parametric methods are considered: an ARIMA model resulting in the Beveridge-Nelson
(BN) decomposition, an unobserved components model with a smooth stochastic trend, and a
linear regression model with a constant time trend. The first two models are cast in state-space
form and estimated using exact maximum likelihood. In particular, calculations make use of
the SsfPack module for Ox, see Koopman, Shephard, and Doornik (1999) and Doornik (1998).

1. The Beveridge-Nelson (BN) decomposition. Beveridge and Nelson (1981) define the trend
component as the limiting forecast of a stochastic process adjusted for the mean growth
rate; the BN cycle is then the sum of the trend and the original series. There are a number
of ways the BN cycle can be computed, see in particular the exact algorithms suggested
by Newbold (1990), Arino and Newbold (1998) and Morley, Nelson, and Zivot (2002). We
adopt the traditional algorithm, suggested by Beveridge and Nelson (1981), that involves
an approximation that proved numerically almost identical to the exact result. Specifically
we used the Akaike Information Criterion to choose the preferred multiplicative seasonal
ARMA model of order (p, q) × (ps, qs), estimated in first differences of the level of the
series, from the set p, q = {0, 1, 2, 3, 4} and ps, qs = {0, 1, 2} . Across countries, we found
the resulting BN cycle to be extremely volatile with low persistence, see Massmann and
Mitchell (2002b) for details. The BN cycle did not accord at all with our prior of what a
business cycle should look like, and as a result is not considered further.

2. An unobserved components (UC) model. Following the recent literature, see for instance
Koopman, Shephard, and Doornik (1999, sc. 3.2), we estimate a smooth trend model
that decomposes the process yt into yt = µt + ct + ξt where µt, ct, and ξt are the trend,

4This distinction is made purely for expositional reasons. It should be noted that non-parametric de-trending
methods can be rationalised as parametric ones, see in particular the paragraphs on the Hodrick-Prescott and
ideal band pass filters below. Furthermore, the parametric methods, like the non-parametric ones, are ‘simply’
taking weighted moving averages of the data, see Harvey and Koopman (2000).
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cyclical and irregular components, respectively.5 In particular, a smooth trend is obtained
by setting σ2η = 0 in the general local linear trend formulation:

µt = µt−1 + βt−1 + ηt (1)

βt = βt−1 + ζt, (2)

so that, effectively, ηt = 0 and the level of the trend, i.e. µt, is fixed while the trend’s
slope, βt, remains stochastic since ζt ∼ IID

¡
0, σ2ζ

¢
. Moreover, it is assumed that the

cyclical component ct follows a trigonometric function, see for instance Harvey (1993,
Section 6.5), and that the irregular component is ξt ∼ IID

¡
0, σ2ξ

¢
. The trend µt is then

extracted from the data using the Kalman smoother. Importantly, the cycle of yt is taken
to be the observed series less the trend component, i.e. yt − µt, and thus consists of the
sum of the irregular and the trigonometric cyclical components.

3. A linear regression (TIM) model. A univariate regression model is estimated, with an
intercept and a constant linear trend as explanatory variables. The estimated cycle is
given by the residuals.

3.1.2 Non-parametric measures of the growth cycle

Non-parametric methods offer an alternative means of extracting trend and cyclical components
from a time series. In contrast to parametric methods they do not rely on estimation of a
statistical model. For a survey, and examination of their theoretical properties within a unifying
framework, see Massmann, Mitchell, and Weale (2002, 2003). We consider the following four
non-parametric methods:

1. A centered moving average (MA).6 Simple moving average detrending of time-series is
used widely, see Osborn (1995). We consider a 4-year moving average.

2. The Hodrick-Prescott filter (HP).7 Use of the Hodrick-Prescott filter requires one param-
eter, say λ, to be chosen, where λ controls the smoothness of the trend. Ravn and Uhlig
(2002) argue that for monthly data we should set λ = 129600.8

3. An ideal band pass filter.9 An ideal band pass filter is used to isolate the components of a
time series that lie within a given range of frequencies. Economic theory can play a role in

5Morley, Nelson, and Zivot (2002) note that the BN cycle can be interpreted within the UC framework.
UC models usually assume the disturbances to the trend and cyclical components are uncorrelated. When this
restriction is relaxed the BN and UC approaches can yield identical cyclical estiimates.

6Other types of moving average filter are also used widely. For example, the Henderson moving average is
used by the U.S. Bureau of Census’ X-11 and X-12 procedures to extract the trend component of a time series,
see Findley, Monsell, Bell, Otto, and Chen (1998).

7It is of theoretical interest that the Hodrick-Prescott filter also can be rationalised as a parametric method,
since it has been interpreted by Harvey and Jaeger (1993) as the optimal estimator in an unobserved components
time series model.

8When yt is stationary Pedersen (2001) derives the optimal estimator of λ. Most economic time-series,
however, contain a unit root.

9Again it is of theoretical interest that ideal band pass filters can be rationalised as optimal estimators in
unobserved components time series models, see Harvey and Trimbur (2002).
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defining these frequencies. In particular, given our interest lies in extracting the periodic
components of an economic time series that can be associated with the business cycle,
the bands can be chosen consistent with priors about the duration of the business cycle.
For example, it is widely believed that a business cycle lasts between 1.5 and 8 years;
the lower band can then be set at 18 months and the upper band at 96 months.10 This
removes low frequency trend variation and smooths high frequency irregular variation,
while retaining the major features of business cycles. Since the ideal band pass filter
requires a moving average of infinite order, in practice an approximation is required. We
consider two approximations, firstly the widely used Baxter and King (1999) (BK) filter,
and secondly the Christiano and Fitzgerald (1999) (CF) filter.11 For the Baxter and King
approximation we follow Baxter and King (1999) and set the length of the moving average
at 3 years. For the Christiano-Fitzgerald approximation we follow their recommendation
and drop two years data from the beginning and end of the filtered series.

4. The Phase Average Trend (PAT). The PAT involves a number of steps. First, compute
deviations of the series from a centered moving average. Second, break up the deviations
into phases, according to the dates of cyclical peaks and troughs. Third, compute the
mean values of the series for each successive phase, and smooth using three-item or two-
item moving averages. The PAT is then given by connecting these midpoints of these
triplets or doublets, see Zarnowitz and Ozyildirim (2002). Following Artis and Zhang
(1999) we use the PAT calculated by the OECD.12

3.2 ‘Classical’ business cycles

Cycles computed in the manner discussed are classified as “growth cycles”, since they are
derived by deducting a trend, however estimated, from the original series. In contrast, “classical
cycles” are defined in terms of the turning points in the levels of the original series. For
example, a peak turning point indicates the end of an expansionary phase and the beginning of
a recessionary one. This approach is typically associated with the National Bureau of Economic
Research (NBER) and Burns and Mitchell (1946). There remains considerable controversy, and
confusion, however, over what the “real” definition of a business cycle is, some arguing that it is
the growth cycle, others that it is the classical cycle. For a detailed account of the arguments,
see, for instance, Backhouse and Salanti (2000, pp.79-81).

Both parametric and nonparametric methods have been used to identify turning points. For
further comparison of these two methods, see Harding and Pagan (2002a).

10Agresti and Mojon (2001) argue that 8 years is too low for the upper band; they argue that business cycles
in Europe tend to last longer. In fact our results do not support such an argument, see Table 1-12 below. In
any case, results using the Baxter-King filter were robust to increasing the upper band to 10 years.
11The approximation proposed by Baxter and King (1999) has been shown to fail to filter out the desired

components when yt is nonstationary, see Murray (2001) and Benati (2001). Christiano and Fitzgerald (1999)
note that the optimal approximation to the ideal band pass filter requires knowing the true DGP of yt. They
derive the optimal approximation when yt is I(1). They find this particular approximation works well for
standard macroeconomic time series.
12Estimates for the PAT are continually updated by the OECD as new data become available. Preliminary

analysis using the most recent estimates, kindly made available to us by Ronny Nilsson of the OECD subsequent
to the writing of this paper, suggests that the PAT results are qualitatively different from those presented below
and, in fact, are closer to the results presented here for HP than TIM.
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3.2.1 Parametric measures of the classical cycle

Following Hamilton’s (1989) finding that Markov switching (MS) models can be used to date
accurately the US business cycle, relative to NBER outcomes, MS models have been used
widely to identify the classical business cycle.13 MS models allow the growth rate of output to
be influenced by an unobserved random variable that defines what state or regime the process
is in at time t.

The original Hamilton MS model for the growth rate of output ∆yt is a fourth order autore-
gression with shifts in the mean:

(∆yt − µst) = ρ1(∆y − µst−1) + ... + ρ4(∆y − µst−1) + ut, (3)

where ut ∼ i.i.d.N(0, σ2) and the conditional mean µst is state dependent such that

µst =

½
µ0 if st = 0 (i.e. recession or contraction)
µ1 if st = 1 (i.e. expansion)

¾
(4)

and st, the unobserved state variable, follows a 2, or in general N , state ergodic Markov chain
with transition probabilities pij = Pr(st = j|st−1 = i),

PN−1
j=0 pij = 1, ∀i, j ∈ {0, ..., N −

1}. Estimation facilitates the computation of either the filtered, Pr(st = 1|∆y1, ...,∆yt), or
smoothed, Pr(st = 1|∆y1, ...,∆yT ), probabilities of an expansion, and these values, given a
threshold value (typically 0.5), can be used to divide the sample into expansion and contraction
periods.14 Thus the data can be segmented into a binary series, bt, that takes the value unity
in expansions and zero in contractions. Summary statistics about the business cycle then can
be compiled contingent on identification of the turning points, see Harding and Pagan (2001,
2002a). Interestingly, based on the segmented states bt, the mean duration of an expansion
(TP: trough to peak) is

Eb =

PT
t=1 btPT−1

t=1 (1− bt+1)bt
, (5)

and the mean duration of a contraction (PT: peak to trough) is

Cb =

PT
t=1(1− bt)PT−1

t=1 (1− bt−1)bt
. (6)

By contrast, an alternative measure of the duration of an expansion (or contraction), based on
the unobserved states, is given by

Eu = 1/(1− p11), (or Cu = 1/(1− p00)). (7)

Inference based on the segmented and unobserved states need not be the same.

In the application we consider two MS models, a constant transition probability model and a
time-varying transition probability model. Preliminary analysis for the 12 Euro-zone countries

13It is of interest that under appropriate identification restrictions MS models also can be used to estimate
the ‘growth’ business cycle. Lam’s (1990) and Kim’s (1994) extended version of Hamilton’s (1989) model allows
the explicit identification and estimation of the trend and cyclical components of the underlying series. For a
review see Massmann, Mitchell, and Weale (2002, 2003).
14In our application the smoothed and filtered probabilities are almost identical and we report only the filtered

probabilities.
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confirmed the need to smooth the data, using a seven-month moving average, prior to analysis.15

Smoothing both increased the duration of the business cycle from implausibly low values, and
led to clearer evidence for switches in the mean, see (3). For similar reasons estimation was
over the reduced sample period 1970m1-2002m5.

Constant transition probability model Two-state MS models, see (3), are considered,
where both the intercept and variance are allowed to switch.16 Allowing the variance to switch
lets the volatility of the series vary according to the state or regime. The preferred MS model
took the form:

∆yt = µst + σ2st, st = 0 denotes contraction and st = 1 denotes expansion (8)

Experimentation with alternative MS models, such as those with autoregressive lags (e.g..∆yt−
µst =

2P
i=1

(∆yt−1 − µst−1) + σ2st), led to high transition probabilities, implying business cycles

of implausibly short duration. Furthermore the filtered probabilities were highly erratic and
inconsistent with empirical evidence for the growth rates.17 This lends support to the specifi-
cation (8) that has no autoregressive terms. However, as argued by Garcia and Perron (1996)
spurious autoregressive terms can increase the value of the transition probabilities, but they
suggest that this might be due to the presence of a third state. As discussed in footnote 15
preliminary results indicate that two states are appropriate in our case.

Time-varying transition probability model Although models of the form (3) and (8) al-
low the expected duration of expansions and contractions to differ, their durations are assumed
to remain constant across time. Therefore, these models cannot capture the fact that the prob-
ability of moving from a recession into an expansion may depend on how long the economy has
been in recession. Consequently, MS models with duration dependence have been proposed, e.g.
see the univariate model of Durland and McCurdy (1994) that lets the probability of a regime
shift be a function of the previous state, st−1, as well as its duration. Multivariate extensions by
Filardo (1994, 1998) let the probability of a regime shift be a function of macroeconomic vari-
ables. However, an endogeneity problem might arise between the macroeconomic variables and
the unobserved state variable.18 One possible solution is suggested by Chourdakis and Tzavalis

15Previous work using monthly IIP data has also smoothed the data in an equivalent manner, see Artis,
Krolzig, and Toro (1999).
16We considered a formal statistical test for the number of states, specifically Hansen’s (1992) and Hansen’s

(1996) standardised likelihood ratio test. For simple MS models of the form (8) we tested the null hypothesis
of linearity against the alternative of a two state MS model. For all countries the test provided strong evidence
against linearity. Future work will extend the tests to consider three state MS models. Use will be made of
a computationally less demanding test based on the ARMA representation of MS models, see Psaradakis and
Spagnolo (2003). Artis, Krolzig, and Toro (1999) argue, also using monthly IIP data albeit over a different
sample period, that three-states are appropriate. However, preliminary analysis using our data indicated that
there was not a clear statistical difference between the ‘low’ and ‘high’ (positive) growth states indicating that
two states may be appropriate.
17We considered also models where the autoregressive parameters are regime dependent. However, the tran-

sition probabilities were, in general, statistically insignificant.
18Filardo (1998) shows that when modelling time-varying transition probabilities the macroeconomic variables

that affect time variation must be conditionally uncorrelated with the unobserved state variable. He suggests a
solution based on joint estimation of the macroeconomic variables and the dependent variable.
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(2000). Under Chourdakis and Tzavalis’s (2000) specification the transition probabilities are
determined as follows:

pij = exp(γ0.ij + ϕijpij{1}+ γijut−1/[1 + exp(γ0.ij + ϕijpij{1}+ γijut−1)] for i, j ∈ {0, 1} (9)

where pij{1} is the lagged value of the transition probability. pij{1} is the duration dependence
effect; it lets the probability of switching to another regime potentially increase the longer the
economy has been in the current regime. The presence of ut−1 can represent the effects of
exogenous, say policy, shocks on the transition probabilities. We allow for duration dependence
following Chourdakis and Tzavalis (2000).

3.2.2 Nonparametric measures of the classical cycle

Following the NBER tradition, Harding and Pagan (2002b) advocate the use of a nonparametric
dating rule to isolate turning points in the series. They suggest that the following three criteria
need to be satisfied by the algorithm: (i) it picks the peaks and the troughs of a series, (ii) it
ensures that peaks and troughs alternate and (iii) the cycle it defines has a minimum duration.

While this approach of characterising cycles has the attractive feature of not being dependent on
removing trends estimated by some detrending algorithm, it does also require some parameters
to be chosen. The censoring rule that specifies the minimum duration of the cycle must be
stipulated. We follow Harding and Pagan and specify the censoring rule such that phases last
at least two quarters (six months) and completed cycles (peak to peak, or trough to trough)
last at least five quarters (15 months). Harding and Pagan show that if the dating algorithm
is specified in this fashion it does a good job at approximating the turning points in quarterly
U.S. GDP, as identified by the NBER, cf. Bry and Boschan (1971).

Therefore, in our setting, the process {yt} has a peak at time t if both of the following criteria
are met:

∆iyt > 0,
∆iyt+i < 0,

¾
for all i = 1, . . . , 6, (10)

i.e. if at time t the series has a local maximum relative to the six months on either side. A
trough is defined conversely. Application of the Harding-Pagan rule to the level of the series,
{yt} , yields a binary series with unity indicating a state of expansion, and zero a state of
contraction.19

3.2.3 Comparing ‘growth’ and ‘classical’ business cycles

One implication of having identified the turning points of {yt} is that the information can
be used to rank alternative methods of extracting a growth cycle according to their ability
to match the turning points of the underlying time series, {yt}. This provides an empirically
based, sample specific, means of evaluating one detrending algorithm over another. Specifically,
the turning points of {yt} can be treated as a benchmark, similarly to NBER turning points
19We would like to thank Don Harding for sending us GAUSS files to implement the Harding-Pagan rule.
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in the U.S.. Then, like Canova (1999) for NBER turning points, we can see how well the
alternative detrending methods do at matching this benchmark.20

The turning points of the alternative cyclical components are identified following Harding and
Pagan. Their ability to match the turning points of {yt} is summarised by the correlation coef-
ficient (C) between the two binary series. Robust standard errors for C, se(C), are estimated
by the generalised method of moments (GMM).

4 Correlation between Euro-zone business cycles

Following Massmann and Mitchell (2002b) consider n (in our case we have n = 12) countries’
growth/classical business cycles identified via either a detrending method or a turning point
rule.21 At time t, t = 1, ..., T , estimate using GMM theN vector of contemporaneous correlation
coefficients, ρt, {ρjt}, j = 1, ..., N = n(n− 1)/2, where ρt is defined by stacking the columns of
the lower triangular component of the n× n contemporaneous correlation matrix between the
n cycles for a time-span of length h. Let bρt denote the GMM estimate, V (bρj,t) its estimated
variance and cov(bρjt,bρj0,t) the covariance between bρj,t and bρj0,t, j 6= j0. The Newey and West
(1987) nonparametric estimator, where the truncation parameter is set equal to 4(h/100)2/9, is
used to estimate consistently the asymptotic variance matrix for the mean of the N moment
conditions, even in the presence of serial correlation and heteroscedasticty. It should be noted
that one could consider also leading and lagged correlation to examine whether certain countries’
business cycles are leading or lagging others.

To summarise the N bilateral contemporaneous correlation coefficients we consider their mean,
mt, where

mt = N−1XN

j=1
bρj,t. (11)

In fact, we consider a weighted mean, where the bilateral correlation coefficients are weighted
according to the combined ‘size’ of the two countries under consideration. Size is proxied by to-
tal population in 1985. Weights derived from PPP GDP at constant prices proved qualitatively
similar.

The estimated variance of the sample mean, V (mt), used to obtain confidence bands around
mt, is given by

V (mt) = N−2
"

NX
j=1

V (bρj,t) + NX
i=1

NX
j=i+1

2cov(bρi,t,bρj,t)
#

(12)

A rise in mt across time is viewed as evidence for increased synchronisation of business cycles
consistent with the emergence of a ‘common’ Euro-zone business cycle. It should be noted
that this is a necessary but not sufficient condition for a ‘common’ Euro-zone business cycle.

20Although widely used this benchmark may be considered theoretically flawed since the benchmark to which
the growth cycle is compared is the classical cycle. There may be no theoretical reason to expect the two types
of cycles to exhibit similar turning point behaviour.
21Using a turning point rule Harding and Pagan (2001), in the two-country case, propose a related measure

of synchronisation. Whereas their statistical tests are based on robust regression coefficients, we consider robust
correlation coefficients.
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Massmann and Mitchell (2002b) note that it is important also to consider the variance of
the correlation coefficients, as well as measures of the extent of intra-distributional movement
within the distribution of correlation coefficients across time.

5 Empirical results

5.1 Alternative estimates of Euro-zone ‘growth’ and ‘classical’ busi-
ness cycles

We have seen that there are many ways to measure a business cycle, but does this actually
affect the way Euro-zone business cycles look? Let us first present some summary statistics
that describe the properties of the alternative measures of Euro-zone business cycles. Then we
will examine further the differences across these alternative measures by computing the full-
sample correlation matrix across the 12 Euro-zone business cycles for each measure. This lets
us ascertain to what extent the growth cycles estimated by the seven alternative de-trending
methods, and the classical cycles derived via MS models and the Harding-Pagan rule, have fun-
damentally different statistical properties. As has been already noted, Canova (1998a, 1998b)
found important differences across ‘growth’ cycles.

For each of the seven alternative estimates of the growth cycle, Tables 1-12 present two sets of
summary statistics. The first set detail the statistical properties of the generated cycles, while
the second set list their turning point characteristics identified by applying the Harding-Pagan
rule to them. Note that data on the PAT are available up to 2001m8 only, and are not available
for Belgium prior to 1970 and as a result we do not report PAT cycles for Belgium.

Consider the statistical properties of the growth cycles first. It is evident that there are impor-
tant differences across de-trending methods. Take, for instance, the measure of dispersion, i.e.
the standard deviation. The TIM and, to a lesser extent, PAT cycles display most variation,
with standard deviations greater than 0.5, and are relatively persistent. By contrast the other
cycles display less variation and provide more noisy estimates of the cycle. The period of the
cycle, derived from the spectrum, varies too. The period is longer the more volatile the cycle.
Indeed, the cycle with the highest variation according to this measure of the duration of a cycle,
i.e. TIM, does not even cycle in the sense that its spectral density peaks at frequency zero.

Turning to the set of statistics based on application of the Harding-Pagan rule, we note that the
growth cycles also differ with respect to the number of turning points detected. For instance,
the cycles generated by the MA filter display far fewer turning points than the other de-trending
methods even those, such as the BK and CF cycles computed over comparable sample-periods.
However, a property common across many de-trending methods is that business cycles are
asymmetric, in the sense that expansions last longer than contractions. The duration from
peak to trough, and vice-versa, is an alternative measure of the cycle’s period. There is no
theoretical relationship, however, between this measure and that based on the cycles’ spectra
mentioned in the previous paragraph.

The final two columns of Tables 1-12 present the correlation coefficient C, and its estimated
standard error, between the turning points of the seven estimates of the growth cycle and the
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classical cycle identified using the Harding-Pagan rule. They indicate that the turning points
of the growth cycles, in general, explain a statistically significant amount of the variation in
the classical cycle.

Table 13 presents the mean duration in months of business cycle phases for the three measures of
the classical business cycle considered. Since the MS models are estimated over a shorter sample
period (1970m1-2002m5) than considered for the ‘growth’ cycles, statistics for the Harding-
Pagan measure also are presented for this period. For the MS model with constant transition
probabilities measures of duration based on both the segmented and unobserved states are
presented, see (5)-(7).

Using the Harding-Pagan rule the mean duration of a Euro-zone business cycle is seen in Table
13 to be approximately 60 months or 5 years, and expansions last much longer than contractions.
This is broadly comparable to the measures of duration for the growth business cycles seen in
Tables 1-12, although substantial differences again lie in the country-specific details. However,
the MS models suggest quite different durations for the business cycle.

The business cycles implied by the MS models, in general, are shorter and more volatile than
those for either the Harding-Pagan measure or the growth cycles. This seems to be a property
shared by other MS models estimated for monthly IIP, see Artis, Krolzig, and Toro (1999).
Moreover, the estimates of business cycle duration are sensitive to both the type of MS model
considered as well as the measure of duration considered for the MS model.

Estimation results for the MS models did indicate that the transition probabilities are not
constant over time. Plotting the time-varying transition probabilities revealed considerable
variation over time. Furthermore, estimates of γij and φij were statistically significant in
most cases again implying that transition probabilities are not constant across time; estimates
suggested that the longer one stays in one regime (expansion or contraction) the more likely it
becomes that one will switch regime. It should be noted that for a minority of countries, such
as Ireland and Portugal, estimates indicated (as bµ0 and bµ1 were positive) that the states should
not be interpreted as expansion and contraction, but rather ‘high’ and ‘low’ (positive) growth.
For these countries we should re-interpret the PT phase as ‘low’ growth. The finding using the
MS models, for say Portugal, that PT is greater than TP therefore is not saying recessions last
longer than expansions. Results also indicate, in general, that the variance in a contraction is
higher than that in an expansion. Further estimation results are available from the authors
upon request.

