Processing of Mobile Network Operator data for Official Statistics: the case for public private partnerships

Fabio Ricciato, EUROSTAT Big Data Task Force
Freddy De Meersman, Proximus

DGINS 2018
Bucharest, 10-11 October 2018
The views expressed in this presentation are those of the authors and do not necessarily reflect the official views of the European Commission. Any potential errors, omissions and inconsistencies are the sole responsibility of the authors.
Opportunities

MNO data embed information about human mobility (where you are, where you go)

Information about human mobility is relevant for Official Statistics: present population, tourism flows, etc.

“Analytics” services and products based on MNO data increasingly seen by MNOs as additional business branch

MNO: mobile network operators
Questions

What relationship between MNO and Statistical Offices (SO)?

- Customer-provider?
- Partnership?
- ...

How?
A Reference Architecture & Methodological Framework for MNO data processing for Official Statistics

Why?
Overview of MNO-SO partnership gains

SO : Statistical Offices
MNO : mobile network operators
Our Goals

Develop a unified methodological view:

Reference Architecture & Methodological Framework [RAMF]

for processing MNO data for Official Statistics

in order to:

- facilitate interworking MNO-ESS at technical & organisational level
- ensure consistency, reproducibility, **evolvability** and portability of processing methods (between MNOs and SOs)
- provide concrete basis to clarify legal aspects (→ GDPR)
- enable multi-MNO analysis (fusion of data from different MNO)

ESS: European Statistical System
Design Principles

Processing methods *design* based on layered structure, hourglass model, uniformed data semantic

Processing methods fully transparent to (possibly co-developed by) MNO and SO

Processing *execution*: exchange computation, not input data!
Defining a Reference Architecture & Methodological Framework: staged approach

Stage 1
- Single MNO
 - Definition of a reference layered architecture (hourglass model) and common data structures (C-layer)
 - Clarification of GDPR aspects

Stage 2
- Multiple MNOs with **output** data fusion on NSI (silos model)
 - Testing and possible refinement of reference layered architecture across heterogeneous network operation settings

Stage 3
- Multiple MNOs with **input** data fusion (via SMPC)
 - Definition of reference architecture for Secure Multi-Party Computation
 - Clarification of GDPR aspects related to SMPC

SMPC: Secure Multi-Party Computation
Stage 1 scenario

Raw micro-data (D-layer) → Standardised micro-data (C-layer) → aggregate data (S-layer) → final statistics (S-layer)

MNO #1

personal data → non-personal data

NSI
Stage 2 scenario

- Raw micro-data (D-layer)
- Standardised micro-data (C-layer)
- Aggregate data (S-layer)
- Final statistics (S-layer)

MNO #1

MNO #2

MNO #3

NSI
Stage 3 scenario

Raw micro-data → Standardised micro-data

Secure Multiparty Computation (SMPC) platform for privacy-preserving cross-domain data processing

Giving-back for commercial analytics → enabling partnership model?
Stage 1 goals

- Define the Reference Architecture & Methodological Framework for a single MNO data stream

- Proof-of-concept application on selected use-case
 - population density (ongoing work 2018)
 - tourism (next year)

- Clarify GDPR aspects
 - started dialogue with European Data Protection Supervisor

- Collaboration EUROSTAT-Proximus
- Dedicated WP in future ESSnet on Trusted Smart Statistics
Hourglass model

Statistics S-Layer
- Heterogeneity of applications & use-cases
- Diversity of statistical definitions
- Complexity of statistical objects
- Multiple NSIs

Convergence C-layer
- Few common definitions

MNO Data D-Layer
- Data Heterogeneity
- Diversity of data collection methods
- Complexity of data semantics
- Multiple MNOs

Domain of Expertise
- Statisticians, NSI
- Telco Engineers, MNO
Multiple data consumers: ESTAT, NSI#1, NSI#2...
Different subject matter experts & use-cases:
tourism, population, transport, ...

Multiple data sources: MNO#1, MNO#2...
Different data types: CDR, signalling data, RAN data, LBS, ...

Statistics S-Layer

Convergence C-layer

MNO Data D-Layer

Few common definitions

aggregates, macrodata
standardized/uniformed microdata
raw microdata
Benefits of layering

Decouples the two domains
- Hides complexity & heterogeneity of MNO data to statisticians
- Hides complexity & heterogeneity of statistical concepts to telco engineers

Decoupling enables independent development, adoption & evolution at each domain

The C-layer is abstract “knowledge interface” between domains → relevant at design stage of processing methodology

Within the S-layer is the physical interface for data export → relevant at execution stage
Population density

... Tourism trip

Usual place of living

C2S Processing functions
how to extract statistics from the
C-trajectories

C-location

C-attributes

C-path

D2C Mapping functions
how to produce C-trajectories &
C-locations from MNO data

Tower locations

Cell type & configuration

Statistics
S-Layer

Convergence
C-Layer

MNO Data
D-Layer

CDR

CN signalling

RAN signalling

LBS data

...
Processing method (algorithm) design vs execution

- **C-path**
 - Interpolated C-location at time t^*
 - Density Map

- **S-Layer**
 - Estimated max velocity in $[t^*, t^{**}]$

- **Statistics**
 - Mode-of-transport

- **C-Layer**
 - Convergence

- **D-Layer**
 - MNO Data
 - External data (e.g., land use maps, road network maps, admin registry etc.)

- **MNO Data**
 - Designed by statisticians & executed by MNO

- **NSI Data**
 - Designed by statisticians & executed by NSI

- **Telecom engineers**
 - Designed by telecom engineers

- **MNO**
 - Executed by MNO
C-layer as a common substratum for MNO data users

Convergence Layer

- research institution
- scrutiny validation improvement innovation
- commercial analytic product
- non-personal data
- processing components

NSI A

- MNO 1
- MNO 2

NSI B

- MNO 3

NSI C

- MNO 4
- private company

- validation
- improvement
- innovation
C-layer as a common substratum for MNO data users

Users & Providers of Methodologies (SO, MNO, researchers, private companies, …)

Providers of Data (MNO)

open-source code

non-personal data processing components
Partnership gains for MNO 1/3

1. Access to additional **information** held by SO
 - Additional dimensions in SO micro-data
 - SO data as “ground truth” for **calibration**
Partnership gains for MNO 2/3

1. Access to additional **information** held by SO
 - Additional dimensions in SO micro-data
 - SO data as “ground truth” for **calibration**

2. Access to statistical **knowledge**
 - SO experts complementing MNO experts (telco engineers, data scientists)

3. Inherit **reputation**
 - To business customers for commercial analytics
 - To the public – SO working for the public interest

4. Stimulate the **market**
 - Like in “freemium” models: public official statistics as “basic version” of more detailed, fine-grained, timely delivered commercial analytics
4. Stimulate the **market**

- Like in “freemium” models: public official statistics as “basic version” of more detailed, fine-grained, timely delivered commercial analytics
Outlook

Ongoing collaboration between Eurostat and Proximus
- on the definition of methodological aspects (Reference Architecture and Methodological Framework)
- on the identification of concrete use-case for SO-MNO partnerships

Coordinated work with new ESSnet on Trusted Smart Statistics

Seeking to involve other MNOs (also via GSMA, ETIS)
Thanks for your attention

For follow-up:
freddy.demeersman@proximus.com
fabio.ricciato@ec.europa.eu