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ABSTRACT
CLAN is a program developed at Statistics Sweden and designed to compute point- and standard error estimates in sample
surveys. All parameters that can be written as arbitrary rational functions of population (domain) totals can be handled. For
example simple ratios, ratios between ratios, differences between different domain totals, etc. CLAN computes an estimate
of the parameter and its standard error using a Taylor linearization approach. The Horvitz-Thompson estimator and/or the
generalized regression (GREG) estimator can be used for simple totals. CLAN can handle all parameters that can be writ-
ten as rational functions of totals where the user only has to specify the functional form of the parameters in terms of
population or domain totals. The theory and its implementation are described.
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1. INTRODUCTION
In this paper we will present the main features of CLAN, which is a program designed to compute point and standard
error of estimates in sample surveys. CLAN is written in the SAS macro language and based on the Taylor lineariza-
tion method for the variance estimation. A method is implemented where the user only has to specify the functional
form of the parameters in terms of population or domain totals. Expressions for the necessary derivatives are gener-
ated automatically.

All parameters that can be written as rational functions of totals can be handled by this technique. Typical exam-
ples in business statistics are production per head within different industries and production of an industry relative to
the whole population. Measurement of change often leads to complex estimation problems, the relative change in
production by industry from one period to another is often measured as a ratio where the numerator and denominator
have different reference times. The sampling units involved in the numerator and denominator are partly the same,
partly different, and units that contribute to the total on both occasions may have changed industry in between. Indi-
ces of production built up by functions of ratios, etc. are other examples.

Usually, exact expressions for the sampling variances of non-linear estimators are not available, neither are sim-
ple unbiased estimators of the variances.

The Taylor linearization is computationally much less intensive than for example the Jackknife but it requires that
new expressions are worked out for each different parameter that is considered. Resampling plans, in general only
require that the functional form of the parameter is specified.

The Taylor method has been used in survey sampling for a long time, examples of its applicability are given by
Tepping (1968), Woodruff (1971) and Woodruff and Causey (1976). The technique has also been used in general
computer programs for the estimation of ratios, regression coefficients, etc. and their variances. Examples of such
computer programs are SUPER-CARP (Hidiroglou et al 1976), SUDAAN (Research Triangle Institute 1989),
PC-CARP (Schnell et al 1988), and GES (Estevao et al 1995).

Section 2 contains an overview of CLAN including the sampling designs and non-response models that can be
used, in section 3 details on the available estimators are given. In section 4 the idea behind the technique is shown.
Finally in section 5 the pros and cons of the Taylor linearization and the Jackknife is discussed and in section 6 new
developments are mentioned.

2. CLAN −−−− A TOOL-KIT FOR VARIANCE ESTIMATION
The SAS program CLAN is not an ordinary program of the type we are used to see today with nice screen layouts,
buttons, boxes with available alternatives etc. It is more like a tool-kit for point- and standard error estimation of
complex parameters in survey sampling. The intended user is a professional statistician. The user needs some ele-
mentary knowledge in computer programming to write a SAS-macro (a program fragment) where the form of the pa-
rameters of interest is expressed in terms of population totals. CLAN provides the user with a tool-kit, which makes
this task fairly easy.
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Being written in the SAS macro language CLAN works in different computer environments, e.g. under Windows 9x,
UNIX and on mainframe computers. Only the Base SAS software is necessary.

CLAN permits the user to choose between a large number of estimators, including estimators that use auxiliary
information. The major strength of the program lies in the flexibility by which the user may combine estimators with
the specification of complex sets of domains.

2.1. What Parameters can be Estimated?
Population and domain totals are the most basic and probably the most common parameters of interest in surveys.
Other examples of frequently occurring parameters are population means, ratios or differences between  population
and/or domain totals. A difference between two ratios under a panel survey design, where the two ratios refer to dif-
ferent time periods is a further example.

In summary, most parameters of interest in surveys may be expressed as functions of population (or domain) to-
tals. Consider the parameter θ of a fixed finite population U of size N.  Let θ  be a function of  J  totals
 t=(t1, ..., tj , ..., tJ)′ , that is

θ=f(t1, ..., tj , ..., tJ)=f(t) (2.1)

where �= U jkj yt  is the total of the variable yj in population U and yjk is the value of yj for unit k.

All parameters θ that can be written in the form (2.1), where ƒ is an arbitrary rational function, can be handled
(meaning that a point estimate and a corresponding standard error estimate is produced), by CLAN. In fact, the com-
putational technique which is applied (see section 4 ahead) can easily be extended to include other functions such as
log, exp, sqrt etc. However, since there has not yet been a demand for such functions, only rational functions are cur-
rently allowed in CLAN.

 For some important survey parameters such as the median and other fractiles the function f is defined implicitly
via an estimating function. Unfortunately such implicitly defined functions are not covered by the computational ap-
proach used for CLAN. Hence variances for fractile estimators can not be computed by CLAN.

The y-variables mentioned above can be defined in the following way. Consider a set of variables y1, ..., yj , ..., yJ
and let ypk be the value of variable yp for unit k in the finite population U. Also consider a partitioning of U into D
possibly overlapping domains U1, ..., Ud , ..., UD. For each one of the P×D possible combinations of variables and
domains we can define a total t y y cpd pk

k U
pk dk

k Ud
= � = �

∈ ∈
 where cdk is an indicator variable such that

c k U
dk

d= ∈�
�
�

1 if unit 
0 otherwise. (2.2)

In general only a subset of the P×D possible totals are of interest. Let t=(t1, ..., tj , ..., tJ)′ be the vector of the J totals
we are interested in. To every tj in t we associate one variable yp and one domain Ud. Formally t yj p j k

k U d j
= �

∈
( )

( )
,

where yp(j) and Ud(j) mean that yp and Ud are associated with the total tj. Notice that several tj may be associated with
the same yp or Ud.

Since each tj is associated with only one variable and one domain we will henceforth suppress the indices p and d
and write yjk instead of yp(j)k and Uj instead of Ud(j) in order to simplify notation.

The vector t of simple totals is generated by J arbitrary combinations of y-variables and domains. At one extreme
t might be a vector of totals of one variable y (i.e. P=1), in J (=D) different, possibly overlapping domains
U U U J1 2, , ,� . At the other extreme t might be a vector of totals in one domain (i.e. D=1) for J (=P) different y-
variables.

There are two families of estimators available in CLAN for the estimation of the population totals (t1, ..., tj , ...,
tJ)′ . The basic one is the Horvitz-Thompson (HT) estimator (see section 3.1 ahead). The second family of estimators
of t implemented in CLAN is the calibration and generalized regression (GREG-) estimation, see section 3.2.

As an estimator of θ , CLAN uses )ˆ(ˆ tf=θ . CLAN computes �θ  and an estimate − based on Taylor linearization

− of the standard error V ( �)θ . This estimation can be done, simultaneously, for an arbitrary number of functions
θq=fq(t1, ..., tj , ..., tJ), q=1, 2, …, Q.
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2.2. Sample Designs
The sampling designs implemented in CLAN include stratified (or non-stratified) simple random sampling (SRS)
without replacement of i) elements or ii) cluster of elements. When the sampling unit is cluster no subsampling of
elements is assumed. This means for example that probability-proportional-to-size (PPS) and multistage cluster sam-
pling designs are missing. The reason is that such designs are currently used very little at Statistics Sweden. Never-
theless, under certain conditions it is possible to use CLAN for the computation of approximate estimates of the
variances under PPS or multistage cluster designs by appropriately weighting.

2.3. Non-response Models
In most surveys non-response occurs. There are two main ways to treat this, by weighting or by imputation, CLAN
can be used for weighting but does not take imputation into account.

We can look upon the non-response compensation adjustment weight as an approximation of the inverse of the
response probability for the sample units. Särndal et al. (1992) suggested that the response probability is estimated
by grouping the sample s into response homogeneity groups (RHGs) and compute the ratio between the number of
responding and selected units within each RHG.

CLAN allows for two models, i) strata and RHGs coincide, or ii) RHGs are subgroups of strata. The second al-
ternative implies that CLAN can also be used when the sample design means a two-phase sampling scheme for strati-
fication, see Särndal et al (1992) for details.

Assume that stratum h contains Nh sample units and a sample of size nh has been taken from stratum h, then for
element k in stratum h, πk=nh/Nh. When the sampling unit is cluster no subsampling of elements from the selected
clusters is assumed which means that πk=πIi if element k belongs to cluster i.

Suppose that the number of respondents in stratum h is mh out of nh, when model i) is used the response prob-
ability is estimated by �νk h hm n= . When model ii) is used the sample units in stratum h is divided into Gh sub-
groups where subgroup hg contains nhg selected units and mhg responding units, then the response probability for
element k in subgroup hg is estimated by �νk hg hgm n= . When the sampling unit is cluster then � �ν νk i= I  if element
k belongs to cluster i.

2.4. How Is It Done?
The pre-programmed macro %CLAN is the main tool where the user specifies how the estimation shall be done. It
involves a number of macro parameters for specification of the design and response model. Only a few of these are
mandatory and the rest are optional. The user supplies information about which data set to use (DATA), if the sam-
pling units (SAMPUNIT) are elements (default) or clusters, if response homogeneity groups (RHG) are used or not
(default), stratification variable (STRATID) if any, the number of units in the sampling frame (NPOP), the number
of responding units (NRESP), etc.

In many cases it is practical to be able to group the obtained estimates by the levels of one or two factors. For this
purpose the output data set always contains two SAS variables ROW and COL which can be used to structure the
output and to identify the computed estimates. The user specifies the number of levels of ROW and COL by setting
values to the parameters MAXROW and MAXCOL in %CLAN.

Here is an example of what %CLAN may look like if we want to produce a table (or a number of tables) with, say
3 rows and 4 columns:

%CLAN(DATA=s.indata, SAMPUNIT=C, STRATID=stratvar, CLUSTID=clustvar, NPOP=popsize,
NRESP=mresp, MAXROW=3, MAXCOL=4)

It is presumed that the input SAS data set S.INDATA contains the variables STRATVAR, CLUSTVAR, POPSIZE,
MRESP and CLUSTVAR, which contains the cluster identity for each element.

The form(s) of the function(s) θ=f(t1, ..., tj , ..., tJ) and the specification of the totals involved, t1, ..., tj , ..., tJ must
be supplied by the user. To do this the user must write a SAS macro %FUNCTION to specify the elementary esti-
mators of the totals involved, and for which functions of these totals the user wants to compute point and standard
error estimates. In %FUNCTION the user specifies what shall be estimated. CLAN provides a tool-kit of pre-
programmed macros to help the user build %MACRO FUNCTION.

The totals t1, ..., tj , ..., tJ in θ are defined and estimated by the pre-programmed macros %TOT and/or %GREG
which use a linear estimator of tj in the form �t w yj k jks= � , where wk will be defined later. For each %TOT or

%GREG that is invoked in %FUNCTION, a table of size MAXROW×MAXCOL with estimates of simple totals is
internally set up by CLAN.



660

To understand how this works, it may be helpful to know that %FUNCTION is internally invoked from %CLAN
within a do-loop for every observation read from the input data set. Hence inside %CLAN there is a sequence (which
the user does not have to be concerned with in practice):

do _i=1 to &maxrow;
do _j=1 to &maxcol;

%function(_i, _j)
end;
end;

The SAS macro language uses ‘&X’ to refer to a value of variable X.
As implied by the do-loop, the arguments of %FUNCTION − the arguments are formal parameters, the user can

choose any valid SAS names − are associated with the variables ROW and COL that will appear in the output data
set, i.e. the first argument takes the values 1, 2,…, MAXROW while the second takes the values 1, 2, …, MAXCOL.
The user can control which parameters and/or domains that are to be associated with each combination of ROW,
COL by referring to arg1 and arg2 in macro %FUNCTION(arg1, arg2).

Since θ=f(t) must be a rational function of totals, θ can be obtained by using the elementary operations addition,
subtraction, multiplication, division in a step-wise fashion. There are four pre-programmed ”arithmetic” macros in
CLAN corresponding to these operations: %ADD, %SUB, %MULT and %DIV. The user can construct any rational
function or sets of rational functions of totals by using these elementary macros as building blocks in much the same
way as one would use the corresponding operations in elementary algebra. The derivatives needed and the linear
transformations of the variable values are automatically provided by these macros.