Tables 14-23 present the matrices of correlation coefficients between the 12 Euro-zone business
cycles for each measure of the business cycle. Estimated standard errors are in parentheses.
The standard errors are estimated using GMM, and are consistent even in the presence of se-
rial correlation and heteroscedasticity. Summarising the information in the Tables, correlation
between countries varies dramatically according to the measure of the business cycle used. In
general, correlation is highest for those measures of the ‘growth’ business cycle that were found
in Tables 1-12 to have the highest standard deviation (low volatility), such as TIM. As a specific
example consider the correlation between France and Germany, two of the Euro-zone’s largest
economies. Correlation ranges from 0.09 (for the MS model with constant transition probabil-
ities) to 0.912 (for TIM), with the other measures in the range 0.33 (for the MS model with
time-varying transition probabilities) to 0.67 (for MA). Since even a high correlation coefficient
of, say, 0.9 between two cycles implies that one cycle explains just over 80% of the variation in
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the other cycle, nearly 20% of this variation is still left unexplained. These differences between
alternative measures of the Euro-zone’s business cycle could prove important in ascertaining
whether there is a ‘common’ cycle, and it is clearly advisable not to restrict attention to just one
measure of the business cycle unless one has a strong preference for one measure over another.22

5.2 Synchronisation of Euro-zone business cycles

Having established that it is important how we measure the business cycle, Figures 1-4 display
for each measure the size-weighted average contemporaneous correlation, mt cf. (11), between
the 12 Eurozone business cycles for a 3-year rolling window centered on the mid-point of the
window.23 The 95% confidence bands, the dashed outer lines, provide a measure of uncertainty
associated with the estimates.24 For the MS models we consider the contemporaneous corre-
lation between the filtered probabilities of an expansion, while for the Harding-Pagan measure
we consider the correlation between the binary series, with unity denoting expansion.

Figures 1-4 reveal that correlation on average is positive, and in a statistically significant
manner. Re-assuringly, Euro-zone business cycles are positively correlated. But there has been
considerable volatility. Nevertheless, we can extract common features across the alternative
measures of the business cycle. These include correlation trending upwards until the mid 1970s
and reaching peaks of 0.4 to 0.75, according to the measure of the business cycle. Then, with
for some measures a short-lived rise in the early 1980s, correlation in general falls to zero in the
mid 1980s and is statistically insignificant. It is quite striking that this result is common across
the alternative measures. Correlation then rises post mid 1980s to values in the range 0.25 to
0.5, before slumping quite rapidly around 1990. Since 1990 correlation between the Euro-zone
countries has risen but remained volatile, experiencing a trough in the mid 1990s. Correlation
has risen in the late 1990s to values in the range 0.25 to 0.5, and the most recent estimates
indicate that it continues to rise. Without forecasting, it is, of course, too early to tell whether
these recent trends will continue.

Although in this paper we seek to establish the facts rather than explain them, it is interesting
to relate this behaviour to the exchange-rate regime. An interesting hypothesis is whether rises
in the mean correlation coefficient coincide with periods when the exchange-rate has been fixed,
to some degree.25 This hypothesis has attracted considerable attention, see Artis and Zhang
(1997, 1999) and Inklaar and de Haan (2001). Consistent with the findings of Artis and Zhang
(1999) there is some supportive evidence in Figures 1-4. For example, the fall in correlation
that occurred in the mid 1970s was in the aftermath of the collapse of the Bretton Woods
fixed exchange-rate regime. Then the rise in correlation from the mid 1980s, and again from

22Arguably given that unit root tests indicate that the IIP data contain a unit root, the TIM cycles are
our least preferred measure of the business cycle. A simple deterministic time trend cannot account for this
nonstationarity even if it is due to a deterministic (structural) shift, rather than a unit root.
23Due to the possibility of long sequences of zeros or ones, it proved possible only to consider a longer window

of 168 months (14 years) for the Harding-Pagan measure. Otherwise there may be no cyclical variation.
24Estimates of V (mt) are computed assuming independence, i.e. the covariances in (12) are set equal to zero.

This avoided singularities in the variance-covariance matrix.
25Many other explanations for increased comovement between business cycles have been given. Increased

correlation, for example, also has been related to international trade and geographical proximity, see Frankel
and Rose (1998) and Clark and van Wincoop (2001), respectively.
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the mid 1990s, was at a time when the EMS was relatively stable and credible; there were,
for example, no exchange-rate re-alignments either in the late 1980s or from the mid 1990s,
consistent with the entry requirements for EMU. By contrast the period of falling correlation
in the early 1980s (specifically 1981-1986) was characterised by eleven re-alignments, see Gros
and Thygesen (1998) for a more detailed chronology. The collapse in average correlation in the
early 1990s can be explained away by German unification and the ensuing currency crises in
1992. These events, again see Gros and Thygesen (1998) for more details, temporarily disrupted
the emergence of a ‘common’ Euro-zone business cycle. Whether or not one subscribes to this
story, and more work certainly is needed, it is encouraging that in the run up to monetary
union, and irrevocably fixed exchange-rates, correlation has been rising.

Finally we examine whether the recent evidence for more synchronised Euro-zone business cycles
is specific to the Euro-zone or a tendency of world business cycles. As the control, we consider
the Euro-zone’s size-weighted average correlation with the US. We exclude Germany from the
Euro-zone, as we wish also to consider these 11 economies’ size-weighted average correlation
with Germany. This is instructive, as increased correlation with Germany often is taken as
evidence for a common Euro-zone business cycle. To summarise the bilateral correlations of
Germany and the US against the 11 Euro-zone business cycles, we consider the size-weighted
average contemporaneous correlation coefficient between them. This statistic is again computed
for a series of rolling windows with a length of 3 years, except for the Harding-Pagan measure
where a window length of 14 years is considered. Figures 5 and 6 present the results; for
expositional ease 95% confidence bands are not presented.

Figure 5 presents the average correlation between Germany and the remaining 11 Euro-zone
countries for each measure of the business cycle. Results, in general, are consistent with those
in Figures 1-4. The most recent estimates again suggest that Euro-zone business cycles are
becoming increasingly in sink with those of Germany.

Figure 6 then considers the average correlation of the Euro-zone (excluding Germany for con-
sistency) with the US. Results indicate that this Euro-zone group is better correlated with
Germany than the US. For example, the mean of the average correlation figures (presented
in Figures 5 and 6) for each measure of the business cycle is higher over the period 1995m1-
2000m2, and 1998m1-2000m2, against Germany than the US. Table 24 summarises the findings.
Although correlation is higher against the US for the period 1998m1-2000m2 than 1995m1-
2000m2, correlation also has risen against Germany. Moreover, correlation always is higher
against Germany than the US. This supports the view that there is an emerging ‘common’
Euro-zone business cycle.

5.3 ‘Closeness’ between Euro-zone business cycles

Euro-zone business cycles can be compatible, or be seen to be converging, even if they are
not becoming increasingly correlated. This can occur if Euro-zone business cycles move closer
together, in the sense that the cyclical disparity between them declines. Any reduction need
not be associated with increased correlation.

One possible measure of closeness is to consider the root mean squared difference between the
Euro-zone ‘growth’ business cycles, expressed as a percentage of potential or trend output, for
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a series of rolling windows. Since quantitative estimates of the ‘output gap’ are required we
cannot conduct this exercise for the classical measures of the business cycle.

Figure 7 plots the size-weighted average root mean squared difference between Euro-zone busi-
ness cycles for the alternative measures of the growth business cycle, for windows of 3 years.
All measures bar two indicate that Euro-zone business cycles have moved closer together over
time; cyclical disparity between the Euro-zone economies has declined to historically low levels.

We can see a slight increase in disparity in the mid 1980s and in the aftermath of German
unification at the time of the currency crises in 1992, but the general trend clearly is downward.
The TIM and PAT measures, however, indicate that despite declining from high levels in the
1970s, disparity within the Euro-zone has risen in the late 1990s. The other measures do not
indicate such a pronounced rise over this late period. We believe the PAT and TIM measures
are overstating the extent of the rise, since the trend component of both measures often fails
to keep up with the increase in output. This leads to inflated estimates of the ‘output gap’.
By necessity our statistical approach to identifying and estimating business cycle relationships
often requires a number of lead observations. This can prevent us examining the current state
of the Euro-zone business cycle. Indeed our estimates of the business cycle in 2001 will, in all
probability, be revised when new data become available. Therefore the most recent estimates
about the Euro-zone are subject to change too.

6 Conclusion

Empirical inference about individual Euro-zone business cycles is found to be sensitive to the
measure of the business cycle considered. Examining seven measures of the ‘growth’ busi-
ness cycle, and three measures of the ‘classical’ business cycle, we find that business cycles of
Euro-zone countries display different properties according to the measure used. Furthermore,
correlation between individual Euro-zone countries varies according to the measure considered.

However, our measure of synchronisation between Euro-zone business cycles, i.e. the average
(size-weighted) correlation between them, exhibits common features across alternative mea-
sures of the business cycle. Average correlation, computed for a series of rolling windows, has
risen from zero in the mid 1980s, and the most recent estimates for the turn of the Century
indicate that average correlation continues to rise. This increased synchronisation between
Euro-zone business cycles is consistent with the emergence of a ‘common’ Euro-zone business
cycle. Perhaps we can only expect this trend to continue since the very existence of EMU,
and irrevocably fixed exchange-rates, is believed to encourage the emergence of a ‘common’
Euro-zone business cycle; for further discussion of such endogeneities see Artis (1999). Ac-
companying this increased correlation our results indicate that Euro-zone business cycles have
moved ‘closer’ together, according to the (size-weighted) average root mean squared difference
computed for a series of rolling windows. Together, the increased average correlation and re-
duced cyclical disparity bode well for the successful operation of a common monetary policy in
Europe.

241



References

Agresti, A.-M., and B. Mojon (2001): “Some stylised facts on the Euro area business
cycle,” ECB Working Paper No. 95.

Arino, M. A., and P. Newbold (1998): “Computation of the Beveridge-Nelson decompo-
sition for multivariate economic time series,” Economics Letters, 61(1), 37—42.

Artis, M. (1999): “Should the UK join EMU?,” National Institute Economic Review, 171,
70—81.

Artis, M., H.-M. Krolzig, and J. Toro (1999): “The European business cycle,” CEPR
Discussion Paper, 2242.

Artis, M., and W. Zhang (1997): “International business cycle and the ERM: is there a
European business cycle?,” International Journal of Finance and Economics, 2, 1—16.

(1999): “Further evidence on the international business cycle and the ERM: is there
a European business cycle?,” Oxford Economic Papers, 51, 120—132.

Backhouse, R., and A. Salanti (eds.) (2000): Macroeconomics and the Real World. Oxford
University Press.

Baxter, M., and R. G. King (1999): “Measuring business cycles: Approximate band-pass
filters for economic time series,” Review of Economics and Statistics, 81(4), 575—93.

Benati, L. (2001): “Band pass filtering, cointegration and business cycle analysis,” Bank of
England Working Paper no. 142.

Beveridge, S., and C. R. Nelson (1981): “A new approach to decomposition of economic
time series into permanent and transitory components with particular attention to measure-
ment of the ’business cycle’,” Journal of Monetary Economics, 7(2), 151—74.

Bry, G., and C. Boschan (1971): “Interpretation and analysis of time-series scatters,” The
American Statistician, 25(2), 29—33.

Burns, A., and W. Mitchell (1946): Measuring Business Cycles. NBER, New York.

Canova, F. (1998a): “Detrending and business cycle facts,” Journal of Monetary Economics,
41(3), 475—512.

(1998b): “Detrending and business cycle facts: A user’s guide,” Journal of Monetary
Economics, 41(3), 533—40.

(1999): “Does detrending matter for the determination of the reference cycle and the
selection of turning points?,” Economic Journal, 109(452), 126—50.

Chourdakis, K., and E. Tzavalis (2000): “Option pricing under discrete shifts in stocks
returns,” Queen Mary University of London working paper series, 426.

Christiano, L. J., and T. J. Fitzgerald (1999): “The band pass filter,” NBER Working
Paper 7257.

242



Christodoulakis, N., S. Dimelis, and T. Kollintzas (1995): “Comparison of business
cycles in the EC: Idiosyncracies and regularities,” Economica, 62, 1—27.

Clark, T., and E. van Wincoop (2001): “Borders and business cycles,” Journal of Inter-
national Economics, 55, 59—85.

Doornik, J. (1998): Object-oriented Matrix Programming using Ox. Timberlake Consultants.

Durland, J., and T. McCurdy (1994): “Duration-dependent transitions in a Markov model
of US GNP growth,” Journal of Business and Economic Statistics, 12, 279—288.

Filardo, A. (1994): “Business-Cycle phases and their transition dynamics,” Journal of Busi-
ness and Economic Statistics, 12, 299—308.

(1998): “Choosing information variables for transition probabilities in a time-varying
transition probability Markov switching model,” Discussion Paper No. 98-09, Federal Reserve
Bank of Kansas City.

Findley, D., B. Monsell, W. Bell, M. Otto, and B.-C. Chen (1998): “New capabil-
ities and methods of the X-12-ARIMA seasonal adjustment program,” Journal of Business
and Economic Statistics, 16, 127—152.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000): “Reference cycles: the NBER
methodology revisited,” Discussion Paper No. 2400, CEPR.

Frankel, J., and A. Rose (1998): “The endogenenity of the optimum currency area criteria,”
Economic Journal, 108, 1009—1025.

Garcia, R., and P. Perron (1996): “An analysis of the real interest rate under regime
shifts,” Review of Economics and Statistics, 78, 111—125.

Gomez, V., and A. Maravall (1998): “Tramo-Seats,” Mimeo, Banca de Espana.

Gros, D., and N. Thygesen (1998): European Monetary Integration: from the European
Monetary System to Economic and Monetary Union. Longman, 2nd edition.

Hamilton, J. D. (1989): “A new approach to the analysis of non-stationary time series and
the business cycle,” Econometrica, 57, 357—384.

Hansen, B. (1992): “The likelihood ratio test under non-standard conditions: testing the
Markov switching model of GNP,” Journal of Applied Econometrics, 7, 561—582.

(1996): “Erratum: The likelihood ratio test under non-standard conditions: testing
the Markov switching model of GNP,” Journal of Applied Econometrics, 11, 195—198.

Harding, D., and A. Pagan (2000): “Synchronisation of cycles,” Mimeo, University of
Melbourne.

(2001): “Extracting, analysing and using cyclical information,” Mimeo, University of
Melbourne.

(2002a): “A comparison of two business cycle dating methods,” Journal of Economic
Dynamics and Control, Forthcoming.

243



(2002b): “Dissecting the cycle: A methodological investigation,” Journal of Monetary
Economics, 49, 365—381.

Harvey, A., and S. Koopman (2000): “Signal extraction and the formulation of unobserved
components models,” Econometrics Journal, 3, 84—107.

Harvey, A., and T. Trimbur (2002): “General model based filters for extracting trends and
cycles in economic time series,” Review of Economics and Statistics, Forthcoming.

Harvey, A. C. (1993): Time Series Models. Harvester-Wheatsheaf, 2nd. ed.

Harvey, A. C., and A. Jaeger (1993): “Detrending, stylized facts and the business cycle,”
Journal of Applied Econometrics, 8, 231—247.

Inklaar, R., and J. de Haan (2001): “Is there really a European business cycle? A com-
ment,” Oxford Economic Papers, 53, 215—220.

Kim, C. J. (1994): “Dynamic linear models with Markov-switching,” Journal of Econometrics,
60(1-2), 1—22.

Koopman, S. J., N. Shephard, and J. A. Doornik (1999): “Statistical algorithms for
models in state space using SsfPack 2.2,” Econometrics Journal, 2(1), 107—60.

Lam, P. S. (1990): “The Hamilton model with a general autoregressive component: Estimation
and comparison with other models of economic time series,” Journal of Monetary Economics,
26(3), 409—32.

Massmann, M., and J. Mitchell (2002a): “Have UK and Eurozone business cycles become
more correlated?,” National Institute Economic Review, 18, 58—71.

(2002b): “Re-considering the evidence: are European business cycles converging?,”
Mimeo, National Institute of Economic and Social Research.

Massmann, M., J. Mitchell, and M. Weale (2002): Business Cycle Analysis. Final
Report submitted to EUROSTAT by the National Institute of Economic and Social Research.

(2003): “Business cycles and turning points: a survey of statistical techniques,”
National Institute Economic Review, Forthcoming.

Morley, J., C. R. Nelson, and E. Zivot (2002): “Why are Beveridge-Nelson and unob-
served component decompositions of GDP so different?,” Review of Economics and Statistics,
Forthcoming.

Murray, C. J. (2001): “Cyclical properties of Baxter-King filtered time series,” Mimeo,
University of Houston.

Newbold, P. (1990): “Precise and efficient computation of the Beveridge-Nelson decomposi-
tion of economic time series,” Journal of Monetary Economics, 26(3), 453—57.

Newey, W., and K. West (1987): “A simple, positive semi-definite heteroskedasticity and
autocorrelation consistent covariance matrix,” Econometrica, 55, 703—708.

244



Osborn, D. R. (1995): “Moving average detrending and the analysis of business cycles,”
Oxford Bulletin of Economics and Statistics, 57, 547—558.

Pedersen, T. M. (2001): “The Hodrick-Prescott filter, the Slutzky effect and the distor-
tionary effect of filters,” Journal of Economic Dynamics and Control, 25, 1081—1101.

Psaradakis, Z., and N. Spagnolo (2003): “On the determination of the number of regimes
in Markov-Switching autoregressive models,” Journal of Time Series Analysis, Forthcoming.

Ravn, M., and H. Uhlig (2002): “On adjusting the Hodrick-Prescott filters for the frequency
of observations,” Review of Economics and Statistics, 84, 371—380.

Vahid, F., and R. Engle (1993): “Common trends and common cycles,” Journal of Applied
Econometrics, 8, 341—360.

Zarnowitz, V., and A. Ozyildirim (2002): “Time series decomposition and measurement
of business cycles, trends and growth cycles,” NBER Working Paper 8736.

245



Table 1: Business cycle characteristics: Austria

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.026 -0.180 -0.174 57.059 10.000 11.000 23.200 23.700 51.134 0.459 0.080

TIM 0.077 0.087 -0.777 ∞ 9.000 10.000 22.556 29.556 57.113 0.423 0.089

MA 0.037 0.084 -0.603 86.444 6.000 7.000 26.500 31.000 52.442 0.508 0.089

HP 0.028 -0.210 -0.004 64.667 10.000 11.000 21.700 24.500 52.784 0.497 0.078

BK 0.019 -0.070 -0.150 55.067 9.000 8.000 22.250 26.750 53.995 0.429 0.089

CF 0.024 -0.163 -0.351 55.067 9.000 8.000 22.500 25.750 53.511 0.424 0.092

PAT 0.044 0.812 1.310 ∞ 9.000 9.000 28.000 25.000 47.269 0.471 0.075

Notes: UC: unobserved components; TIM: time trend; MA: moving average; HP: Hodrick-Prescott; BK:
Baxter-King; CF: Christiano-Fitzgerald; PAT: Phase Average Trend; s.d. denotes standard deviation of
cycle; skew: measure of skewness, equal to zero for symmetrical distributions; kurtosis: measure of kurtosis
in excess of 3, equal to zero for the normal distribution; period denotes the length in months of the cycle
derived from that frequency where the spectral density of the cycle has a peak; 8 indicates that the peak
was at frequency zero; peaks and troughs are the number of peaks and troughs identified using the Harding-
Pagan rule; PT denotes peak to trough; TP denotes trough to peak; dur denotes the duration of a phase;
PE is the percentage of time spent in an expansion state C is the measure of coherence and se(C) its
robust estimated standard error. Analysis of the UC, TIM and HP cycles is over the full sample period,
1962m1-2002m5. The BK and CF cycles are considered over the periods 1965m1-1999m5 and 1964m1-
2000m5 respectively, and the PAT and MA cycles over the period 1962m1-2001m8 and 1966m1-1998m5,
respectively

Table 2: Business cycle characteristics: Belgium

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.038 0.091 -0.401 ∞ 11.000 11.000 20.700 23.364 52.990 0.482 0.086

TIM 0.089 0.153 -0.391 ∞ 10.000 10.000 17.333 30.800 63.505 0.636 0.090

MA 0.040 0.145 -0.285 389.000 9.000 9.000 18.125 22.778 52.699 0.462 0.096

HP 0.031 -0.124 0.177 64.667 11.000 11.000 19.200 24.727 56.082 0.523 0.087

BK 0.020 0.094 -0.047 48.588 13.000 13.000 12.083 16.538 52.058 0.155 0.093

CF 0.023 -0.156 -0.085 43.474 12.000 12.000 13.545 17.333 50.363 0.101 0.093

Table 3: Business cycle characteristics: Finland

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.052 -0.405 0.073 ∞ 12.000 11.000 21.000 21.000 48.454 0.456 0.078

TIM 0.097 -0.394 -1.042 ∞ 14.000 14.000 12.692 21.000 60.619 0.552 0.093

MA 0.043 -0.483 -0.185 ∞ 10.000 9.000 15.333 26.000 62.725 0.549 0.114

HP 0.032 -0.236 -0.129 69.286 12.000 11.000 14.273 24.273 63.711 0.520 0.100

BK 0.021 -0.491 -0.228 63.538 13.000 12.000 13.917 18.917 55.932 0.407 0.094

CF 0.026 0.068 -0.202 59.000 11.000 10.000 17.100 21.600 53.269 0.408 0.090

PAT 0.073 0.103 1.851 ∞ 11.000 10.000 20.000 26.200 55.882 0.507 0.088
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Table 4: Business cycle characteristics: France

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.017 -0.387 0.758 40.417 13.000 13.000 19.500 15.923 42.680 0.405 0.076

TIM 0.092 -0.152 -0.888 ∞ 11.000 11.000 22.400 19.727 44.742 0.412 0.079

MA 0.024 -0.083 -0.285 259.333 9.000 9.000 20.556 21.000 52.442 0.465 0.092

HP 0.019 -0.372 0.600 51.053 14.000 14.000 17.154 15.571 44.948 0.334 0.080

BK 0.014 -0.398 0.609 45.889 12.000 11.000 16.818 17.909 51.816 0.384 0.085

CF 0.016 -0.611 0.680 45.889 11.000 10.000 18.500 19.700 51.816 0.352 0.087

PAT 0.039 -2.391 20.921 ∞ 11.000 12.000 17.636 21.364 56.092 0.711 0.075

Table 5: Business cycle characteristics: Germany

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.035 -0.412 0.074 74.615 12.000 11.000 16.091 25.909 60.412 0.559 0.086

TIM 0.081 -0.325 -0.822 ∞ 10.000 10.000 18.333 30.100 62.062 0.744 0.081

MA 0.038 -0.309 -0.140 77.800 6.000 7.000 21.500 35.333 62.468 0.590 0.097

HP 0.029 -0.532 0.325 60.625 12.000 11.000 16.727 24.727 57.732 0.519 0.085

BK 0.021 -0.532 0.178 55.067 11.000 11.000 18.000 19.455 51.816 0.462 0.083

CF 0.028 -0.453 -0.135 55.067 10.000 9.000 19.889 23.222 53.269 0.427 0.088

PAT 0.040 -0.261 -0.382 86.545 12.000 11.000 15.727 26.273 62.395 0.741 0.085

Table 6: Business cycle characteristics: Greece

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.028 0.351 0.463 53.889 10.000 11.000 19.800 23.900 53.196 0.378 0.084

TIM 0.221 -0.130 -1.273 ∞ 8.000 8.000 30.250 30.000 50.103 0.349 0.083

MA 0.036 0.908 1.181 778.000 8.000 8.000 24.625 25.571 49.357 0.359 0.091

HP 0.029 0.430 0.680 57.059 10.000 11.000 19.800 23.900 53.196 0.378 0.084

BK 0.019 1.119 2.210 45.889 11.000 12.000 17.000 17.727 52.542 0.184 0.090

CF 0.023 0.931 1.672 51.625 11.000 12.000 17.091 17.636 52.542 0.170 0.087

PAT 0.042 0.406 0.654 ∞ 9.000 9.000 17.889 35.500 66.176 0.646 0.106

Table 7: Business cycle characteristics: Ireland

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.039 -0.395 0.229 64.667 14.000 14.000 18.643 16.462 46.186 0.297 0.081

