Innovation in official statistics and multi-source statistical production

29 March 2017

Emanuele Baldacci
director of Methodology, Corporate Statistical and IT services

Niki Stylianidou; *ESS Vision 2020 Portfolio Management*

Dario Buono *Team Leader, Methodology in official Statistics*
Content of the presentation

• The digital statistical production landscape
 • Tech trends
 • Digital-era statistical production
 • Towards smart statistics

• Modernisation in the ESS
 • ESS Vision 2020

• New Methods for New Data
 • innovation in official statistical production
 • key challenges and research areas
Digital Statistical Production Landscape

Innovation in official statistical production
Key challenges and research areas

by
Emanuele Baldacci, European Commission, Eurostat
emanuele.baldacci@ec.europa.eu
@emabal
We provide high quality statistics for Europe

...making a difference in the ocean of information
The European Statistical System (ESS)
A partnership of Eurostat and the National Statistical Institutes and other national authorities of the EU, the EEA and the EFTA countries
How does this partnership work?

- **ESS:**
 - Harmonisation of methodologies, concepts and classifications

- **National statistical offices:**
 - Collection of data

- **Eurostat:**
 - Consolidation of the data
 - Production of European aggregates
Data Revolution
Technology Trends

Electronic publishing (1990s) -> e-Business (2000s) -> d-Business (2010s)

(1) Digital Product Re-Mastering:

(2) Information Re-Mastering / Robots:

(3) Web of Documents -> Semantic Web
Information & Data Trends

(1) Transfer of Legal Ownership

(2) Misinformation / Political Adverts

(3) Data Monetization

(4) Analytics vs. Statistics

Facebook knows you better than your friends do - because Likes reveal so much about your character

Study of 86,000 users reveals the power of intelligent machines, and they're getting better
Competitive Ecosystem

(1) Data Giants

(2) New Entrants

(3) Vested Interest Groups

(4) Data as Brand builder

<table>
<thead>
<tr>
<th>Month to Date</th>
<th>View All</th>
<th>Make</th>
<th>Volume</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOLKSWAGEN</td>
<td>482</td>
<td>13.05%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SKODA</td>
<td>348</td>
<td>9.42%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BMW</td>
<td>348</td>
<td>9.42%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FORD</td>
<td>321</td>
<td>8.69%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TOYOTA</td>
<td>308</td>
<td>8.34%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HYUNDAI</td>
<td>265</td>
<td>7.16%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AUDI</td>
<td>227</td>
<td>6.15%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OPEL</td>
<td>188</td>
<td>5.09%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>KIA</td>
<td>147</td>
<td>3.98%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DACIA</td>
<td>145</td>
<td>3.93%</td>
<td></td>
</tr>
</tbody>
</table>
Impacts on statistics?

Limitation of traditional surveys:
- Increasing non-response rates
- Concerns about response burden
- Lack of flexibility and associated costs
Innovations and changes of the statistical production cycle

- Use of multiple data sources
- Data mashups
- A new data "factory"
- Data analytics services for "prosumers"
Use of multiple data sources

- Extending traditional data sources to administrative and big data
Big data sources

Communication systems
- Mobile network data
- Mobile phone data
- Social media posts

World Wide Web
- Web activity
- Web portals
- Individual websites

Business process generated data
- Flight booking systems
- Stores cashier data
- Financial transactions

Sensors
- Traffic loops
- Smart electricity meters
- Vessel radio identification
- Satellite images

Crowd sourcing
- Volunteered geographic information (OpenStreetMap)
- Pictures collections

Eurostat
Data mashups

Assembling and reassembling data from multiple sources
Aim is to improve analytics
A new data "factory"
Data analytics services for "prosumers"

Statistical organisations need to extend their products according to their users' needs:

- Tailor-made services for customers
- Data-driven surveys
- Economic modelling
- Forecasts and projections

Change without modernising the production processes would not be effective
Enabler: ESS Vision 2020 portfolio

Currently running projects:

- **ADMIN** - Making administrative data more accessible
- **BIGD** - Exploring the use of Big Data
- **DIGICOM** - Tailoring statistical tools and channels for maximum benefit to users
- **ESBR** - National business and Euro-groups registers harmonised and improved to allow sharing of data across borders
- **ESDEN** - Improved data exchange procedures and security
- **SERV** - Sharing statistical services around the ESS

Finalised projects:

- **SIMSTAT and REDESIGN** - Towards a single information system to measure intra-EU trade flows
- **VALIDATION** - Common standards and guidelines to validate data
END OF FIRST PART
Presentation of the ESS Vision 2020 Portfolio

by

Niki Stylianidou, European Commission, Eurostat
niki.stylianidou@ec.europa.eu
Contents

