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Abstract:

In present work we study variance computation techniques for population esti-
mates based on survey sampling and imputation. We use the superpopulation
regression model, which means that the target variable values for each statis-
tical unit are treated as random realisations of a linear regression model with
weighted variance. We focus on models with one auxiliary variable and no inter-
cept, which have many applications in business statistics. Furthermore, we deal
with cases where the estimates are not independent and thus the covariance must
be computed, and where the auxiliary variables are random variables instead of
constants.
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1 General assumptions

For computation of survey estimates of business statistics, the CZSO is recently
exploring a new approach, in which all data for units that are not in the sam-
ple are imputed, instead of computing the population sums or means through
weighting. Therefore, new techniques for survey variance computation had to be
developed.

) . . N
We want to estimate the population sum Y = }"." ;. Suppose that we have
sampled only n observations, the N —n remaining values must be estimated. We
use the superpopulation model, with following assumptions:

e The data y; are random variables with y; = ;8 + e;,
e the error terms e; are independent with distribution e; ~ (0, ¢;o?),
e 1, and ¢; are known constants for all i=1.,....N

e 3 and 0? are unknown parameters.



2 Variance computation with simple regression
imputations

Let us derive the formula for variance of the estimated sum of observed variable.
We observe n realisations of the variable, which we call the sample sam. There
are N — n more realised varables, which values we want to estimate with the
knowledge of x; and ¢;. This unknown part we call the imputed part or simply
imp. More accurately we want to estimate the sum

Y= Z Yi + Z Yi-
iesam i€imp

We use classical regression estimates with one covariate and no intercept (the
regression line passes through the origin). We impute in the following way:

g- — IL’B = @B Zsam w’il'iyi/ci
2z 1 = 1
Zsam wlw?/cz '

where w; are some appropriately chosen weights (discussed later). Note, that for
¢; = x; we get the most commonly used fraction

B Zsam WilYi

= )
Zsam Wi

but we allow different values of ¢; because they may differ with each methology.
We can easily verify, that

> sam WiTiEYi/ c;
Zsam uylj? /C‘i

> sarm Wizt /Guary; . wix? [c; 2 = 2
(Zsam ’wix?/ci)Q (Zsam fwi"E?/Ci)Q p

We want to estimate the variance of Y. Because of the superpopulation model,
the variables y; which we estimate are random variables instead of constants,
therefore we cannot use the common formula

EB = -y

varB =

varY = E(Y — EY)2.

In fact, we are interested in the mean square error of the difference of the real
and estimated (predicted) values of the random variables

mse(Y) = E(Y —Y)?

given the realisation of the sample data. We should write E(Y — Y|sam)?, but
we leave the condition out for space saving reasons. This is the main difference



from the usual theoretical methods in survey sampling, where all data are taken
as constants and the randomness is included in the models in form of inclusion
indicators. If we take Y as realisations of random variables from the superpopu-
lation model, we can derive the formulas for the variance also in more complex
situations.

For the imputed data we have
Ey; = Eﬂ?zﬁ = z;$ = Ey;,
therefore the estimate is unbiased. For the mse we then get
E(? - Y)2 = E(Yfimp - Y;mzw)Q = E(Yimp - Eﬁmp - (Y;mp - EY;mp))Q =

= E(}A/imp - EI}A/imp)2 = E(Y;mp - EY;mp)2 - QE(Y/imp - E}A/imp)(Y;mp - EYimp)-

The cross part WillAbe zero, because it consists of two independent terms, both
with a zero mean (Y}, is computed form the sample, Yj,,, is the rest). Therefore

% c 3 2 2 9 2
mse(Y) = varYimy + varYimp = var XimpS + Cimpo™ = X3,,05 + Cimp0™
The constants z; and ¢; are known, for estimating mse(Y’) we only need to use

an appropriate estimate for o2, i.e.

S
|

o 1 (yi — Bx;)?
2 Z -

n—1 i
sam

or

where w; = }12 b 1A

We see, that the estimate of mse consists of the model paramater estimates on
the sample part and of the sums of auxiliary variables on the imputed part of
the data.



3 Variance of chain imputations

Suppose we deal with data y; estimated with the help of an auxiliary variables
x;, which is known only for the units in the sample, elsewhere it is imputed with
the help of known constants z;. We assume the same model as above:

Yilws ~ (Byl’vi,cz'a;), T; ~ (B22i diUZ)-
The regression parameters are estimated in a following way:

B > sam WiiYi/Ci b — > sam ViZiTi/di
T — B ¢
. Zsam Uzz?/dl

Zsam 'lU71L'12 /C'i ,

The estimates have then similar properties:

22
A 2 DosamWiTilCG o 3 2
B~ (i, = (o) B el

At first, z; are imputed, afterwards we impute y; with their help:
& = Boti, Ui = Byi:r,i'i-
For the imputed part we have
Ej; = EE[ji|v)] = EE[B,o8i|zi] = EB,%:

= ByEii = ﬁyﬁmzi = EE[%IJU,] = By;.
We want to compute the mean square error of the prediction of the random
variables Y estimated through Y. With the help of conditional variance decom-
position we get
mse(f/) = E(}A/zmp - }/;mp)Q = E(}A/imp - Ejf/vimp)2 0 E(}/;mp - EY;"mp)Q

= Uaerimp < ’U(IT'Y;'mp

= Evar[f/imp|X] + UarE[ffimp|X]

+ Evar[Yimp| X ] + var E[Yimy| X|

= EXiQmpU?iy|z -+ var[Xi,np/}y] + Ecimpoz + va7 [ XimpBy)

= E[)A(fmpogylm + cim,,aZ] k3 5Z(varXimp + var Ximp)

— EE[(}Afzmp — Y;mp)IXP + /BgE(szp = )(imp)2

= Emse(Y|X) + zmse()z).
The second term may be estimated with adding Bylz and mseX. The computa-

tion of the expectation with respect to the distribution of z; in the first term
would be relatively complex, because of the values x; are in both nominator
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and denominator of Ul23y|T‘ We need to find an appropriate estimate, we can use
instead of Emse(Y|X)

— ) 2 A2 A A2
mse(Y|X) = X505, . + Cimp0y|a-

Ly ~9 ~9 & A 2 A
We get Ximp, Oyl and 0% .. through the estimates of z;, the estimate ¢;,;, follows
from the chosen model for the variance, i.e. ¢; :== x; or ¢; := 1:12 We have

mse(Y) = mse(Y|X) + B2 mse(X).
When we work with a chain structure having more levels, the first term mse(Y | X))
and By,:,, remain the same, because they are conditional estimates given their aux-
iliary variable. The second term may be obtained through another chain estima-
tion, so we are getting a recurrent formula, which leads so far until it reaches an
auxiliary variable which is known for all units (i.e. administrative data sources).

4 Stratification level shifts -
- covariance computation

The CZSO works with the stratification approach, where the surveyed enter-
prises are divided into groups depending on the number of employees, type of
economic activity, region etc. The stratification has more levels, going from rel-
atively small groups to larger ones. In each stratum, the regression parameters
are estimated separately. When it is not possible to obtain the estimates in given
stratum, for example because of a low number of responding units, we use the
estimates in the corresponding superior stratum at a higher stratification level.

Consider the non-chained regression from section 2. Let m be a small stratum
where the estimates for 3,, and o2, could not be obtained. Let S be its superior

stratum (one or more levels higher), with enough units to compute the estimates
B D Saarm WiTili/Ci
& Zssurn Wi /Ci

yi = Bsx; and we get

. For the variance of the estimate of the sum Y,, we impute

Y _ Orm ) m
mse(Y,) = varY;n, +varY,
. Cm 3 ) mo m \2 _2 2
== vaTXimpﬂS + UaTY;mp - (Ximp) 03g + CimpO -
The estimate for 0?3 . is obtained from the superior stratum S, o2, is completely
unknown and cannot be estimated from m, therefore we use the estimate for o2

instead.



Suppose we now have one stratum S in a higher level, which consists of two
substrata: one small (m) and one good (d), where it is possible to estimate /3,
and 03. We want to obtain the variance for the sum Y for the whole S. Using
above given formulas and the independence assumption for e;, we get

mse(f’) = varY +varY = var(}}m -+ }A’d) +var(Ym, + Yy)
= varf/m + var};}; + QCOU(Ym, ffd) + varY,, + varYy
= mse(Yy,) + mse(Yy) + 2cov(Yy, Yy).

The covariance is computed in the following way:

cov(Ym, ¥a) = cov( X[, Bs, X.,B4) = X;"npxg,l,,cov(ﬁs, Ba)
Zssarn wll’?/cl 7 stam wlx?/cl
XLTanz(inp Wi;Y; Wi;Yi
ix2 wix? oy Z y 2 Z : ’
i L ! C’L Cl

Y o 8
Ssawn (&7 Ssu.nz

The variables y; belonging to m and d are mutually independent, therefore it is
enough to take the sum only through d in the first term of the covariance. Denote
as Bs and By the sums we have taken out of the parentheses in the denominator:

_XZ,"an{fnp cov Zw e way/c
BSBd 1 Zl 9 141 (1

Sanl deanl

- Xm Xd

imp zmp

c; dsa m

X
- Ly, (z zyz/cz)

m d
szpXme 92
= w?x? /cCvary;
BsBy *

_XpXd B
“Timp“*imp 2.9 m d d 2
= ~B.B, E wixrl/cio? = lelempB o

sa m

If we estimate the parameter agd from the good stratum d, we get the whole

variance. In a similar way, the covariance of estimates for any two strata can
be obtained, even for s m; and ms, for which the estimates are taken from the
strata Sy, a Sm, (clearly m; C S,,,). Denote Sg = Sy, NS, and S = Sy, USn,,
in our case is S; the smaller of the sets S,,, and S,,,. For the covariance we get