TIM 0.173 0.744 0.392 ∞ 13.000 13.000 17.538 15.417 52.990 0.269 0.090

MA 0.046 -0.178 -0.418 77.800 10.000 11.000 19.400 17.000 48.843 0.354 0.095

HP 0.037 -0.301 0.384 57.059 13.000 13.000 19.077 18.917 48.866 0.322 0.083

BK 0.025 -0.219 -0.375 51.625 12.000 12.000 16.000 17.667 51.332 0.403 0.089

CF 0.031 0.155 0.057 51.625 10.000 10.000 20.333 20.400 49.395 0.372 0.087

PAT 0.105 1.598 3.639 ∞ 13.000 12.000 17.000 21.833 55.882 0.480 0.091
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Table 8: Business cycle characteristics: Italy

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.024 0.065 0.243 31.290 14.000 15.000 16.929 16.857 49.897 0.297 0.086

TIM 0.077 -0.410 0.568 ∞ 9.000 9.000 20.625 33.000 61.237 0.647 0.087

MA 0.036 -0.176 -0.543 778.000 9.000 9.000 17.000 26.889 62.211 0.689 0.100

HP 0.029 -0.196 -0.253 32.333 13.000 13.000 18.500 18.462 49.485 0.402 0.083

BK 0.021 -0.184 0.006 31.769 14.000 13.000 13.154 15.308 54.479 0.432 0.088

CF 0.024 0.261 0.625 31.769 13.000 12.000 14.083 16.833 54.964 0.296 0.090

PAT 0.041 -0.023 -0.153 68.000 11.000 11.000 19.200 24.545 56.723 0.708 0.078

Table 9: Business cycle characteristics: Luxembourg

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.048 -0.075 -0.380 88.182 13.000 12.000 19.167 16.917 49.691 0.579 0.071

TIM 0.054 -0.043 -0.288 ∞ 12.000 11.000 20.273 17.364 47.216 0.546 0.072

MA 0.045 0.140 -0.253 64.833 10.000 11.000 18.200 18.700 52.185 0.606 0.080

HP 0.039 0.006 -0.085 57.059 12.000 11.000 19.545 18.091 48.866 0.506 0.076

BK 0.025 0.066 -0.512 51.625 11.000 12.000 17.909 15.909 43.826 0.453 0.071

CF 0.032 0.351 0.000 55.067 11.000 12.000 18.455 15.545 42.857 0.502 0.067

PAT 0.059 0.010 0.034 68.000 12.000 12.000 16.727 22.083 55.672 0.748 0.070

Table 10: Business cycle characteristics: The Netherlands

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.023 -0.315 0.052 51.053 14.000 13.000 16.308 19.615 54.021 0.489 0.083

TIM 0.080 -0.420 0.134 ∞ 12.000 12.000 17.833 23.364 55.876 0.670 0.075

MA 0.030 -0.320 -0.012 86.444 8.000 9.000 22.750 21.750 48.843 0.591 0.081

HP 0.025 -0.414 0.202 64.667 12.000 13.000 19.000 19.667 50.103 0.528 0.079

BK 0.016 -0.349 -0.223 51.625 11.000 11.000 16.200 18.727 49.879 0.450 0.079

CF 0.019 -0.139 -0.868 48.588 10.000 10.000 19.444 19.200 46.489 0.511 0.074

PAT 0.031 -0.399 0.301 86.545 12.000 11.000 20.273 21.636 51.471 0.435 0.086

Table 11: Business cycle characteristics: Portugal

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.045 -0.054 0.225 74.615 10.000 11.000 28.100 17.000 38.351 0.337 0.075

TIM 0.073 0.137 -1.129 ∞ 12.000 13.000 21.250 16.333 43.711 0.368 0.078

MA 0.049 -0.016 0.028 70.727 7.000 8.000 22.857 20.429 41.131 0.474 0.078

HP 0.039 0.037 0.486 64.667 11.000 12.000 22.818 18.182 44.536 0.296 0.084

BK 0.026 0.146 0.377 55.067 12.000 13.000 17.417 16.000 48.184 0.411 0.080

CF 0.032 0.224 0.311 55.067 12.000 12.000 18.273 16.250 47.215 0.355 0.083

PAT 0.052 0.025 0.376 95.200 13.000 14.000 20.538 14.154 40.126 0.419 0.070
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Table 12: Business cycle characteristics: Spain

Statistical Properties Turning point rule

s.d. skew kurtosis period peaks troughs dur:PT dur:TP PE C se(C)

UC 0.023 -0.133 -0.161 42.174 11.000 11.000 23.500 18.545 42.062 0.203 0.085

TIM 0.184 -0.388 -0.278 ∞ 10.000 10.000 26.000 22.000 45.361 0.382 0.078

MA 0.037 -0.005 -0.068 ∞ 8.000 8.000 21.625 25.857 55.527 0.477 0.095

HP 0.028 -0.234 -0.258 53.889 11.000 10.000 25.800 18.800 41.237 0.279 0.082

BK 0.020 -0.342 0.254 48.588 12.000 11.000 18.000 16.818 48.910 0.243 0.091

CF 0.024 -0.070 0.296 48.588 12.000 11.000 16.727 18.000 52.058 0.283 0.091

PAT 0.037 -0.007 -0.223 ∞ 11.000 11.000 19.700 22.000 50.840 0.437 0.083

Table 13: Mean business cycle duration for three measures of the
‘classical’ business cycle

Harding-Pagan MS: constant tran. prob. MS: time-varying

1962m1-2002m5 1970m1-2002m5 Cu Eu Cb Eb Cb Eb

PT TP PT TP PT TP PT TP PT TP

AUS 13.63 45.00 13.67 45.00 14.92 20.40 8.58 11.50 11.35 11.06

BEL 19.33 49.71 19.33 32.86 14.49 8.33 12.90 6.58 13.945 5.53

FIN 11.33 54.86 13.25 58.80 12.20 33.33 8.08 21.00 7.33 21.69

FRA 13.55 33.80 12.75 27.75 33.33 32.25 20.44 18.60 18.43 8.00

GER 13.11 34.80 13.00 27.33 12.82 23.25 13.10 23.90 10.46 18.00

GRE 10.50 51.57 10.50 36.60 27.78 13.88 22.73 10.919 16.73 7.93

IRE 17.75 78.20 19.00 89.00 14.92 15.87 9.211 10.83 7.95 11.11

ITA 16.13 43.00 17.43 33.43 13.51 15.51 10.93 12.88 11.40 12.44

LUX 11.83 25.46 13.38 27.67 17.86 5.55 13.35 4.91 8.50 3.71

NET 13.60 33.80 13.89 25.89 14.08 23.80 9.43 17.00 10.33 14.33

POR 11.89 42.00 12.50 42.83 20.83 12.50 12.61 7.94 13.56 9.56

SPA 23.60 41.20 23.60 41.20 21.73 13.88 13.81 8.77 11.40 6.76
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Table 14: UC: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1962.1-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.491 0.283 0.500 0.581 0.199 0.322 0.303 0.333 0.566 0.371 0.391

- (0.087) (0.083) (0.099) (0.090) (0.082) (0.098) (0.090) (0.081) (0.089) (0.095) (0.078)

BEL - 1.00 0.308 0.494 0.666 0.294 0.454 0.301 0.444 0.493 0.488 0.250

- - (0.093) (0.085) (0.090) (0.080) (0.089) (0.083) (0.079) (0.083) (0.101) (0.076)

FIN - - 1.00 0.190 0.295 0.203 0.224 0.105 0.253 0.211 0.197 0.174

- - - (0.080) (0.116) (0.079) (0.069) (0.075) (0.085) (0.076) (0.092) (0.094)

FRA - - - 1.00 0.450 0.210 0.350 0.415 0.307 0.460 0.268 0.449

- - - - (0.097) (0.089) (0.108) (0.105) (0.062) (0.098) (0.090) (0.091)

GER - - - - 1.00 0.231 0.359 0.167 0.501 0.562 0.430 0.355

- - - - - (0.079) (0.085) (0.078) (0.096) (0.086) (0.087) (0.092)

GRE - - - - - 1.00 0.293 0.083 0.160 0.124 0.218 0.286

- - - - - - (0.088) (0.086) (0.076) (0.076) (0.092) (0.076)

IRE - - - - - - 1.00 0.229 0.305 0.376 0.350 0.226

- - - - - - - (0.090) (0.073) (0.089) (0.095) (0.077)

ITA - - - - - - - 1.00 0.146 0.361 0.081 0.279

- - - - - - - - (0.067) (0.084) (0.087) (0.087)

LUX - - - - - - - - 1.00 0.362 0.244 0.233

- - - - - - - - - (0.072) (0.082) (0.077)

NET - - - - - - - - - 1.00 0.346 0.250

- - - - - - - - - - (0.086) (0.074)

POR - - - - - - - - - - 1.00 0.257

- - - - - - - - - - - (0.085)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 15: TIM: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1962.1-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.889 0.809 0.846 0.871 0.734 0.028 0.684 0.379 0.849 0.345 0.836

- (0.112) (0.093) (0.103) (0.103) (0.096) (0.065) (0.122) (0.082) (0.118) (0.085) (0.113)

BEL - 1.00 0.683 0.778 0.810 0.630 0.122 0.777 0.268 0.881 0.221 0.793

- - (0.099) (0.117) (0.111) (0.109) (0.063) (0.128) (0.076) (0.129) (0.088) (0.127)

FIN - - 1.00 0.800 0.703 0.754 -0.058 0.546 0.330 0.748 0.389 0.793

- - - (0.083) (0.094) (0.077) (0.079) (0.109) (0.078) (0.099) (0.085) (0.092)

FRA - - - 1.00 0.916 0.955 -0.391 0.619 0.453 0.879 0.582 0.969

- - - - (0.102) (0.091) (0.062) (0.126) (0.069) (0.121) (0.069) (0.112)

GER - - - - 1.00 0.847 -0.322 0.670 0.508 0.889 0.550 0.900

- - - - - (0.093) (0.064) (0.122) (0.078) (0.120) (0.077) (0.113)

GRE - - - - - 1.00 -0.557 0.496 0.432 0.791 0.656 0.942

- - - - - - (0.074) (0.118) (0.063) (0.111) (0.068) (0.102)

IRE - - - - - - 1.00 0.053 -0.306 -0.161 -0.611 -0.375

- - - - - - - (0.069) (0.073) (0.073) (0.098) (0.065)

ITA - - - - - - - 1.00 0.068 0.815 0.125 0.687

- - - - - - - - (0.076) (0.142) (0.087) (0.141)

LUX - - - - - - - - 1.00 0.326 0.513 0.381

- - - - - - - - - (0.067) (0.076) (0.062)

NET - - - - - - - - - 1.00 0.382 0.907

- - - - - - - - - - (0.086) (0.136)

POR - - - - - - - - - - 1.00 0.536

- - - - - - - - - - - (0.071)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 16: MA: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1966.1-1998.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.677 0.447 0.674 0.765 0.509 0.478 0.378 0.449 0.610 0.444 0.530

- (0.103) (0.100) (0.103) (0.104) (0.110) (0.102) (0.104) (0.098) (0.103) (0.116) (0.108)

BEL - 1.00 0.381 0.723 0.660 0.501 0.568 0.493 0.425 0.670 0.502 0.581

- - (0.094) (0.105) (0.094) (0.106) (0.106) (0.104) (0.081) (0.105) (0.114) (0.107)

FIN - - 1.00 0.400 0.281 0.380 0.330 0.395 0.245 0.367 0.181 0.452

- - - (0.099) (0.118) (0.100) (0.083) (0.096) (0.091) (0.090) (0.104) (0.125)

FRA - - - 1.00 0.673 0.542 0.574 0.412 0.472 0.588 0.436 0.665

- - - - (0.106) (0.108) (0.110) (0.111) (0.079) (0.110) (0.107) (0.116)

GER - - - - 1.00 0.373 0.419 0.301 0.510 0.698 0.401 0.448

- - - - - (0.096) (0.090) (0.097) (0.105) (0.108) (0.100) (0.094)

GRE - - - - - 1.00 0.404 0.294 0.200 0.335 0.357 0.595

- - - - - - (0.116) (0.094) (0.093) (0.092) (0.119) (0.135)

IRE - - - - - - 1.00 0.509 0.395 0.565 0.406 0.441

- - - - - - - (0.105) (0.076) (0.108) (0.112) (0.106)

ITA - - - - - - - 1.00 0.195 0.548 0.278 0.454

- - - - - - - - (0.089) (0.115) (0.107) (0.116)

LUX - - - - - - - - 1.00 0.467 0.267 0.338

- - - - - - - - - (0.090) (0.085) (0.090)

NET - - - - - - - - - 1.00 0.388 0.464

- - - - - - - - - - (0.108) (0.114)

POR - - - - - - - - - - 1.00 0.485

- - - - - - - - - - - (0.117)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 17: HP: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1962.1-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.582 0.462 0.558 0.681 0.318 0.373 0.334 0.411 0.542 0.373 0.469

- (0.095) (0.086) (0.106) (0.100) (0.084) (0.102) (0.099) (0.075) (0.093) (0.100) (0.086)

BEL - 1.00 0.387 0.627 0.595 0.321 0.451 0.428 0.409 0.593 0.413 0.434

- - (0.079) (0.104) (0.089) (0.078) (0.093) (0.100) (0.057) (0.090) (0.096) (0.087)

FIN - - 1.00 0.347 0.349 0.236 0.227 0.338 0.296 0.364 0.156 0.406

- - - (0.080) (0.096) (0.072) (0.069) (0.078) (0.069) (0.075) (0.083) (0.092)

FRA - - - 1.00 0.577 0.335 0.432 0.430 0.395 0.512 0.351 0.542

- - - - (0.107) (0.088) (0.106) (0.110) (0.060) (0.105) (0.089) (0.098)

GER - - - - 1.00 0.250 0.321 0.226 0.502 0.660 0.383 0.451

- - - - - (0.083) (0.082) (0.095) (0.085) (0.096) (0.083) (0.094)

GRE - - - - - 1.00 0.275 0.254 0.133 0.238 0.236 0.428

- - - - - - (0.091) (0.080) (0.077) (0.070) (0.100) (0.092)

IRE - - - - - - 1.00 0.384 0.337 0.451 0.334 0.310

- - - - - - - (0.096) (0.069) (0.092) (0.094) (0.083)

ITA - - - - - - - 1.00 0.168 0.429 0.177 0.380

- - - - - - - - (0.070) (0.098) (0.097) (0.097)

LUX - - - - - - - - 1.00 0.456 0.233 0.300

- - - - - - - - - (0.070) (0.065) (0.069)

NET - - - - - - - - - 1.00 0.352 0.359

- - - - - - - - - - (0.085) (0.088)

POR - - - - - - - - - - 1.00 0.426

- - - - - - - - - - - (0.094)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 18: BK: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1965.1-1999.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.767 0.566 0.705 0.800 0.428 0.526 0.442 0.580 0.748 0.489 0.626

- (0.140) (0.114) (0.132) (0.116) (0.109) (0.131) (0.142) (0.104) (0.130) (0.141) (0.120)

BEL - 1.00 0.450 0.794 0.694 0.455 0.613 0.509 0.559 0.747 0.539 0.634

- - (0.117) (0.143) (0.109) (0.103) (0.130) (0.142) (0.087) (0.133) (0.132) (0.122)

FIN - - 1.00 0.393 0.359 0.270 0.373 0.358 0.382 0.407 0.159 0.477

- - - (0.099) (0.118) (0.092) (0.093) (0.106) (0.095) (0.099) (0.118) (0.124)

FRA - - - 1.00 0.652 0.533 0.573 0.519 0.551 0.680 0.409 0.728

- - - - (0.123) (0.111) (0.139) (0.141) (0.086) (0.141) (0.119) (0.124)

GER - - - - 1.00 0.403 0.415 0.294 0.678 0.787 0.455 0.591

- - - - - (0.113) (0.103) (0.116) (0.120) (0.126) (0.112) (0.120)

GRE - - - - - 1.00 0.402 0.348 0.272 0.370 0.293 0.568

- - - - - - (0.137) (0.113) (0.109) (0.100) (0.150) (0.133)

IRE - - - - - - 1.00 0.510 0.554 0.574 0.434 0.430

- - - - - - - (0.132) (0.096) (0.128) (0.133) (0.114)

ITA - - - - - - - 1.00 0.356 0.561 0.232 0.462

- - - - - - - - (0.105) (0.142) (0.147) (0.136)

LUX - - - - - - - - 1.00 0.684 0.309 0.495

- - - - - - - - - (0.108) (0.098) (0.103)

NET - - - - - - - - - 1.00 0.443 0.491

- - - - - - - - - - (0.129) (0.129)

POR - - - - - - - - - - 1.00 0.500

- - - - - - - - - - - (0.132)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 19: CF: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1964.1-2000.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.762 0.455 0.663 0.800 0.381 0.533 0.387 0.557 0.818 0.459 0.592

- (0.131) (0.098) (0.135) (0.108) (0.105) (0.136) (0.133) (0.088) (0.119) (0.123) (0.114)

BEL - 1.00 0.355 0.774 0.662 0.387 0.646 0.449 0.596 0.765 0.562 0.597

- - (0.105) (0.145) (0.096) (0.105) (0.131) (0.144) (0.074) (0.118) (0.130) (0.119)

FIN - - 1.00 0.258 0.204 0.231 0.279 0.400 0.336 0.278 0.044 0.489

- - - (0.093) (0.099) (0.074) (0.092) (0.112) (0.072) (0.090) (0.118) (0.109)

FRA - - - 1.00 0.614 0.442 0.602 0.436 0.589 0.657 0.404 0.672

- - - - (0.106) (0.112) (0.139) (0.125) (0.086) (0.123) (0.111) (0.123)

GER - - - - 1.00 0.255 0.359 0.116 0.677 0.817 0.369 0.487

- - - - - (0.106) (0.092) (0.101) (0.117) (0.110) (0.088) (0.109)

GRE - - - - - 1.00 0.415 0.378 0.122 0.285 0.288 0.591

- - - - - - (0.141) (0.126) (0.092) (0.106) (0.144) (0.134)

IRE - - - - - - 1.00 0.450 0.579 0.539 0.505 0.439

- - - - - - - (0.131) (0.101) (0.121) (0.134) (0.117)

ITA - - - - - - - 1.00 0.309 0.432 0.249 0.483

- - - - - - - - (0.091) (0.126) (0.161) (0.134)

LUX - - - - - - - - 1.00 0.756 0.304 0.403

- - - - - - - - - (0.101) (0.084) (0.089)

NET - - - - - - - - - 1.00 0.459 0.420

- - - - - - - - - - (0.115) (0.103)

POR - - - - - - - - - - 1.00 0.516

- - - - - - - - - - - (0.136)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 20: PAT: Matrix of correlation coefficients, with estimated standard errors in
parentheses. Computed over 1962.1-2001.8

AUT FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.591 0.666 0.636 0.621 0.644 0.351 0.467 0.576 0.315 0.351

- (0.156) (0.101) (0.086) (0.128) (0.185) (0.084) (0.083) (0.094) (0.079) (0.070)

FIN - 1.00 0.459 0.159 0.551 0.753 0.175 0.188 0.299 0.116 0.150

- - (0.102) (0.109) (0.131) (0.185) (0.069) (0.085) (0.090) (0.093) (0.084)

FRA - - 1.00 0.581 0.573 0.501 0.460 0.482 0.561 0.374 0.501

- - - (0.089) (0.089) (0.112) (0.094) (0.087) (0.091) (0.086) (0.077)

GER - - - 1.00 0.388 0.165 0.371 0.592 0.585 0.514 0.388

- - - - (0.081) (0.098) (0.098) (0.082) (0.097) (0.105) (0.076)

GRE - - - - 1.00 0.601 0.334 0.297 0.394 0.202 0.343

- - - - - (0.158) (0.074) (0.085) (0.082) (0.080) (0.079)

IRE - - - - - 1.00 0.131 0.131 0.364 0.032 0.106

- - - - - - (0.058) (0.078) (0.091) (0.072) (0.068)

ITA - - - - - - 1.00 0.340 0.488 0.256 0.471

- - - - - - - (0.110) (0.109) (0.094) (0.083)

LUX - - - - - - - 1.00 0.572 0.438 0.403

- - - - - - - - (0.101) (0.096) (0.092)

NET - - - - - - - - 1.00 0.363 0.514

- - - - - - - - - (0.095) (0.084)

POR - - - - - - - - - 1.00 0.380

- - - - - - - - - - (0.084)

SPA - - - - - - - - - - 1.00

- - - - - - - - - - -
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Table 21: Harding-Pagan: Matrix of correlation coefficients, with estimated standard
errors in parentheses. Computed over 1962.1-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 0.267 0.302 0.279 0.321 0.080 0.293 0.371 0.415 0.204 0.104 0.300

- (0.096) (0.105) (0.093) (0.092) (0.086) (0.107) (0.101) (0.093) (0.094) (0.089) (0.104)

BEL - 1.00 0.129 0.333 0.460 0.160 0.260 0.223 0.182 0.378 0.251 0.240

- - (0.096) (0.093) (0.098) (0.100) (0.106) (0.094) (0.092) (0.097) (0.104) (0.094)

FIN - - 1.00 0.280 0.230 0.020 0.582 0.338 0.337 0.088 0.314 0.329

- - - (0.099) (0.097) (0.085) (0.124) (0.104) (0.094) (0.091) (0.102) (0.106)

FRA - - - 1.00 0.522 0.208 0.198 0.241 0.272 0.401 0.168 0.382

- - - - (0.090) (0.101) (0.097) (0.094) (0.085) (0.092) (0.092) (0.097)

GER - - - - 1.00 0.281 0.283 0.325 0.211 0.438 0.328 0.334

- - - - - (0.105) (0.100) (0.094) (0.087) (0.096) (0.101) (0.097)

GRE - - - - - 1.00 -0.045 0.202 0.062 0.045 0.111 0.074

- - - - - - (0.081) (0.099) (0.083) (0.091) (0.100) (0.095)

IRE - - - - - - 1.00 0.288 0.326 0.148 0.229 0.218

- - - - - - - (0.102) (0.098) (0.094) (0.105) (0.103)

ITA - - - - - - - 1.00 0.120 0.385 0.246 0.404

- - - - - - - - (0.087) (0.096) (0.096) (0.102)

LUX - - - - - - - - 1.00 0.181 0.256 0.359

- - - - - - - - - (0.085) (0.091) (0.091)

NET - - - - - - - - - 1.00 0.209 0.313

- - - - - - - - - - (0.095) (0.097)

POR - - - - - - - - - - 1.00 0.350

- - - - - - - - - - - (0.100)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 22: Markov-switching constant transition probability model: Matrix of correlation
coefficients, with estimated standard errors in parentheses. Computed over 1971.8-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 -0.605 0.424 0.181 0.695 0.195 0.265 0.335 0.352 0.589 0.171 0.413

- (0.080) (0.101) (0.101) (0.077) (0.096) (0.093) (0.093) (0.082) (0.086) (0.099) (0.086)

BEL - 1.00 -0.303 -0.053 -0.604 -0.163 -0.297 -0.550 -0.263 -0.569 -0.097 -0.372

- - (0.102) (0.100) (0.088) (0.087) (0.089) (0.086) (0.080) (0.090) (0.094) (0.083)

FIN - - 1.00 0.334 0.351 -0.005 0.305 0.294 0.292 0.287 -0.069 0.226

- - - (0.105) (0.107) (0.094) (0.092) (0.099) (0.073) (0.108) (0.102) (0.091)

FRA - - - 1.00 0.086 0.366 0.005 0.144 0.157 0.068 0.033 0.380

- - - - (0.106) (0.094) (0.102) (0.102) (0.093) (0.105) (0.101) (0.096)

GER - - - - 1.00 0.118 0.308 0.402 0.370 0.568 0.132 0.286

- - - - - (0.095) (0.094) (0.097) (0.076) (0.094) (0.097) (0.094)

GRE - - - - - 1.00 0.015 0.056 0.173 0.163 0.118 0.264

- - - - - - (0.098) (0.095) (0.097) (0.091) (0.099) (0.104)

IRE - - - - - - 1.00 0.338 0.322 0.259 -0.093 0.199

- - - - - - - (0.091) (0.089) (0.096) (0.096) (0.099)

ITA - - - - - - - 1.00 0.312 0.547 -0.015 0.353

- - - - - - - - (0.084) (0.088) (0.099) (0.093)

LUX - - - - - - - - 1.00 0.412 -0.047 0.292

- - - - - - - - - (0.075) (0.093) (0.094)

NET - - - - - - - - - 1.00 0.132 0.274

- - - - - - - - - - (0.100) (0.092)

POR - - - - - - - - - - 1.00 0.185

- - - - - - - - - - - (0.101)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -
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Table 23: Markov-switching time varying transition probability model: Matrix of
correlation coefficients, with estimated standard errors in parentheses.