1. The ESS Vision 2020
 - Key Areas - Objectives
 - Statistical domains covered

2. Map of what the current portfolio covers

3. Questions & Answers
PORTFOLIO MGMT
- Led by the Business
- Business Goal Alignment
- Business Value Alignment (risks/benefits)
- Program selection

PROGRAM MGMT
- Sponsored by the Business
- Ownership of Benefits
- multiple projects or working packages
- Compliance with the project mgmt standards

PROJECT MGMT
- Delivery of product or service
- Scope, Cost, Schedule
- Responsible for Quality of Deliverables
Focus on users

- Better understand and address the user needs
- Enhance quality management
- Assess the usability and quality of source data
- Promote the high quality of European statistics

Strive for quality

- Abide with the European Statistics Code Practice
- Apply fit-for-purpose tools to enhance quality assurance
- Assess the usability and quality of source data

Harness new data sources

- Exploit potential of new data sources
- Invest in new IT tools and methodology
- Continue to improve existing data collection methods

Promote efficiency in production processes

- Further intensify the collaborative partnership of the ESS
- Further identify and implement the standards for statistical production
- Adopt enterprise architecture as common reference framework
- Benefit from exchange of (micro)data, while fully respecting statistical confidentiality

Improve dissemination and communication

- Adopt a new dissemination and communication strategy
- Create a data pool of European statistics
- Optimise ESS portfolio of products and services
- Promote European statistics as a brand

Projects

- DIGICOM
- ADMIN BIGD ESBRs
- SIMSTAT-REDESIGN VALIDATION
- ADMIN BIGD
- ADMIN BIGD ESBRs ESDEN
- SIMSTAT-REDESIGN VALIDATION
- DIGICOM
VIG/VIN role and activities

- Regular overseeing of the portfolio and reporting to the ESSC;
- Prioritisation of actions and initiatives;
- Risk analysis and mitigation;
- Benefits realisation (deployment of ESS.VIPs deliverables);
- ESS skills and capabilities to implement the Vision;
- Communication.
ESS domains

Europe 2020
Economic Governance & Globalization

Economic and Social Performance

Environmental Sustainability

Business

People's Europe

Geospatial, Environmental, Agricultural & Other

Cross cutting

DIGICOM

BIGD

SERV

VALIDATION

ESDEN
Purpose of the project

The project has a dual purpose:

- to support the EU Member States to reap the benefits (decrease costs and burden, increase of data availability)

- promote the quality of the output produced using administrative sources, in particular the comparability of the statistics
1. Data access and transfer to NSI

2. Estimation methods

3. Quality

4. Use of Commission data

5. Sampling frames

6. Pilot projects

7. Support & Coaching

ADMINISTRATIVE SOURCES:
- Population
- Health
- Taxes
- Social security
- Census
- Education
- Unemployment
-

COMPREHENSIVE USE OF DATA & BURDEN REDUCTION

2. Coverage
More information

CROS portal
https://ec.europa.eu/eurostat/cros/content/essvip-admin-administrative-data-sources_en
http://ec.europa.eu/eurostat/cros/content/ess-admin-helpdesk_en

Functional email: ESTAT-ESSVIP-ADMIN@ec.europa.eu
• Successful pilot exchange of micro-data in SIMSTAT;
• Large amount of data transferred without incidents;
• No security problems concerning the data;
• Connection of 20 Member States with a complicated network of actors involved;
• ESDEN network can be re-used for other secure data exchanges!
Purpose of the project

- Enable the usage of new data sources
 - Increasing security, sensitive data
 - Upgrade capacity, high volumes
- Creation of efficient and robust statistical processes
 - Modernise interfaces, use standard transmission protocols
 - Foster automation
More information

Functional email:

ESTAT-ESS-ESDEN@ec.europa.eu
Purpose of the project

- User engagement through social media
- Empowering users to reuse and combine data
- Reaching new users through visualisation
- Improving users skills
 - Statistical literacy
 - Hackathon

End Date: 31.12.2019
Shared infographics within the ESS

User engagement through social media

ESS Facebook page

www.facebook.com/EuropeanStatistics
For more information

Contact and to subscribe to the newsletter

ESTAT-ESS-VIP-DIGICOM@ec.europa.eu

http://ec.europa.eu/eurostat/web/ess/digicom
Purpose of the project

European System of Business Registers (ESBRs) aims to resolve the issues of:

- Inconsistencies in business statistics due to different production practices, use and role of national Statistical Business Registers;
- Inconsistencies in statistics on globalisation due to missing a shared view on the operational structure of global enterprise groups;
- Inefficiencies in business register processes as well as statistical production processes due to missing an infrastructure for linking and sharing business register information.
Example of a very close collaboration

EuroGroups Register (EGR) 2.0 in production

Secure remote access to microdata established

Interactive Profiling Tool (IPT) in production – first ESS attempt for online collaborative profiling

32 countries involved, 300 top groups profiled

Profiling methodology stabilised
For more information

CROS portal
https://ec.europa.eu/eurostat/cros/content/esbrs-0_en

Functional emails:
ESTAT-EGR@ec.europa.eu concerning the EuroGroups Register (EGR)

ESTAT-IPT@ec.europa.eu concerning Profiling and the Interactive Profiling Tool (IPT)
Purpose of the project

Big Data (BIGD) aims to:

enable the ESS to gradually integrate big data sources into the production of European and national statistics and, in this way, contribute to the broader aims of the ESS Vision 2020.
Mobile phone data – population

Census 2011 Mobile phones 2015
For more information

CROS portal
• https://ec.europa.eu/eurostat/cros/content/esbrs-0_en

Functional emails:
• Konstantinos.Giannakouris@ec.europa.eu
• Fernando.REIS@ec.europa.eu
Purpose of the project

Shared SERVices (SERV) aims to:

- find a solution on **how to make a service available, by replication in a national production process or to expose a service on a central ESS/Eurostat service oriented architecture.**

- Contribute to **standardising the description of business needs** by providing Common Statistical Production Architecture (CSPA)

- Host and maintain a **ESS Service Catalogue** at the Commission/Eurostat containing services identified at ESS level
Purpose of the project

- Provide guidelines and recommendations for the ESS enabling national projects to realise technological solutions for industrialisation and integration of processes and for the rationalisation of information systems.

- Provide an ESS/Eurostat SOA environment for sharing those services in ESS for which no replication is necessary (cloud).
More information

Functional emails: Pierre.PEYRONNEL@ec.europa.eu
Purpose of the framework QUALity

..... projects and supporting frameworks contain quality elementsconsisting of the European Statistics Code of Practice and the general quality management principles of the ESS.

On one hand QUAL seeks to ensure that developments related to quality within the ESS Vision 2020 projects and supporting frameworks are in line with the ESS quality framework.

On the other hand QUAL aims to identify new developments which could have an impact on the ESS quality framework and which might necessitate updating the framework.
Purpose of the framework: Enterprise Architecture

.... In this context the Enterprise Architecture framework acts as an enabler for the ESS collaboration by defining a common language to describe both what the Business does /wants to do in the future and the IT systems and services that are needed to achieve these goals.

In particular, the Enterprise Architecture framework, by incorporating the principles of standardisation, interoperability and service-oriented architecture, seeks to create the conditions for sharing components and for better integrating production systems across the ESS.
The ESSC requested in its May 2016 meeting, Eurostat has prepared an action plan to implement the recommendations proposed by the Resource Directors Group (RDG)

• =>Task Force on Cooperation models.

The action plan was sent to the RDG on 28 September 2016
Summing Up

The Vision suggests establishing common platforms for data storage, processing, and analysis to render production processes more efficient and effective at the European scale.
More information

ESS Website:

Functional email:
ESTAT-ESS-VISION-2020-NEWS@ec.europa.eu

Video Clip
https://www.youtube.com/watch?v=i5VRp6mrAjU&t=53s
END OF SECOND PART
New Methods for New Data

Innovation in official statistical production
Key challenges and research areas

by
Dario Buono*, European Commission, Eurostat
dario.buono@ec.europa.eu @darbuo

*The views expressed are the author’s alone and do not necessarily correspond to those of the corresponding organisations of affiliation
1. Methodology@Eurostat
2. Data gaps
3. Data Analytics
4. Big Data and Nowcasting
Eurostat, the Statistical Office of the European Union

- About 700 people with 28 different nationalities
- Statistical Office of European Union, part of the EC
- Core business:
 - Euro-zone (19) & EU (28) aggregates
 - Harmonization, best practices, guidelines, trainings & international cooperation
- Methodology team: Time Series, Econometrics, Statistical Disclosure Control, Research & Enterprise Architecture
Eurostat dissemination

- **Statistics Explained** user-friendly wiki-based
- **Statistical books** data and analysis
- **Manuals and guidelines** applied in the ESS
- **Statistical working papers** research
- **Statistical reports** new or experimental data
- **Leaflets/brochures**
- **Infographics**

But we also have Facebook/Twitter accounts
Expertise breakdown per statistical tool

