Data compilation

Employment supported and value added generated by EU exports is calculated through Leontief-type input-output modelling using the FIGARO inter-country input-output tables (industry-by-industry). The relation between total sectoral output \mathbf{x}, intermediate consumption \mathbf{Z}, and final consumption \mathbf{Y} is defined by the accounting equation $\mathbf{x}=\mathbf{Z u}+\mathbf{Y} \mathbf{u}$, where \mathbf{u} is the summation vector. Similarly, the basic identity of total output equalling total input can be expressed by the equation $(\mathbf{x})^{\prime}=(\mathbf{u})^{\prime} \mathbf{Z}+$ $\mathbf{t}+(\mathbf{u})^{\prime} \mathbf{W}$, where is \mathbf{W} is the gross value added, \mathbf{t} represents taxes less subsidies on products, and $(\mathbf{x})^{\prime}$ denotes transposition of vector \mathbf{x}.

The input coefficients matrix is defined as $\mathbf{A}=\mathbf{Z}\langle\mathbf{x}\rangle^{\mathbf{- 1}}$, which describes input structures per unit of sectoral output. Here, $\langle\mathbf{x}\rangle$ denotes the diagonalised vector \mathbf{x}, and $\langle\mathbf{x}\rangle^{\mathbf{- 1}}$ stand for the inverse of matrix $\langle\mathbf{x}\rangle$. Superscripts s and r denote the origin and destination countries respectively, in \mathbf{Z} and \mathbf{Y}. However, this is not the case in matrix \mathbf{W}, where origin and destination refer to the same country denoted by superscript \mathbf{s}.

To obtain the desired indicators, three more types of matrices need to be calculated:

- the domestic Leontief inverse for non-EU countries $\mathbf{L}^{\mathbf{r r}}=\left(\mathbf{I}-\mathbf{A}^{\mathbf{r r}}\right)^{\mathbf{- 1}} \forall \mathbf{r} \in\{\mathbf{R W}\}$,
- the global Leontief inverse $\mathbf{B}=(\mathbf{I}-\mathbf{A})^{\mathbf{- 1}}$, and
- the EU Leontief inverse $\mathbf{R}=\left(\mathbf{I}-\mathbf{A}^{\mathbf{r s}}\right)^{-\mathbf{1}} \leftrightarrow \mathbf{r}, \mathbf{s} \in\{\mathbf{E U}\}$.

The sets $\{\mathbf{E U}\}$ and $\{\mathbf{R W}\}$ respectively denote the 27 EU Member States and 19 non-EU 'countries' covered in FIGARO (18 countries and a 'Rest of the world' region combined).

Lastly $\left(\mathbf{v}^{\mathbf{r}}\right)^{\prime}=(\mathbf{u})^{\prime} \mathbf{W}\langle\mathbf{x}\rangle^{-1}$ represents gross value added in country r per unit of sectoral output. Similarly, employment in country r per unit of sectoral output is obtained following $\left(\mathbf{q}^{\mathbf{r}}\right)^{\prime}=$ $(\mathbf{u})^{\prime} \mathbf{Q}\langle\mathbf{x}\rangle^{-\mathbf{1}}$, where \mathbf{Q} is total employment by industry in thousand persons.

Employment content in EU exports $\mathbf{i}^{\mathbf{t s}}$ from EU Member State \mathbf{t} to non-EU country \mathbf{s} via country \mathbf{r} is calculated with employment intensity vector \mathbf{q} as:

$$
\begin{gathered}
\mathbf{i}^{\mathbf{t s}}=\left\langle\mathbf{q}^{\mathbf{t}}\right\rangle \mathbf{R}^{\mathbf{t r}}\left\langle\mathbf{e}^{\mathbf{r s}}\right\rangle \\
\mathbf{t}, \mathbf{r} \in\{\mathbf{E} \mathbf{U}\} \wedge \mathbf{s} \in\{\mathbf{R W}\} \forall \mathbf{s}
\end{gathered}
$$

Value added content in EU exports $\mathbf{d}^{\mathbf{t s}}$ from EU Member State \mathbf{t} to non-EU country \mathbf{s} via country \mathbf{r} is calculated as:

$$
\begin{gathered}
\mathbf{d}^{\mathbf{t s}}=\left\langle\mathbf{v}^{\mathbf{t}}\right\rangle \mathbf{R}^{\mathbf{t r}}\left\langle\mathbf{e}^{\mathbf{r s}}\right\rangle \\
\mathbf{t}, \mathbf{r} \in\{\mathbf{E} \mathbf{U}\} \wedge \mathbf{s} \in\{\mathbf{R W}\} \forall \mathbf{s}
\end{gathered}
$$