The ”arithmetic” macros operate on cells with identical index in different tables created by %TOT, %GREG or
the four “arithmetic” macros. Usually only the final transformation is of interest, the macro %ESTIM is used to tell
CLAN which parameter(s) to output and compute of standard errors. In order to sum over cells within the same table
the macro %TABSUM is used. We will illustrate this in a small example.

2.5. An Example of %FUNCTION
The objective of this example is to demonstrate how CLAN can be used to estimate a set of partly overlapping do-
main totals by an estimator which takes the form of a sum of a ratio estimator using an auxiliary variable known in a
part of the population and a HT estimator to cover the rest. This compounded estimator is used − slightly modified −
at Statistics Sweden to estimate quarterly turnover by industry for the service sector.

The design of the survey is a stratified sample of enterprises with simple random sampling within strata. The
stratification is done by size of enterprise and by type of service − 3 to 4 digit levels of the European standard indus-
trial classification NACE.

The quarterly turnover yk, k∈s is measured for every enterprise in the sample. The auxiliary variable is the yearly
turnover of the previous year. This variable xk, is known for every ”old” enterprise in the population, k∈Uold but not
for the new ones, Unew. The sample s is split in the same way in sold and snew.

The objective is to estimate the quarterly turnover for a number of domains d, d=1, 2, …, D. In this example we
will use part of the wholesale trade industry as illustration. We will consider the following partly overlapping NACE
groups. The overlap stems from the fact that some domains are aggregates of others.

Row NACE code Type of activity
1 51.41+42 Wholesale of textiles, clothing and footwear.
2 51.43+44+47 Wholesale of electrical appliances, glass, china, furniture, leisure goods etc.
3 51.45+46 Wholesale of medicine and cosmetics.
4 51.4 Wholesale of household goods.
5 51.5+6+7 Wholesale of non-agricultural intermediate goods, machinery and other wholesale.
6 51 Wholesale and commission trade except of motor vehicles.

Notice that row 4 is an aggregate of rows 1, 2 and 3. Furthermore, row 6 is an aggregate of rows 1, 2, 3 and 5. We
are interested in the quarterly turnover in domains that are defined by the cross classification of NACE code and size
classes, 10-49, 50-249, 250-. The margins are also of interest.
The estimator of the quarterly turnover t yd kU d= �  in domain d can be expressed in the following form,

� � �t t td dnew dold= + , where �t w ydnew k dksnew
= � , �t

x
w x

w ydold
dkU

k dks
k dks

old

old
old

=
�

�
�  and ydk=cdkyk.
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For each enterprise in the input data set, INDATA the following variables exist, STRATUM, POP (Nh), RESP (nh),
Y (quarterly turnover), X (last year’s turnover if it exists), XSUM ( xdkUold� ), NEW (=1 if the enterprise is newly
started, =0 otherwise), NACE4 (4 digit NACE), NACE3 (3 digit NACE) SIZE (size class, 1=10-49, 2=50-249,
3=250-). The %FUNCTION may then look like this.

%macro function(r,c);
rcond=0;
ccond=(&c=size);
if &r=1 then rcond=(nace4 in('5141','5142'));
if &r=2 then rcond=(nace4 in('5143','5144','5147'));
if &r=3 then rcond=(nace4 in('5145','5146'));
if &r=5 then rcond=(nace3 in('515','516','517'));
%tot(yht, y, ccond and rcond and new)
%tot(xht, x, ccond and rcond and not new)
%tot(help, y*xsum, ccond and rcond and not new)
%div(yrat, help, xht)
%add(yest, yht, yrat)
%tabsum(table=yest,frow=1-3,trow=4)
%tabsum(table=yest,frow=4 5,trow=6)
%tabsum(table=yest,fcol=1-3,tcol=4)
%estim(yest)

%mend;
%clan(data=indata, stratid=stratum, npop=pop, nresp=resp, maxrow=6, maxcol=4)
run;

The output is a SAS data set named ‘DUT’ (Data oUT) that contains 6×4=24 rows in this case and four variables,
ROW, COL, PYEST (for the point estimates) and SYEST for the standard error estimates. There may be several
%ESTIMs in a %FUNCTION and each will generate two variables with prefix P (for Point-estimate) and S (for
Standard error estimate). For example, if the estimated totals for new enterprises had been of interest then by adding
%ESTIM(YHT) after the last %ESTIM in %FUNCTION we had obtained two more variables, PYHT and SYHT on
the output data set DUT.

The data set may be processed by other procedures in SAS or exported to another program, for example EXCEL
for further processing or to create a table in a document.

It is usually a good idea to do some data manipulation such as grouping, recoding etc. in a DATA step before
running %CLAN, especially for large tables and large data sets.

In this example CLAN will produce three internal 6×4 tables in the first pass of the data - as illustrated by the
following figure - since %TOT is invoked three times (for YHT, XHT and HELP).

HELP

XHT

YHT

In the second pass of the data the transformation defined by %DIV, %ADD and %TABSUM will be done. However
only YEST will be used in the computation of the standard error and written to the data set DUT. Note that %DIV
will compute HELP/XHT, cell by cell and %ADD will compute YHT+YRAT, cell by cell, while %TABSUM will
compute the sum of rows and columns in YEST. The linear transformations needed for the variance estimation will
be done according to these operations.

Usually the tricky part in using CLAN is the formulation of the logical conditions in %TOT (and %GREG) that
ties each element to the intended cell(s) but this is also the key, we believe, to the high flexibility of the software.

3. THE ESTIMATION OF SIMPLE TOTALS



662

The simple total t yj jkU= �  is estimated by the estimator �t w yj k jkr= � where r is the set of response elements
and wk is the ”sampling weight”. By choosing wk in different ways different estimators are defined. Two estimators
for the simple totals, the HT estimator and the GREG estimator are implemented in CLAN.

3.1. The HT estimator of a Simple Total
The well known HT estimator is obtained by using wk k k= 1 ( � )ν π . The HT estimator is computed by the pre-
programmed SAS macro %TOT(name, variable, condition), where name is the users name of the estimate, variable
is the name of the SAS variable or a SAS expression used as the y-value and condition is a logical expression that
determines to which cell(s), an element belongs.

3.2. The GREG estimator of a Simple Total
The GREG estimator of tj is obtained by using )ˆ( kkkk gw πν=  in �t w yj k jkr= � , where gk is a function of the

auxiliary vector xk.
It is assumed that the yj-values are generated by a linear model ξ such that, ( ) jkjkyE Bx′=ξ  and

( )V y qjk kξ σ= 2 where qk is a constant known for each element.

When the sampling units are clusters, two model levels are possible. The auxiliary information may be available
for the population of clusters or for the population of elements. Then the model may be specified as an element
model ξ or as a cluster model ξI, ( ) jxiyjitE II Bt′=ξ , ( )V t qyji iξ σ

I I
2

I= where qIi is a constant known for each clus-

ter, t yyji jkUi= �  is the total of yj in cluster i and txi is either defined at the cluster level only or an aggregate of xk

within each cluster, t xxi kUi= � . The unknown constants 2σ  and 2
Iσ  disappear in the estimation of Bj and BIj.

The g-values are computed by ( ) ( )g q qk x x k k k k kr k k= + −
′

′�
−

1
1

t t x x x� ( � )ν π  under the model ξ, where �t x  is
the HT estimator of the known total tx in U.

Under the model ξI, ( ) ( )g q qk x x xi xi i i ir xi i= + −
′

′�
−

1
1

t t t t t� ( � )I I I II ν π  k∈Ui and rI is the set of responding

clusters.
The GREG-estimator encompasses as special cases the ratio estimator, the simple regression estimator, the post-

stratified estimator and the linear calibration estimator (Deville and Särndal 1992). These cases are obtained by an
appropriate choice of the x-vector.

The gk:s should normally have a value around 1. However, for some ”unlucky” samples or if there are too many
marginal constraints, the g-values may take extreme values. Negative values of gk is rather undesirable in practice, in
fact a value of wk less than one is hard to explain or interpret since each observation should at least represent itself in
the estimation process.

The user may want to restrict the gk-values within a certain interval. This can be done in CLAN by specifying an
upper limit and a lower limit for gk, such that L≤gk≤U.

The macro %AUXVAR can also compute (linear) calibration weights wk, such that �t x tx k k xr w= =� .
Up to nine different %AUXVARs are allowed in %FUNCTION at the same time, which means that nine different

models can be treated in the same run. This may for example be used when GREG estimates from different time pe-
riods are combined into the estimates of parameters that measures change.
The GREG estimates are computed by the pre-programmed macro %GREG(name, variable, condition, modelid),
where name, variable and condition has the same meaning as in %TOT, and modelid is used to connect %GREG
with one of the x-vector when several %AUXVARs are used.

The working variable in the estimation of a total or in the z-transformations is ( )jkjkk yg Bx ˆ′−  which itself is a
result of Taylor linearization.
3.2.1. The Auxiliary Vector
The x-vector of auxiliary variables is defined in much the same way as the y-variables, i.e. by a combination of vari-
able(s) and domain indicator(s). Usually the term model group or subpopulation is used instead of domain.
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Simple examples of auxiliary vectors are xk = (0, …, 1, …, 0)′ and xk = (0, …, xk, …, 0)′. When xk = (0, …, 1, …,
0)′ the auxiliary total �= U kx xt = (N1, …, Nj, …, NJ)′ must be known, where Nj is the population count in the jth
subpopulation. In this case, if the sample is taken as an SRS, the corresponding GREG-estimator is the (classical)
poststratified estimator. In the case of xk = (0, …, xk, …, 0)′ the auxiliary total �= U kx xt must be known.

A general expression for the xk vector is given by, xk = (δ1k x′1k, …, δpk x′pk, …, δPk x′Pk)′ where δpk is a sub-
population indicator that takes the value δpk =1 if k belongs to subpopulation p and δpk = 0 otherwise.

In principle the auxiliary vector xp can be composed differently for different subpopulations. However, the cur-
rent version of CLAN does not allow for this, xpk must be identically composed for each p.

The model, the x-vector, the known margins tx, qk or qIi etc. are defined by the macro %AUXVAR that allows for
a variety of different models and x-vectors.

3.2.2. An Example
The estimation problem in section 2.5 could also be solved by using of the macros %AUXVAR and %GREG. The
composition of the x-vector is defined in a separate SAS data set, TOTALS. In this example it contains one observa-
tion (or row) and the variables VAR (the name of the x-variable, =‘X’), N (number of subpopulations, =12, 4
NACEs by 3 sizes), MAR1-MAR12 (the known totals, =the values of XSUM), XTYPE (type of variable, =’N’ for
Numerical), XDOM (subpopulation indicator, =’NACESIZE’). The variables X and NACESIZE are assumed to ex-
ist in the data set INDATA. The variable NACESIZE takes the values 1-12 for all old enterprises and 0 for new, it is
defined by the user through a combination of NEW, NACE3, NACE4 and SIZE. In INDATA there is also a variable,
Q that takes the value 1/X for old enterprises and 0 for new ones.

Then, instead of the three %TOTs, the %DIV and the %ADD − the other statements in %FUNCTION are not
changed − we could use the following code.

.
%auxvar(datax=totals,qk=q)
%greg(yest,y,rcond and ccond)
.

The result would be exactly the same as from the code in section 2.5.

4. THE LINEARIZATION VARIANCE ESTIMATOR
CLAN allows arbitrary rational functions of totals, θ= f(t). We have already mentioned a number such functions that
are non-linear in the totals. A natural estimator of θ is to replace the different totals in f(t) by their estimates

)ˆ,,ˆ,,ˆ(ˆ
1 ′= Jj ttt ��t , which gives ).ˆ,,ˆ,,ˆ(ˆ

1 Jj tttf ��=θ

Notice that θ̂  is generally not an unbiased estimator of θ when f(t) is non-linear, not even when t̂  is an unbiased
estimator of t. It is, however, a consistent estimator of θ if t̂  is a consistent estimator of t.