Computed over 1971.8-2002.5

AUT BEL FIN FRA GER GRE IRE ITA LUX NET POR SPA

AUT 1.00 -0.548 0.407 0.403 0.625 0.171 0.332 0.277 0.308 0.522 0.216 0.361

- (0.075) (0.088) (0.090) (0.074) (0.099) (0.088) (0.094) (0.087) (0.079) (0.099) (0.088)

BEL - 1.00 -0.326 -0.385 -0.552 -0.166 -0.293 -0.515 -0.286 -0.494 -0.105 -0.327

- - (0.106) (0.074) (0.093) (0.082) (0.091) (0.086) (0.076) (0.087) (0.094) (0.082)

FIN - - 1.00 0.322 0.321 0.009 0.273 0.295 0.282 0.294 -0.061 0.235

- - - (0.078) (0.104) (0.092) (0.095) (0.098) (0.072) (0.100) (0.105) (0.088)

FRA - - - 1.00 0.334 0.380 0.167 0.326 0.357 0.370 0.099 0.546

- - - - (0.088) (0.106) (0.093) (0.092) (0.093) (0.082) (0.094) (0.091)

GER - - - - 1.00 0.113 0.318 0.349 0.360 0.492 0.096 0.297

- - - - - (0.093) (0.094) (0.096) (0.077) (0.086) (0.098) (0.091)

GRE - - - - - 1.00 0.002 0.084 0.191 0.208 0.101 0.247

- - - - - - (0.096) (0.095) (0.095) (0.092) (0.099) (0.102)

IRE - - - - - - 1.00 0.321 0.307 0.305 -0.034 0.165

- - - - - - - (0.091) (0.083) (0.093) (0.100) (0.097)

ITA - - - - - - - 1.00 0.329 0.473 -0.008 0.358

- - - - - - - - (0.084) (0.084) (0.099) (0.091)

LUX - - - - - - - - 1.00 0.387 -0.019 0.295

- - - - - - - - - (0.079) (0.090) (0.093)

NET - - - - - - - - - 1.00 0.118 0.210

- - - - - - - - - - (0.097) (0.095)

POR - - - - - - - - - - 1.00 0.164

- - - - - - - - - - - (0.101)

SPA - - - - - - - - - - - 1.00

- - - - - - - - - - - -

Table 24: Mean over 1995m1-2000m2 and 1998m1-2000m2
of the size-weighted average correlation between Euro-zone

business cycles and those of Germany and the
US for selected measures of the business cycle

1995m1-2000m2 1998m1-2000m2

Germany US Germany US

UC 0.439 0.145 0.488 0.170

TIM 0.454 0.267 0.467 0.342

PAT 0.456 0.351 0.461 0.381

HP 0.472 0.378 0.510 0.387

Markov-switching 0.340 -0.001 0.516 0.021

Markov-switching: time-varying 0.322 0.078 0.494 0.103
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Figure 1: Average correlation between Euro-zone business cycles: UC, TIM and HP growth cycles
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Figure 2: Average correlation between Euro-zone business cycles: BK, CF and MA growth cycles
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Figure 3: Average correlation between Euro-zone business cycles: PAT growth cycle
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1 Introduction

Unobserved components time series (UC) models typically consist of interpretable components
such as trends, cycles, and seasonal and irregular components. Each component is separately
modelled by an appropriate dynamic stochastic process which usually depends on normally
distributed disturbances with mean zero and a given variance. The UC model with trend and
cycle components enables a time series decomposition that is appropriate for many macroeco-
nomic time series such as consumption, investment and national income. In a univariate time
series analysis this model primarily leads to a particular trend-cycle decomposition and can
be regarded as a model-based alternative to analyses based on the Hodrick-Prescott filter of
Hodrick and Prescott (1980) and the Beveridge-Nelson decomposition of Beveridge and Nelson
(1981). Harvey and Jaeger (1993) have argued that a model-based trend-cycle decomposition
for economic time series is to be preferred and can avoid the detection of spurious cycles in the
time series. Working with UC models has the additional advantage that they can also be used
for producing forecasts.

The multivariate extension of the UC model can be used for simultaneous decompositions
of a group of related time series. As a result the components become vectors defined by
stochastic functions of vector disturbances generated by multivariate distributions. In the
case of Gaussian models, disturbance densities rely on variance matrices rather than scalar
variances. The application of non-diagonal variance matrices requires that the time series be
modelled simultaneously. The design of these variance matrices is of interest from an economic
standpoint. They determine, for example, whether the trends are positively correlated to each
other, and the extent to which there are cycles common to a subset of the time series. From
an econometric perspective, the multivariate extension of UC models is of interest because it
enables the modeller to identify specific stable relationships between time series. It is therefore
interesting to note that the phenomenon of cointegration can explicitly be modelled within an
UC framework by including so-called common trends.

Several contributions in the economic literature can be found that study the phenomenon of
convergence in the context of economic growth theory, see, for example, Williamson (1981),
Galor (1981) and Quah (1981). Several definitions of convergence have been suggested and
several inference procedures have been developed for the detection of convergence based on
cross-section and time series data, see, for example, Bernard and Durlauf (1981) and the refer-
ences therein. Many time series contributions use straightforward techniques for the comparison
of two specific time series. In such analyses simple hypotheses are investigated such as whether
the production series of, for example, the US and Japan have converged. A distinction is drawn
between specific forms of convergence such as convergence of growth rates to the same level
and convergence of overall variation.

We will adopt the definitions of convergence introduced by Barro and Sala-I-Martin (1992).
Our starting point will be the definition of convergence as a reduction of the variation in a
cross-section of time series. Whether the reduction of variability is due to harmonization in
the underlying dynamics of the growth, the cyclical behaviour, the volatility or a combination
of these is to be deducted from our modelling strategy. This paper does not focus on testing
hypotheses of convergence such as is done in Bernard and Durlauf (1995). Another contribution
is by Harvey and Carvalho (1980) who analyses convergence using unobserved components
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with balanced growth trends and concentrate on the formulation of convergence tests. In this
paper we introduce multivariate time series models with explicit time-varying rank-reduction
mechanisms will be formulated and estimated by maximum likelihood in order to identify
convergence features present in the economic time series.

Convergence in this paper will be loosely defined and referred to as a reduction in dispersion over
time. We propose to model convergence via the gradual reduction in the rank of the covariance
matrix associated with the disturbance vector driving the appropriate unobserved component.
The convergence mechanism that will be introduced has not been used within the multivariate
UC framework and can therefore be regarded as a new development. The stochastic process
governing a particular unobserved component can be made subject to the proposed convergence
mechanism. This makes the identification of various types of convergence possible. For example,
the short-term business cycle dynamics of a cyclical process may convergence, while the long-
term dynamics of a trend may not. In general this approach permits the investigation of
convergence to be directed towards the identification of which types of convergence are present.
Therefore while it is possible that both the trend and cycle components may converge, it may
equally well be the case that only a typical feature of the trend component, say, the growth
of the trend, may be subject to convergence. In this paper we will present an illustration of
a panel time series of the real gross domestic product (per capita, in logs) from five different
European countries that appear to be subject to convergence in the rate of growth, cyclical
behaviour and the overall variance. In our analysis we are able to identify these different
types of convergence by defining a multivariate UC model with convergence mechanisms and
by estimating the parameters using maximum likelihood methods.

The multivariate UC models with convergence can be represented as time-varying state space
models with the bulk of the parameters arising in the variance structure of the model. The
Kalman filter is the main tool to compute the loglikelihood for standard UC models with a
given set of parameters. Maximum likelihood estimates of the parameters are obtained by
initially using the EM method of estimation and continuing by directly maximising the log-
likelihood with respect to the parameters using numerical Newton type optimization methods.
The convergence UC model introduces two to three additional parameters for each convergence
mechanism. The additional parameters can be estimated simultaneously with the other param-
eters. Specific adjustments are required for the EM method and for the evaluation of analytical
scores.

The multivariate unobserved converging component model is applied to the per capita real
gross domestic product for five European countries: Germany, France, Italy, Spain and the
Netherlands. Various UC models both with and without convergence have been fitted and
a full account of the modeling process is reported in this paper. We show that the main
convergence features in these series is present in the cyclical pattern and the overall volatility.

The remaining part of the paper is organized as follows. In Section 2 we introduce the conver-
gence mechanism for a simple multivariate UC model. A general time series model with trend
and cycle components is discussed and is estimated for the European GDP series in Section 3.
The converging common trend-cycle model is considered in Section 4. Empirical results for the
European GDP series are presented in Section 5 and some final remarks are made in Section 6.
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2 The converging local level model

We introduce the concept of unobserved converging components for the multivariate local level
(LL) model which we regard as the simplest multivariare unobserved components time series
model. The LL model is given by

yt = µt + εt, µt+1 = µt + ηt, t = 1, . . . , n, (1)

where yt is a p× 1 vector of observed time series that is decomposed into the unobserved level
component µt and the irregular vector εt. The level is modelled as a multivariate random walk
process and the irregular is a vector white noise process. Further we assume Gaussian densities
for the disturbance vectors

εt ∼ N (0,Σε), ηt ∼ N (0,Ση), t = 1, . . . , n,

and both disturbance vectors are serially and mutually uncorrelated. The time series character-
istics and properties of model (1) are discussed in detail in Harvey (1989). The variance matrix
Ση plays an important role in the interpretation of the LL model. When Ση is positive definite
the model represents a set of seemingly unrelated time series equations (SUTSE). When the
level variance matrix has a lower rank, the model can be represented by the common level
model

yt = a+Aµ∗t + εt, µ∗t+1 = µ∗t + η∗t , t = 1, . . . , n, (2)

where a is a p × 1 vector with the first r elements equal to zero, A is a p × r unity lower
triangular matrix and level µ∗t is a r × 1 vector that represents a multivariate random walk
process as in (1) with innovation vector η∗t ∼ N (0, Dη) and r × r diagonal matrix Dη. It can
be shown that µt = a + Aµ∗t and Ση = ADηA

0 with rank(Ση) = r. The variance matrices Ση

and Σε are unknown and need to be estimated by maximum likelihood. The evaluation of the
likelihood function can be based on the output of the Kalman filter; see Durbin and Koopman
(2001) for a recent overview of such state space methods. The likelihood function is numerically
maximised with respect to the variance matrices. The matrices are typically decomposed so
that Ση = ADηA

0. The elements in A and Dη are then estimated, thereby ensuring that the
restriction that Ση is non-negative definite holds. The elements of Dη are estimated in logs to
make sure that they are always non-negative.

System convergence in this paper is modelled by a gradual reduction in the rank of the variance
matrices associated with the disturbances driving the unobserved components. For example,
when the rank of Ση is r1 at the beginning of the sample and r2 < r1 at the end of the sample,
the local level model is said to be subject to system convergence in levels. This feature of
convergence can be modelled in various ways. It can be introduced as a “structural” break
within the rank of the variance matrix. A more realistic alternative, however, is to allow for
a smooth transition towards a lower rank regime. In this paper we introduce a convergence
mechanism that is parsimonious and elementary. Other specifications could also be considered
within our framework.

The convergence mechanism for the ith element of Dη is specified by the deterministically
time-varying logit function

dη,t,i = exp(2d
∗
η,i) exp(sη,t,i)/{1 + exp(sη,t,i)}, (3)
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where d∗η,i represents the logarithm of a standard deviation and therefore determines the size
of the variance. The variable sη,t,i is given by

sη,t,i = s∗η,i × (t+ τη,i), (4)

where s∗η,i determines the rate of the variance change and τη,i determines the mid-timepoint
of the change. According to the specification in (3), the variance matrix Dη, now Dη,t, is
time-varying, as is the variance matrix Ση, which is replaced by

Ση,t = ADη,tA
0, t = 1, . . . , n.

In this specification the variance dη,t,i will converge to zero for any finite d∗η,i, s
∗
η,i and τ η,i.

Whether the convergence of dη,t,i to zero takes place within the sample range of t = 1, . . . , n
depends on the values of s∗η,i and τ η,i. If a particular element of the time-varying variance
matrix Dη,t converges to (virtually) zero via the convergence mechanism for t < n, the rank of
Ση,n will be one less than the rank of Ση,1.

The convergence mechanism can be introduced for every diagonal element of Dη,t and the
estimation of the variance parameters, including the additional coefficients s∗η,i and τη,i for i =
1, . . . , r, can take place simultaneously. However, the introduction of convergence mechanisms
should take place after some prior analysis of the data. An illustration for an elaborated
unobserved components time series model for a multiple time series of European gross domestic
product (GDP) in logs is given in the next section.

3 Trend-cycle decompositions of European GDP series

Many economic time series typically feature a long term trend with cyclical variations around
this trend. Further they are often characterised by trends with different growth rates for
different periods and by cycles with time-varying characteristics. The identification of these
unobservable features can be improved by considering a multiple set of similar time series.
Therefore a multivariate unobserved components time series model is considered.

3.1 Trend and cycle components

An unobserved components model for a multiple set of non-seasonal economic time series can
be expressed as

yt = µt + ψt + εt, t = 1, . . . , n, (5)

where yt represents the actual time series, and the unobserved components consist of the trend
µt, cycle ψt and irregular εt, all of which are vectors. These unobserved vectors are modelled
as stochastic processes. For example, a simple model for the trend µt is given as in (1).
However, the long-term trends of the GDP series are subject to positive growths which can be
incorporated in the trend specification as follows,

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, ηt ∼ N (0, σ2Ση), ζt ∼ N (0, σ2Σζ), (6)
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for t = 1, . . . , n and σ2 > 0 where βt is the p× 1 vector of growth terms. This trend model is
known as the local linear trend model. If Ση = Σζ = 0, then βt+1 = βt = β, and µt+1 = µt+ β,
so that the trend model (6) reduces to a deterministic linear trend. If Ση = 0 and Σζ 6= 0, the
growth vector βt is stochastically time-varying and the trend vector µt has become a cumulator
function of growth terms which will result in a smooth trend component. Deficient ranks of
variance matrices Ση and Σζ imply common trend and growth components; see the discussion
in Harvey (1989) and Harvey and Koopman (1997). The presence of common trends implies
what is known as “cointegration” in the econometric literature; see Barro and Sala-I-Martin
(1988). In short, it assumes that a p− rη× p matrix of cointegrating vectors G exists such that
Gyt is stationary. This means that GA = 0.

Various specifications for a cycle component ψt may be considered. For example, we may wish
to generate multiple cycles by vector autoregressive processes. Alternatively we can represent
the cyclical processes by a set of trigonometric terms with time-varying coefficients. It can
be shown that a stochastic cyclical process can be incorporated in a multivariate time series
model. The multiple cycle component is given byµ

ψt+1

ψ+t+1

¶
= ρ

µ·
c s
−s c

¸
⊗ IN

¶µ
ψt

ψ+t

¶
+

µ
κt
κ+t

¶
, (7)

where c = cosλc, s = sinλc and Ik is the k × k identity matrix. The p × 1 vector ψt consists
of similar cycles that have a common frequency λc and a common autoregressive coefficient
|φ| < 1. The disturbance vectors are serially and mutually uncorrelated, and are normally
distributed with mean zero and variance matrix

Var

µ
κt
κ+t

¶
= I2 ⊗ σ2Σκ,

such that κt and κ+t have a common variance matrix Σκ. This specification generates a sta-
tionary multiple cyclical process with a period of fc = 2π/λc. The individual cycles in ψt have
similar properties due to the common damping factor ρ and the cycle period λc. More details
on similar cycles can be found in Harvey and Koopman (1997). The model is complete by
taking the irregular component εt as a normally random vector with mean zero and variance
matrix σ2Σε. The irregular and other disturbances associated with the various components
are mutually uncorrelated, both contemporaneously and between different time periods. We
finally note that σ2 > 0 is the scaling variance constant or the common variance. It can be
estimated when one of the non-zero elements in the variance matrices Ση, Σζ , Σκ and Σε is set
to one. The common variance is introduced because we will allow it to vary over time in the
next section in order to model variance convergence.

The unknown parameters in the trend plus cycle model are the variance matrices Σε, Ση,
Σζ and Σκ together with the autoregressive coefficient φ and the cycle frequency λc. These
parameters are estimated by maximum likelihood for which the Kalman filter is employed to
compute the loglikelihood function for a given set of parameters. The fixed common variance
can be concentrated out of the loglikelihood function and can be estimated implicitly by the
Kalman filter output; see Harvey (1989). The resulting concentrated loglikelihood function can
be maximised numerically with respect to the vector of parameters using particular Newton
methods for nonlinear optimisation. The variance matrices need to be non-negative definite
while the cycle coefficients are subject to the restriction 0 ≤ ρ < 1 and λc = 2π/fc with a cycle
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period of fc > 2. The restrictions are implemented by representing the variance matrices via
the Cholesky decompositions

Ση = ADηA
0, Σζ = BDζB

0, Σκ = CDκC
0, Σε = EDεE

0, (8)

where the matrices A,B,C,E have unity lower triangular structures and their number of
columns depends on the number of nonzero diagonal elements in the diagonal matrices Dη,
Dζ , Dκ, Dε. To enforce the restriction that variance matrices must be positive definite we have

Da = diag
©
exp(2d∗a,1), . . . exp(2d

∗
a,ra)

ª
, (9)

for a = η, ζ, κ, ε and ra is the rank of the corresponding variance matrix (assuming that the
elements d∗a,1, . . . , d

∗
a,ra do not tend to −∞). Finally, we have ρ = |θρ| (1 + θ2ρ)

−1/2 and fc =
2 + exp θλ where θρ and θλ are the parameters that are actually estimated together with the
matrices from the Cholesky decomposition of the variance matrices.

The Kalman filter is used for the computation of the loglikelihood function. This requires the
model to be represented as a state space model. The state vector is given by

αt = (µ
0
t, β

0
t, ψ

0
t, ψ

∗0
t )
0
,

with initial conditions that are properly defined for the cycle vectors but are regarded as
diffuse for the trend vectors µt and βt since these elements represent nonstationary processes.
The Kalman filter can account for diffuse initial conditions using extensions such as the ones
discussed in Chapter 5 of Durbin and Koopman (2001). The computations are implemented
using the Ox object-oriented matrix programming environment of Doornik (1999) and using the
Ox library of C functions for state space models SsfPack by Koopman, Shephard, and Doornik
(1993). The computations for the basic multivariate model of this section can also be carried
out by the STAMP package of Koopman, Harvey, Doornik, and Shephard (1999).

3.2 Multivariate decomposition of European GDP series

We consider a multiple time series of real gross domestic production per capita (GDP) for five
European countries: Germany, France, Italy, Spain and the Netherlands. The time series are
measured in local currencies on a quarterly basis and covers the period of the first quarter of
1970 to the first quarter of 2001. We obtained the required population and GDP series from
OECD sources2 and calculated the series after which we standardized each series to the value
of 100 in 1970. The rescaling of the data is justified due to the fact that the series are measured
in different currencies. We model the logarithm of these time series multiplied by 100. The
resulting time series is denoted by

yt = log GDP


Germany
France
Italy
Spain
Netherlands

 at time t = 1, . . . , n corresponding to 1970Q1, . . . 2001Q1,

with n = 125. The five time series are presented in Figure 1. The typical features of trends
and cycles in the GDP series can be detected.

2See http://www.sourceoecd.org/content/html/index.htm.
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Figure 1: Quarterly seasonal adjusted real gross domestic production (per capita) for Germany,

France, Spain, Italy and the Netherlands for the period 1970Q1 — 2001Q1
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Figure 2: Trend, slope and cycle components for common trend-cycle model
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The unobserved components model introduced in the previous section is estimated using the
standard Kalman filter but modified to allow for diffuse initial conditions for the trend and
slope components. The resulting loglikelihood is maximised numerically with respect to the
parameters of the model which include the elements in the variance matrices and the autore-
gressive coefficient and the period of the similar cycle component. The estimated transformed
parameters of the diagonal variance matrices Dε, Dη, Dζ and Dκ in (8) are reported in Table
1 in the third row of each panel (sample 1970—2001).

It follows from these results that the estimates of the trend variance matrices Ση and Σζ have
lower ranks. In particular, the estimates imply that r(Ση) = 1 and r(Σζ) = 3, indicating
that the five trends are relatively smooth. This conclusion is confirmed by Figure 2 where the
estimated trends are presented in the first column and the associated slope components are
presented in the second column of graphs. Although there are some individual differences in
the slope series, one can clearly see that the slopes for Germany, France and Italy are similar,
and that this group of slopes for these three countries in turn is different from the similar pair
of slopes for Spain and the Netherlands, although the patterns from 1986 onwards are similar
for all five countries.

The estimated parameters for the multiple cycle component are given by

θ̂ρ = 2.48 (s.e 0.38), θ̂λ = 2.72 (s.e 0.09),

which imply a similar cycle with an estimated autoregressive coefficient ρ of 0.93 (with a 95%
confidence interval between 0.87 and 0.96) and an estimated cycle period fc of 17.2 quarters
(with a 95% confidence interval between 14.8 and 20.0).

The estimate of the variance matrix Σκ, which applies to both disturbance vectors κt and κ+t ,
has a rank of 3 according to the estimate of matrix Dκ reported in Table 1.

Table 1: Estimated diagonal variance matrices
of common trend-cycle model

sample d∗1 d∗2 d∗3 d∗4 d∗5
1970-1986 -1.86 * * * *

Dη 1987-2001 -1.36 * -1.51 * *

1970-2001 -0.47 * * * *

1970-1986 -1.52 -2.41 -2.67 -2.11 *

Dζ 1987-2001 -2.42 -2.59 * * *

1970-2001 -2.30 -3.49 * -2.44 *

1970-1986 -1.17 -1.77 -2.34 * *

Dκ 1987-2001 -1.47 -2.38 * * *

1970-2001 -1.27 -1.51 -1.98 * *

1970-1986 -0.47 -1.87 -2.01 * *

Dε 1987-2001 -0.77 -1.80 -1.48 -1.94 *

1970-2001 -0.70 -1.60 -1.74 * -1.06

The estimates are for the transformed values of the diagonal
variance matrices in (8) for three different samples. The trans-
formed value d∗i is the logarithm of the square root of the ith
diagonal element of D. Large negative values produce there-
fore variances which are close to zero.
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The cycles of the five countries can therefore be described by three mutually uncorrelated
common similar cycles. These empirical results alone can be of interest to economists. European
policy decisions on integration can benefit from the empirical confirmation of the existence of
common cycles, especially if the actual dependence of individual European countries on common
cyclical movements can be empirically identified.

To be able to adequately address this last point, we would need to report the estimate of the
C matrix in (8). To limit the number of tables in this paper we will only present the estimates
of the matrices A, B, C and E in the discussion of the empirical results for the converging
models.

According to the diagnostic test statistics reported in Table 4 under the columns denoted by
M , the estimated common components model is not entirely satisfactory. The table presents
some standard diagnostics based on the residuals of the estimated model.

The standardized one-step ahead residuals are assumed to be standard normal distributed and
serially uncorrelated. It follows from the reported statistics that France and the Netherlands
may be subject to some moderate outliers, the dynamics are not well captured for Spain and
for most series the residuals appear to be heteroskedastic. It is of interest to determine whether
these model diagnostics improve when we consider converging models.

The common components model provides a satisfactory overall fit when we compare the sum
of squared residuals with the sum of squared residuals from a model with only a constant and
a fixed time trend. The percentage decrease of the common components model for all five
series is at least 82% in relation to the naive model with a maximum decrease for Spain and a
minimum decrease for Germany.

