
Methodological note on provisional
2018-2019 cause of death data

France transmitted to Eurostat provisional causes of death data for the year 2018 and 2019.
Around 62% of these provisional CoD data were automated coded by the rule-based system
IRIS and IRIS muse, and for the remaining, both the sequence of causes of death and the
underlying cause of death were predicted by an AI approach involving deep learning algorithms
trained on CoD texts from previous years, some with, and some without recourse to IRIS Muse
for coding the underlying cause of death. This is the first time AI is used for coding (part of) CoD
data.

This report documents the methodology followed. It also provides a performance analysis by
comparing AI approach predictions with true labels of 2016 and 2017 CoD data (not used in
training). It finally reports results for 2018 and 2019 and compares them with trends of previous
and next years. This highlights the categories of CoD for which the results of the prediction are
expected to be correct and those which must be interpreted with caution.

1- Context
For 2018 and 2019 data, due to lack of resources, CépiDc-Inserm (French ONA producer of
CoD data) was not able to code 2018 and 2019 death certificates on time and cannot catch up
now relying only on manual coding and rule-based system of coding (IRIS) as it does usually.
2018 and 2019 death certificates, which failed to be automated coded by the rule-based system
of coding (IRIS) were predicted by deep learning algorithms trained on all available data from
2011 on. Table 1 reports the number of certificates coded by rule-based automated coding
system IRIS, by AI, as said before no data were coded manually up to now.

Years\ Type of
coding

Manual coding AI prediction or
AI mixed with
IRIS

Fully rule-based
automated
coding with IRIS
only

Total

2018 - Numbers 176 218769 375855 594800

2018 - % 0 37 63 100

2019 - Numbers 91 229068 369619 598778

2019 - % 0 38 62 100

Missing certificates are excluded (around 15000 per year) added to the final data with R99 CoD.
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Table 1 - Number of certificates per type of coding - Scope : all received certificates for 2018
and 2019.

2- Approach
The AI algorithms used are seq-to-seq translation models of transformer type see Vaswani et al
(2017). Transformers have the advantage of taking into account the links between the words of
the sentence thanks to their “attention” mechanism. They rely on highly parallelized
computation, which allows rapid training that can be fully implemented on conventional
infrastructure. The algorithms are implemented with tensorflow and keras, deep learning open
libraries which are maintained over time. This work made by the statistical service of the health
ministry (DREES) is based on and extends previous works carried out at CépiDc, see Falissard
et al. (2020) and Falissard (2021).

2.1 Model main specifications

- Feature engineering

Input sequences are the concatenation of texts written on each line of the death
certificate separated by the label of the line and some additional features. Additional features
include 5-year age group, sex and year of death. (not for the moment the type of certificate,
neither the new variables on apparent circumstances of death with are only available after 2018
for death certificates which use the new model of certificate)

The input sequence is then composed of age_group sex year of death sep_line1 text written on
line 1 sep_line2 text written on line2 …. and ending by sep_underlyingcause

The target variable is the following sequence age_group sex year of death sep_line1 ICDcod1
ICDcod12 sep_line2 ICDcod2 … sep_underlyingcause ICD_code_underlying_cause.

The tokenizer TextVectorization is used to split these sequences into words (no use of subwords
nor bigrams of words). The dictionary is made of all the different words obtained from this split -
it contains 78982 words for the input sequence and 5935 words for the target sequence.

- Model architecture

The architecture of the transformers used is of encoder/decoder type. More precisely,
transformers involve one group of layers composed of encoder/decoder + positional embedding
+ attention mechanism + one layer of dropout (to control overfitting) for both input and target
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sequences, and finish by a softmax layer.

Transformer architecture - from Vaswani et al 2017.

- Training

For predicting 2018 and 2019 CoD data, the train dataset is composed of all death certificates
coded in ICD10 for years of death 2011 to 2017 and 2020 (except COVID ones) plus death
certificates of years 2018 and 2019 that are fully automated coded by the rule-based system
IRIS.
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For testing models performance on 2016 and 2017 CoD data, models are also trained on only
2011 to 2015 data plus death certificates of years 2016 and 2017 that are fully automated coded
by the rule-based system IRIS.
Training is done using as loss function the sparse categorical cross-entropy and as optimizer
Adam. A call back approach allows one to choose the optimal epoch as the one with the higher
accuracy on validation data (20% of the train data set).

Detailed hyperparameters are reported in the appendix.

- Prediction. Predictions are made through a greedy search approach: each token is
predicted once and enters into the prediction of the next token.

2.2 Combination of three approaches to determine the underlying
cause of death
Once the sequence of ICD codes appearing on the death certificate is predicted, we can choose
as the underlying cause of death directly the model prediction for this part, or we can apply the
rule-based system IRIS/muse to the transformer sequence prediction when it yields a result.
When it does not, we can either use the transformer prediction for the underlying cause of
death, or the prediction of an additional model. The approach retained mixes the three
possibilities.