By Taylor’s formula we have as an approximation

)ˆ,ˆ()()(ˆ)()ˆ(
1 11
� � ′′=��

�

�
�
�
�

�
� ′≈

= ==

J

i

J

j
jiji

J

j
jj ttCfftfVV tttθ , (4.1)

where )(tjf ′  is the partial derivatives are evaluated at t and )ˆ,ˆ( ji ttC  is the covariance between it̂  and jt̂ .

The partial derivatives f ′  usually depend on the unknown t. For the purpose of variance estimation, we substitute

sample based estimates of jf ′  and C(·, ·). The jf ′  is estimated by )ˆ(tjf ′  i.e. the partial derivatives are evaluated at

t̂ and C(·, ·) is estimated by ),(ˆ ⋅⋅C  computed from the sample. The result is the estimator,

)ˆ,ˆ(ˆ)ˆ()ˆ()ˆ(ˆ
1 1
� � ′′=
= =

J

i

J

j
jiji ttCffV ttθ (4.2)

It can be shown by elementary algebra that if we do the following data transformation − due to Woodruff (1971) −
for every element in the sample,

� ′=
=

J

j
jkjk yfz

1
)ˆ(ˆ t (4.3)

and then derive the variance estimator of the total �= s kkz zwt ˆˆˆ , which is well known for most designs used in
practice, we arrive at the expression (4.2). Hence the computation of variances for functions of totals is converted
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into computation of variances of totals through the Woodruff transformation (4.3). The problem of finding the partial
derivatives of all functions allowed is solved by the following observation.

Suppose that f(t) can be written in the form, ( ))(),()( 21 ttt ggGf = , and this is true for all functions allowed in
CLAN, i.e. all rational functions.

It is then possible to do the Woodruff transformation (4.3) separately for each of the functions g1 and g2, and then
use the resulting z-variables as input to the Woodruff transformation for the function G. Thus it is possible to obtain
the transformation (4.3) in a stepwise fashion. For a more comprehensive discussion of this, the reader is referred to
Andersson and Nordberg (1994).

Hence the Woodruff transformation for a rational function f can be obtained by successive use of the Woodruff
transformations corresponding to addition, subtraction, multiplication or division of two totals or functions of totals.

4.1. An Algorithm
Since it is possible to compute the derivatives of θ̂  in a stepwise manner, it is not difficult to construct an algorithm
that is suitable for a computer program where the user does not have to be concerned with the derivatives.

In the algorithm we only have to worry about the derivatives of functions like t1 op t2, where op is one of the op-
erators +, - , × and /. Although it is rather simple to include other functions, i.e., θ=func(t0), where func is, for exam-
ple, log(t0), exp(t0), sqrt(t0), etc., we do not treat these functions here simply because there has (not yet) been any
need for them.

The following table shows the z-transformations needed to estimate the variance of θ= t1 op t2.

op z-transformation
+ zk=y1k+y2k

- zk=y1k -y2k

× zk=θ (y1k /t1+y2k /t2)

/ zk=θ (y1k /t1-y2k /t2)

Table 4.1. z-transformations for different operators.

In CLAN a two-pass algorithm is used in order to find the derivatives and compute the variance estimates of an arbi-
trary rational function of totals. In the first pass all the simple totals needed are estimated by the HT or GREG esti-
mator.

When all totals of interest are estimated, the second pass begins. The z-transformations are then done step by step
by using the expression of θq which is supplied by the user. The final transformation(s), determined by %ESTIM, is
used as input to the standard formula for the computation of the variance estimate of a total. The formula is deter-
mined by the users choice of design and non-response model. The point estimate is obtained by transforming the to-
tals from the first pass.

4.2 An illustration
We illustrate the technique by a simple example. Let the parameter of interest be the ratio between two products of
totals, (or a ratio between two ratios), i.e. we want to find the z-transformation needed to estimate the variance of

( ) ( )� � � � �θ = ⋅ ⋅t t t t1 2 3 4 .
The totals t1, ..., t4 are estimated according to the sample design used. The estimator may be either HT or GREG

for each total, if GREG is used yjk is replaced by )ˆ( jkjkkjk yge Bx′−= .

The computation may be done in the following steps.
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step estimate z-transformation
1

211 ˆˆˆ tt ⋅=θ ( )221111 ˆ/ˆ/ˆˆ tytyz kkk += θ
2

312 ˆ/ˆˆ tθθ = ( )331122 ˆ/ˆ/ˆˆˆ tyzz kkk −= θθ
3

423 ˆ/ˆˆ tθθ = ( )442233 ˆ/ˆ/ˆˆˆ tyzz kkk −= θθ
Table 4.2. Intermediate and final z-transformations when a ratio between two products is of interest.

The variance of 3̂θ  which is our estimator of interest, θ̂  is estimated by using �z k3  and the formula for the variance

of � � ( � )t zz k k kr= � 3 ν π . The operations on � , � , � �t t t t1 2 3 4 and  in steps 1-3 may be taken in different orders, all giving to
the same result.

5. LINEARIZATION VS. THE JACKKNIFE
There have been some discussions in the literature about the pros and cons of the linearization and Jackknife tech-
niques for the variance estimation of a complex parameter in survey sampling. It has been pointed out that the com-
putation burden for the Jackknife compared with the linearization is substantial. This is especially so when the
GREG estimator is used. In a study by Stukel et al. (1996) it is reported that 97% of the computer time was spent by
the Jackknife and 3% by the linearization estimator.

It has also been claimed that new expressions have to be developed for the variance of each new estimator when
linearization is used, which might be a problem in multipurpose surveys. When the Jackknife is used it is only neces-
sary to express the form of the parameter of interest.

In practice most parameters of interest can be expressed as rational functions of (possibly domain) totals. This
means that by the CLAN approach it is possible to unite the best of the two techniques, low computation burden and
a simple expression for the parameter.

However, there may be other reasons than computational feasibility to choose one of the techniques before the
other, for example bias and variation of the variance estimates. When the parameter of interest is highly non-linear
the linearization may not work very well for small samples, complex parameters needs larger samples. It is difficult
to give any general results on this topic, usually one has to rely on Monte Carlo studies to get some hints of how the
two techniques work.

In Yung and Rao (1996) and Stukel et al (1996) two different Monte Carlo studies are reported that shed some
light on the issue. The design used in both studies was two-stage sampling where the PSUs were taken with PPS and
the SSUs were taken with SRS.

In Yung and Rao (1996) the parameter of interest was the ratio between two totals which was estimated by the
GREG estimator with the same x-vector in the denominator and the numerator. Two different x-vectors were used,
defining two different poststratifications, (8 and 5+2 poststrata). They found that the linearization and the Jackknife
estimators gave approximately the same results with respect to the relative bias of the variance estimators (which
were small, <1%) and the coverage of a 95 % confidence interval (which were good, ≈95%).

In Stukel et al. (1996) the parameter of interest was a total estimated by the GREG estimator with an x-vector of
length fourteen defining 10+4 poststrata. Besides the linearization and Jackknife estimators of variance they also
studied the effect of different restrictions on the g-weights. They found that the two techniques produced approxi-
mately the same results with respect to the relative bias and the relative variation of the two variance estimators for
all restriction cases. Both estimators gave variance estimates that were negatively biased with a larger bias for the
linearization estimator (≈-6%) compared with the Jackknife (≈-2%). The coefficient of variation of the variance es-
timates were slightly smaller for the linearization estimator (≈60%) compared to the Jackknife (≈63%). This pattern
remained although the differences diminished when the sample size was doubled.

The conclusions from these two studies indicates that the variance estimates produced by the linearization and the
Jackknife techniques seem to be similar with regard to bias, variation and coverage of a 95% confidence interval.

For the computation of variance estimates of complex parameters, especially in multipurpose surveys, the smaller
computation burden may then favor the linearization technique the way it is implemented in CLAN.

6. NEW DEVELOPMENTS
At Statistics Sweden there is a need for software that can handle advanced non-response models and calibration in
two phase sampling. CLAN can handle auxiliary information in two-phase sampling but only for the case when the
same x-vector is used in the two phases. A software has been developed at Statistics Sweden, based on the CLAN
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concept, that can use different x-vectors in phase one and two and also allow for calibration from phases two to one
and to the population level. The program is currently (1999) under test.
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ABSTRACT

At Statistics Netherlands the software package Bascula version 3.0 has been developed which combines weighting of
sample data using auxiliary information with variance estimation based on balanced repeated replication (BRR). Much
attention has been paid to implement various techniques in an easy and user-friendly way. In this paper we take a quick
glance at a new production process where Bascula will be a part of a general processing and estimation environment in
which the whole process of outlier detection and handling, editing, imputation and weighting of the clean records will be
integrated.

Key Words: Bascula, Regression estimator, Balanced repeated replication, Outliers

1. INTRODUCTION

Statistics Netherlands has been engaged with developing standard software tools, aimed at facilitating and
documenting the production process, and improving the total data quality. The idea is to integrate these software
tools in the Blaise system. Blaise is used world-wide by many types of survey organizations. One of the software
tools is Bascula for Windows, which combines weighting of sample data using auxiliary information with variance
estimation based on balanced repeated replication (BRR). It already links up with Blaise.

Due to political pressure Statistics Netherlands is more and more urged to reduce staff costs and response burden. As
a consequence the production process has to be redesigned radically. In the traditional production process data
collection, processing and dissemination are organized according to the so-called stovepipe model, i.e. many
different surveys are performed more or less independently of each other in the course of which each survey has its
own way of processing. In the new setting, similar activities of traditional survey processes are consolidated into
new (sub-) divisions in order to increase efficiency. For the same reason, external sources, like the VAT (Value
Added Tax) registration, have to be used more intensively and combined with data from existing sample surveys.
Also, special attention is given to fulfil an ever-growing demand to compare or relate publication figures from
different sources. Particularly, publication tables having some marginal counts in common should have identical
estimates for these counts. In this paper we discuss the role of Bascula in the new production process. Being a
standard tool, Bascula eventually will belong to a general processing and estimation environment in which the whole
process of outlier detection and handling (micro and macro) editing, imputation (for unit and item nonresponse), and
weighting of clean records will be integrated.

In section 2 a description of Bascula version 3.0 is given. In section 3 the future developments of the redesign is
given in more detail, insofar as it concerns the estimation procedure. In section 4 we elaborate on the weighting
procedure of the new production process. In section 5 we take notice of the problem to deal with unexpected
influential observations that appear to be well recorded at the editing stage. In section 6 some conclusions are given.

2. BASCULA 3.0

In most sample surveys, estimation procedures are applied which take advantage of the presence of auxiliary
information. Auxiliary information is defined as a set of variables that are observed for each unit in the sample,
while corresponding population aggregates are known from one or more sources such as administrative registers.
Poststratification is a well-known application of auxiliary information. The purpose behind the use of auxiliary
information is that the precision of estimators will be improved and/or that a possible bias, e.g. due to nonresponse,
will be reduced. Before entering into details of Bascula we briefly sketch the general regression estimator.

                                                          
*) The views expressed in this paper are those of the authors and do not necessarily reflect the policies of Statistics
Netherlands.
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Consider a finite population of distinguishable (labeled) units, U = {1,..., N} where the kth unit is associated with a
value ky of study variable y and with a vector t

kpkk xx ),...,( 1=x , which contains the values of p auxiliary variables.