3.3 Preliminary evidence of convergence in European GDP series

We now focuses on the question of whether it is reasonable to assume that the rank of a
variance matrix changes over time to a lower rank. If this is the case we will consider this
to be an indication of some converging behaviour by a particular set of components. The full
sample is split into the two roughly equivalent subsamples of 1970—1986 and 1987—2001. The
trend-cycle components model is re-estimated for both of these subsamples. The estimation
results of the variance matrices D, which determine the rank of the variance matrices in (8),
are produced in Table 1. It is perhaps not surprising that we do indeed find evidence that
convergence mechanisms play a role within the multiple time series. The estimated variance
matrix of the slope component has a rank of 4 for the first sample, whereas in the second sample
its rank is 2. Similarly, in the case of the cycle variance matrix in the first sample, the estimate
of Dκ indicates a rank of 3 while in the last sample it indicates a rank of 2. These results
provide some evidence of slope and cyclical convergence although any conclusions made must
be tentative ones, because the subsamples consist of five series with at most 68 observations,
representing only a moderate sample size. Furthermore, the cycles have an estimated period of
more than 4 years so that realistically no more than three, or at most four full cycles can be
observed within each subsample.
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4 Unobserved common converging components

In this section we introduce the converging mechanism of Section 2 for the growth and cycle
components. We therefore will represent the multivariate trend-cycle decomposition model as
a dynamic factor model for the p× 1 vector of time series yt. We obtain

yt = a+Aµ∗t + Cψ∗t + εt, εt ∼ N (0, σ2Σε), (10)

where a is a p×1 vector with the first rη elements equal to zero, A is a p×p unity lower triangular
matrix and C is a p× rκ unity lower triangular matrix. The matrix A differs from the A in (2)
in that zero rows and zero columns, corresponding to the diagonal zero elements in Dη, must
be added. All of the diagonal elements of A, however, including those of the added zero rows
and columns, are unity. The specification of common growth rates given below in subsection
4.1 necessitates the augmentation of the matrix A in this manner. The matrices A and C are
sometimes referred to as factor loading matrices. The unobserved factor µ∗t represents the p×1
vector of underlying trends and factor ψ∗t represents the rκ × 1 vector of cyclical components.
An unobserved component with an activated convergence mechanism (3) that models the grad-
ual rank reduction over time is defined as an unobserved converging component. From an
economic viewpoint, convergence in growth and cycle components can be of major interest as
we will show in the analysis of European GDP series in Section 5 where models with unobserved
converging components are estimated. In subsections 4.1 and 4.2 we introduce the convergence
mechanisms for the trend and cycle component. In subsection 4.3 we turn our attention to the
specification of variance convergence.

4.1 Common converging slope component

The trend component is specified as

µ∗t+1 = µ∗t + b+B∗β∗t + η∗t , η∗t ∼ N (0, σ2Dη),
β∗t+1 = β∗t + ζ∗t , ζ∗t ∼ N (0, σ2Dζ),

(11)

where the rζ×1 vector β∗t consists of the underlying growth terms of the trend µ∗t for t = 1, . . . , n.
The initial values for µ∗1 and β∗1 are treated as being generated from diffuse density functions.
The vector b is a p × 1 vector of unknown constants of which the first rζ are fixed at zero.
The p × rζ factor loading matrix B∗ is unity lower triangular. The disturbance vectors η∗t
and ζ∗t are mutually and serially uncorrelated and have diagonal variance matrices Dη and Dζ ,
respectively. Note that the matrix B in 8 is given by B = AB∗, and therefore the matrix Σζ

can be expressed as Σζ = AB∗DζB
∗0A0.

When rη = rζ = p and ψt = 0 in (10), the multivariate local linear trend model reduces to a
SUTSE specification in which the variance matrices Ση and Σζ are of full rank. Common trend
specifications are obtained when rη < p or rζ < p or both. It is noted in Section 2 that common
trends imply cointegration.

In the application of this paper, the convergence of the trend takes place in the growth rate.
We will therefore give the details of convergence for the slope component. A gradual change
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of a non-zero value for a particular element of Dζ to a zero value can be accomplished by the
logit function

dζ,t,i = exp(2d
∗
ζ,i) exp(sζ,t,i)/{1 + exp(sζ,t,i)}, i = 1, . . . , rζ , (12)

where dζ,t,i is the ith element of the time-varying variance matrix Dζ,t that replaces Dζ in
(11). The size of the logarithm of the standard deviation of the ith element of Dζ,t is d

∗
ζ,i for

i = 1, . . . , rζ. The variable sζ,t,i is specified as

sζ,t,i = s∗ζ,i × (t+ τ ζ,i), i = 1, . . . , rζ ,

where s∗ζ,i determines how quickly the function sζ,t,i approaches zero and τ ζ,i determines the
mid-point of this change over time. The same converging mechanism can be introduced for
the variance matrix of the trend component itself, Dη,t, which is then also time-varying and
replaces Dη in (11). The details of this convergence mechanism are the same as for the slope
component and are discussed in Section 2.

4.2 Common converging cycle component

The cycle component ψ∗t is defined in a similar way as in equation (7) with ψt = Cψ∗t and
ψ+t = Cψ∗+t whereµ

ψ∗t+1
ψ∗+t+1

¶
= ρ

µ·
c s
−s c

¸
⊗ Irκ

¶µ
ψ∗t
ψ∗+t

¶
+ κ×t , κ×t ∼ N (0, I2 ⊗ σ2Dκ), (13)

for t = 1, . . . , n. The cycle vectors ψ∗t and ψ∗+t have dimension rκ × 1 and the vector of
disturbances κ×t has dimension 2rκ× 1. The fact that ψt = Cψ∗t such that Σκ = CDκC

0 is only
valid for similar cycles; see Harvey and Koopman (1997) for the technical details.

The convergence mechanism introduced for the trend component in the previous subsection can
also be incorporated in the diagonal variance matrix of the cycle disturbances Dκ. It implies
that matrix Dκ becomes time-varying and its i-th element will be modelled in the same manner
defined in (12) for i = 1, . . . , rκ.

4.3 Common converging variance component

The specification of a common converging variance component as a formalization of convergence
in the overall variance requires three parameters. Unlike the other forms of convergence for the
trend, slope, and cycle components, the common variance σ2 cannot be allowed to converge
to zero unless we are willing to entertain the idea of convergence to a deterministic system of
non-stochastic equations. To ensure that we retain some volatility after the convergence of the
common variance, we introduce a third constant parameter into the convergence specification.
This leads to the following specification for variance convergence,

σ2t = exp(2dσ) + exp(2d
∗
σ) exp(sσ,t)/{1 + exp(sσ,t)}. (14)

According to (14), the total volatility before convergence sets in is given by exp(2dσ)+exp(2d
∗
σ),

while only the constant term exp(2dσ) remains after convergence has occurred. Both dσ and
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d∗σ are the logarithm of a standard deviation. The size of the constant component of the total
volatility is determined by dσ, while d∗σ determines by how much volatility declines due to
variance convergence. In an analogous fashion to the definition of sη,t,i in (4), the variable sσ,t
is specified as

sσ,t = s∗σ × (t+ τσ)

where s∗σ determines the rate at which the function sσ,t approaches zero and τσ determines the
mid-point of the change over time.

5 Convergence in European GDP series

We now turn our attention to the question of how the various types of convergence presented
in the previous section can be applied in practice to develop an appropriate statistical model.
We demonstrate this by generalizing the trend-cycle model presented in Section 3 to include
the three different types of convergence.

5.1 Specification and estimation of converging trend-cycle model

To apply the convergence mechanisms, we first determine which diagonal elements da,i from
the matrices Da for i = 1, . . . , ra and a = η, ζ, κ, are candidates to converge to zero. Given
the structure of the Cholesky decompositions of the variance matrices in (8), it is possible to
infer a number of simple rules that will hold in most situations. We illustrate these rules via a
discussion of Dζ .

Generally, it will not be the case that the first diagonal element dζ,1 will converge to zero.
Although technically possible, the result of such convergence is that the variance of the distur-
bance driving the slope component for the first series degenerates to zero. In other words, the
element dζ,1 represents the sole source of variability for the slope component of the first series.
This can be verified directly via (8). In the case of our model, dζ,1 corresponds to the variance
of the slope component for Germany. Examination of the estimated values given in Table ??
for dζ,1 suggests that this parameter is not subject to the convergence mechanism, given that
its value is the largest one in the Dζ matrices for each sample. The same can be said of the
values for dη,1 and dκ,1.

The second diagonal element dζ,2 represents the marginal contribution to the variance of the
slope disturbance for the second series, France, after accounting for the contribution made by
dζ,1. The contribution of dζ,1 is the result of the correlation between the slope disturbances for
the first, Germany, and second series, France.

In general, the structure of the Cholesky decomposition implies that the variance of the slope
disturbance for series j is only affected by dζ,1, . . . , dζ,j. The elements dζ,i for i > j make no
contribution to the variances of the slope disturbances for the series j. Therefore, in the case of
the second series, France, it is also less likely that dζ,2 is subject to the convergence mechanism,
because this would imply that the slope disturbances of Germany and France become perfectly
negatively or positively correlated after convergence has taken place.
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We wish to point out that it is a relatively strong statement about slope convergence for these
two series. This is, of course, not to suggest that this could not have happened, but it is
unlikely. In any case, the results in Table 1 indicate that the estimated value of dζ,2 remains
roughly constant over the entire sample period. This also applies to the estimates shown for
dκ,2, while in the case of dη,2 all estimates indicate that France does not have its own variance
for the trend disturbance in any of the sample periods.

For the series i for i > 2, the convergence of dζ,i to zero implies that the variance of the slope
disturbance for the series i becomes a linear combination of slope disturbances of the first i− 1
series. For this reason the correlations between the slope disturbance for the series i with those
for the first i− 1 series will still typically be less than one in absolute value after convergence.
We therefore regard the last element dζ,rζ as the most likely candidate for convergence. This is
a consequence of the fact that the variance of the slope disturbance for the series rζ becomes a
linear combination of all other values of dζ,i in the case that this element converges. Generally
it is the case that the larger the number of elements that are involved in a linear combination,
the greater the chance one element will converge. We therefore conclude for a = ζ, κ that the
most likely candidate for convergence is da,i for the largest available value of i, that is i = ra.
Inspection of the estimates in Table 1 supports this conclusion as well.

Where there is evidence of da,i dropping out of the model in the latter part of the sample period
for a = η, ζ, κ, it is for values of i of either 3 or 4. In the case of dη,i, the estimates show no
evidence of convergence. In fact the estimates obtained for the entire sample period indicate
that only one value dη,1 is responsible for the trend volatility for all five countries in Ση. For
this reason we do not apply the convergence mechanism to Dη and restrict our attention to
model specifications in which rη = 1. This has the advantage of resulting in more parsimonious
models, which, given the number of model parameters, is an important advantage.

Returning to the example of the slope component, we note that a further consequence of the
Cholesky decomposition of Σζ is that the variances and correlations among the slope distur-
bances for the first i− 1 series are not influenced by the existence of a convergence mechanism
on dζ,i. The variances of the slope disturbances for the series j, where j ≥ i, can be altered by
this convergence.

The correlations between the slope disturbances for the series j, where j ≥ i, with the slope
disturbances from all other series can also be changed by convergence. For this reason we
also consider it to be important, in the case of our example of GDP, to place the largest,
most dominating and stable economies first in the observation vector, with the smaller, more
dependent, and less stable economies last, because the latter economies are more likely to have
been effected by convergence towards the economies of the more dominating countries of the
European Union (EU). Although this rule does not lead to a unique ordering of the countries
in the observation vector yt, it does in any case seems reasonable to have Germany and France,
two of the original member of the EU, as the first two elements of yt, given the economic
dominance of these countries. Italy too is one of the original members of the EU and also has
a larger economy than either Spain or the Netherlands, although smaller than that of either
Germany or France. For these reasons we opted to place Italy third in the observation vector.
We chose to place Spain fourth in the vector, reflecting the fact that Spain only joined the EU
in 1986. Although the Netherlands has been a member of the EU since its inception, it is a
smaller country with little power to influence the larger economies in the EU, and as a result,
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the Netherlands is the last series.

In summary, based on the estimates for the common trend-cycle model without convergence
mechanisms reported in Table 1, as well as on the model structure implied by the combination
of the Cholesky decomposition parameterization of the variance matrices together with the
convergence mechanism, we have opted to produce estimates for the trend-cycle model of the
previous section with the incorporation of converging mechanisms for the slope βt, the cycle ψt

and the common variance σt components. At first the convergence mechanism is introduced
to element 4 of the diagonal variance matrix of the common slope component βt and the
resulting model is indicated by Mβ. In the same way, the convergence mechanism is placed
on the third element of the diagonal matrix Dκ to investigate cycle convergence only. This
model is indicated by Mψ. The trend-cycle model without any convergence mechanism is
indicated byM and the model with only the convergence mechanism for σ2 is indicated byMσ.
Although we have also investigated employing the convergence mechanism on other elements
of Dζ and Dκ, no other specification produced significant results based on the loglikelihood
values and standard information criteria such as the Akaike information criterion (AIC). In the
discussion of the results below we only consider the models with convergence mechanisms that
are estimated significantly. Finally, the model with convergence considered for all components
will be indicated by Mβψσ.

The full modelling and estimation process is as follows. First the non-converging model M
is estimated for which some of the results for the European GDP series are reported and
discussed in Section 3. The estimated parameters of the M model act as the starting values
for the parameters of the models Mβ, Mψ and Mσ. In particular, we maintain the restrictions
of rη = 1 and rε = 4 in all model specifications in the interests of parsimony. Initial values
for τ and s∗ of the convergence mechanisms are chosen so that the original values of Dζ, Dκ

or σ remain almost fixed throughout. We then explore the possibility that convergence can
take place at various points in time. This amounts to setting s∗ close to zero. We typically
started with a value of τ = n/2, but we also thoroughly explored values corresponding to the
start date for the European Exchange Rate Mechanism in 1979Q1 and Spanish entry to the
EU in 1986Q1. The initial values used in the maximum likelihood optimization routine for
the converging models are similar to the values for M , some of which are reported in Table
1. The estimates for the models Mβ, Mψ and Mσ are then used to initialize the maximum
likelihood routines for the models employing two type of convergence: Mβψ, Mβσ and Mψσ.
Finally, estimates obtained for the the latter more complex converging models serve in turn as
starting values for the final and most complex model of interest Mβψσ.

All models, including the converging trend-cycle models, are estimated by maximum likeli-
hood for which the Kalman filter is used for the evaluation of the loglikelihood function. The
Kalman filter can handle time-varying state space models which we require for representing the
converging model in state space form since the variance matrices are time-varying due to the
convergence mechanisms defined in (12) and (14).

5.2 Estimation results for European GDP series

The estimation results for modelM are discussed in Section 3 and the estimated elements of the
diagonal variance matrices of the common components are reported in Table 1. The parameters
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in Table 1 correspond to the d∗ parameters of the converging mechanism defined in (12) and
(14) and their estimates for the three single convergence models are reported in Table 2 together
with the convergence rate parameter s∗ and the timing parameter τ . Estimates of the same
parameters for the final model Mβψσ are also reported. The models Mσ and Mβψσ incorporate
variance convergence which requires a third convergence parameter dσ. This parameter is also
reported in Table 2.

Since the variance matrix Ση for the level disturbance ηt is estimated to have rank one in model
M , we have used this restriction for all converging models. The estimated value of d∗η,1 is around
−0.5 for most models except for Mσ. In fact, the estimated d∗ values in Dζ and Dε for the
various convergence models do not vary a great deal. This indicates that a large number of
parameters in the convergence models are estimated in a numerically stable manner.

Of particular interest are the estimates of the parameters s∗ and τ of the converging mechanisms.
The actual values of s∗ and τ are not straightforward to interpret and therefore we graphically
present in Figure 3 the three different convergence mechanisms for the slope, cycle and common
variance components which are estimated simultaneously for model Mβψσ.

The graphs clearly show two different converging patterns. By the end of the sample period
the slope and cycle convergence processes have taken place, while the common variance is still
in the process of converging. It is estimated that the standard deviation of the variance will
eventually converge to the value of 0.037. We note, however, that the final converged value of
this variance is difficult to estimate accurately given that both the starting and converged values
lie well outside the sample period. The midpoints of convergence for the slope is approximately
1981Q2 and for the cycle it is approximately 1983Q3, or about two years later. This fact will
be discussed further below.

The log-likelihood values of the various estimated models, denoted by log(L), are reported in
Table 3 together with the number of parameters, np, that are present in the model and the
Akaike information criterion (AIC) that we have computed as

AIC = −2 log(L) + 2np. (15)

We use the minimum of the AIC to determine the “best” model within the class of converg-
ing trend-cycle models in terms of fit relative to the number of parameters required for the
estimation.

The minimum value of the AIC is found for the model Mψσ. This may indicate that cycle and
common variance convergence is most relevant for the European GDP series. Although the
slope convergence is strong, it is only relevant for the GDP of Spain and it has a lesser impact
on the multiple GDP time series as a whole. However, for the illustrative purposes of this
paper we will mainly discuss the estimation results of the full converging model Mβψσ because
it considers all aspects of the converging trend-cycle model.

The factor loading matrices A, B, C and E of the model Mβψσ are estimated as

bA =

1 0 0 0 0
0.08 1 0 0 0
−0.42∗ 0 1 0 0
−0.02 0 0 1 0
0.51∗ 0 0 0 1

 , bB =


1 0 0
1.48∗∗ 1 0
1.03∗ 0.14 0
1.91∗∗ 1.39∗∗∗ 1
0.94∗ 1.33∗ 0.27∗
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bC =

1 0 0
0.48∗ 1 0
1.20∗∗ 0.49 1
0.77∗∗ −0.17 −0.28∗
0.32∗ −0.31 1.52∗

 , bE =

1 0 0
0.18∗ 1 0
0.05 −0.27 1
−0.06 −0.16 −1.04∗∗∗
−0.24 1.37∗∗ −0.46∗


where ∗, ∗∗ and ∗∗∗ indicate that the t-statistic is estimated as being greater than 1, 2 and 3,
respectively. Zero values in the loading matrix A are the result of the fact that the corresponding
values of di are 0. This causes these parameters to drop out of the model, hence the reported
values of 0. There are some restrictions which could be applied by assigning various parameters
a value of 0, particularly in the matrix E. This will not be explored further.

It can be inferred from the factor loadings of the converging element of the slope component
(that is the third column of B) that the slope convergence is strongest for Spain.

The mid-point of the convergence is in the year 1982. Around this year the import and ex-
port activity of Spain with Europe increases exponentially while imports and exports with the
countries of South America, for which traditionally strong trade links existed, hardly increases
in this period.

For example, European Union (EU) imports were five times higher in 1992 than it was in 1980
(for exports it was four times). This has heavily influenced the development of GDP in Spain
and its dependence on the EU member countries’ economies. Therefore it may not be surprising
that Spanish growth converges during this period toward the growth pattern followed by the
EU member countries. This mainly explains the fact that the slope component converges from
three factors to two factors.

There is also some weak evidence of the Dutch growth rate converging. This may partly be
explained by the fact that Dutch GDP heavily depends on trade figures and more trade within
Europe therefore likely leads to a stronger dependence on EU GDP growth. Finally it is noted
that the fact that the factor loading matrices are restricted to be lower triangular and the fact
that the fourth common slope component is converging, rather than the third, is evidence that
the GDP growth of Germany, France and Italy converge before the beginning of the sample,
that is before 1970.

The GDP of these three countries can be described by two common slope factors for the whole
sample. The GDP growth of Spain and the Netherlands roughly converges to these two factors
by 1986, the year in which Spain officially joined the EU.

The characteristics of the cyclical convergence are more complex, because more countries are
involved. In fact we can distinguish two main GDP cycles in mainland Europe: one for Germany
and one for France. The GDP cycles of the other three countries considered in our study
converge towards these two cycles with full convergence taking place by the beginning of the
1990s.

Based on the estimated C matrix we can conclude that the five countries have the first common
cycle component in common. The second common cycle is only significant for France since the
factor loadings for the second cycle are not significant for Italy, Spain, or the Netherlands.
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Figure 3: The converging mechanisms for slope (β), cycle (ψ) and variance (σ) convergence in
model Mβψσ

Further, the converging cycle (the third column of C) is significant for Italy and the Netherlands,
and to a lesser extent, for Spain. The empirical findings of cyclical convergence for Italy may
well correspond to the inception of the Exchange Rate Mechanism. Arguably, stable economic
conditions were required for entering the Exchange Rate Mechanism in 1979, as well for the
later participation in the Euro, and as a result Italy was forced to follow the two dominating
EU business cycles more closely. Given the discipline required by the goal of monetary union,
it is even surprising that France deviates from the economic European cycle. However, the
variation of the specific cycle for France (after correction for the European cycle) is moderate
given its logged standard deviation estimated as −1.39 compared to the one of ”Europe”, that
is −0.97, for model Mβψσ.

Finally, the estimated Cholesky matrix E of the irregular variance matrix in (8) is not of any
significant interest. However, it is worth mentioning that the irregular series of Italy and Spain
are strongly negatively correlated implied by the highly significant value of −1.04 in E, element
(3, 4). This may well be explained by the competitive nature of the trade of both countries
within Europe. When Spain is doing well in terms of GDP, Italy may have done less well
as a result, and vice-versa. Casual observation would certainly seem to suggest that various
products and services traded in Europe come from both Italy and Spain, for example, wine and
tourism.

282



Table 2: Estimated diagonal variance matrices of converging
trend-cycle model

UC model d∗1 d∗2 d∗3 d∗4 d∗5 i s∗i τ i time

Dη Mβ -0.53 * * * * - - - -

Mψ -0.50 * * * * - - - -

Mσ -0.33 * * * * - - - -

Mβψσ -0.45 * * * * - - - -

Dζ Mβ -2.30 -3.66 * -1.47 * 4 -0.43 48.2 1982Q1

Mψ -2.18 -2.80 * -2.34 * - - - -

Mσ -2.18 -2.92 * -2.33 * - - - -

Mβψσ -2.30 -2.93 * -1.45 * 4 -0.29 45.2 1981Q2

Dκ Mβ -1.17 -1.48 -1.87 * * - - - -

Mψ -1.19 -1.46 -3.22 * * 3 -0.50 66.2 1986Q3

Mσ -0.99 -1.42 -3.23 * * - - - -

Mβψσ -0.97 -1.39 -0.86 * * 3 -0.21 54.1 1983Q3

Dε Mβ -0.69 -1.61 -1.74 * -1.01 - - - -

Mψ -0.65 -1.63 -1.95 * * - - - -

Mσ -0.60 -1.41 -1.52 * -0.99 - - - -

Mβψσ -0.54 -1.49 -1.34 * -0.87 - - - -

σ2t Mσ dσ=-3.16 d∗σ,t=-0.60 - -0.055 93.3 1993Q2

Mβψσ dσ=-3.29 d∗σ,t=-0.54 - -0.055 100.4 1995Q1

The estimates are for the transformed values of the diagonal variance matrices in (8) for
four different models of convergence. See Table 2 for the definition of the four models.
The transformed value di is the logarithm of the square root of the ith diagonal element
of D. Large negative values produce therefore variances which are close to zero. To
facilitate the comparison of the results for the various models, the values for di obtained
for models with variance convergence are from the first quarter of 1970 and are reported
after re-scaling the values to reflect the contribution due to σ2. This amounts to the
rescaling of the variance so that σ21 = 1.

