Description of the Eurostat method for the calculation of the life expectancies at all ages

The adopted method produces, with a minimum data input requirement, a quick value for the life expectancies at all ages, comparable across countries.

To achieve this goal, a set of simplifying assumptions and decisions has to be taken:
(1) the input data are the age-specific death rates $\mathrm{M}_{\mathrm{x}, \mathrm{t}}$ by age completed (age at last birthday) and by sex;
(2) for both sexes, death and population (on 1 January) series have been adjusted for unknown age proportionally to the relative size of each age, if any, before calculating $\mathrm{M}_{\mathrm{x}, \mathrm{t}}$;
(3) the maximum age class (open-ended) is set at $85+$ for all countries, sexes and years;
(4) deaths are assumed to occur halfway through the year which means that the $\mathrm{a}_{\mathrm{x}, \mathrm{t}}$ coefficient is equal to 0.5 for all ages x except for age 0 , where the coefficient is set to 0.2 .

The raw method calculates the probabilities of dying between age x and $x+1$ in the year t as:
$\hat{q}_{x, t}=\left\{\begin{array}{l}\frac{M_{x, t}}{1+\left(1-\mathrm{a}_{x, t}\right) M_{x, t}} \text { for } x=0, \ldots, 84 \\ 1 \quad \text { for } x=x_{85+}\end{array}\right.$
the probability $p_{x, t}$ of surviving from age x to age $x+1$ as:
$p_{x, t}= \begin{cases}1-\hat{q}_{x, t} & \text { for } x=0, \ldots, 84 \\ 0 & \text { for } x=x_{85+}\end{cases}$
the survivors at age x in the year t as:

$$
l_{x, t}= \begin{cases}1 & \text { for } x=0 \\ l_{x-1, t} \cdot\left(1-\hat{q}_{x-1, t}\right) & \text { for } x=1, \ldots, x_{85+}\end{cases}
$$

and the life table deaths $d_{x, t}$ as:

$$
d_{x, t}=l_{x, t}-l_{x+1, t} \quad \text { for } x=0, \ldots, 84
$$

For the person-year lived $L_{x, t}$ the formula is:
$L_{x, t}= \begin{cases}l_{x+1, t}+a_{x, t} \cdot d_{x, t} & \text { for } x=0, \ldots, 84 \\ l_{85+} / M_{85+} & \text { for } x=x_{85+}\end{cases}$
and it immediately follows the formula for the person-years lived above age x :
$T_{x, t}=\sum_{\alpha=x}^{85+} L_{\alpha, t}$
Finally, the life expectancies are calculated as:
$e_{\chi, t}=\frac{T_{x, t}}{l_{x, t}}$ for $x=0, \ldots, 84$
$e_{85+, t}=\frac{1}{M_{85+, t}}$.