The corresponding population totals are given by � ∈= Uk ky yt and � ∈= Uk kx xt , respectively. The objective is to

estimate unknown finite population parameters.  To be able to estimate yt  a probability sample S⊂U is drawn

according to a given sampling design, inducing strictly positive first and second order inclusion probabilities kπ =
Pr (k∈S) and klπ  = Pr (k&l∈S). A convenient way and common practice is to express the estimator yt̂  for yt  as a

weighted sample sum, ksk ky ywt � ∈=ˆ . The Horvitz-Thompson estimator ksk ky ydt � ∈=HTˆ  where 1−= kkd π  is
the sampling weight (design weight or inclusion weight), is a well-known example of such a weighting type
estimator. In practice we deal with responding units in which case kd  refers to net sampling weights.  Incorporating
auxiliary information implies that adjusted weights kw  are determined, such that the estimator

� ∈= sk kkx w xt̂ exactly reproduces xt . We then say that the weighted sample is balanced, or calibrated with
respect to the used auxiliary variables. There are several estimators that satisfy the imposed restriction; among them
the general regression estimator is a very important one. The general regression estimator, Rˆyt , is defined as

)ˆ(ˆˆˆ HTHTR xx
t

yy tt ttb −+= ,                                                                                                                  (2.1)
with

��
∈∈

−=
sk

kkkk
sk

k
t
kkk vydvd )/()/((ˆ 1 xxxb ,

where the kv  are some known non-zero constants, assuming that HT
ˆ

xxT  = � ∈ Sk k
t
kkk vd )/( xx  is nonsingular. In

Särndal et al. (1992) the quantity kv  is assumed to be related to the variance structure (by 22 σσ kk v= , with at least

kv  known) of the linear regression model of y on x, where the ky  are supposed to be realized values of independent
random variables. The general regression estimator, given by (2.1) can also be expressed as the weighted sample
sum of the observed observations of the study variable, with regression weights

 kkxxxxk
t
kkk gdvdw =−+= − )]ˆ)(ˆ)(/(1[ HT

1
HT ttTx .                                                                           (2.2)

It follows from (2.2) that the regression based weighting method can be described as linear weighting given the
sample, with the adjusted weight kw  written as the product of sampling weight kd  and correction weight kg .  The
general regression estimator thus induces sampling weights to be transformed into regression weights. In a
multipurpose survey, for each study variable a different set of auxiliary variables may be used. However, for
practical reasons often the same auxiliary information is used for all study variables in which case only one set of
adjusted weights is needed.

In Deville and Särndal (1992) a class of calibration estimators is given, where weights are sought which are (given
some distance measure) as close as possible to the sampling weights such that balancing with respect to a set of
auxiliary variables is achieved. As the general regression estimator generalizes many textbook estimators, the
system of calibration estimators can be viewed as a generalization of the general regression estimator. In the view of
calibration the calculation of only one set of weights fits very well.

Bascula has been especially developed for computing adjusted weights and aims at the estimation of population
totals, means and ratios with corresponding variances. The latest version 3.0 includes:

• Weighting methods as poststratification, ratio estimation, and more generally linear weighting based on the
general regression estimator,

• The possibility to achieve an integrated weighting approach for persons and households, as suggested by
Lemaître and Dufour (1987),

• A bounding technique based on the Huang Fuller algorithm (1978),
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• Multiplicative weighting based on the algorithm in Deming and Stephan (1940) as an alternative for linear
weighting when only categorical auxiliary variables are used ,

• A module for estimating variances based on balanced repeated replication (BRR), see Wolter (1985).

The estimation of variances based on BRR offers an attractive alternative for the use of formulas based on Taylor
linearization, especially when thought from a weighting perspective. In general both methods are aymptotically
equivalent, see Shao and Tu (1995). BRR was originally developed for stratified multistage designs by which in
each stratum two primary sampling units (PSUs) are drawn with replacement in the first stage, see McCarthy (1969).
The underlying idea is to form a balanced set of half-samples or replicates by deleting one PSU from the sample in
each stratum. A minimal set of balanced R half-samples is constructed from an R×R Hadamard matrix, see Wolter
(1985), R being a multiple of 4 with H≤R≤H+3 and H the number of strata. For notational convenience we limit
ourselves to stratified one-stage unit sampling. Let the kth unit of the sample correspond to the ith unit (PSU) of the
hth stratum. For each half-sample a replicate estimator can be obtained using the same formula as for the full sample
with sampling weights hid  replaced by resampling weights α

hid . Similarly to the full sample adjusted estimate, it is

also possible to express its corresponding replicate estimates α
yt̂  in terms of adjusted weights. Actually, the

weighting procedure transforms the resampling weights α
hid  into adjusted resampling weights α

hiw and these weights
can be used to make the estimates for the resamples. Deleting half the sample correspondents with doubling the
original sampling weight for one half-sample and using zero weights for its complement. Especially when using
auxiliary information this may give unstable or even undefined results for some replicates. To avoid such a problem,
we have followed an idea proposed by Fay (1989) by which the sampling weights are less sharply disturbed. The
modified resampling weights thus become

)](1[ 21
hihihhihi qdd ∆−∆+= α

α δ  ,

with 0<q≤1. The value of hαδ  follows from the relating Hadamard matrix, denoting which PSU in stratum h is in

the αth resample; for  hαδ = 1 it is the first PSU and for hαδ  = -1 it is the second one. Further 1
hi∆  equals 1 if the ith

PSU in stratum h is assigned as the first PSU and 0 otherwise. A similar definition is used for 2
hi∆  with respect to

the second PSU. The value q = 1 corresponds with the standard situation.  With q<1, no units are actually deleted; in
this case the units in the not selected half-sample only receive less weights than those in the other half-sample. With
Fay’s method the BRR variance estimator becomes

�
=

−=
R

yyBRRq tt
Rq

v
1

2
2

)ˆˆ(1

α

α .                                                                                                                      (2.3)

Rao and Shao (1999 studied some theoretical properties of the modified BRR estimator. Once the adjusted
resampling weights have been calculated, the user can carry out variance estimation without bothering about the
design stage and estimation stage. All required information must be properly contained in the replicate weights.

For a broader utilization of Bascula, BRR has been extended to stratified multi-stage sampling where in some or all
strata more than two PSUs are drawn (with replacement). The multi-stage design is approximated by a design for
which the basic two-per-stratum procedure can be applied, e.g. by randomly forming two groups of PSUs per
stratum, or by randomly forming artificial strata, each with two (groups of) PSUs, see Wolter (1985). In these cases
BRR is applied to the groups, while artificial strata are viewed as strata. For designs with a relatively small number
of strata and large stratum sizes, variance estimation based on grouped BRR may be quite inefficient, while Rao and
Shao (1996) showed design-inconsistency. In order to overcome such problems they proposed independently
repeating the grouping T times and then taking the average of the resulting T variance estimators; creating artificial
strata may be used as an alternative. By means of a simple modification for the finite population, Bascula can also
handle stratified one-stage designs without replacement in each stratum. Inspired by Rao and Wu (1988) who
suggested bootstrap replications for two-stage designs in which simple random without replacement is carried out at
both stages, we modified BRR to be applied to such designs. In Renssen et al. (1997) it is described how half-
samples are formed for the implemented sample designs; also the derivation of expressions for the corresponding
resampling weights are given.
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Bascula internally forms resamples with resampling weights using Fay’s (1989) method. Subsequently the
weighting procedure for the full sample is repeated for each of the R resamples, where the resampling weights are
viewed as sampling weights. In this way R+1 sets of adjusted weights are written to an external file. The first set of
weights in this file refers to the full sample and the remaining R sets to the resamples. With these R+1 sets of
adjusted weights variances can be estimated for arbitrary study variables using the formula given in (2.3). We have
chosen for q = 0.57, which simply guarantees that the resampling weights are strictly positive for all implemented
sampling designs. Apart from the calculation of the adjusted weights it is also possible to let Bascula itself estimate
the point estimates and corresponding standard errors.

Of course, the calculation of adjusted resampling weights may demand a lot of computation time, especially when
relatively many resamples are needed. On the other hand, after the determination of the set of auxiliary variables the
computation needs to be carried out only once. When these weights have been calculated, variances can be estimated
in an easy way using a simple formula for various study variables without knowing them in advance. Nevertheless it
has been decided recently to implement the estimation of variance based on first-order Taylor linearization as a
welcome alternative. This method can handle the same sampling designs as already implemented for the BRR
method and can be applied in simple cases or especially when the user wishes to compare variances for various
weighting schemes in order to decide which scheme will be chosen eventually. The implementation of the Taylor
linearization is now in its test phase.

Considerable effort has been put into a user-friendly interface resulting in clear windows for the actions to be
undertaken, where context sensitive help information is available. Bascula works with tabbed sheets, which are
displayed on the desktop. Each sheet is accessible by a tab. Tabs appear while building the setup. The order of the
tabs reflects the order in which the various tasks have to be carried out. Consequently it has been decided to make a
certain tab only visible and accessible after some minimal preliminary work has been done. The main tasks concern:
specification of the sample data file (for a Blaise data file the information is already available in the meta file),
specification of population information via tables followed by entering the data, specification of weighting scheme
denoting which set of auxiliary variables are involved in the weighting session, selection of the weighting method,
specification of design information, adding information for resampling, and the specification of study variables
(when the package has to compute point estimates and possibly standard errors).

Actually, Bascula has been developed for individual sample surveys. It is intensively in use for various person and
household surveys, and recently also for business surveys. Person and household surveys use mainly categorical
auxiliary information (sex, region), while auxiliary information in business surveys is largely continuous (VAT
information). However, the complete production process will be redesigned radically, where coherence of statistical
output is very important. This new development has fundamental consequences for Bascula. In the following
sections we elaborate on this.

3. OUTLINE OF THE NEW PRODUCTION PROCESS

In this section an outline of the new statistical production process of Statistics Netherlands is given. More details can
be found in Keller et al. (1999). Roughly, in the new production process we distinguish four stages.

At the first stage, data from different sources such as administrative registers, sample surveys, EDI (Electronic Data
Interchange) are put together into an input database called BaseLine. The units of BaseLine may deviate from
statistical units and will generally refer to different object-types. Somewhat disrespectful, BaseLine can be
considered as an immense reservoir of all input data from different sources.

At the second stage, the input database is used to create one or more micro databases. A micro database can be seen
as a rectangular table with objects (statistical units) of one object-type on its rows and scores of variables on its
columns. For example, figure 1 exhibits a prototypical micro database. The shaded surfaces are filled with
observations; the non-shaded surfaces correspond to missing data.

The third stage can be considered as an estimation stage. Each publication figure (estimate) to be disseminated by
Statistics Netherlands should satisfy at least three statistical requirements. Firstly, all point estimates must be
approximately (design) unbiased with reasonably small design variances (accuracy) and any interval estimate should
be valid in the sense that the “actual interval coverage” should be larger than or equal to the “nominal interval
coverage”. Secondly, all estimates should be mutually consistent. By comparing two or more estimates or
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combinations of estimates no contradictions may occur, even not on account of sampling error. Thirdly, all estimates
should pass the rules of disclose control. Especially the second requirement is typical for the new approach and calls
for new weighting methods, see section 4. The central database at the third stage is called StatBase. This database
can be seen as a storehouse of estimates Statistics Netherlands is willing to publish. That is, all estimates in StatBase
should satisfy the statistical requirements stated above.  Besides these estimates should be worthwhile, i.e. wanted
by users.

              Figure 1. A prototypical micro database

qRR ,...,1     pVV ,...,1    rZZ ,...,1    sTT ,...,1

Sample 1

Sample 2

The fourth stage can be considered as a presentation stage. The contents of StatBase are presented to the user by
StatLine as one giant publication. It is typical for StatLine to condense a large number of “paper tables” into a
limited number of “electronic” datacubes. By selecting on specific items StatLine enables the user to view all kinds
of cross-sections of such a datacube. Consequently, users are able to confront all kinds of statistical figures, which
may very well originate from more several surveys. This modern way of dissemination forces statistical output not
only to be comparable, but moreover to be consistent in the sense that each figure supported by StatLine should fit
into one of these datacubes.

4. REPEATED WEIGHTING

One of the major methodological challenges is to develop a general estimation strategy to proceed from the micro
database to StatBase. In this section we only sketch the procedure, see also Kroese and Renssen (1999). For
technical details we refer to Renssen et al. (2000). Emphasis lies on the accuracy and consistency requirement; the
requirement with respect to disclosure control is postponed as future research. In section 5 we touch upon the
validity of any interval estimate.