Table 3: Log-likelihood values of estimated models

model description log (L) np AIC

M : UC, 1970-2001 -634.69 43 1355.37

M70−86: UC, 1970-1986 -371.22 45 -

M87−01: UC, 1987-2001 -184.80 42 -

Mβ: UCC, slope convergence -628.42 45 1346.85

Mψ: UCC, cycle convergence -616.72 45 1323.45

Mσ: UCC, variance convergence -604.28 46 1300.57

Mβψ: UCC, slope and cycle convergence -609.62 47 1315.24

Mβσ: UCC, slope and variance convergence -602.08 48 1300.15

Mψσ: UCC, cycle and variance convergence -595.78 48 1287.57

Mβψσ: UCC, slope, cycle, and variance convergence -595.31 50 1290.63

The log-likelihood values are computed via the Kalman filter that is adapted for the
diffuse initialisations of the trend and slope (nonstationary) components.
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5.3 Diagnostic checking

The diagnostics of the standardised residuals (obtained for the estimated converging trend-cycle
model Mβψσ for normality, heteroskedasticity and serial correlation are presented in Table 4.
They are for the most part satisfactory for the five residual series. In fact when they are
compared with the diagnostics of the estimated non-converging model M they have generally
improved.

In particular, the heteroskedasticity tests and the normality tests are all satisfactory except for
Spain. The residual series of Spain indicate that a more modest decline in the variance may be
required for the observations after 1986.

Figure 4 presents the cumulative sum of squared residuals for all standardised prediction resid-
uals, that is

Cj = cj/cn, cj =

jX
t=1

v0tF
−1
t vt,

for j = 1, . . . , n, where vt is the vector of one-step ahead prediction errors and Ft is its variance
matrix at time t. Both vt and Ft are computed by the Kalman filter.

Relative large deviations of Cj from j, whether they are positive or negative, indicate some
structural break in the variance. It is clearly seen from Figure 4 that for the non-converging
model M such breaks occur right from the beginning of our sample. This is the main reason
for including the common variance converging mechanism of (14) in the final model Mβψσ.

The graph of Cj for the estimated model Mβψσ in Figure 4 shows that the inclusion of variance
convergence in the model has been effective in dealing with the heteroscedasticity in the time
series due to breaks and other irregularities.

Table 4: Diagnostic checking for residuals of common converging
trend-cycle model

NDH Q(10, 7) H(40) DW
M Mβψσ M Mβψσ M Mβψσ M Mβψσ

Germany 1.24 0.34 7.58 8.72 0.28∗∗ 0.56∗ 1.86 1.89

France 7.85∗ 2.79 11.7 14.1 0.33∗∗ 0.72 1.79 2.00

Italy 0.37 1.63 11.2 5.09 0.32∗∗ 0.96 1.48∗∗ 1.62∗

Spain 3.03 5.66 23.9∗∗ 14.3∗ 0.88 3.03∗∗ 1.91 1.86

Netherlands 6.25∗ 3.97 8.22 9.82 0.24∗∗ 0.89 1.93 1.75

M is the common trend-cycle model without convergence and Mβψσ is the common
converging trend-cycle model for the slope, cycle and variance components. The statis-
tics are computed for the five standardized one-step ahead residuals obtained from the
Kalman filter. NDH is the asymptotic χ22 normality test of Doornik and Hansen (1994).
Q(p, q) is the Box-Ljung test for the p autocorrelation and is asymptotically χ2q dis-
tributed. H(k) is the standard heteroskedasticity test computed as the ratio of the
sum of the first k and the sum of the last k squared residuals and is asymptotically
F (k, k) distributed. The notation ∗ indicates significant at the 5% level and ∗∗ indicates
significant at the 1% level.
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5.4 Multivariate decomposition into trends and cycles

Given that the model diagnostics are satisfactory for the Mβψσ model, we now present the
estimated trend, slope and cycle components based on all observations (smoothed estimates of
elements of the state vector). In Figure 2 we present the estimated vector components for the
common trend-cycle modelM and in Figure 5 the same smoothed estimates of the components
are presented for the converging model Mβψσ. Comparison of the two figures indicates that
they are similar as may be expected. In the case of the similar cycle component, the estimated
parameters for the Mβψσ model are also close to those reported for the M model in Section 3.
For the Mβψσ model, we obtained the following maximum likelihood estimates,

θ̂ρ = 2.09 (s.e 0.29), θ̂λ = 2.75 (s.e 0.10).

These values imply an estimated autoregressive coefficient ρ of 0.90 (with a 95% confidence
interval between 0.83 and 0.94) and an estimated cycle period fc of 17.7 quarters (with a 95%
confidence interval between 14.9 and 21.1). There are, however, some subtle differences in the
estimated components obtained with the two models.

Figure 4: Cumulative sum of squared residuals Cj for common trend-cycle (M , broken line) and

converging trend-cycle model (Mβψσ, solid line) together with the diagonal reference line (dotted

line)
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Figure 5: Trend, slope and cycle components for common trend-cycle model
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The estimates of the slope and cycle components in the last ten years of the sample look more
similar for the model Mβψσ than those from the model M . This is to be expected because
the slope and cycle components are both linear functions of only two underlying factors for the
model Mβψσ whereas for the model M they remain functions of three factors.

5.5 Time-varying correlations for converging common components

A quantity of particular interest for converging trend-cycle models is the correlation between
the individual elements of the converging component. Let us define the time-varying level
correlations by

η,t,i,j = σtΣη,t(i, j)/
q
{σtΣη,t(i, i)σtΣη,t(j, j)}, (16)

where Ση,t = ADη,tA
0, the diagonal variance matrix Dη,t being time-varying due to the conver-

gence mechanism introduced in (3). Further, Ση,t(i, j) refers to the (i, j) element of variance
matrix Ση,t. These time-varying correlations can be presented as graphs and they provide
information about which two countries are converging to each other in terms of level dynamics.

Similar quantities to those defined in (16) can be introduced for the slope ( ζ,t,i,j) and cycle
( κ,t,i,j) components. Note that the correlations are not affected by variance convergence since
the common variance σt cancels out in the computation of η,t,i,j and in the other correlations.

In Figure 6 we present a selection of the time-varying correlations for the slope and cycle
components that in our view are of most interest. The slope correlations are presented for
Germany, France, Italy, and Spain against Spain and the Netherlands. As pointed out earlier,
the slope convergence is mainly due to Spain as the graphs make clear. The correlation in the
slope disturbance between Spain and Germany is 0.62 at the beginning of the 1970s and it
becomes 0.94 at the end of the 1980s which is a remarkable increase in about 15 years. Similar
increases can be observed for the correlations of the slope disturbances with France and Italy.
Slope correlation increases are also found for the Netherlands but on a smaller scale.

The correlation increases in the cyclical component are due to various countries as we have
mentioned earlier. It is interesting to see that the cyclical correlations between Germany and
the Netherlands increases in the 1980s from 0.2 to 0.8, between France and Italy from 0.57 to
0.79 and between Italy and Spain from 0.4 to 0.9. The most dramatic increase, however, is due
to the change in the correlation between Spain and the Netherlands: from −0.18 to 0.91.
A closer economic investigation may be required to provide some explanation for these particular
changes in the cycle correlations. However, the figures clearly show that a closer integration
of the dynamics of the GDP cycle can be identified beginning around the time of the start
of the European Exchange Rate Mechanism in March of 1979, and in the case of the slope
convergence, ending around January 1986 when Spain became a member of the EU. The cycle
component converges more slowly, but still before the opening of the EU’s Common Market
in January of 1993. That the cycle component converges more slowly is also evidenced by the
fact that the parameter governing the rate of convergence for the cycle, s∗κ,3 = −0.21 is closer
to 0 than the rate for the slope convergence, s∗ζ,4 = −0.29, as can be seen in Table 2. Finally,
however, we wish to sound a note of caution about the exact interpretation of these rates of
convergence.
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Figure 6: Some time-varying correlations ζ,t,i,j and κ,t,i,j implied by the slope variance matrix

Σζ,t and the cycle variance matrix Σκ,t, respectively, for Spain (solid line), Netherlands (dotted line)

and Italy (dashed line)
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Our experience with estimating differing model specifications and differing sample periods has
demonstrated that the estimates of these rates can vary as can been seen in Table 2 where the
reported rate s∗κ,3 for the model Mκ is further from 0 than the one for s∗ζ,4 = −0.29 estimated
for the modelMζ . Nonetheless, both the slope and cycle components are consistently estimated
as converging in the period around the early to mid 1980’s.

6 Conclusions

In this paper we have considered a multivariate unobserved components model for quarterly
GDP series of five European countries from 1970 to 2001. The model decomposes the p × 1
observation vector, for p = 5, into unobserved trend, cycle and irregular components. We refer
to this model as the trend-cycle decomposition model. Each component depends linearly on
r ≤ p independent common factors. Multiple time series with r < p common trends imply
cointegrating relationships within the set of time series. Common cycles can be introduced
into the model in a similar fashion. This leads to a model framework that can incorporate
stable relationships between economic variables for the long term (trends) and the middle term
(business cycles or other stationary components).

The main contribution of this paper is the introduction of convergence mechanisms into the
common trend-cycle model. At the beginning of the time series, for example, the vector cycle
component is a linear function of three factors, and subsequently converges to being dependent
on only two factors. The process of rank-reduction is modelled as a smooth logistic function
of time that depends on a shape parameter and a parameter that determines the mid-point of
the convergence process. Such a convergence mechanism is introduced not only for the slope
and cycle components, but also for the overall variance of the model in an adjusted form. The
multivariate converging trend-cycle model is estimated by maximum likelihood via the Kalman
filter and the results are discussed in detail.

On the basis of the empirical results, we draw the following three main conclusions.

1. Both the slope and cycle components begin converging following the introduction of the
Exchange Rate Mechanism introduced by EU countries in 1979.

2. Spanish GDP growth converges to the common growth components of the other European
countries by 1986 when Spain joined the EU.

3. The cyclical variations of the GDP series for Italy, Netherlands and Spain converge to
the cycle processes of Germany and France by the beginning of the 1990’s, before the
inception of the Common Market in 1993.

The convergence of the Spanish growth rate can be explained by the huge increases of Spanish
imports from and exports to other EU countries during the 1980s as Spanish prepared for entry
to the EU, which occurred on 1 January 1986. The cycle convergence can be explained by
the introduction of the Exchange Rate Mechanism in 1979 which demanded strong monetary
coordination between participating EU countries, as well as by the necessary macroeconomic
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adjustments required by the EU member countries for the successful implementation of the
Common Market in 1993, and the introduction of the Euro which followed. The convergence
of the cycle at the beginning of the 1990’s can therefore be taken as a consequence of the
economic preparations for entry to the Common Market in the EU. Finally, we also included
a convergence mechanism for the overall variance of the trend-cycle model. Although the
estimated convergence of the common variance is significant, it had not fully converged by
the end of the sample period in 2001, and according to our estimates is still in the process of
converging.
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1 Introduction

This paper is concerned with unobserved components (UC) models for the decomposition
of a macroeconomic aggregate into a trend component and a deviation cycle. Unobserved
components (UC) models assume that the components are driven by orthogonal disturbances
(see, for instance, Clark, 1987, Harvey and Jäger, 1994) or perfectly correlated ones; in the latter
case there is a single source of disturbances and the sign of the correlation is implied by the
remaining parameter estimates. These restrictions are often enforced to produce just-identified
decompositions, but in some cases they are over-identifying.

When there are no degrees of freedom available for estimating the correlation between the dis-
turbances, and economic theory is uninformative about this parameter, we cannot usually dis-
criminate between different assumptions by the usual likelihood inferences, although departures
from the maintained model will show up in the several diagnostic tools in the econometrician
kit. The reduced form, i.e. the corresponding model in the ARIMA class, will be of the same
order, but models with orthogonal disturbances impose severe restrictions on its parameter
space.

To overcome the latter, models with correlated components have been considered by Godolphin
(1976) and Godolphin and Stone (1980), with the explicit intent of extending the parameter
range yielding decomposable models. Snyder (1985), Ord, Koehler and Snyder (1997), and Hyn-
dman et al. (2002) advocate state space models with only one source of random disturbances,
with the same intent, also arguing that inferences are simplified.

Another very popular result, the Beveridge and Nelson (BN, 1981) decomposition, is formulated
in terms of perfectly correlated disturbances, and is commonly viewed as providing a structural
interpretation to any ARIMA model. In the study of macroeconomic time series (e.g. GDP at
constant prices) the common disturbance has often been associated with productivity, or real,
shocks.

The BN decomposition is actually a particular case of what is known as a formal decomposition
of an ARIMA model; see Brewer et al. (1975), Brewer (1979) and Piccolo (1982). Casals, Jerez
and Sotoca (2002) have recently advocated the use of the innovation form of a structural model
for inference about unobserved components. Their argument is that this representation yields
an “exact" decomposition, such that the model for the estimated component is congruent with
the theoretical one and the components are estimated in real time, i.e. using only current and
past information.

Models with perfectly correlated disturbances pay a price for their wider applicability: at the
outset there is no guarantee that the components will be sensible. For instance, we must be
willing to accept that trend growth has higher unconditional variance than output growth,
which may be regarded as quite implausible, under a weak smoothness prior. Moreover, if main
motivation for entertaining them was to enlarge the reduced form decomposable parameter
range, but they happened to select a point in that space for which an orthogonal decomposition
is admissible, the estimation of the components could have been improved by using future
observations; smoothing is however prevented by the model specification itself.

In other words, the restrictions imposed by UC with uncorrelated components are often rea-
sonable, providing plausible ways of weighting the data and of avoiding, for instance, that
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the trend fluctuates more wildly than the observations. Harvey and Koopman (2000), looking
at the implications on the weighting patterns for signal extraction, cast some doubts on the
plausibility of models with correlated components.

These issues have been reflected in the forecasting literature. The “structural" interpretation
of the forecast function of any ARIMA model has been provided by Box, Pierce and Newbold
(1987), using a partial fraction expansion of the autoregressive polynomial; by this approach,
which is essentially the same as that at the foundation of the BN decomposition, it is possible
to derive updating equations for the components of the forecast function that depend on the
innovations. The fundamental question is whether the components can be genuinely interpreted
as trends, cycles, etc., especially when the innovations are not discounted; see Proietti (2002a,
sec. 5.10) for an illustration. On the other hand, UC models with orthogonal disturbances
impose some kind of discounting on the innovations that is coincident with or in the same spirit
of that arising in exponential smoothing techniques. With reference to the latter, the related
problem as to whether smoothing constant greater than 1 are admissible has received some
attention, and is reviewed in Gardner (1985).

A different situation arises when the restrictions on the correlation are over-identifying. This
occurs if the representation chosen for the components is not “saturated": usually, UC mod-
els are a linear combinations of individual components, such that the i-th component has a
(possibly nonstationary) ARMA(pi, pi − 1) representation. For instance, a typical trend-cycle
decomposition features a random walk (RW) trend (p1 = 1) plus a stationary ARMA(2,1)
cycle (p2 = 2). If the parameters are unconstrained, the model is “saturated" and we have to
assume a particular value for the correlation of the disturbances driving the components so as
to achieve exact identification. If the cycle is specified as a pure AR(2), instead, the reduced
form has one more parameter than the UC model and this extra degree of freedom can be used
to estimate the correlation between the trend and cycle disturbances.

Morley, Nelson and Zivot (2002, MNZ henceforth) have recently contributed to this issue: they
consider a class of UC decompositions of U.S. real gross domestic product (GDP) into a random
walk trend and a purely AR(2) cycle, that depends on the identifiable correlation between
the trend and cycle disturbances and that produces an ARIMA(2,1,2) reduced form. Within
this class, MNZ compare the fit and the components arising from the UC model assuming
orthogonal disturbances and the BN decomposition of the unrestricted ARIMA model, which
features perfectly and negatively correlated disturbances. The resulting decompositions produce
different stylised facts, and in particular the BN cycle is characterised by a much smaller
amplitude and a shorter periodicity.

Since a degree of freedom is allowed from the fact that the UC model has one parameter less
than the ARIMA reduced form, they estimate the correlation between the trend and cycle
disturbances and find out that the estimated value is negative, about -0.92, and significantly
different from zero. The resulting real time, or concurrent, estimates of the trend and cycle in
U.S. GDP closely resemble the BN components, which allows us to reconcile the UC with the
unrestricted reduced form.

They interpret this empirical evidence as an expression of the dominant role of real shocks, which
shift the long run path of output, whereas short term fluctuations reflect only the adjustment
to the new path.
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This paper will be concerned with the estimation and the interpretation of decomposition with
correlated trend and cycle disturbances. We set up with the specification of the benchmark UC
model in Section 2, which nests two leading cases of interest: the UC model with correlated
disturbances and the orthogonal decomposition with ARMA(2,1) cyclical component. Section
3 reviews the BN decomposition of the ARIMA(2,1,2) reduced form and its main properties,
while Section 4 presents the autocovariance and spectral generating functions of the various
models.

In Section 5 we illustrate and compare the fit of orthogonal and correlated UC models to
the Euro area and the Italian quarterly real gross domestic product. The evidence for the
Italian series mirrors quite closely the findings by MNZ, i.e. in favour of a strong and negative
correlation between the trend and cycle disturbances, although we argue that the small sample
distribution of the correlation coefficient raises some concern. For the Euro area the findings
are not conclusive.

Models with correlated components pose several interpretative issues since, under certain con-
ditions, they are observationally equivalent to models that provide different explanations of
the nature of macroeconomic fluctuations (Section 6). Strongly and negatively correlated dis-
turbances imply that the spectral density of the first differences of the series is not a global
minimum at the long run frequency. This feature is accommodated also by the cyclical growth
model, that can also be parameterised as a model featuring hysteresis effects. The Italian case
illustrates that the cyclical growth model and the hysteresis model possess exactly the same
explanatory power, yielding the same likelihood.

Inference about unobserved components in models with correlated components is dealt with
Section 7, where we consider the state space representation, the treatment of initial conditions,
estimation of the components in real time and using the full sample, and some of the ambiguities
that arise for single source of error and innovation form representation when they are considered
as “models". We also illustrate that a very peculiar trait of models with highly and negatively
correlated trend and cycle disturbances is that the future is more informative than the past for
signal extraction. As a result the cycle estimates will be subject to large revisions and the final
estimates will display greater amplitude than the real time ones.

Sections 9 and 10 investigate respectively whether seasonal adjustment and temporal aggre-
gation can affect the empirical evidence about the sign and the magnitude of the correlation
coefficient. Finally, we address the issue as to whether multivariate UC models can cast some
light on correlated disturbances (Section 11). Section 12 draws the main conclusions.

2 Trend-Cycle decomposition with Correlated Compo-
nents

The basic univariate representation for an output series, yt, deals with the decomposition into
a random walk trend component, denoted µt, and a stationary ARMA(2,1) stochastic cycle,

295



denoted ψt:

yt = µt + ψt t = 1, 2, . . . , T,

µt = µt−1 + β + ηt,
ψt = φ1ψt−1 + φ2ψt−2 + κt + θκt−1,µ
ηt
κt

¶
∼ NID

·µ
0
0

¶
,

µ
σ2η σηκ
σηκ σ2κ

¶¸
, σηκ = rσησκ.

(1)

The trend and cycle disturbances are allowed to be contemporaneously correlated, with r
being the correlation coefficient; NID denotes normally and independently distributed random
variables. Complex stationary autoregressive roots can be imposed expressing φ1 = 2ρ cosλc
and φ2 = −ρ2, where ρ and λc (representing the modulus and the phase of the roots of the AR
characteristic equation), lie respectively in [0, 1) and [0, π].

Model (1) will be labelled UC(r, θ) to stress the dependence on the two “conflicting" parameters.
Its reduced form is the ARIMA(2,1,2) process:

∆yt = β +
θ(L)

φ(L)
ξt, ξt ∼ NID(0, σ2), t = 2, ..., T, (2)

where θ(L) = 1 + θ1L + θ2L
2 and φ(L) = 1 − φ1L − φ2L

2 are respectively the MA and AR
polynomials in the lag operator, L, and ∆ = 1− L.

The reduced form has six parameters, whereas UC(r, θ) has seven. Hence, the latter is not
identified and one has to restrict either r or θ. The orthogonal trend cycle decomposition
considered by Clark (1987) imposes r = θ = 0, and thus will be denoted UC(0,0). MNZ
entertain UC(r, 0) and compare it with UC(0, 0). Harvey and Jäger (1994), although they
entertain I(2) - local linear - trends, consider UC(0, θ), with a restricted θ, which functionally
depends on ρ and λc.

It should be noticed that UC(r, 0) is not identifiable if φ2 = 0; the parameterisation in terms
of the modulus and phase of the AR process avoids this lack of identification if 0 < ρ < 1.

3 The Beveridge-Nelson Decomposition

The Beveridge and Nelson (1981) decomposition is based upon a definition of the trend in
terms of prediction as the value at time t of the eventual forecast function. When yt is differ-
ence stationary, this argument yields a unique decomposition into a random walk trend and a
stationary transitory component. The decomposition has been deemed to provide a structural
interpretation to any ARIMA(p, 1, q) reduced form model fitted according to the traditional
Box-Jenkins methodology, with the characterising property that the components are driven by
perfectly correlated disturbances, that are linear in the innovations, ξt.

With respect to the ARIMA(2,1,2) model (2), the BN decomposition specialises as follows:

yt = mt + ct, t = 1, ..., T. (3)
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where the trend, mt, has the random walk representation:

mt = mt−1 + β +
θ(1)

φ(1)
ξt. (4)

and the cycle, ct, has the ARMA(2,1) representation:

φ(L)ct = (1 + ϑ∗L)
·
1− θ(1)

φ(1)

¸
ξt, ϑ∗ = −φ2θ(1) + θ2φ(1)

φ(1)− θ(1)
. (5)

These results follow straightforwardly from Proietti (1995) and Proietti and Harvey (2000).

It is apparent from (4) and (5) that the two components are driven by the innovations, ξt; the
fraction θ(1)/φ(1), known as persistence, is integrated in the trend, and its complement to 1
drives the cycle. The sign of the correlation between the trend and the cycle disturbances is
provided by the sign of φ(1)− θ(1); when persistence is less (greater) than one then trend and
cycle disturbances are positively (negatively) and perfectly correlated. Furthermore, the BN
cycle has always an MA feature, unless φ2θ(1) + θ2φ(1) = 0. The MA polynomial can be non
invertible, which occurs when |ϑ∗1| is greater than 1; this will be the case for the ARIMA(2,1,2)
models estimated in Section 5 for the Euro Area and the Italian GDP.

As shown by Watson (1989), the BN components, defined on the reduced form of UC models,
are always coincident with the filtered, or real time time, estimates arising from the UC(r, θ)
model, whatever restriction we impose to make it identifiable. The filtered components of
identified UC(r, θ) models are however estimated with non zero mean square error even in
the case r = −1, θ = 0. Hence, it would not be correct to regard the BN trend and cycle
as the estimates of the components arising from UC(−1,0), as future observations reduce the
estimation error. This point has often been overlooked in the literature and we return to it in
Section 8, where we show that the only case in which ψt is actually an observed component in
real time arises for r = 1.

When the BN decomposition is interpreted as a model, the components are estimated in real
time with zero mean square error, after processing a suitable number of observations so that the
effect of initial conditions is marginalised, this being the only source of uncertainty (assuming
known parameters). We discuss this further in Section 7.

4 Autocovariance Generating Functions

The properties of any linear time series model of economic fluctuations are uniquely charac-
terised by its autocovariance generating function (ACGF). The ACGF also provides a valuable
tool to address the equivalence issues that arise in the interpretation of models with correlated
disturbances (see Section 6). Moreover, its frequency domain counterpart, the spectral gener-
ating function (SGF), will be used for estimating the parameters of the model by maximum
likelihood.

The ACGF of the reduced form model for ∆yt, denoted g(L), is g(L) = σ2|θ(L)|2/|φ(L)|2,
where |θ(L)|2 = θ(L)θ(L−1) and |φ(L)|2 = φ(L)φ(L−1). The various UC model that result by
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constraining (1) are restricted versions of g(L). For the UC(r,0) model considered by MNZ the
ACGF, denoted gr(L), can be written as follows (Proietti, 2002):

|φ(L)|2gr(L) = |φ(L)|2σ2η + |1− L|2[σ2κ + rσησκ(1 + φ1 + φ2 + φ2(L+ L−1))]. (6)

Equating g(L) to gr(L) provides the way of deriving the reduced form parameters (θ1, θ2, σ2)
from (ση, σκ, r) and of assessing the restrictions imposed by the UC model on the reduced form.
For instance, g(1) = gr(1) implies σ2η = σ2[θ(1)/φ(1)]2.