The underlying cause of death obtained by applying the rule-based system IRIS/MUSE to the
sequence of cases predicted by the algorithm has the advantage to ensure the maximum of
homogeneity in coding, but this approach does not always provide an unambiguous result.
Hence, we re-train an additional transformer model (same structure as previously presented) on
a specific train sample composed of death certificates for which IRIS/MUSE fail to yield the
underlying cause of death. This is a sort of transfer learning approach allowing one to adapt the
train sample to the specific case of IRIS/MUSE rejection. Finally, for these provisional data, we
adopted specific rules to choose between the three predictions, based on the precision/recall
and accuracy measures for each category obtained on 2016 and 2017 data.

However, even with this, counting predictions on 2016 and 2017 data show some systematic
under-estimation for 5 groups of pathologies/conditions (tuberculosis, hepatitis, pregnancies,
congenital diseases and homicides). This conducts us to add specific decision rules leading to
retain these conditions/pathologies as underlying cause of death either if they are predicted by
at least by one approach or if they appear once in the sequence of causes prediction. This
reduces but does not completely solve the under-estimations.

At the end, the prediction of the underlying cause of death is obtained after applying a series of
rules of decision detailed in the appendix. These rules are set by analyzing results on 2016 and
2017 data, which may induce some overfitting. This issue will be corrected for definitive data.
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3- Performance analysis
We assess models performance and overall performance of the automated coding by
comparing predictions of the AI approach and real values of underlying cause of death such as
coded by coders. We do so on 2016 and 2017 data coded manually, which are NOT used in the
training sample, as usual in machine learning.

Results show 88.9% of correct predictions of the underlying cause of death at the European
short list grouping level on 2016 and 2017 data that should have been coded manually, see
Table 2. If we now add rule-based automated coding, and assume that for these death
certificates the coding is correct then the complete coding process ends up to a correct
underlying cause of death at the 86 European short list level in 95.4% of the cases, and 93% for
the detailed ICD10 4-digit level.

ICD 4-digit level 86 European short list level

Death certificates on which
the AI approach is used (ie
those that were manually
coded)

83.4% 88.9%

All death certificates 93.0% 95.4%

Table 2 - % of correct predictions of the underlying CoD on 2016-2017 data

Table 3 reports precision, recall and F-measures per category of the European short list.
Precision stands for the % of correct labels among predictions of a given category by the AI
approach (or AI and rule-based automated coding approach for the 3 first panels), recall stands
for the % of correct predictions by the model among all data coded in the given category,
F-measure is the harmonic average of the two.
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Table 3 Precision, recall and F measures of AI coding approach on 2016-2017 data

This table underlines which code predictions should be looked at with caution. Those with
F-measure below 90% are tuberculosis, AIDS, viral hepatitis, diseases of blood, toxicomania,
other mental and behavioural disorders, diseases of skin, rheumatoid arthritis, other diseases of
the musculoskeletal system, of the genitourinary system, complications of pregnancies,
congenital malformations, accidental poisoning, other accidents, homicide, event of
undetermined intentions, other external causes. These CoD may indeed concern

- rare cases resulting in small counts.
- “other” types of CoD, for which the imprecision may result from non”Other” categories

imprecision
- relatively important counts or categories of special interest for public health, including

infectious diseases and diseases of the digestive system, which will have to be closely
looked at in future developments.

Note : significance degrees of counting differentials come from equality tests assuming real
occurrences were Poisson distributed. * pval<.3, ** pval<.2, *** pval<.1, ****pval<.05, *****
pval<.01.

Table 4 - comparison of predictions and real codes distributions on the 17 ICD10 chapters, all
2016 and 2017 death certificates
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Note : significance degrees of counting differentials come from equality tests assuming real
occurrences were Poisson distributed. * pval<.3, ** pval<.2, *** pval<.1, ****pval<.05, *****
pval<.01.

Table 5 - comparison of predictions and real codes distributions on the 86 European short-list
codes, all 2016 and 2017 death certificates

Kolmogorov Smirnov tests for equal distributions between real and prediction are also
performed, and the underlying khi2 statistic used in choosing the model. At the end, we have

86 European short list level

Death certificates on which the AI approach is
used (ie those that were manually coded)

336

All death certificates 173

4- Results and trend comparisons
The next two tables report countings and standardized mortality rates per CoD as in the
European short list as observed for 2016, 2017 and 2020 and provisional for 2018 and 2019,
stressing which counting may be either or underestimated in those two years. Figures may differ
from the ones published in Eurostat database because they do not cover exactly the same
scope (here we focus on French residents died in France including some overseas collectivities
which are excluded from the NUTS FR, and we use all certificates received). However,
tendencies and main messages can be directly extended to figures published in the Eurostat
database.
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Table 7 Trends in countings per CoD of the 86 European short list, with indication of risk of
under/over estimation for the provisionary 2018 and 2019 data. French residents died in France,
these figures may slightly differ from those published on Eurostat database because of some
scope differentials.
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Table 8 Trends in standardized mortality rates per CoD of the 86 European short list, with
indication of risk of under/over estimation for the provisionary 2018 and 2019 data.