Briefly, we consider the problem of estimating a specific m-way table, taking into account any related table in
StatBase. Two (or more) tables may be related because of some common “marginal” cells. For example, they may
describe similar phenomena, yet for different classification variables, or different phenomena for the same
classification variable. In the first case, the overall total of both tables should coincide, while in the latter case the
class sizes should match. Renssen et al. (2000) also discuss relationships specified by edit rules. However, we only
consider the first type of relationships, i.e. we only consider relationships on account of common marginal cells.

We consider the prototypical micro database as exhibited in figure 1 and divide this database into four sub-
databases, namely the administrative registration with R-variables , two samples ( 1S  and 2S ) with respectively V-
and Z-variables, and the union of these samples ( 1S ∪ 2S ) with T-variables. Estimating a specific m-way table
involves among others the determination of the proper sub-database. For example, if the estimation concerns only R-
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variables the proper sub-database is U, while a crossing between V and R-variables should be estimated from 1S ∩U
= 1S . Note that a crossing between V- and Z-variables should be estimated from 1S ∩ 2S  = ∅, which is empty
according to figure 1. Estimates that are based on U concern (straightforward) register counts. If estimates are based
on 1S , 2S , or 1S ∪ 2S  then the general regression estimator as discussed in section 2 is used. Now, utilizing the
general regression estimator we need 1) the starting weights of the sampling units, 2) a specification of the
weighting scheme, i.e. a specification of the vector of auxiliary variables, and 3) estimated population totals of the
vector of specified auxiliary variables.

4.1. Deriving starting weights

An application of the general regression estimator involves, among others, the determination of the starting weights.
These starting weights are easily derived if the proper database corresponds to precisely one sample. However, if the
proper sub-database consists of the union of two samples these starting weights can be derived in several ways.  We
discuss two of them.

• Let k1π  and k2π  denote the first order inclusion probabilities of the kth unit, Uk ∈ , with respect to 1S  and

2S  respectively. Then the first order inclusion probability of this unit with respect to 1S ∪ 2S  equals

kkkk 2121 ππππ −+  (it is conveniently assumed that 1S  and 2S are independent). Taking the inverse of this
inclusion probability we arrive at the starting weight of the kth unit with respect to the union of both samples.

The problem of this approach is that both k1π  and k2π  should be derived for all 21 SSk ∪∈ . Often, only k1π  are
derived for 1Sk ∈  and k2π  for 2Sk ∈ . Furthermore, the derivation of the first order inclusion probabilities may be
troublesome if the independence assumption no longer holds. A more practical approach is the following.

• Let k1π  and k2π  denote the first order inclusion probabilities of the kth unit, Uk ∈ , with respect to 1S  and

2S  respectively, and define 1
1

* −= kkd λπ  for 1Sk ∈  and 1
2

* )1( −−= kkd πλ  for 2Sk ∈ , where ]1,0[∈λ .

The resulting general regression estimator of this second approach resembles the traditional general regression
estimator, with the difference that pooled Horvitz-Thompson estimators are used instead of Horvitz-Thompson
estimators. The choice of λ  may reflect the confidence in the one sample compared to the other. It may depend on
indicators for several survey errors, such as sampling errors, nonresponse errors, or measurement errors.

4.2. Specifying the (minimal) weighting scheme

The traditional way to construct estimates, and hence to fill StatBase, is to use one set of weights per survey, or in
our case, one set of weights per sub-database, see section 2. When using one set of weight per sub-database, all
involved variables are inflated in the same way. The main advantage of such an approach is that once the set of
weights has been calculated it can be applied directly to any set of study variables. However, this traditional
approach has a striking disadvantage as will be illustrated below.

Consider a register (e.g. the Dutch Municipal Base Administration) with the variables sex (2 categories), age (100
categories), marital status (4 categories), and region (600 categories). The register information for publication
purposes is the complete crossing between the register variables resulting into 48×104 register counts. Suppose that a
sample survey (of size n = 100,000 persons) is matched to this register. Obviously, utilising the complete crossing
for calibration will result in many cells with few or no observations, in which case the regression estimator is
undefined. So, one is forced to use an incomplete crossing instead. But then the weighted sample gives inconsistent
estimates for all sample variables that are crossed with those register variables that are excluded for calibration. On
account of the consistency requirement, either these crossings or these register counts should be excluded from
StatBase. We note that the deterioration becomes worse as more sample surveys are matched.

In order to avoid unnecessary deterioration, Kroese and Renssen (1999) suggested a new estimation strategy. This
estimation strategy differs from traditional weighting in that it no longer sticks to one set of weights per sub-
database. For each m-way table to be estimated one may look for a weighting scheme that guarantees consistency
with all related tables that already have been estimated (and stored in StatBase). If the sample size is large enough to
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use the Horvitz-Thompson estimator for estimating a specific m-way table (in a view of accuracy), then the sample
is also large enough to use the general regression estimator with a minimal set of auxiliary variables, ensuring
consistency with all related tables in StatBase. If desired, one may enlarge the minimal set to meet the accuracy
requirement. Once the new cell estimates are added to StatBase, the weights are of no use any more. Only the
weighting scheme according to which the weights are calculated is stored on behalf of the process information.

Enlarging the weighting model on account of the accuracy requirement has some theoretical advantages, especially
for large sample sizes. However, the practical implementation may be troublesome. In addition, the enlarged number
of auxiliary variables to be used in the general regression estimator may become too large. Therefore, as an
alternative, we suggest the following procedure. Firstly, we derive regression weights according to the traditional
approach. That is, per sub-database (sample survey) we derive regression weights according to some overall
weighting scheme to adjust for sampling error and nonresponse, noting that this traditional way of weighting already
meets some consistency requirements. Secondly, per m-way table to be estimated, the overall regression weights are
(minimally) adjusted to ensure absolute consistency. This can be accomplished by taking the overall regression
weights as starting weights and using the minimal weighting scheme to define the set of auxiliary variables.

5. RESISTANT WEIGHTING METHODS

5.1. Validity of interval estimates; the central limit theorem

Assuming that the general regression estimator is approximately design unbiased and that approximate formulas are
available for its design variances (e.g. see Särndal et al. 1992), the first requirement of StatBase estimates is only
discussed insofar it concerns the accuracy. No attention is paid to the validity of any interval estimate. Now, justified
by the central limit theorem, general regression estimates frequently are assumed to be approximately normally
distributed for large sample sizes. For sampling without replacement from finite populations, Hájek (1964) has given
sufficient and necessary conditions under which the sampling distribution of the sample mean tends to normality. As
a rule of thumb, the percentage points may be taken from the t-distribution if sample (cell) sizes are smaller than 50,
see Cochran (1977, page 27). However, as Cochran stated, special methods are needed for small samples with very
skew distributions. One reason for skewed sample distributions is the presence of outliers in the (finite) population.

To be more precisely, Chambers (1986) distinguished two types of sampled outliers, namely representative and non-
representative outliers. A representative outlier is a sample unit with a value that has been recorded correctly and
that cannot be regarded as unique. Although some of its values differ substantially from most sample values, such a
unit is not unique; the nonsampled part of the population may contain similar units. The second type, an
unrepresentative outlier, is typically associated with a sample unit whose values are incorrectly measured (gross
errors) or with a sample unit whose values are unique in the sense that there are no other units like them in the finite
population. It is assumed that gross errors are already treated according to some editing strategy, see e.g. De Waal et
al. (2000). Unique outliers are simply excluded from the estimation process by giving them unit sampling weights.
There remains the problem of handling representative outliers.

The inclusion or exclusion of large units (representative outliers) may influence the general regression estimator so
much that it becomes unreliable. For this reason, samples are usually designed such that large units are selected with
certainty. However, even though such designs can minimize outlier problems, they cannot eliminate them
completely. There are two main concerns in dealing with representative outliers: the efficiency of the general
regression estimates and the applicability of the central limit theorem. Tukey (1960) first demonstrated the dramatic
lack of efficiency of classical estimates, like the arithmetic mean, in the presence of outliers. There is no reason to
believe in a better performance of general regression estimates. The central limit theorem states that the sum of a
large number of equally small independent errors follows approximately a normal distribution. The presence of a
few extreme observations violates the equally assumption.

5.2. Handling representative outliers

Many of the traditional proposals for dealing with skewed populations relate to the choice of the sampling scheme.
If prior information about large values is available to the sampler then one obvious strategy is to stratify the
population and to put all the large values into a separate stratum. Since these values are influential it is frequently
proposed that this stratum should be evaluated completely. If the prior information is not perfect or totally absent,
then Kish (1965) proposes the construction of a (post-) stratum for surprises in which all influential observations are
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placed. The problem is then to estimate the size of this stratum. As Smith (1987) noted, such procedures for skewed
populations all implicitly assume that the target population contains influential observations. The problem is not just
to identify such influential observations in the sample, but the additional one of estimating the total number of them
in the population. If a population contains some large influential observations then estimates of population totals are
often as badly affected by samples, which do not contain any large values as by those that do. Thus in sample
surveys the detection of influential values in the sample is only part of the story; influential values which fail to
appear in the sample may also be very important.

Given a specific m-way table to be estimated on account of StatBase, we divide the outlier problem into two sub-
problems. The first concerns the detection of any influential observations of continuous variables per cell, while the
second one concerns the determination of the sampling weights of such observations.

5.2.1. Detecting influential observations

For one-dimensional count variables, one may simply detect outlying observations by means of the couple median
and median absolute deviation:

)(

)(

i
Si

iSik

k ymad

ymedy
O

c

c

∈

∈
−

=   Sk ∈ , cell specific  toingcorrespond subsample =cS .

As kO  increases, the influence of the kth unit on the cth cell estimate will be larger. There exist several robust
outlier detection methods for multidimensional continuous variables, such as the minimum volume ellipsoid or the
minimum covariance determinant. We describe a procedure suggested by Kosinski (1999) and recommended by De
Boer and Veltkamp (2000). Assuming that the sample data can be divided into “good” data and “bad” data, the
procedure involves the following five steps:

1. Start with a few, say g, good points,
2. Calculate the sample mean and the sample covariance matrix,
3. Calculate the traditional Mahalanobis distance of the complete data set,
4. Increase the “good” part with one point by selecting g+1 points with the smallest Mahalanobis distance
5. Return to step 2 or stop as soon as the good part of the data contains more than half the data set and the smallest

Mahalanobis distance of the remaining points is higher than a predetermined  cut off value.

In order to assure that the good part will contain no outliers at the end, it is essential to start the algorithm with good
points. After some proper re-scaling, De Boer and Veltkamp (2000) suggest to use co-ordinate-wise a robust
estimator for location. We conjecture that this algorithm guarantees a solution if there is just one bulk of good data.

5.2.2. Resistant regression estimators

As is illustrated in subsection 5.1, one reason for the need of resistant estimators in sample surveys is the appearance
of representative outliers. Resistant estimation should imply the use of an estimator such that its distribution is
essentially unaffected by sample outliers (Chambers, 1986). In general, resistant estimators will be design biased.
However, it is hoped that the decrease in design variance will outweigh the increase in design bias. Chambers (1986)
and Gwet and Rivest (1992) have elaborated such an approach. The last authors stated that the unconditional bias of
their resistant estimator should be viewed as a kind of premium paid for being protected against occasionally wild
samples. Furthermore, they stated that the design unbiasedness of most traditional estimators is deceptive, because it
hides a high conditional bias that is obtained when the sample proportion of (correctly measured) outliers differs
much from the population proportion. Here, the conditioning is with respect to the number of representative outliers
in the sample.

Consider the general regression estimator as stated in section 2. If  there exists a p-vector a, such that kk
t v=xa  for

all Uk ∈ , then this estimator can be rewritten as x
t

yt tb̂ˆ R = . Now, it is typical for least squares estimates as b̂

that they are sensitive to sample outliers, from which it follows that Rˆyt  is also sensitive to outliers. To robustify the

regression estimator we have to replace b̂  by some robust version. We note that Chambers (1986) and Gwet and
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Rivest (1992) have elaborated on such an approach for one-dimensional (continuous) x-variables. However, in view
of minimal weighting models we need resistant regression estimators for both categorical and continuous x-
variables.