For the UC(0, θ) model we have

|φ(L)|2gθ(L) = |φ(L)|2σ2η∗ + |1− L|2|1 + θL|2σ2κ∗ (7)

where, with a change of notation that will be useful in the sequel, σ2η∗ and σ2κ∗ denote the
variance of the trend and cycle disturbances when we assume in (1) that they are mutually
uncorrelated at all leads and lags.

The ACGF of the Clark model, UC(0,0), is obtained by setting r = 0 in (6) or θ = 0 in (7).
Replacing L with the complex exponential e−ıλ = cosλ− ı sinλ, where ı is the imaginary unit,
gives the spectral generating function, that provides a decomposition of the variance of ∆yt
into the contribution of changes in the trend, in the cycle and, in the case of UC(r,0), the
covariation (cross spectral density) between the two.

5 Two Illustrative Examples

This section illustrates the fit of the unrestricted ARIMA(2,1,2) and three different trend-cycle
decompositions that result from (1), UC(0,0), UC(r, 0) and UC(0, θ), with respect to Euro
Area (EA) and the Italian Gross Domestic Product (GDP) at constant prices. Both series are
quarterly and are available for the sample period 1970:1-2002.2. The EA series is an update
of the one constructed for the Area Wide Model by Fagan, Henry and Mestre (2001), and the
Italian series is made available electronically at www.istat.it.

Model estimation has been carried out in the frequency domain. The likelihood is defined
in terms of the stationary representation of the various models, that is in terms of ∆yt, t =
1, . . . , T ∗ = (T − 1); see Nerlove, Grether and Carvalho (1995) and Harvey (1989, sec. 4.3).
While the time domain likelihood of UC models is based on a recursive orthogonalisation,
known as the prediction error decomposition, performed by the Kalman filter (Section 7), the
frequency domain one is based on an alternative orthogonalisation, achieved through a Fourier
transform.

Denoting the Fourier frequencies by λj =
2πj
T∗ , j = 0, 1, . . . , (T

∗ − 1), the likelihood function is
defined as follows:

loglik = −1
2

(
T ∗ log 2π +

T∗−1X
j=0

·
log gm(λj) + 2π

I(λj)

gm(λj)

¸)
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where gm(λj) = gm(e
−ıλj) denote the spectral generating function of the m-th model evaluated

at frequency λj, and I(λj) is the periodogram:

I(λj) =
1

2π

"
c0 + 2

T∗−1X
τ=1

cτ cos(λjτ)

#
where cτ denotes the sample autocovariance at lag τ ,

cτ =
1

T ∗

T−τX
t=1

(∆yt − ∆̄y)(∆yt−τ − ∆̄y), ∆̄y =
1

T ∗

T∗X
t=1

∆yt.

The index m refers alternatively to the ARIMA model, UC(0,0), UC(r, 0), and UC(0, θ). The
corresponding spectral generating functions are straightforwardly derived from the ACGFs
presented in Section 42.

Table 1 presents the main estimation results along with some diagnostics: Q(12) denotes the
Ljung-Box portmanteau test statistic for residual autocorrelation based on the first 12 auto-
correlations, and we also present the Doornik and Hansen (1994) test of normality. Both are
computed on the standardised Kalman filter innovations (see appendix 7).

We observe that for both series the ARIMA model and UC(r, 0) provide exactly the same
likelihood inferences; hence the reduced form of the latter coincides with the unrestricted
ARIMA(2,1,2) model fitted to the series. The persistence parameter is respectively 1.38 (EA)
and 1.13 (Italy). The estimated correlation parameter is high and negative (-0.95 for EA and
-0.82 for Italy), and the ratio ση/σκ is always greater that 1. The likelihood ratio (LR) test
of the restriction r = 0 is not significant for EA but it is highly so for Italy, with a p-value
0.02, whereas the LR test of θ = 0 is never significant. It is noticeable that for Italy the es-
timated cycle MA parameter lies on the boundary of the parameter space; in general models
with orthogonal disturbances yield worse Ljung-Box statistics.

Table 1: Parameter estimates and diagnostics for models of quarterly Euro Area
and Italian GDP, 1970.1-2002.2; (r) denotes a restricted parameter

Estimates Euro Area Italy
ARIMA UC(0, 0) UC(r, 0) UC(0, θ) ARIMA UC(0, 0) UC(r, 0) UC(0, θ)

φ1 1.40 1.65 1.40 1.65 1.47 1.54 1.47 1.56
φ2 -0.69 -0.68 -0.69 -0.68 -0.77 -0.59 -0.77 -0.84
θ1 -1.17 -1.14
θ2 0.57 0.48
σ2 0.3443 0.5225
r 0(r) -0.95 0(r) 0(r) -0.82 0(r)
σ2η (σ

2
η∗) 0.2090 0.6473 0.2089 0.1475 0.6672 0.3957

σ2κ (σ
2
κ∗) 0.0975 0.2226 0.0975 0.3560 0.2539 0.0216

θ 0(r) 0(r) -0.02 0(r) 0(r) 1.00
loglik -114.28 -114.52 -114.28 -114.51 -141.17 -144.04 -141.17 -143.03
Q(12) 6.83 7.70 6.83 7.76 6.29 13.53 6.29 14.07
Normality 11.80 11.63 11.80 11.58 2.08 1.53 2.08 2.46

2All the computations were performed in Ox 3.2 (Doornik, 2001). Signal extraction was performed by the
Kalman filter and smoother using the library of state space function SsfPack 3.0 (beta) by Koopman et al.
(1999), linked to Ox 3.2.
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The fit provided by the models to the periodogram (raw sample spectrum) emerges from Figure
1, which presents I(λj) along with the estimated spectral density functions gr(λj)/(2π) and
gθ(λj)/(2π). Obviously, gr(λj) = g(λj), that is the ARIMA spectrum is identical to that
implied by UC(r,0).

For EA the spectral density fitted by UC(0,θ) is characterised by a spectral peak taking place
at a lower frequency, and therefore the resulting cycle estimates are characterised by a larger
period (the estimated AR polynomial can actually be written as φ(L) = (1− 0.82L)2 and thus
features a stationary root with multiplicity 2 at the zero frequency - this is a special case of
a second order cycle, see Harvey and Trimbur, 2002); as expected, UC(r, 0), yields a much
higher estimate at the zero frequency and it is not a minimum at that frequency. We also
notice a periodogram ordinate close to the Nyquist frequency that is not fitted by any of the
models: this is the likely effect of an additive outlier occurring in 1974.4, which also inflates
the normality test statistic.

For Italy, the cycle periods are not different (about 3 years), although gr(λj) and gθ(λj) differ
around the zero frequency and the spectral peak. For the latter we observe that θ = 1 implies
gθ(0) = gθ(π) as the cycle is strictly non invertible at the π frequency. The richer residual
autocorrelation pattern characterising UC(0,θ) are likely to be a consequence of underestimation
of the zero frequency variance component.

For estimation purposes, we adopted the transformation r = r̄/
√
1 + r̄2, where r̄ is estimated

unrestrictedly and the transformation ensures that the correlation parameter is constrained
in the admissible range [-1,1]. The asymptotic standard error of r, estimated by the Delta
method, are 0.17 and 0.22, respectively for the EA and Italy. These, however, provide only a
very bad guidance over the sampling distribution of r. To illustrate this point we generated
1000 bootstrap estimates of r; the distribution is plotted in Figure 2. For the implementation of
the bootstrap we followed Stoffer and Wall (1991), generating 1000 series with the same sample
size of the original ones by resampling without replacement the standardised innovations arising
from the fitted UC(r,0) model. The sampling distribution is highly nonstandard as it suffers
from a “pile-up" phenomenon at the extremes of the sample range; if we consider that in the
Italian case 27% and 6% are equal respectively to -1 and +1, a bootstrap confidence interval
covers all the parameter range. The same considerations apply to EA.

In conclusion, the results presented in this section confirm the MNZ findings, pointing out that
among the unobserved components models considered, the UC(r, 0) model is the only one that
can be reconciled with the unrestricted ARIMA(2,1,2) model of GDP. However, only for Italy
the correlation between trend and cycle disturbances resulted significant using standard asymp-
totic inferences. The bootstrap characterisation of the sampling distribution of the correlation
parameter suggests that those inferences need to be handled with great care.

6 Interpretative Issues

The evidence emerging from our empirical illustrations, would, with the caveats made above,
point out in the direction of selecting the UC(r, 0) specification, with a high and negative
correlation between the trend and cycle disturbances. This, along with the signal ratio σ2η/σ

2
κ
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being relatively high, has been taken to support the notion of the prominence of real shocks,
ηt, as opposed to nominal ones, κt.

In this section we review some alternative ways of interpreting the correlation between the
disturbances, by establishing the conditions under which UC(r, 0) can be viewed as a reparam-
eterisation of an alternative decomposition with a very different meaning.

6.1 The Equivalence of UC(r,0) and UC(0, θ)

The UC(r,0) model can be rewritten as an UC(0,θ) model if the quadratic equation,

θ

1 + θ2
= φ2r

ση
σκ

·
1 + r

ση
σκ
(1 + φ1 + φ2)

¸−1
, (8)

admits a real and invertible solution (Proietti, 2002). The remaining parameters are then
obtained as follows: σ2η∗ = σ2η and σ2κ∗ = φ2rσησκ/θ. These results are derived form the ACGF
identity, gθ(L) = gr(L), which amounts to equating the right hand sides in (6) and (7).

The admissibility conditions can be shown to be exactly the same under which gr(e
−ıλ) is a

global minimum at the zero frequency. This reflects the fundamental fact that the orthogonal
decomposition UC(0, θ) imposes that the spectral density of ∆yt is a minimum at zero, a result
already established in Lippi and Reichlin (1992).

The equivalence is always feasible if r is positive, but, we can allow for negative correlation
provided that the ratio ση/σκ is small, i.e. the trend disturbance is a minor source of variation.
In conclusion, when the spectral density of ∆yt is a minimum at zero, the cross spectrum
between the components absorbs part of the cyclical variability; this can be reallocated to the
cyclical component, which is underestimated by the UC(r,0) model, by allowing it to display a
moving average feature.

6.2 Cyclical Growth and Hysteresis

Consider now the following UC model that postulates that ∆yt can be additively decomposed
into a cyclical component and orthogonal noise:

∆yt = β + ψt + η∗t , η∗t ∼WN(0, σ2η∗),
ψt = φ1ψt−1 + φ2ψt−2 + κ∗t + θκ∗t−1, κ∗t ∼WN(0, σ2κ∗),

E(η∗tκ
∗
t ) = 0.

(9)

The idea is that of representing underlying growth as a smooth cyclical process.

Model (9) has again an ARIMA(2,1,2) reduced form, and six parameters, but different implica-
tions. In its original specification, it simply produces estimates of underlying growth that are
smoother than the original observations; it can also be interpreted as a cyclical trend model, as
in Harvey (1989, p. 46), such that the trend is coincident with the observations, i.e. yt = µt
and µt = µt−1 + β + ψt + η∗t .
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It is also observationally equivalent to the Jäger and Parkinson (1994) hysteresis model, which
is such that a deviation cycle can still be defined, but the cycle modifies also permanently the
trend. The hysteresis model is specified as follows:

yt = µt + ψ∗t , t = 1, 2, . . . , T,

µt = µt−1 + (1 + θ)ψ∗t−1 + η∗t , η∗t ∼WN(0, σ2η∗),
ψ∗t = φ1ψ

∗
t−1 + φ2ψ

∗
t−2 + κ∗t , κ∗t ∼WN(0, σ2κ∗)

(10)

and E(η∗tκ
∗
t ) = 0. Notice that the cycle, ψ

∗
t , is redefined as a pure second order AR process;

(1 + θ) represents the hysteresis parameter, i.e. the fraction of the cycle that is integrated in
the trend. Obviously, θ = −1 yields again the additive decomposition into orthogonal trend
and cycle that corresponds to the Clark model UC(0, 0).

Using the same expedient of equating the ACGFs, we establish a set of conditions under which
(9) can provide a trend - cycle decomposition with correlated disturbances, i.e. can be written
as an UC(r, 0) process. These are met if we can uniquely determine the cycle MA parameter
θ in (9) for given values of the correlation parameter r and the ratio ση/σκ in UC(r, 0), as the
admissible invertible solution of the quadratic equation:

(1 + θ)2

(1 + θ)2 [φ1(1− φ2) + 2φ2] + θφ(1)2
=

r(ση/σκ)

1 + r(ση/σκ)(1 + φ1 + φ2)
. (11)

If this is possible, then, the remaining parameters are obtained from:

σ2κ∗ = −rσησκ
φ(1)2

(1 + θ)2
; σ2η∗ = σ2η −

(1 + θ)2

φ(1)2
σ2κ∗.

These results make clear that the equivalence is admissible only for negative values of r. When
r = 0 the solution θ = −1 arises for any value of the ratio ση/σκ, in which case the hysteresis
parameter is zero and the model can be orthogonally decomposed into a RW trend and a purely
AR(2) cycle. No admissible solutions exists for a positive r and in general an UC trend-cycle
decomposition with positively correlated disturbances cannot be isomorphic to a cyclical growth
model or a model with hysteresis effects. This is so since model (9) implies a spectral density
for ∆yt that has a local, but not a global, minimum at the zero frequency.

6.3 Illustrative Examples (cont.)

The parameter estimates reported in Table 1 rule out the equivalence of the estimated UC(r, 0)
model with UC(0,θ): for both EA and Italy 8 has no admissible solution. As a matter of fact,
the spectral density estimated by the former is not a global minimum at the zero frequency.

As far as the equivalence with the cyclical growth - hysteresis model is concerned, for the
Euro Area GDP equation (11) has complex roots. However, for the Italian GDP case a real
invertible solution is admissible as θ = −0.41; the remaining implied parameter values are
σ2η∗ = 0.3260 and σ2κ∗ = 0.0869; These values are fully coincident with those estimated by
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maximum likelihood. Hence the Italian GDP provides a case in which the cyclical growth
model and the trend cycle decomposition with correlated disturbances provide exactly the same
inferences, that are in turn coincident with those arising for the unrestricted ARIMA(2,1,2)
model. As a result, alternative explanations of the nature of macroeconomic fluctuations arise
with exactly the same likelihood.

7 State Space Representation and the Estimation of Un-
observed Components

In this section we discuss several facts concerning the real time and smoothed estimates of trends
and cycles arising from the various models considered in the previous sections. To accomplish
this, we need first to review the state space representation, and the associated algorithms for
filtering and smoothing.

7.1 State Space representation

The UC models considered so far admit the time-invariant state space representation:

yt = z0αt, t = 1, 2, . . . , T,
αt = Tαt−1 + c+R²t,

(12)

with ²t ∼ NID(0,Q) and α0 ∼ NID(α̃0,P 0), independently of ²t,∀t. The treatment of initial
conditions is discussed in Section 7.2. The state vector has three elements, αt = [µt, ψt, ψ

∗
t ],

and the drift β is considered as a constant effect. Alternatively, we may include β in the state
vector using the transition equations for the trend µt = µt−1 + βt−1 + ηt, βt = βt−1.

For instance, the system matrices for the UC(r, 0) model are:

z =

 11
0

 , T =
 1 0 0
0 φ1 1
0 φ2 0

 , c =
 β
0
0

 , R =

 1 0
0 1
0 0

 , Q =

·
σ2η σηκ
σηκ σ2κ

¸

For the Beveridge-Nelson decomposition, considered as a model, the system matrices are the
same except for R and Q, which are 3× 1 and scalar, respectively:

R =

 1−
−(θ2 + φ2 )

 , Q = σ2,

where = θ(1)/φ(1) is the persistence parameter. On the other hand, for UC(0,θ) we need to
replace R and Q by:

R =

 1 0
0 1
0 θ

 , Q =

·
σ2η∗ 0
0 σ2κ∗

¸
;
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finally, the state space representation for the cyclical growth model is obtained also replacing
z and T by:

z =

 10
0

 , T =
 1 1 0
0 φ1 1
0 φ2 0

 .
The state space model (12) is in contemporaneous form. The future form, that is sometimes used
to specify the model, differs for the timing of the transition equation, which is written αt+1 =
Tαt + c +R²t. Due to the absence of measurement noise and time invariance of the system
matrices, if the measurement equation is unaltered, that is yt = z0αt, the two representations
differ only for the (arbitrary) timing of the disturbances. A different representation is obtained
if the maintained model is in contemporaneous form and we express it to the future form:
this can be done by replacing αt in the measurement equation with the right hand side of the
transition equation and redefining α∗t = αt−1, so as to write:

yt = z0Tα∗t + z
0c+ z0R²t, t = 1, 2, . . . , T,

α∗t+1 = Tα∗t + c+R²t.
(13)

It should be noticed the appearance of measurement noise in the first equation that is correlated
with the transition noise. There is nothing “structural" about this component, which appears
as a consequence of the operation of forcing the contemporaneous representation into the future
form, according to which a “shock" at time t affects the components at time t+ 1.

7.2 Initialisation

Initialisation deals with the specification of the mean and the covariance matrix of the initial
state vector, α0. If we assume that the processαt has applied since time immemorial (t→ −∞),
and if we partition T = diag(1,T ψ) and R = [R0

µ,R
0
ψ]
0, then ã0 = 0 and

P 0 = e1e
0
1δ +

·
0 d
d0 M

¸
where δ → ∞, e01 = [1, 0, 0], d = RµQR

0
ψ(I − T 0ψ)−1, and M solves the matrix equation

M = T ψMT 0ψ +RψQR
0
ψ. UC models with uncorrelated components have d = 0

0, whereas,
for UC(r,0), d = rσησκφ(1)

−1 · [1, φ2]. However, working out the exact initial KF by letting
δ → ∞, as in Koopman (1997) and Durbin and Koopman (2001), it can be checked that the
elements of d are wiped away by the limiting operations and thus play no role for inferences.
The same result is obtained if one uses the augmentation approach, and in particular the theory
in De Jong and Chu-Chun-Lin (1994).

7.3 Kalman Filter

The Kalman filter (Anderson and Moore, 1979), is the well-known recursive algorithm for
computing the minimum mean square estimator of αt and its mean square error (MSE) ma-
trix conditional on Yt−1 = {y1, y2, . . . , yt−1}. Defining α̃t|t−1 = E(αt|Yt−1), P t|t−1 = E[(αt −
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α̃t|t−1)(αt − α̃t|t−1)0|Yt−1], it is given by the set of recursions:

ξt = yt − z0α̃t|t−1, ft = z0P t|t−1z
kt = TP t|t−1zf−1t

α̃t+1|t = T α̃t|t−1 + c+ ktξt, P t+1|t = TP t|t−1T 0 +RQR0 − ktk0tft
(14)

ξt = yt−E(yt|Yt−1) are the filter innovations or one-step-ahead prediction errors, with variance
ft.

Steady State The innovations and the state one-step-ahead prediction error, xt = αt−α̃t|t−1,
can be written as

ξt = z
0xt, xt+1 = Ltxt +R²t+1, (15)

where Lt = T − ktz0. Thus, xt follows a VAR(1) process that is (asymptotically) stationary if
the autoregressive matrix Lt, known as the closed loop matrix in system theory, converges to a
matrix L = T − kz0, whose eigenvalues lie all inside the unit circle.
The basic properties that ensure convergence to such stabilising solution are detectability and
stabilisability (see Burridge and Wallis, 1988). For the trend-cycle decompositions considered
in this paper they are met if φ(L) does not display explosive roots or unit roots at the zero
frequency. The two conditions imply that, independently of initial conditions, P t+1|t converges
at an exponential rate to a steady state solution P , satisfying the Riccati equation P =
TPT 0 +RQR0 − kk0f, with k = TPzf−1 and f = z0Pz, and the Kalman gain vector k is
such that L has all its eigenvalues inside the unit circle.

7.4 Real time estimates

The real time or concurrent estimates of the states and the estimation error covariance matrix
are given respectively by:

α̃t|t = α̃t|t−1 + P t|t−1zf−1t ξt, P t|t = P t|t−1 − P t|t−1zz0P t|t−1f−1t . (16)

The estimated unobserved components in α̃t|t are the same as those arising from the BN
decomposition of the implied ARIMA reduced form representation. The MA parameters of
the reduced form representation can be uniquely derived from the steady state using Pzf−1,
whose first element is the persistence parameter. Notice, however, that in the steady state we
need zz0f−1 to be equal to the pseudo-inverse of P for the components to be estimated with
zero error, i.e. observable with respect to current and past information. For the BN model
f = σ2 = Q, Pzf−1 = R and P = RQR0, k = TR, which ensures that when the system has
reached a steady state, the components are estimated in real time with zero mean square error.

7.5 Single Source of Error and Innovation State Space Models

The BN decomposition can be viewed as the “structural" representation of Single Source of
Error (SSE, Snyder, 1985, Hyndman et al., 2002) and Steady State Innovation Models (SSIM,
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Casals, Jerez and Sotoca, 2002). In this section we establish the connection among these
alternative representations of the same underlying model.

Recalling the state space representation of the BN decomposition, which is (12) with scalar
²t = ξt and R = [ , (1 − ),−(θ2 + φ2 )], we use manipulations similar to those which led to
(13) in two steps: we first replace αt in the measurement equation by the right hand side of
the transition equation to obtain the single source of error representation:

yt = z
0Tαt−1 + ξt, αt = Tαt−1 + c+Rξt,

the new measurement equation features ξt since z
0R = z0r = 1.

Next, we posit α∗t = Tαt−1 and on premultiplying both sides of the transition equation by T ,
we write:

yt = z0α∗t + ξt, t = 1, 2, . . . , T,
α∗t+1 = Tα∗t + c+ kξt,

(17)

with k = TR. This is the innovation form of the model in the steady state, as can be seen by
comparing (17) with the first and the last row of the KF equations in (14). The Kalman gain
identity is k = TR.

We stress that both forms are available for any UC model, and in fact the SSIM arises from
the filtering operation, and the SSE from the updating equations, but only for the BN model a
one to one correspondence holds. If SSIM or SSE are estimated as a model there is no way of
recovering information on multiple source of errors.

The emphasis on the “exact" nature of inference for SSE and SSIM models is misplaced: the
property that components are estimated in real time, state Casals, Jerez and Sotoca (2002) in
their concluding remarks (p. 563),

“ensures coherence between the properties of the theoretical and empirical compo-
nents, provides a rigorous statistical foundation for using the empirical components
as observable and mutually independent time series, and guarantees that these com-
ponents will not change as the sample increases".

First and foremost, the BN illustration shows that both SSIM and SSE representations feature
(perfectly correlated) measurement noise that is not present in the BN model, and thus are
not coherent in this respect with the maintained model. As a matter of fact, Casals, Jerez and
Sotoca interpret the one-step-ahead forecast error as an estimate of the irregular component.
Moreover, the timing of the disturbances is not the same as the original model, when the latter
is expressed in contemporaneous form. Secondly, the empirical components cannot be mutually
independent, being driven by the same disturbance. Finally, their observability in real time, and
thus the absence of revision is simply a consequence of the model formulation, i.e. a property
and not necessarily an advantage.

We do not need much theory to show that when (17) is interpreted as a model, and the system
is stabilisable and detectable, the states are observed: substituting the expression for ξt in the
measurement equation into the transition equation, yields α∗t+1 = Lα

∗
t + c+ kyt, that is

α∗t+1 = kyt +Lkyt−1 +L
2kyt−2 + · · · .
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This expression makes it apparent that the states are a linear combination of past observations.
This is so since the “states" are in fact one-step-ahead predictions.

In conclusions, SSIM and SSE are useful for prediction, but when they are used for estimation
of unobserved components they are prone to a number of inconsistencies and a variety of
interpretative issues.