5- Conclusion and next steps
These provisional data for 2018 and 2019 are to be considered with caution for the categories at
risk of under or overestimation as presented in the last two tables. Further work is planned in
2023 to have a particular look at these categories. No analysis have been done yet on regional,
age-based and sex-based comparisons and relying statistics at fine level of CoD should also be
for the moment considered with caution. However, for wide groups of CoD and national
tendencies, they can be used and will give Eurostat the possibility to aggregate 2018 and 2019
CoD at the EU level .

Next steps involve having manual coding/ checking of some well chosen subsamples of 2018
and 2019 data, retrain if necessary algorithms with these new informations for providing final
estimates for 2018 and 2019 by mid-2023. France also work on including AI coding as part of its
usual production process.
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Annex A - Transformer specifications and
hyperparameters
For transformer algorithm with and without transfer learning
batch_size = 200
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buffer_size = 5 000

d_model = 514

latent_dim = 2 048

num_heads = 8

num_layers = 1

dropout = 0.1

epoch = 100

Optimizer : Adam

Loss :Sparse categorical crossentropy

Metric for validation: Accuracy

Metrics for test: Precision, Recall, F_measure, full accuracy

Train/test samples

For performance analysis on 2016/2017 data :

- the train sample includes all death certificates of years 2011-2015 + those fully

automated coded by the rule-based system IRIS for 2016 and 2017 (ie 3,447,459

certificates)

- Test on certificates of 2016 and 2017 manually coded (ie 487,047 certificates)

For transfer learning

- Train: all certificates predicted to be rejected by IRIS MUSE by a simple binary

classification model (ie 422 456 certificates)

- Test : all certificates of 2016-2017 rejected by IRIS MUSE (ie 78 753 certificates)

For 2018/2019 predictions:

- the train sample includes all death certificates of years 2011-2017 + 85% of those of

2020, which do not concern COVID (ie 5,173,106 certificates)

- Test on 15% of 2020 certificates, which do not concern COVID (ie 447,837 certificates)

- Predictions on 2018 and 2019 not fully coded by IRIS 447,837 certificates

For transfer learning

- Train: all certificates predicted to be rejected by IRIS MUSE by a simple binary

classification model (ie 1,877,493 certificates)
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- Test : all certificates of 2016-2017 rejected by IRIS MUSE (ie 78 753 certificates)

- Predictions on 76,230 certificates

Annex B - Decision rules for determining the
underlying cause of death

# step 1 : applying best model per category

Synt <- ifelse (  TL_86 %in% c("17.3") ,  iris_tl2 , NA)

Synt <- ifelse (  IRIS_86 %in% c("05.1","05.2") ,  iris_keras4 ,  Synt)

Synt <- ifelse ( KERAS4_86 %in%
c("01.4","02.2","04.1","04.2","07.1","07.2","07.3","07.4","08.4","17.1","17.3","17.4","17.5")  ,  keras4 ,
Synt)

Synt <- ifelse (  IRIS_86 %in% c("06.1","06.2","06.3","09.1","09.2","09.3","11.1","11.2","16.2","16.3") ,
iris_keras4 ,  Synt)

Synt <- ifelse (  TL_86 %in% c("01.2","08.1","08.2","08.3","10  ","12.1","12.2","13  ","15  ","16.1") ,
iris_tl2 ,  Synt)

Synt <- ifelse (  IRIS_86 %in% c("05.3","14  ") ,  iris_keras4 ,  Synt)

Synt <- ifelse ( KERAS4_86 %in% c("01.3","02.1","05.4","17.2")  ,  keras4 ,  Synt)

Synt <- ifelse (  IRIS_86 %in% c("03  ") ,  iris_keras4 ,  Synt)

# step 2 : specific treatment for 5 underestimates

# which ones

Tub <- ifelse( KERAS4_86 =="01.1",1,0) +ifelse(  IRIS_86 =="01.1",1,0)

Hep <- str_count( keras_code, "b18")+ str_count( keras_code,"b19")

Gros <- str_count( keras_code, "o8")+ str_count( keras_code,"o9")

Cong <- str_count( keras_code, "q8")+ str_count( keras_code,"q9")

Hom <- ifelse( KERAS4_86 =="17.3",1,0) +ifelse(  IRIS_86 =="17.3",1,0)  + ifelse(  TL_86
=="17.3",1,0)

# what to do

Synt <- ifelse ( Tub > 0 , "B909" ,  Synt)

Synt <- ifelse ( Gros> 0 , "O95" ,   Synt)
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Synt <- ifelse ( Cong> 1 , "Q600" ,   Synt)

Synt <- ifelse ( Hom > 0 , "X99" ,   Synt)

Synt <- ifelse (is.na( Synt) &  Hep > 0, "B182" ,  Synt)

# step 3: decision by default

Synt <- ifelse (is.na( Synt) ,  iris_keras4 ,  Synt)
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