- **R**: 13 during studies, 0 working in Eurostat, 8 working elsewhere, 5 personal interest.
- **SAS**: 14 during studies, 12 working in Eurostat, 8 working elsewhere, 9 personal interest.
- **Eviews**: 4 during studies, 4 working in Eurostat, 4 working elsewhere, 2 personal interest.
- **Stata**: 8 during studies, 8 working in Eurostat, 0 working elsewhere, 0 personal interest.
- **Matlab**: 7 during studies, 1 working in Eurostat, 2 working elsewhere, 0 personal interest.
- **Hadoop**: 3 during studies, 1 working in Eurostat, 2 working elsewhere, 0 personal interest.
- **Python**: 4 during studies, 4 working in Eurostat, 4 working elsewhere, 4 personal interest.
- **SPSS**: 16 during studies, 5 working in Eurostat, 6 working elsewhere, 7 personal interest.
- **Java**: 6 during studies, 5 working in Eurostat, 6 working elsewhere, 7 personal interest.
- **Other**: 7 during studies, 7 working in Eurostat, 7 working elsewhere, 7 personal interest.

During studies: 10 R, 10 SAS, 8 Eviews, 8 Stata, 7 Matlab, 3 Hadoop, 4 Python, 16 SPSS, 6 Java, 7 Other.

Working in Eurostat: 0 R, 12 SAS, 4 Eviews, 0 Stata, 1 Matlab, 1 Hadoop, 4 Python, 5 SPSS, 5 Java, 7 Other.

Working elsewhere: 13 R, 12 SAS, 4 Eviews, 8 Stata, 2 Matlab, 2 Hadoop, 4 Python, 5 SPSS, 6 Java, 7 Other.

Personal interest: 8 R, 9 SAS, 2 Eviews, 0 Stata, 0 Matlab, 0 Hadoop, 0 Python, 0 SPSS, 0 Java, 0 Other.
Other skills

Regional Statistics/Geographic information

Land cover and use

Nowcasting

Dynamic Factor Analysis

Labor Market

Monte Carlo, sensitivity analysis; Fuzzy logic

Classifications and metadata standards

Population size; analytical hypotheses testing

Questionnaire Design

Temporal disaggregation

Neural network

Remuneration and Pensions

Cluster analysis

ArcGIS

Business cycle analysis, S-VARS, G-VARS

OX-metrics
Filling the data gaps

Better use of the survey data
- Modelling for more robust estimates
- Flash estimates

Combining survey data with administrative data
Using new data sources such as big data
Methodological Strategy: pillars

1. Data collection profits from **multiple sources** and decisions are taken considering the widest possible evidence base (**Data4Policy**)

2. **Data are integrated** and provided as service to meet user priorities and needs.

3. Eurostat has greater capacity to improve availability of **data analytics** and **data visualization** tools.
Data Driven World: context

- Demand of data users
- Methodologists need to innovate based on new statistical methods and information technologies
Data Analytics

- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics

Value

Complexity

Differentiation

How can we make it happen?

What will happen?

Why did it happen?

What happened?
Big Data Science

data science

smarter
timelier
focused

Official Statistics
Big data sources

- Web activity evidence for nowcasting
 - Google Trends
 - Employment
- Wikipedia as source for statistics
 - Cultural, Tourism Statistics
- Mobile communication data
 - Population, Land use, Tourism
- Web scraping
- Smart Meter
Flash estimations &

- Early indicators on Inequality
- t+30 estimates of GDP for Euro area
- Harmonised Index of Consumer Prices - HICP Flash Estimate
- Euro area business cycle monitoring – rapid estimates
- Big Data and Macroeconomic Nowcasting
- Eurostat's Handbook of Rapid Estimations
Why interested in Big Data for nowcasting?

- **Big Data** are complementary information to standard data, being based on **different information sets**
- More **granular** perspective on the indicator of interest, both in the temporal and cross-sectional dimensions
- It is **timely** available, generally **not subject to revisions**
Research questions

Can Big Data help for Macroeconomic Nowcasting?

