Back to top

Research and development (R&D) (rd)

DownloadPrint

National Reference Metadata in Single Integrated Metadata Structure (SIMS)

Compiling agency: Ministry of higher education and research (France)

Need help? Contact the Eurostat user support

Statistics on Private non-profit R&D (PNPRD) measure research and experimental development (R&D) performed in the private non-profit sector, i.e. R&D expenditure and R&D personnel. In line with this objective the target population for the national R&D survey of the private non-profit sector should consist of all R&D performing units (including all R&D performers – occasional and continuous, known and unknown - in all branches and size classes) belonging to this sector.

The main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities, which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics).

Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail. Statistics on science, technology and innovation were collected until the end of 2020 based on the Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology.  

29 March 2024

See below.

Compliant with and the SNA.

See below.

France, including overseas departments and territories.

2021

Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).

 

Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:

1. Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.

2. Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:

a) Coverage errors,

b) Measurement errors,

c) Non response errors and

d) Processing errors.

 

Model assumption errors should be treated under the heading of the respective error they are trying to reduce.

13.1.1. Accuracy - Overall by 'Types of Error'
  Sampling errors Non-sampling errors1) Model-assumption Errors1) Perceived direction of the error2)
Coverage errors Measurement errors Processing errors Non response errors
Total intramural R&D expenditure  -  2  3  -  1  - +/ -
Total R&D personnel in FTE  -  2  3  -  1  -  +/-
Researchers in FTE  -  2  3  -  1  - +/ -

1)  Ranking of the type(s) of errors that result in over/under-estimation, from the most important source of error (1) to the least important source of error (5). In the event that errors of a particular type do not exist, is used the sign ‘-‘.

2)  The perceived direction of the ‘overall’ error using the signs “+” for over estimation, “-” for under estimation and “+/-” when assumption of the direction of the error cannot be made for R&D.

3.1.2. Assessment of the accuracy with regard to the main indicators
Indicators 5

(Very Good)1

4

(Good)2

3

(Satisfactory)3

2

(Poor)4

1

(Very poor)5

Total intramural R&D expenditure      x    
Total R&D personnel in FTE      x    
Researchers in FTE      x    

1) 'Very Good' = High level of coverage (annual rate of substitution in the target population lower than 5%). High average rates of response (>80%) in census and sample surveys. Full data consistency with reference to totals and relationships between variables in the dataset sent to Eurostat.  

2) 'Good' = In the event that at least one out of the three criteria above described would not be fully met.

3) 'Satisfactory' = In the event that the average rate of response would be lower than 60% even by meeting the two remaining criteria.

4) 'Poor' = In the event that the average rate of response would be lower than 60% and at least one of the two remaining criteria would not be met.

5) 'Very Poor' = If all the three criteria are not met.

R&D expenditures are given in Keuros (1.000 euros).
R&D personnel is given in headcounts and in full-time equivalent (FTE).

See below.

Several separate activities are used for the collection of raw data or pre-compiled administrative data and statistics related to R&D. For simplicity, we call them surveys irrespective of whether they are sample surveys, censuses, collections of administrative data/pre-compiled statistics. This section presents the names of the surveys by sector of performance as well as methodological information for each survey. Depending on the type of survey and sector of performance, only the sections corresponding to that survey and sector are filled in.

Yearly

Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.

See below.

See below.