For categorical x-variables we may apply Huber’s (1973) approach to robustify the least squares approach without
bothering about so-called leverage points. That is, we minimize
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with respect to yθ , where ρ is some suitable real-valued convex function and yS  is some preliminary robust
estimator of scale. This gives residuals, indicating the explanatory power of the auxiliary information. These
residuals may be used to define resistant starting weights kω . For example one may take 1=kω  if the kth residual

is considered as a unique outlier and not explained by the auxiliary information, and 1−= kk πω  otherwise (i.e.
considered as a bulk value), where it should be noted that records with unit weights are left outside Bascula. For
simultaneously using categorical and continuous variables more studies are needed.

6. CONCLUSIONS

Bascula’s task is to determine weights that are adjusted for the incorporation of auxiliary information, mainly based
on the application of the general regression estimator. In the first instance the estimation of variances is based on
BRR. The package forms half-samples from the full sample and determines resampling weights. With these
resampling weights adjusted resampling weights are calculated in the same way as for the full sample. Following the
concept of estimating population totals for arbitrary study variables, i.e. by means of weighting, their corresponding
variances can also be derived by means of resampling weighting. Recently Taylor linearization has been
implemented as an alternative for BRR.

Actually, Bascula has been developed for individual sample surveys. In sections 3 and 4 a rough outline of the
expected redesign of the production process is described where coherence of statistical output is very important.
Statbase will contain accurate and mutually consistent estimates. This database is built by successively adding
estimates, taking into account earlier related estimates. It will be clear that Bascula can be used successfully for
carrying out repeatedly the general regression estimator. In case of minimal weighting, survey data is calibrated
using earlier determined and related estimates as auxiliary information.

Another issue concerns the treatment of representative outliers. Bascula is capable to restrict correction weights.
This kind of bounding, however, is merely based on the values of auxiliary variables. For outliers with respect to
study variables, we have to resort to other methods. Here the solution may be found in the use of register
information in a robust context. If the solution can be found in a restriction of the sampling weights, then Bascula
can also usefully be applied to obtain resistant estimates. However, more investigation is needed.
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1This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has
undergone a more limited review by the Census Bureau than its official publications.  This report is released to
inform parties and to encourage discussion.
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ESTIMATION AND VARIANCE ESTIMATION IN A STANDARD
 ECONOMIC PROCESSING SYSTEM

Richard Sigman1, U.S. Census Bureau
ESMPD, Room 3108-4, U.S. Census Bureau, Washington DC  20233, USA rsigman@census.gov 

The U.S. Census Bureau has developed software called the Standardized  Economic Processing System, or StEPS, that it plans
to use to replace 16  separate systems, which are currently used to process over 100 current economic  surveys.  This paper
describes the methodology and design of the StEPS  modules for estimation and variance estimation and chronicles our
experiences in using these modules to migrate  surveys into StEPS.   The paper concludes with a discussion of possible future
enhancements to the estimation and variance estimation functions in StEPS.

Key Words: Survey Processing, Economic Surveys, StEPS 

1.  Introduction

The U.S. Census Bureau conducts over one hundred establishment surveys.  Many of these are surveys of commercial
businesses.  A small number are surveys of government institutions.  The Census Bureau refers to these surveys as
economic surveys because they collect quantitative data describing business operations of survey units.  Also, these
surveys provide economists and other analysts with estimates and data sets needed for macro- and micro-economic
analyses.  For example, the Bureau of Economic Analysis uses estimates from economic surveys to determine the
national income and expense accounts.

Economic surveys can differ widely with respect to characteristics of reporting units and content of survey questions.
They are often similar, however, with respect to data-processing requirements, which has prompted the Census Bureau
to begin consolidating the survey-processing systems for many of its economic surveys.  The development and use of
generalized software, called the Standard Economic Processing System (StEPS) has made this possible.

This paper describes the current capabilities of StEPS for calculating survey estimates and associated sampling errors.
Sections two through four provide background material.  In particular, section two summarizes the characteristics of
Census Bureau economic surveys that are relevant to calculating survey estimates and sampling variances.  Section three
discusses variance estimation methods: those used in the legacy systems, those evaluated for StEPS, and those currently
implemented in StEPS.  Section four briefly describes the entire StEPS system.  Sections five through eight focus on
the StEPS Estimates and Variances Module.  Section  five describes the components of the module, and section six
presents and explains two examples of StEPS estimation scripts.  Section seven describes our implementation
experiences for the Estimates and Variances Module in 1998 and 1999.  Finally, section eight describes future activities
and possible enhancements.

2.  Economic Surveys Conducted by the Census Bureau    

The Census Bureau consists of several directorates that conduct censuses and surveys.  The most widely known
directorate is the Decennial Census Directorate, which conducts the demographic decennial census.  Another directorate,
called the Economic Programs Directorate, conducts economic censuses every five years and conducts current economic
surveys monthly, quarterly, and annually in areas of manufacturing, construction, commercial services, government
services, and foreign trade.  The directorates, such as the Decennial Census Directorate and the Economic Programs
Directorate, are responsible for developing survey methods and associated processing systems for the censuses and
surveys they conduct.
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In 1995 the Economic Directorate began to consolidate its processing systems for current surveys.  This was preceded,
however, by two activities that provided information that was used in planning and directing the consolidation effort.
One of these was a compilation of an inventory of the Economic Directorate’s statistical practices carried out by King
and Kornbau (1994).  Some of their findings (along with updates for recent survey changes) are the following:

! Sample designs are primarily single stage, but a number of different sampling methods are used: stratified
sampling, cut-off sampling, Poisson sampling, and Tillé sampling.

! Only four types of estimators for (unraked) totals are used: unweighted estimator (used by cut-off surveys),
Horvitz-Thompson estimator, ratio estimators (combined and separate), and link-relative estimator.  (As a result
of a 1997 redesign, the monthly surveys of retail and wholesale trade no longer use composite estimation.)

! A number of different variance estimation methods are used by the economic surveys that calculate sampling
variances: jackknife, method of random groups, balanced repeated replication and sampling-theory formulas.

The other activity that provided useful information was the development in 1994 of a processing system for the Farm
and Ranch Irrigation Survey (FRIS).  This demonstrated the feasibility of the following in developing a production
processing system for an economic survey:
! The use of reusable SAS® code configured to individual surveys by analyst-specified parameters,
! The use of interactive screens to allow analysts to specify parameters, and
! The use of a general-purpose variance-estimation program, VPLX,  to allow sample designers to specify how to

calculate standard errors.

3.  Variance Estimation Methods

The Economic Directorate decided to consolidate its current-survey processing systems by developing a Standard
Economic Processing System, called StEPS.  Because one of the functional requirements for StEPS was the estimation
of sampling variances, we carried out several research studies on variance estimation during the development of StEPS.
These studies explored two possible development approaches:  (1) reduce the number of different variance estimation
methods, and (2) use available computer programs for calculating design-based variances.

The available computer programs we studied were VPLX, developed in-house by Fay (1990), and SUDAAN, developed
by Research Triangle Institute (RTI).  VPLX estimates variances by means of replication .  It contains options to
estimate variances using random groups, jackknife, stratified jackknife, balanced repeated replication, and generalized
replication.  (See Wolter 1985 or Rust 1985 for descriptions of these variance estimation methods.)  Prior to the use of
VPLX in the FRIS system, VPLX had been used very little by the Census Bureau’s economic surveys, but it is used
extensively by the Census Bureau’s demographic surveys of households and by the 2000 population census.  RTI has
recently added replication-based methods to SUDAAN, but at the time of our investigation these methods were not
available.

By performing repeated stratified sampling from a simulated FRIS population, Tremblay and Sigman (1996) compared
stratified-jackknife variance estimates calculated by VPLX to variances estimates calculated by SUDAAN using
sampling theory formulas--i.e., S2 formulas with Taylor-series approximations.  One objective of this study was to
evaluate the two programs as to their suitability for inclusion in StEPS.  A second objective, however, was to determine
if in stratified-sample designs the use of the stratified jackknife could replace the use of sampling-theory formulas,
which would be more difficult to program compared to the stratified jackknife.  As expected, Tremblay and Sigman
found that for linear estimates, the two programs/methods yielded identical results.  They found, however, that  “[f]or
separate-ratio estimation, the larger absolute bias of SUDAAN and the larger variance of VPLX tend to balance each
other when one considers the root mean square errors of calculated standard errors.”  Tremblay and Sigman concluded
that the choice between SUDAAN or VPLX was not obvious in terms of studied statistical properties.  They
recommended that StEPS use VPLX, however, for the following reasons: “VPLX is more flexible: basically, anything
that can be set up in a formula can be done in VPLX. ... VPLX is ‘license free’, and consulting is more readily available
since its developer/maintainer is resident at the Census Bureau.”
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Tremblay (1996) extended Tremblay and Sigman (1996) by using VPLX to additionally calculate variances using the
method of random groups with 16 groups.  She compared the SUDAAN results (i.e.,S2 formulas with Taylor-series
approximations), the VPLX stratified-jackknife results, and the VPLX-random-group results for two different FRIS
survey variables and found that in nearly all cases the estimated relative root-mean-square errors of the VPLX-random-
group estimated standard errors were larger than both those from SUDAAN and those from the VPLX stratified
jackknife.  This difference was particularly pronounced for the case of aggregated multi-stratum estimates.

The Economic Directorate uses the method of random groups to estimate variances for its monthly and annual surveys
of retail and wholesale trade and for its annual surveys of other service industries.  Rust (1985) states the “[t]he random
groups method is most useful in surveys using a large number of PSUs, where either many PSUs are selected per
stratum, or few gains are believed to result from the finer levels of stratification.”  The surveys for which the Economic
Directorate uses the random groups method to estimate sampling variances satisfy these requirements.  Town (1997)
used the random groups option of VPLX to calculate sampling variances for two surveys: FRIS and the Annual Trade
Survey (ATS) for wholesale trade.  She found that the number of lines of VPLX code that were required to calculate
variances for these two surveys were very different.  For FRIS only 77 lines of VPLX code were required, whereas for
ATS 3591 lines of VPLX code were needed.  Some of the reasons for this difference were the following:

! The VPLX program for ATS calculated variances for 17 different types of estimates: 7 type of unadjusted
estimates and 10 types of census-adjusted estimates.  These included raked and unraked estimates of level, ratios,
percentages, trends of level estimates, and trends of ratios.  The VPLX programs for FRIS, on the other hand,
calculated variances for only one type of estimate: census-adjusted estimates of level.

! The VPLX program for ATS calculated variances for 22,309 estimates; whereas the VPLX program for FRIS
calculated variances for only 276 estimates.

! The VPLX program for ATS calculated a number of derived items, whereas the VPLX program for FRIS did not.

At the time of Town’s investigation some enhancements to the syntax rules for VPLX code had been completed and
more were planned for the future.  Dr. Robert Fay, the developer of VPLX, recoded a portion of Town’s VPLX program
for ATS using the proposed enhancements to the VPLX syntax rules.  Using the proposed syntax rules, the VPLX code
was 152 lines; using the proposed new syntax rules, however, it was only 31 lines.  From her two comparisons--FRIS
versus ATS and “old” syntax versus “new” syntax--Town concluded that VPLX could be used by StEPS to calculate
variances for surveys that use the random groups method, but the implementation effort of using VPLX for surveys like
ATS appeared to be quite high.  Town recommended that the new syntax rules for VPLX be used when they become
available and that StEPS developers also “investigate alternative software approaches, such as the calculation by StEPS
of random-group-level estimates followed by variance estimation using the method of random groups performed by a
general-purpose SAS macro.”

Dajani (1999) further explored the random group method of variance estimation in order to make recommendations on
how it should be used in StEPS.  Dajani studied the problem of how the method of random groups should be used to
estimate variances for aggregate estimates following the estimation of variances for more detailed estimates.  This same
problem was studied by Kott (1999) in the context of using the delete-a-group jackknife to estimate sampling variances.
In Kott’s study the aggregate estimates were national-level estimates, and the detailed estimates were state-level
estimates; whereas in Dajani’s study the aggregate estimates were for two- and three-digit Standard Industrial Codes
(SICs) and the detailed estimates were for four-digit SICs.  One approach to estimating the variances for the aggregate
estimates is to use the same replication method for the aggregate estimates as was used for the detailed estimates.  A
second approach, labeled the hybrid method by Kott, is for linear estimators to sum the variances of the detailed
estimates to the aggregate level.  For non-linear estimators one estimates the variance of a first-order Taylor-series
approximation to the aggregate estimator, which is a linear combination of variances and covariances of the aggregate
totals, calculated by summation of the variances and covariances of detail totals.