R . XXz B
Yimpimp 2 9 my yvme 2Sa 2
CO'U(Ym“YmQ) BS BS E w; Ty /Clasd szszmp B Bsd'
! m2 {€Sy



It cat be further shown, that for a larger stratum S consisting of d = 1, ..., D
good and m =1, ..., M small strata we get

D M
mse(Ys) = Z mse(Yy) + Z mse(Yy,)
d=1 m=1
+2 Z szp Z mp B XZ:Zp zm])gﬁs
m=1 m,;émJ

5 Stratification level shifts -
- chained imputations

We generalize now the methods used for stratification level shifts for the cases,
when the data y; are imputed with help of estimated auxiliary variables z;, which
are obtained through regression with respect to known constants z;. In terms of
model parameters we have y;|z; ~ (8,2, cio;) and z; ~ (B.2;,d;o?). Let S be a
large stratum consisting of substrata m (small) and d (good). Then the mean
square error can be decomposed as:

mse(YS) = varYs + varYs
= varYy + varY,, + 2601}(}7‘1, )A/m) +varYy + varY,,
= mse(Yy) + mse(Yp,) + 2cov(Yy, Vo).

Both mse for sums just in strata d and m can be estimated through methods
given in section (2):

mse(Yy) = mse(Yy| X) + B2, mse(Xy),

yd|z

mse(Yr) = mse(V| X) + B2, mse(Xo).

The covariances are computed with help of conditional covariance decomposition:

cov(}}d7 f/m) = Ecov[}}d,}}m]X] + cov(E[}A’d\X],E[leX])
= Ecov[f/d,Ym|X] + Bydﬁyscov()i'd, Xm)

The computation of the mean of the first term with respect to X would be rather
difficult, we substitute it with the estimate with the help of X:

C/O\U(Ydy Ym) = C/O\U[Ylh Yfm’X] + BydBySC/O\U(Xm Xm)



The coefficients Byd and ByS and the first term of the sum can be computed given
the estimates z;:

e i ol . .. B
P o m d d ~2
CO’UD/(“ Ym’X] - Ximeimp BI Uﬁyd7
S
the second covariance may be expressed as
z
d Bi .o

C/O\’U(Xd, Xm) = Z’;”:IPZvaPEZ:.UBzd'
S

We also get a recurrent formula for the covariances, too. If Z would have an
auxiliary variable which must be estimated, the estimate of the second term will
be chained until it leads to constant covariates.

It can be also shown, that the formula will work also when in the strata m or
d are some values y; imputed, but corresponding values x; are observed in the
sample.

The covariance computation for more than two strata can be generalized in a
similar way as in the case with no chain structure.

6 Remarks

6.1 Special cases

The above described techniques are quite general. Often we work simply with
¢; := x;, the variance formula is then reduced to

X2 Zsam rw? Ti
- (Zsam le'i)Q

When the weights are constant, we get

mse(Y) = X? 0% + Cimpo® =

2 2
imp o +Ximpg .

% Xeam
mse(Y) — Xim.p(Xim[)XT + 1)02 =X

sam

Xall 9

imp~-
¢ X sam

If no auxiliary information is available, we may use z; = 1, which means that we
impute just the sample mean. We obtain

. N N? n
mse(Y) = (N s ’I"L)g()’2 = 7 ( — ﬁ) 0'2,

which is the commonly used formula for simple random sampling variance.



6.2 Choosing the weights

For getting the population estimates, we use imputations with help of the su-
perpopulation model, rather than the commonly used reweighting techniques.
The weights are used only in the estimates 3, and therefore they have a different
meaning.

If we observe just one stratum alone with no relation to others, it would be
appropriate to use constant weights (which may simply be equal to one for that
case, because the constant in the numerator and denominator of 3 cancels out).

If we apply some outlier-detection methods to point out data that may not fit
the model, we can simply put w;, := 0 for that units, meaning that they will not
influence the parameter estimates in any way.

In the case when we need to use a higher level stratification to obtain the es-
timates, the weights can be chosen in a way that they reflect the proportion of
sampled units in each sub-strata, i.e. wy := Ni/ny for sub-stratum k with n,
from N} units sampled. Therefore the data from the greater strata influence the
estimates more than the data from the smaller strata.

7 Conclusions

The superpopulation regression model and all-data imputation presents an al-
ternative approach how to estimate the population totals in survey sampling.
It is then easier to report the data with respect to various groupings. We have
shown how to compute the mean square error of the estimators, in order to as-
sess data quality. In simple cases, this approach leads to the same results as the
commonly used formulas for classic simple random sampling. However, with the
help of superpopulation model it is easier to develop variance estimates in more
complex cases with sophisticated stratification and chain structure, as we have
shown.