1. Literature review
2. Models/methods to be used for Big data
3. Recommendations on how to handle Big Data
4. Case study: IPI, Inflation, unemployment of some EU countries
Big Data types

- Use of a typology based on Doornik and Hendry (2015):
 - **Tall** data: many observation, few variables
 - **Fat** data: many variables, few observations
 - **Huge** data: many variables, many observations
Models race

- Dynamic Factor Analysis
- Partial Least Squares
- Bayesian Regression
- LASSO regression
- U-Midas models
- Model averaging

255 models tested, macro-financial & google trend data
Statistical Methods: findings

- Sparse regression (LASSO) works for fat, huge data
- Data reduction techniques (PLS) helpful when dealing with many variables
- (U)-MIDAS or bridge modelling for mixed frequency
From Data Access to Modelling

Step-by-step approach, accompanied by specific recommendations for the use of big data for macroeconomic nowcasting, guiding to

• the identification and the choice of Big Data
• pre-treatment and econometric modelling
• the comparative evaluation of results to obtain a very useful tool for decision about the use or not of Big Data
Step 1: Big Data usefulness within a nowcasting exercise

Recommendations

1. Evaluate the **quality** of the existing nowcasts and identify issue (bias or inefficiency or large errors in specific periods), that can be fixed by adding information in Big Data based indicators.

2. Use of Big Data only when expecting to improve the timeliness and/or the quality of nowcastings.

3. Do not consider Big Data sources with **spurious correlations** with the target variable.
Step 2: Big Data search

Recommendations

1. **Starting point for an assessment of the potential benefits/costs of the use of Big Data for macroeconomic nowcasting: identification of their source**
 - Social Networks (human-sourced information)
 - Traditional Business Systems (process-mediated data)
 - Internet of Things (machine-generated data)

2. **Choice is heavily dependent on the target indicator of the nowcasting exercise**
Step 3: Assessment of big-data accessibility and quality

Recommendations

1. Privilege data providers with guarantee of continuity and of the availability of a good metadata associated to the Big Data.

2. If a bias is observed a bias correction can be included in the nowcasting strategy.

3. To deal with possible instabilities of the relationships between the Big Data and the target variables, nowcasting models should be re-specified on a regular basis (e.g. yearly) and occasionally in the presence of unexpected events.
Step 4: Big data preparation

Recommendations

1. *Big data often unstructured: proper mapping*
2. *Pre-treatment to remove deterministic patterns*
 - Outliers, calendar effects, missing observations, Seasonal adjustment
3. *Create a specific IT environment* where the original data are collected and stored with associated *routines*
4. *Ensure the availability of an exhaustive documentation*
Step 5: Big Data modelling strategy

Recommendations

1. Identification of appropriate econometric techniques
2. First dimension: choice between the use of methods suited for large but not huge datasets,
 • nowcasting with large datasets can be based on factor models, large BVARs, or shrinkage regressions
3. Huge datasets can be handled by sparse principal components, linear models combined with heuristic optimization, or a variety of machine learning methods such as LASSO & LARS regression
4. In case of mixed frequency data, methods such as UMIDAS and, as a second best, Bridge, should be privileged.
Step 6: Results evaluation of Big Data based nowcasting

Recommendations

1. *Run a critical and comprehensive assessment of the contribution* of Big Data for nowcasting the indicator of interest based, e.g., on standard criteria such as **MSE or MAE**.

2. *In order to reduce the extent of data and model snooping, a cross-validation approach should be followed:*
 - various models and indicators, with and without Big Data, estimated over a first sample and selected and/or pooled according to their performance
 - then the performance of the preferred approaches re-evaluated over a second sample
Case study

- Implementation of all these steps for nowcasting IP growth, inflation and unemployment in several EU countries in a pseudo out of sample context, using Google trends for specific and carefully selected keywords for each country and variable

- Big Data specific features: transform unstructured into structured data, time series decompositions, handling mixed frequency data

- Overall, the results are mixed but there are several cases where Google trends, when combined with rather sophisticated econometric techniques, yield forecasting gains, though generally small.

- Gains in term of timeliness or revisions have not been considered
Literature contribution

Eurostat Statistical Working Paper
"Big Data and Macroeconomic Nowcasting: From data access to modelling"

- Methodological finding will be included in 2 chapter of the Eurostat/UNECE Handbook on Rapid Estimates currently under 2nd peer review, (forthcoming in 2017)
What's next? Big Data Econometrics

2017, a new project focusing on:

- Econometrics, Filtering issues, advanced Bayesian estimation and forecasting methods
- **Real time** empirical evaluations (including a direct comparison with Eurostat flash estimates),
- **New ways and new metrics** to present nowcasts
- Possible data **timeliness/accuracy gains**
- Big data handling tool developed as **R package**
- Scientific summary for Big Data Econometric **strategy**
in a nutshell

Methodology
- Multi-mode and multi-source approaches
- Algorithms, data mining
- New inference methods

Data access and sources
- NSIs coordinate administrative data
- Legal, financial, ethical issues
- Minimum quality standards

IT environment
- Solutions for handling of Big Data
- Confidentiality
- Security

Skills
- Data analysis
- IT programming skills for unstructured data
- Econometrics
Thank you for your attention!!