Like Town, Dajani studied ATS; but Town used 1995 ATS data (the sample for which was selected in 1990), whereas
Dajani used 1997 ATS data (the sample for which selected in 1995).  Dajani compared the two different approaches
for estimating the variances of aggregate estimates for ATS aggregate totals, ratios of aggregate totals, and trends of
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aggregate totals.  Dajani found that the resulting differences in the two approaches for calculating variance estimates
for all ATS aggregate totals, all trends of aggregate totals, and approximately 87 percent of the ratios of aggregate totals
were not statistically significant.  Since the use of replication to calculate the variances of aggregate estimates is easier
to program (because covariances do not have to be calculated), Dajani recommended that replication “be used to
calculate variances for aggregate estimates in ATS and in other surveys that have a similar sample design.”

Though the Census Bureau’s economic surveys are primarily single-stage surveys, the Census Bureaus’s Survey of
Construction (SOC)  is a multi-stage, multi-frame survey.  The SOC reporting unit is a construction project, not an
establishment selected from the Census Bureau’s business register.  Thompson (1998) and Thompson and Sigman
(1998) investigated the use of modified half-sample (MHS) replication to estimate variances for SOC.  They
recommended that StEPS use VPLX to calculate MHS variance estimates for SOC instead of using legacy code that
calculated variance estimates with sampling-theory formulas.

Based on the research studies described above, the Economic Directorate decided in 1997 to calculate sampling
variances in StEPS using the following “two methods” approach (Sigman 1997):

! For surveys with single-stage Poisson-sampling designs, use appropriate sampling-theory formulas (see Särndal
1996), and 

! For all other survey designs, use one of the replication options of VPLX.

Two recent developments, however, have caused the Economic Directorate to abandon this two-method approach.  One
of these developments was that following the migration of three surveys into StEPS in 1998 we realized that the
implementation effort to use VPLX to calculate random group variances for eleven surveys in 1999 would be very high.
The second development was the decision by survey designers of several surveys that in the past had used Poisson
sampling to instead use Tillé sampling (Tillé 1996,  Slanta 1999).  As a result of these two developments, we replaced
the two-method approach with the following four-method approach:

! For surveys with single-stage Poisson-sampling designs, use appropriate sampling-theory formulas.;

! For surveys with single-stage Tillé-sampling designs, use sampling-theory formulas described in Tillé (1996) and
Slanta (1999);

! For all other survey designs that use the random group method to calculate sampling variances, use SAS macros
%rg_var1 and %rg_var2, contained in StEPS (described in section 5.3); and

! For all surveys that do not use the random group method to calculate sampling variances, use a replication option
in VPLX.

In section 8 we discuss areas of future research, the findings from which may result in additional changes to the StEPS
list of methods for calculating sampling variances.

4.  Overview of StEPS

StEPS is a generalized survey processing system that the Economic Directorate has developed  to replace 16 legacy
systems.  In addition to reducing resources needed for system maintenance, one of the StEPS objectives is to shift more
processing control to survey analysts.  StEPS contains integrated modules for data-collection support (e.g., mail-label
printing and questionnaire check-in); editing; data review and correction; imputation; calculation of estimates and
variances; and system administration (e.g., parameter specification and the submission and monitoring of batch jobs).
 Functions not in StEPS include: frame development, sample selection, actual data collection, and dissemination.

StEPS is programmed in SAS, and it stores data and parameters in SAS data sets.  The Economic Directorate executes
StEPS mainly on Compaq® Alpha® machines using UNIX as the operating system.  Most users access StEPS via a
graphical (X-Windows) communication package loaded on their desktop microcomputer.
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Ahmed and Tasky (1999, 2000) provide additional information StEPS.  Tasky et al. (1999) describe the StEPS system
design and associated programming strategies.  In particular, they state that the developers of StEPS “decided on four
major design concepts:

1) “Design a set of standard data structures that remain the same, regardless of the survey and the data.
2) “Use parameters (stored in general data structures) to drive the survey-specific processing requirements.
3) “Generate a ‘fat’ record data set on the fly for certain modules ... .
4) “Standardize field names and possible value for similar concepts.”

The next section describes how these design concepts were implemented in the StEPS Estimates and Variances Module.

5.  Components of the StEPS Estimates and Variances Module

In a large survey organization, the specification of survey processing operations requires inputs from multiple
specialists.  This is especially true when specifying the calculation of estimates and sampling errors.  Survey analysts
know WHAT estimates to calculate with WHAT data.  The sample designer knows HOW to calculate the estimates and
sampling errors.  Thus, one of the functional requirements for the StEPS Estimates and Variances Module was that it
permit specification of both WHAT and HOW information.  A second functional requirement was that it be able to
calculate estimates and variances for many different surveys.  A third functional requirement was that the Estimates and
Variances Module must be integrated with the other StEPS modules–i.e., it should, where possible, use data sets used
by other modules; and its interactive screens should have a similar “look and feel” as those for other StEPS modules.

Like other StEPS modules, the following are the major components of the StEPS Estimates and Variances Module:

! Standard data set structures for micro data, macro data, and processing parameters;
! Interactive screens for specifying parameters, submitting batch jobs, and requesting results listings; and
! SAS macros and scripts for batch calculations.

Each of these is discussed below.

5.1.  Standard data set structures    

StEPS stores micro data in control files and item files.  Micro data includes data associated with questionnaire items;
data associated with survey operations such as sample selection, mailing, collection, or check-in; or auxiliary data
available from censuses or administrative sources.  The item file can contain only numeric micro data, whereas the
control file can contain numeric and character data.  Another difference between the control file and the item file is that
the control file has a “fat” format, whereas the item file has “skinny” format.  In the control file (i.e., fat format) there
is one record per reporting unit (ID), and the fields within each record correspond to control-file variables.  In the item
file (i.e., skinny format) there is one record per ID/item combination, and fields within each record correspond to
different data versions (plus there is a field containing a data flag).

StEPS stores the following data versions in each record of the item file:
rij = reported data for item i and reporting unit j
eij = edited data for item it and reporting unit j
aij = adjusted data for item it and reporting unit j
wij = weighted-adjusted data for item it and reporting unit j

The default value for edited data is eij = rij .  StEPS users, however, may change edited data by using the Review and
Correction Module, or StEPS can change edited data via the Imputation Module.

Some surveys adjust micro data for data collection effects, such as trading day effects in monthly surveys or in annual
surveys the effect on reported inventories of ending inventory dates other than December 31.  One way that StEPS
adjusts micro data is

 aij = f(ti,Bj) eij ,
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 where
 ti   = the value for item i of a variable, called adjustment type stored on the item data dictionary file; 
Bj  = a vector of BY variables --i.e., categorical variables--associated with reporting unit j; and
f( ) = a SAS format that StEPS creates to map the vector (ti,Bj) into user-provide adjustment factors.

Another way StEPS adjusts micro data is to use user-provided SAS code stored in the adjust/derive definitions file.
Many surveys do not adjust their micro data, however, in which case aij = eij .

StEPS calculates weighted-adjusted data using the following formula: 
wij = ωj gn(i) , j aij .

The quantity ωj is the sampling weight for reporting unit j.  The control file stores three g weights, g1i , g2i , and g3i , for
each reporting unit.  We had planned to use the g-weights in the manner described in Estavao, et al. (1995), in which
if they are chosen appropriately the resulting weighted totals (or weighted means) are generalized regression estimators.
To date, we have not used the g-weights for this purpose.  One way we have used the g-weights was in our annual retail
trade survey, which collects some items for only a subsample of the survey, we let ωj store the first-phase sampling
weight and let the g-weight store the second-phase weight.  In the future we plan to use the g-weights to store non-
response adjustment factors for surveys that use weight adjustment to handle unit nonresponse.  The g-weight is equal
to 1.0 for unweighted and Horvitz-Thompson estimators.  The quantity n(i) is the g-weight number and indicates which
g-weight, g1i , g2i , or g3i , is associated with item i.  If n(i)=0 then item i has a g-weight of 1.0.  The g-weight number,
like the adjustment type, ti, is stored in the item data dictionary, which contains one record for each item-data variable.

The item file’s skinny format can be difficult  to use for estimation and variance calculations.  Consequently, StEPS can
create an estimation fat file, which has one record per ID, and the fields within each record can be any of the following:
control file variable;  adjusted or weighted-adjusted version of an item file variable; constant data; or  recode, which
is a variable created at the time of fat-file creation via a user-provided SAS expression involving other fat-file variables.
When StEPS creates an estimation fat file, a variable on the control file, called the weighting switch, selects for each
ID the adjusted or weighted-adjusted version of the item file variables.  Certain values of the weighting switch zero out
item data in the fat file or delete an entire record from the estimation fat file.  By setting the weighting switch to a
particular value for each ID, one can control the contents of each estimation-fat-file record, for purposes such as
handling deaths by zeroing out or deleting data or handling outliers by deleting or down-weighting to self-representing.

StEPS stores macro data in estimation results files (ERFs).  One ERF corresponds to one table, which is the result of
StEPS performing calculations on analysis variables for individual values of categorical BY variables.  The types of
results StEPS stores in ERFs include: totals, ratios, trends, other derived estimates (i.e., functions of totals), standard
errors, CVs, covariances, t-tests, imputation rates and disclosure-avoidance information.  The ERF has a skinny format--
each ERF record contains only one calculated result, with other variables in the record identifying the type of result,
the name(s) of the analysis variable(s), and the value(s) of any BY variable(s).

Two files store estimation processing information: the estimation specification file (ESF) and the estimation formulas
file (EFF).  The ESF stores parameters used by the SAS macros described in section 5.3; the EFF stores SAS
expressions and SAS code, also used by the SAS estimation macros.  Both the ESF and EFF are populated via
interactive screens.  Developing a file layout for the ESF was challenging.  We rejected a skinny-record format of one
record per parameter because of the complexity of  file updating from screens displaying multiple parameters.  Instead,
we decided  the ESF would have one record per specification, which is a vector of parameters displayed together on the
same screen.  In the ESF, sets of specifications (i.e., records) associated with the same type of screen and processing
action are called objects.  For example, the “BY object” contains specifications for BY variables, whereas the derived
object contains specifications for the calculation of derived estimates. 

5.2.  Interactive screens  
  

Interactive screen in the Estimates and Variances Module allow StEPS users to do the following:

! Calculate weighted data for all items and IDs in the item file.
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! Run Quicktab program, which calculates weighted totals, year-to-year trends, imputation rates, unweighted counts,
and disclosure-avoidance information.  The Quicktab program requires analysis variables to be item file variables
and any BY variables to be control file variables.  Quicktab does not calculate standard errors, CVs, or derived
estimates.  The possible outputs from Quicktab are a SAS data set, an ASCII file (for downloading), printer output,
or the SAS Output Window.

! Enter and modify specifications and formulas for use by batch jobs.  Specifications and formulas tell StEPS
WHAT to estimate with WHAT data.  The StEPS user can select analysis and BY variables  (from item data,
control data, recodes, or constants); specify the method of calculating standard errors (random groups, VPLX
replication, or formulas for Poisson or Tillé samplig); enter formulas for derived estimates and the derivatives of
non-linear estimators); copy results from one ERF to another ERF; and remove results from an ERF.

! Submit estimation scripts to run in batch.  Scripts are described in more detail in section 5.3.  A screen displays
the available scripts, and the user selects one of the displayed scripts to run immediately or at a scheduled time.

! Review estimation results.  A screen displays a list of ERFs, and the user can select an ERF for interactive viewing
with SAS/FSVIEW® or for formatting by StEPS into a printed listing.

