Calibration for Nonresponse Treatment: in One or Two Steps?

Per Gösta Andersson
Carl-Erik Särndal
Stockholm University
Calibration for Nonresponse

- Nonresponse causes bias and increased variance of estimators
- If auxiliary information is available, calibration is a possibility in order to "compensate" for nonresponse
Calibration for nonresponse

• Some important references:

Calibration for Nonresponse

- Population U of size N
- Sample s of size n_s
- Response r of size n_r

- Target: Population total $\sum_U y_k$
- General form of estimator: $\sum_r w_k y_k$, where w_k is the calibration weight
Calibration for Nonresponse

• Two main components of calibration:
• The underlying distance measure (here assumed to be the “standard”)
• The calibration equation: $\sum_r w_k x_k = X$, where X is the (linear) calibration constraint.
• Example: $X = \sum_U x_k$, or $X = \sum_S d_k x_k$, where $d_k = 1/\pi_k$ (the sampling weight)
Calibration for Nonresponse

• Auxiliary information at two levels:
 • Population level: ”star” vector x^*
 • Sample level: ”moon” vector x^o

• The star-vector values are assumed known for all $k \in U$
• The moon-vector values are assumed known for $k \in s$
Calibration for Nonresponse

• Observe that the calibration constraint X can contain either “star-information”, “moon-information or both.
• Calibration can now be performed in one or two steps.
• One step: all auxiliary information is used simultaneously
Calibration for Nonresponse

Two-steps (two possibilities):

- "Bottom-up": First the moon-information is used for a calibration from r to s and then we use the star-info (or both types of info) for a calibration from r to U.

- "Top-down": First a calibration from s to U using the star-information and then a calibration from r to s using the moon-info (or both types of info)
Calibration for Nonresponse

• Questions:
 • Calibration in one or two steps?
 • Should we "reuse" information from the first step in the second step?
 • For the two-step situation: bottom-up or top-down?
 • Simplification: using sample instead of population information, what effect has that?
Calibration for Nonresponse

• \(y_k \) is expenditure on administration and maintenance

• Division into four groups according to size, yielding the moon-vector, \(x^o_k \) consisting of indicator variables
Calibration for nonresponse

• $x^*_k = (1, x_k)$, where x_k is the square root of Revenue advances
Calibration for Nonresponse

The simulation study:

- Sample size $n_s = 300$
- Response probability $\theta_k = 1 - \exp(-0.0318x_k)$: increasing exponential response distribution
- Here this leads to the average response probability 0.86.
Calibration for Nonresponse

- 10,000 simulated samples according to simple random sampling
- Each response set created by 300 independent Bernoulli trials, each with probability θ_k of success
Calibration for Nonresponse

Measures of performance of estimators:
• Empirical first and second moments, yield estimates of:
• Bias
• Variance
• Mean squared error (MSE)
Calibration for Nonresponse

• As a benchmark the estimator $N\bar{y}$ was also considered. As expected the simulation shows this estimator to be inferior to the other choices.
Calibration for Nonresponse

• Simulation results:
• The MSE is much lower when calibrating on the star-information at the population level, instead of calibrating at the sample level. The bias though, is smaller for the latter case.
• Comparing bottom-up with top-down, bottom-up estimators yield slightly less biased estimators with similar variance.
Calibration for Nonresponse

• For the bottom-up approach, using the moon information AGAIN in the second step, leads to a slight decrease in bias and similar variance.

• Direct calibration produces estimates with slightly higher bias than the two-step procedures, but with similar variance.
Calibration for Nonresponse

"This is not the end,..."