7.6 Smoothing and Final Estimates

We can keep track of revisions, due to the accrual of further observations, by using a fixed-point
smoothing algorithm. Elaborating results in de Jong (1989), and assuming that the system has
reached a steady state, we have, for a fixed t and for l ≥ 0, the following smoothing recursions:

α̃t|t+l = α̃t|t + PL0rt|t+l, P t|t+l = P̄ t|t −PL0N t|t+lLP ,
rj|t+l = L0rj+1|t+l + zf−1ξj+1, N j|t+l = L0N j+1|t+lL+ zz0f−1,

(18)

j = t + l, t + l − 1, . . . , t, where P̄ t|t = P − Pzz0P f−1 and the backwards recursions are
initialised rt+l|t+l = 0, N t+l|t+l = 0.

Now, as l → ∞ (i.e. assuming a doubly infinite sample), rj|t+l is a backward first order
stationary vector autoregression, andN j|t+l is its covariance matrix. The final state estimation
error covariance matrix, denoted P t|∞, solves P t|∞ = P −PNP , where N is the steady state
solution of the backward smoothing equation, N j|t+l = L0N j+1|t+lL+ zz0f−1, j = t+ l, . . . , t,
as l→∞; a unique stable solution for N exists provided the characteristic roots of L are less
than unity in modulus, which is already the condition for a steady state solution. The elements
of the solution are obtained from

vec(N) = (I −L0 ⊗L0)−1vec(zz0f−1).

Hence, P t|∞ contains the final estimation error covariance matrix, and can be written:

P t|∞ = P̄ t|t −P (zz0f−1 −N )P .

The second term on the right hand side, which is obviously positive semi-definite, measures the
total reduction in the estimation uncertainty as we go from the real time to the final estimates.

8 Illustrative Examples (cont.)

Figure 3 displays the smoothed estimates of the components of the EA GDP arising from the
UC(r, 0) and UC(0,θ) models estimated in Section 5. We also present the real time estimates,
ψ̃t|t, in the bottom panels along with their 95% confidence interval.

According to the trend estimates for UC(r,0), trend output is above actual output at the
beginning of the 70ies; it peaks at 1973.3 and starts declining until it reaches a trough in
1974.2. During this decline we observe a positive and high cycle, as implied by the strong and

307



negative correlation between the two. A similar behaviour is found around 1979 and 1991.
On the other hand, the final trend estimates for UC(0,θ) are less “volatile” and less related
to the cyclical component; we adopt this terminology since even in a doubly infinite sample
the estimates of the components will be correlated - the correlation can be computed from the
elements of the matrix P t|∞.

The two models produce very different smoothed cycle estimates: the estimates of the AR
parameters in the UC(0,θ) case imply a stationary root at the zero frequency with multiplicity
2, whereas those for UC(r,0) imply a short run cycle with a period of about three years. It
is also remarkable the difference between the real time, ψ̃t|t, and final estimates of the cycle,
ψ̃t|T , especially for the model with correlated components. When the cycle is estimated in real
time (bottom left panel), UC(r,0) lends support to the notion that this component represents
a minor source of variation; we recall that the real time estimates cycle ψ̃t|t arising from UC(r,
0) is coincident with the BN cycle extracted from the unrestricted ARIMA(2,1,2). The latter
is characterised by a perfect negative correlation (persistence is greater than 1) and has a non
invertible ARMA(2,1) representation; as matter of fact, the parameter values reported in Table
1 for EA imply a value for the ϑ∗ coefficient in (5) that is equal to -1.02.

However, for UC(r,0) the cycle is estimated in real time with non zero mean square error and
the picture changes radically as we proceed to construct the final estimates using also future
observations. These contradict the assertion that the cycle has a small amplitude, as it ranges
from about -2.4% to +4.0%, as a percentage of GDP. Moreover, the final estimates have a much
reduced standard error as compared to the real time ones. In particular, the increase in the
reliability of the cycle estimates using a doubly infinite sample is as large as 88%. This quantity
is defined as the percentage reduction in the estimation error variance when we compare the
real time estimates with the final ones and is computed as: 100[P̄ (ψ)t|t − P

(ψ)
t|∞]/P̄

(ψ)
t|t , where,

using results presented in Section 7, and in particular (18), P̄ (ψ)t|t is the steady state estimation

error variance of the real time cyclical component and P
(ψ)
t|∞ is that of the corresponding final

estimates, using a doubly infinite sample.

If the BN decomposition is estimated as amodel, that is we set up a state space model consisting
of equations (3)-(5), after processing a suitable small number of observations the real time and
final estimates are fully coincident. On the other hand, the estimates arising from UC(r,0)
are subject to large revisions as new observations become available: indeed, for the estimated
variance ratio σ2η/σ

2
κ and AR parameters, a negative r implies that the distribution of the

weights for extraction of the cycle, based on a doubly infinite sample, are highly skewed towards
the future.

It is remarkable that in the more extreme case, when r = −1, the cycle is estimated with
zero mean square error using a doubly infinite sample, but the real time estimates are char-
acterised by high uncertainty, and we get a 100% increase in reliability from processing future
observations. The model has a single source of disturbances, but it implies a non invertible
ARIMA(2,1,2) representation, and thus the latter is not an innovation, but can be written as
a linear combination of the current and future values of ∆yt.

On the contrary, when r = 1, the single source of disturbances is an innovation in a strict
sense; it can be checked that the ACGF identity gr(L) = g(L) admits the solution r = 1,
ση = σθ(1)/φ(1), σκ = σ[1−θ(1)/φ(1)], which implies φ2θ(1)+θ2φ(1) = 0. Thus, the real time
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estimates have the same AR(2) representation as the true component (ϑ∗ = 0); the process
generating them is coincident with the maintained model for the unobserved component, so
that current and past (i.e. real time) information is all we need to form this estimate.

In conclusion, if we accept that trend and cyclical disturbances are negatively correlated, then
we must be willing to accept also that essential information for assessing the cyclical pattern
lies in future observations and thus that our signals are prone to high revisions.

Figure 4 presents the estimated components of Italian GDP. The overall comments are un-
changed except for the fact that the cycles extracted by UC(r,0) and UC(0,θ) have in this case
about the same periodicity. We also present two alternative characterisations of macroeco-
nomic fluctuations arising from the cyclical growth model, which is observationally equivalent
to UC(r,0) and to the unrestricted ARIMA model. The first is the deviation cycle extracted
under the hysteresis hypothesis (see model (10)); the latter modifies the trend permanently
since it is integrated in the trend with a weight of 0.59. The second is the smoothed cycle in
∆yt based on (9). We can only resort to our prior to attach a preference to these alternative
representations.

9 The Role of Seasonal Adjustment

The analysis of macroeconomic fluctuations usually relies on quarterly seasonally adjusted
series. This raises the obvious issue as to whether seasonal adjustment can be considered as a
neutral operation, in the sense that it does not alter the main stylised facts. The presence of a
correlation between trend and cycle disturbances is one of those facts, given the relevance that
the literature attaches to it.

To investigate this issue we perform a very simple Monte Carlo experiment, by which 1000
series of length T = 140 are generated according to yt = µt + ψt + γt, with independent
trends and cycles, represented as UC(0,0) in (1); γt is a quarterly seasonal component, with
trigonometric representation: γt = γ1t+γ2t, resulting from the sum of an annual non stationary
cycle (1 + L2)γ1t = 1t and a biannual one, (1 + L)γ2t = 2t, with 1t ∼ NID(0, σ2ω) and
2t ∼ NID(0, 0.5σ2ω), independently of each other and of ηt and κt.

The cycle autoregressive parameters are written as φ1 = −2 cosλc, φ2 = ρ2, where ρ = 0.9 and
λc can take the two values 2π/12 and 2π/32 corresponding to a period of 3 (12 quarters) and 8
years (32 quarters), respectively. The trend-seasonal signal ratio is always kept at σ2η/σ

2
ω = 20,

whereas for σ2η/σ
2
κ we consider three values, Low: σ2η/σ

2
κ = 1/3; Medium: σ2η/σ

2
κ = 3; High:

σ2η/σ
2
κ = 30. The combination of these values with the two cycle periods gives 6 data generating

processes in total.

For each simulation we fit the true model model and construct a seasonally adjusted (SA) series
by removing from the simulated series the smoothed estimates of the seasonal component; the
UC(r,0) is the fitted to the series. In the presentation of the results we label this experiment
as SA-UC(r,0). Moreover, to characterise the small sample distribution of the correlation
coefficient when the true value is r = 0, we estimate model a trend plus cycle plus seasonal
model with correlated trend and cycle disturbances, that is UC(r, 0) plus an orthogonal seasonal
component. We shall refer to this experiment with TCS(r, 0).
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Figure 5 plots the distribution of the estimated r for SA-UC(r,0) and TCS(r,0) in the six
cases. The histograms clearly point out that seasonal adjustment biases the estimates of the
correlation coefficient, increasing the the evidence for a negative correlation. In general, the
problem is lessened as we move away from the fundamental seasonal frequency (a yearly cycle),
as the histograms for the 32 quarters cycle suggest.

Also, the panels in the second and the fourth columns highlight that the small sample distri-
bution of r estimated on the unadjusted data is highly nonstandard, suffering from the same
pile-up problem at ±1 that was observed for the bootstrap distribution in Section 5. Experi-
mentation suggests that we need a much larger sample size to have r distributed symmetrically
around its true zero value.

10 The Role of Temporal Aggregation

Violation of the conditions under which a series admits an orthogonal trend-cycle decomposition
may well be the consequence of temporally aggregating a flow variable. On the other hand,
the only way in which systematic can affect the decomposability of the model into orthogonal
components is via the small sample properties of the parameter estimates.

In this section we assume that observations are available on an aggregate series Yn, n =
1, 2, . . . , N , that is obtained either by systematically sampling a stock variable or by aggre-
gating a flow. Let s denote the aggregation period; if we denote the disaggregated series by
yt, t = 1, 2, . . . , Ns, in the former case Yn = ysn; the latter can be viewed as a systematic sample
of Yn =

Ps−1
j=0 ysn−j = S(L)yt, S(L) = 1 + L + · · · + Ls−1, where the sample is taken at times

t = ns;

Let us consider systematic sampling first: since Yn − Yn−1 is a systematic sample of ∆syt, its
SGF is related to that of ∆yt, g∆y(λ), via the expression (Harvey, sec. 6.3.5):

gSS(λ) =
1

s

s−1X
j=0

|S(e−ıωj)|2g∆y(ωj), (19)

where ωj = s−1(λ+ 2πj), and

|S(e−ıωj )|2 = S(e−ıωj)S(eıωj ) =


1−cosω
1−cosωj , ωj 6= 0
s, ωj = 0

is the power transfer function of the filter S(L) evaluated at ωj. Result (19) follows from
application of the well known folding formula to the process S(L)yt.

If the disaggregated series follows an UC(0,θ) model, so that the SGF of ∆yt is g∆y(λ) = σ2η∗+
2(1−cosλ)gψ(λ), where gψ(λ) is the SGF of the cyclical component, then, using

Ps−1
j=0 |S(e−ıωj)|2 =

s2, (19) specialises as

gSS(λ) = s

"
σ2η∗ + 2(1− cosλ)

1

s

s−1X
j=0

gψ(ωj)

#
(20)
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and the aggregated series can still be decomposed into orthogonal trend and cycle, with SGF
s−1

Ps−1
j=0 gψ(ωj).

In the case of temporal aggregation, Yn − Yn−1 is a systematic sample of ∆sS(L)yt and thus
the SGF of the aggregated series, gTA(λ), will be related to that of the disaggregated process
as follows:

gTA(λ) =
1

s

s−1X
j=0

|S(e−ıωj)|4g∆y(ωj) (21)

When the disaggregated series is an UC(0,θ) process, (21) becomes:

gTA(λ) = s−1
(
s4σ2η∗ + (1− cosλ)2

s−1X
j=0

(1− cosωj)
−2 £σ2η + 2(1− cosωj)gψ(ωj)

¤)
(22)

Expression (22) has a complicated form and the decomposability into orthogonal compo-
nents will arise only under very special conditions. The reduced form will be, in general,
ARIMA(2,1,3) and will be decomposable into a RW trend plus ARMA(2,1) cycle plus irregular
with correlated disturbances or into a RW trend plus ARMA(2,2) cycle with correlated com-
ponents. Since temporal aggregation is a linear operation, another option is to decompose Yn
into an orthogonal IMA(1,1) trend and ARMA(2,2) cycle.

The ambiguities that aggregation of flow variables creates can be seen by working out the state
space representation of Yn (see Harvey, 1989). When the disaggregated model is (12), the state
space model for the aggregate is (see Harvey, 1989):

Yn = z0(
Ps

j=1 T
j)αn−1 + z0

hPs−1
j=0

Pj
i=0 T

i
i
c+ ut, n = 1, 2, . . . , N,

αn = T sαn−1 + (
Ps−1

j=0 T
j)c+ ²̃n,

(23)

where

ut = z
0
s−1X
j=0

(
s−1X
i=j

T i−j)R²ns−j , ²̃n =
s−1X
j=0

T jR²ns−j .

The representation (23) is already in the future state space form as can be seen on defining
α∗n = αn−1. The new feature is the presence of the disturbance ut in the measurement equation,
that is correlated with the state disturbances. Interpreting ut as correlated measurement noise
is possible, but arbitrary. Other options, such as incorporating ut into one of the components
are arbitrary as well. Also, the BN decomposition will always estimate a RW trend, but the
temporal aggregation of the trend component will give and IMA(1,1) process. These indeter-
minacies are resolved if the model is specified at the disaggregated frequency and estimated on
the available series.

This leads us to the main point of this section. Suppose that the underlying model is UC(0,0)
at the monthly level, but observations are available on the quarterly aggregate (s = 3). Can
temporal aggregation explain the stylised fact that the spectral density of Yn − Yn−1 is not a
minimum at the zero frequency? For this purpose we consider the Italian GDP and we fit (22)
to the sample periodogram by maximum likelihood, as illustrated in Section 5.

The maximised likelihood is -140.38 and the parameter estimates are σ̂2η∗ = 0.0246, σ̂2κ∗ =
0.0001, φ̂1 = 1.94, φ̂2 = −0.97, implying a period of about 3 years (11 quarters), which
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amounts to the same period estimated by the quarterly UC(r,0). The model provides a good
fit Q(12) = 7.37 normality 2.78, and yields a slightly greater likelihood than UC(r,0) (compare
Table 1). Figure 6 shows how the model fits the raw periodogram; for comparison we report the
parametric spectral density of UC(r,0). We notice that the spectral density estimate at zero
and the implied persistence is the same, but the temporally aggregate UC(0,0) model (referred
to as TA-UC(0,0)) has a sharper peak at the cyclical frequency. The estimated cycle, resulting
from the aggregation of the monthly cycle, is plotted in the bottom panel and it is, roughly
speaking, a compromise between those estimated by the quarterly UC(r,0) and by UC(0,θ).

The empirical findings in Rossana and Seater (1995) illustrate that temporally aggregated flows
systematically show higher long run persistence with respect to the underlying disaggregated
data. These results are not only a reflection of the small sample properties of the estimates,
but also a theoretical consequence of temporal aggregation of flows. Persistence is the square
root of the ratio g(0)/σ2, where

σ2 = exp

µ
1

2π

Z π

−π
g(λ)dλ

¶
is the prediction error variance (p.e.v.). Now, while it is straightforward to establish gSS(0) =
sg∆y(0) and gTA(0) = s3g∆y(0), it proves difficult to derive analytical results on the effects of
aggregation on persistence. However, we can easily prove that persistence of an aggregated flow
is no smaller than that of a systematic sample. Applying the Cauchy-Schwartz inequality to the
p.e.v. of an aggregated flow, it follows that σ2TA ≤ s2σ2SS, moreover, since gTA(0) = s−2gSS(0),
we establish the result: gTA(0)/σ2TA ≥ gSS(0)/σ

2
SS.

In conclusion, temporal aggregation of flow variables is non neutral with respect to the main
stylised facts concerning macroeconomic fluctuations, such as persistence and correlated dis-
turbances.

11 Multivariate Analysis

The previous analyses have been typically univariate. The issue that needs to be addressed at
this stage is whether bringing in more information about the nature of economic fluctuations
using related series can cast some light on correlated disturbances.

We set off reviewing some previous empirical results. Clark (1989) estimated a bivariate model
of U.S. real output and unemployment grounded on the relationship between cyclical movements
in output and unemployment known as Okun’s law. The model for output is UC(r,0), and the
unemployment rate is decomposed into a (driftless) random walk trend, unrelated to that in
output, and a cyclical component that is a linear combination of the current and past value of
the cycle in output. Clark estimated the correlation coefficient r to be equal to a nonsignificant
-.12, with asymptotic 90% confidence interval (-0.4,0.3).

Jäger and Parkinson (1994) estimated bivariate UC models of real GDP and unemployment
to examine the presence of hysteresis, according to which cyclical unemployment has an effect
on the natural (trend) rate. They find that hysteresis effects are negligible in explaining the
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dynamics of U.S. unemployment, but are substantial for the Canadian, German and the U.K.
unemployment rates.

Proietti, Musso and Westermann (2002) estimated a multivariate model made up of five time
series equations for the Euro area Solow’s residual, the labour force participation rate, the
unemployment rate, capacity utilisation and the consumer price index, implementing the pro-
duction function approach, augmented by a triangle model of inflation (see Gordon, 1997), to
the measurement of potential output and the output gap for the Euro Area. They entertain
hysteresis models and find mixed evidence for the unemployment series. They, however, prefer
a specification featuring pseudo-integrated cycles that is at least as effective in explaining the
persistence of the labour market variables.

We now proceed to a bivariate illustration concerning the Euro area GDP and consumer prices
(pt, logarithms). Within this framework the cycle in output takes the more specialised notion
of an output gap, a measure of inflationary pressures, and the trend is the level of output that
is consistent with stable inflation (potential output). The model is made up of the output
equation, which is alternatively specified as UC(0,0) and UC(r,0), as given in (1), and the price
equation is a structural version of Gordon’s triangle model of inflation, specified as follows:

pt = τ t + γt +
P

k δkxkt

τ t = τ t−1 + π∗t−1 + ηπt ηπt ∼ NID(0, σ2ηπ),
π∗t = π∗t−1 + θπ(L)ψt + ζπt ζπt ∼ NID(0, σ2ζπ).

where the regressors are commodity prices xkt and the nominal effective exchange rate of the
Euro, a level shift variable for 1974.1, and γt is a quarterly seasonal component, see Section 9.
The only link between the prices and output equations is the presence of ψt as a determinant
of underlying inflation, π∗t , where θπ(L) = θπ0 + θπ1L.

Table 2 reports selected estimation results concerning the model assuming uncorrelated distur-
bances (first column) and that with correlated ones (second column).

The estimated correlation coefficient is -0.26 and the likelihood ratio of the restriction r = 0
is not significant. What is more, unlike the univariate case, the estimates of the trend and
cycle in output closely agree with those of the model with uncorrelated disturbances. These
are displayed in Figure 7, along with estimates of underlying inflation, which is that part of
observed inflation, devoid of seasonal fluctuations, related to the output gap, which is identified
as the component π∗t in the price equation. The autoregressive parameter estimates imply for
both models a period of 10 years. It is also remarkable the reduction in the estimation error
variance of the component ψt, compared to the univariate case (see Figure 3).

12 Concluding Remarks

The main conclusions of this paper is that the characterisation of macroeconomic fluctuations
is by and large an open issue. On the one hand, models with correlated disturbances seem to
improve the fit of UC decompositions to macroeconomic time series; this is true at least for the
Italian GDP.
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Table 2: Parameter estimates and diagnostics for bivariate
models of quarterly euro area log GDP (yt) and
the logarithm of the consumer price index (pt),
1970.1-2002.2. Standard errors in parenthesis

UC(0,0) UC(r,0)
σ2η (σ

2
η∗) 0.2231 0.2546

σ2κ (σ
2
κ∗) 0.0713 0.0987

φ1 1.67 1.66
s.e (0.05) (0.05)
φ2 -0.71 -0.71
s.e (0.11) (0.10)
r 0(r) -0.26
s.e - (0.36)
σ2ηπ 0.0476 0.0468
σ2ζπ 0.0000 0.0000
σ2ω 0.0000 0.0000
θπ0 0.22 0.20
s.e (0.04) (0.05)
θπ1 -0.20 -0.18
s.e (0.04) (0.04)

Diagnostics and goodness of fit
loglik -133.28 -133.04
Q(8) yt 10.70 11.33
Q(8) pt 6.43 6.99
Normality yt 9.18 9.51
Normality pt 5.91 5.34

This finding is in part self-evident, since we entertain a more general model, and needs be
interpreted with the following caveat: all our results are conditional on a particular ARIMA
reduced form, which is itself an additional source of uncertainty in real life. For instance,
Harvey and Jäger (1994) entertained an orthogonal trend-cycle decomposition to the U.S. real
GDP series, allowing for a stochastic slope in the trend, so that the latter is an I(2) process.
Discriminating among UC models unconditionally, i.e. without assuming a particular reduced
form, is a far more complex issue, due to the unavailability of a common estimable reduced
form. On the other hand, several additional points were raised and illustrated, that mitigate
this finding and are hereby summarised:

• Given the sample sizes typically available for macroeconomic time series the properties of
the sampling distribution of the correlation parameter raise great concern. It was shown
that asymptotic inferences do not provide a reliable guidance over them.

• Models with correlated components raise several interpretative issues, as under certain
conditions they result observationally equivalent to models that provide different and
equally plausible explanations of the nature of macroeconomic fluctuations. For the Ital-
ian GDP, the cyclical growth model and the hysteresis model provide exactly the same
likelihood estimates.
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• When we come to investigate the consequences of having highly and negatively correlated
disturbances for signal extraction, it turns out that similarity with the BN decomposition
does not carry over to the smoothed inferences, the estimated models implying that most
information about the components is carried by future observations. Large revisions are
thus to be expected.

• Seasonal adjustment and temporal aggregation can significantly affect the findings about
correlated disturbances. In particular, the estimates of the correlation between trend and
cycle disturbances are biased towards high and negative values.

• Univariate time series analysis cannot be demanded to solve such a controversial issue.
Multivariate analysis can help. Our illustration, concerning a bivariate model of output
and prices shows that the estimate of the correlation is substantially reduced and that
the cycle in output can be estimated with increased reliability.

• The statistical literature has attached much significance to the restrictive nature of mod-
els with orthogonal components. However, when single source of errors and innovation
representations are considered as a model, several inconsistencies arise. The emphasis
on the exact nature of the resulting decompositions and on the absence of revision is
misplaced and potentially misleading.
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Figure 1: Euro Area and Italian GDP, 1970.1-2002.2. Periodogram, I(λj), and parametric spectral
densities of ∆yt, gm(λj)/(2π), estimated by the ARIMA(2,1,2) model, the UC(r,0), UC(0,θ)
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Figure 2: Euro Area and Italian GDP, 1970.1-2002.2. Distribution of the correlation parameter r in
1000 bootstrap samples
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Figure 3: Euro Area GDP, 1970.1-2001.2. Smoothed estimates of trend, smoothed and real time
estimate s of the cycle arising from t he UC(r  , 0) m o del (l ef t p an el s) , UC(0 , θ  ) (right panels)
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Figure 4: Italian GDP, 1970.1-2001.2. Smoothed estimates of trend, smoothed and real time
estimates of the cycle arising from the UC(r,0) model (left panels), UC(0,θ) (centre panels). For the
CG-hysteresis model we present the smoothed estimates of the trend (top right panel) and the cycle

(middle right panel) and the smoothed estimates of underlying growth (CG model), β + ψ̃t|T
(bottom right panel)
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Figure 5: Distribution of the correlation coefficient, r, for the UC(r,0) model estimated on
seasonally adjusted data and on the raw simulated data by fitting TCS(r,0). 1000 quarterly series of
length T = 140 are generated according to orthogonal trend plus cycle plus seasonal models with

low, medium and high signal ratios, and cycle periods equal to 12 and 32 quarters
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Figure 6: Italian GDP, 1970.1-2002.2. Periodogram, I(λj), and parametric spectral densities of
∆yt, gm(λj)/(2π), estimated by the temporally aggregated TA-UC(0,0) model and UC(r,0)
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