5.3.  SAS macros and scripts

StEPS scripts execute SAS code that is part of StEPS or has been generated by StEPS.  For the Estimates and Variances
Module, scripts execute SAS code that is part of StEPS.  In particular, estimation scripts execute one or more of the
following SAS macros:

%extract — Creates estimate fat file.
%totals — Calculates totals and imputation rates.
%derive — Calculates derived estimates.
%erfrmt — Reformats an ERF.
%rtsumvar — Aggregates totals, standard errors, and imputation rates.
%copy1 — Copies results between ERFs.
%remove — Removes results from an ERF.
%round — Rounds totals and standard errors
%vpl2stp — Stores VPLX-calculated estimates and standard errors in an ERF (Dajani 1999a).\
%rgvar_1 — Calculates replicate totals from random group totals.
%rgvar_2 — Calculates replicate-based standard errors from replicate estimates.
%vrncs_p — Calculates standard errors for Poisson-sampling designs.
%vrncs_t — Calculates standard errors for Tillé sampling designs.

  %cvrncs_t — Calculates covariances for Tillé sampling designs.
         %taylor  — Calculates standard errors of non-linar estimates using Taylor approximation.      

Many of these macros are individually controlled by parameters analysts have entered into the ESF and EFF.  Parameters
specify WHAT to estimate and WHAT data to use.  The estimation script controls the overall logic of HOW to calculate
estimates and variances.  Because  this depends on the sample design, surveys with different sample designs require
different scripts.  Also, the sample designer should be involved in developing an estimation script--either as an advisor
or as the person who produces the script. 

6.  Examples of estimation scripts

StEPS has two type of scripts: generic scripts and complete scripts.  A generic script is a SAS program that executes
SAS code contained in StEPS or generated by StEPS.  In a generic script, macro variables are used to refer to the survey,
statistical period, and other job submission conditions.  StEPS users (or StEPS implementation staff) prepare generic
scripts using the SAS Editor or other word processing package.  A complete script, on the other hand, is created by
StEPS, and it links to a corresponding generic script (via a %include statement).  A complete script defines the macro
variables that are used in the corresponding generic script.
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Generic script:
01    *sc_no=F001  sc_desc=Example1;
02     %include ‘/steps/central/autocall.sas’;
03     %setlibs(survey=&survey,statp00=&statp00);
04     %getstime;
05     %let ntbles=1; %let table1=F401;
06     %extract;
07     %totals(rg=y);
08     %rg_var1(intab=F401, outerf=F401);
09     %derive;
10     %rg_var2(inerf=F401,outerf=F401);
11      %applog(module=estimate, submod=&sc_no,
                          starttme=&startme,prgnme=&sc_no,
                          otherinfo=&sc_no);

Generic script:
01-04 ... (comment, %setlibs, %getstime)
05     %let ntbles=2;
06     %let table1=F301; %let table2=F302;
07     %extract;
08     %let ntbles=1;
09     %totals(imprate=y);
10     %rtsumvar(intn=F301, outn=F302);
11     %let table1=F302;
12     %derive; ** Calculate F(NAICS2) **;
13     %erfrmt(intn=F302, outn=F301,
                       incndtn=%str(ITEM EQ F));
14     %let table1=F301;
15     %derive; **Calculate adj XESALE00 **;
16     .... (%applog) 

Example 1: Create fat file, calculate totals and derived estimates, and calculate CVs using method of random groups.
Discussion: Since line 1 begins with an “*”, it is a
SAS comment and is ignored by the batch
processing.  The information in line 1 is used,
however, by the interactive script-submission screen
to identify the script number (F001) and the script
description (“Example 1").  This information appears
on the script-submission screen in the list of scripts
available for submission.  Line 2 makes StEPS SAS
code available to the batch program.  Line 3 creates
all needed SAS LIBNAMEs and UNIX environment
variables.  Line 4 puts the starting time into the
macro variable &startme.  Lines 5 and 6 create the
estimation fat file needed to calculate totals.  Line 7
calculates random group totals and stores the results
in ERF F401.  Line 8 converts the random group
totals in ERF F401 into replicate totals.  Line 9
updates ERF F401 with derived estimates calculated
for each replicate.  Line 10 calculates standard errors
from the replicate estimates and stores them in ERF

F401 along with the full-sample estimates and the associated  CVs.  Line 11 puts information in the production log
about the completed batch job.

Example 2 : Calculate  totals and imputation rates for XSALES00 and XESALE00 with BY1=state and BY2=NAICS6
(i.e. six digit NAICS code) and store in ERF F301.   File ERF F302 contains census totals CSALES with BY1=NAICS2
(i.e., two digit NAICS code).  Adjust XESALES00(state,NAICS6) by multiplying by

F(NAICS2) = CSALES(NAICS2) / XSALES00(NAICS2) .

Discussion: Lines 1 through 4 are the same as Example 1.
Lines 5. 6 and 7 create an estimation fat file containing all
the variables needed to calculate totals (in line 9), aggregate
results (in line 10), and reformat an ERF (in line 13).  Lines
8 and 9 calculate totals and imputation rates for ERF F301
with BY1=state and BY2=NAICS6. Line 10 aggregates
results in ERF F301 and puts the aggregated results in ERF
F302, with BY1=NAICS2.  Lines 11 and 12 calculate the
adjustment factors and stores them in ERF F302.  Line 13
reformats the adjustment factors in ERF F302 into the
structure of ERF F301, where the reformatted adjustment
factors are stored with BY1=state and BY2=NAICS6.  Lines
14 and 15 calculate adjusted XESALE00 values and updates
ERF F301 with these results.

7.  Implementation Experiences

In 1998 the Economic Directorate used StEPS for production processing of three annual surveys.  The largest of these
was the (wholesale) Annual Trade Survey (ATS), with a stratified sample of approximately 7000 reporting units.  The
other two surveys were small industrial-product surveys; one was a Poisson sample with less that 600 reporting units
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and the other was a cut-off sample with less that 200 reporting units.  In 1998 interactive screens for entering estimation
specifications had not yet been developed.  Thus, development staff typed estimation parameters into fixed-field ASCII
files for the three surveys.  This was tedious and error prone, which motivated the development of interactive screens
that were used in 1999.  In 1998 the StEPS developers created the estimation script files for these three surveys.

In 1998 we used VPLX to calculate variances for ATS using the method of random groups.  The length of the VPLX
program used to calculate these variances was 513 lines.  Since in 1999 there would be an additional ten StEPS surveys
using random groups to calculate variances, we concluded that the implementation effort involved in continuing to use
VPLX for these surveys was unacceptably high.  Hence, we decided to develop the StEPS macros %rg_var1, %rg_var2,
%rtsumvar, and %erfrmt for calculating random group variances in 1999.

The production of variances for ATS was improved considerably in 1998 over what was possible from the legacy
system.  ATS calculates census-adjusted estimates, and the legacy system incorrectly treated the adjustment factors as
constants.  StEPS, however, was able to correctly calculate the variances of the ATS census-adjusted estimates by
treating them as ratio estimates.  Another improvement over the legacy system was that the interactive script-submission
capability of StEPS permitted survey analysts to obtain estimates and variances upon demand, which was not possible
from the legacy system.

In 1999 the Economic Directorate used StEPS for the production processing of fifty surveys.  Eleven of these surveys
were service-sector surveys that used random groups to calculate variances.  These surveys ranged in size from as small
as 4,000 reporting units to as large as 27,000 reporting units.  Two of the surveys processed by StEPS in 1999 used
Poisson sampling; and one survey, the Manufacturing Energy Consumption Survey, used Tillé sampling.  The remaining
30+ surveys were industrial-products surveys that used cut-off sampling.

In 1999,  survey analysts for the eleven service-sector surveys and for one of the Poisson-sample surveys used
interactive screens to enter estimation specifications into StEPS.  As in 1998, however, estimation scripts were for the
most part created by StEPS development staff.  In 1999, we did not use VPLX to calculate random-group
variances–instead, we used StEPS macros to calculate random group variances for the eleven service-sector surveys.
 For the Poisson-sample and Tillé-sample surveys, we will use the StEPS macros %vrncs_p and %vrncs_t, respectively,
to calculate variances.  For the 30+ surveys that were cut-off samples, analysts used Quicktab to calculate estimates,
so it was not necessary for scripts to be written or for estimation specifications to be entered into StEPS. 

8.  Future Activities

The Economic Directorate plans to migrate additional surveys into StEPS.  One of these is the Survey of Construction
(SOC), which will use the Estimates and Variances Module of StEPS (and not the other modules in StEPS).  Because
SOC is a  multi-stage survey, we will use VPLX to calculate SOC variances.  Another survey migrating into StEPS is
the Annual Capital Expenditures Survey (ACES), which has a stratified sample design.  We plan to investigate the
stratified jackknife for estimating variances for ACES.

The use of standard data structures in StEPS facilitates comparative methodological research.  We plan on comparing
replication-based variances with those calculated using the sampling-theory formulas for Poisson and Tillé sampling.
Another study we plan on conducting will compare random group variances to those from a delete-a-group jackknife.

Finally, we observe that the development of a survey processing system is a journey,  not a destination.  Lessons learned
from today’s processing suggest enhancements to the system to perform tomorrow’s processing.  One possible
enhancement to the Estimates and Variances Module is to provide a graphical user interface for developing estimation
scripts.  Another possible enhancement is to interface estimation results files from StEPS to online analysis tools such
as SAS/EIS® and SAS/INSIGHT®.
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ABSTRACT

This paper presents an overview of the methodology of the Generalised Estimation System (GES) developed at Statistics
Canada and some plans for future enhancements. The GES uses auxiliary information to produce domain estimates for
one-stage and two-phase designs. The methodology is based on the generalised regression (GREG) estimator and its
extension to the wider family of calibration estimators. Most estimators in survey practice, including the post-stratified and
raking ratio estimators are members of this family. GES produces estimates of totals, means and ratios over any domains of
interest. Variance estimation in GES is done using either the design-based Taylor method or the jack-knife procedure. The
calculation of the Taylor variance uses a linearised residual or z-score obtained from the first-order approximation of the
functions of totals. We are planning to extend this approach to handle more complex non-linear functions of totals and to
allow for tests of hypothesis. The idea is to eventually extend GES as a data analysis package.

Key Words: Calibration; Auxiliary Variables; One-Stage Sampling; Two-Phase Sampling

1. INTRODUCTION
Estimation procedures at Statistics Canada have seen a growing use of auxiliary data for a variety of sampling
designs. The need to automate estimation procedures to take advantage of the increased availability of auxiliary data
was recognised in the mid-eighties. The rationale for the development of generalised systems is described in Outrata
and Chinnappa (1989). As attested by practice, generalised estimation software has several advantages over
customised software. These include reduced maintenance costs, a unified methodology and a single systems
architecture. It has given methodologists the flexibility to try out different estimation procedures and the capability
of including new system and methodological advances.

Several estimation packages have been developed elsewhere using slightly different approaches for the
methodological framework. These include LINWEIGHT (Bethlehem and Keller 1987), PC-CARP (Schnell et al.
1988), SUDAAN (Shah et al. 1989), CLAN (Andersson and Norberg 1994) and WESVAR (Brick et al. 1997. These
packages have several features in common with respect to the sampling designs that they accommodate and the
available parameters for estimation. For instance, they all handle stratified clustered sampling designs with and
without replacement sampling. They all provide methods for the estimation of population totals, means and ratios.
The packages differ on the availability of analytic features (regression, and two-way table analysis) and the
procedures used for variance estimation (design-based variance of the Taylor approximation, or replication methods
such as the jack-knife and balanced repeated replication).

GES provides estimation procedures for cross-sectional surveys. The framework adopted for GES is based on the
use of auxiliary information for calibration. A detailed description of the methodology used in GES is given in
Estevao, Hidiroglou and Särndal (1995). GES is built around four concepts: (1) the sampling design; (2) the
auxiliary information; (3) the domains of interest; and (4) the population parameters for estimation. The
methodology for one-stage element and cluster designs is described in sections 2 and 3 respectively. GES has
recently been extended to include two-phase estimation with auxiliary information at each phase. This is presented
in section 4. In section 5, we briefly mention the general direction of future developments in GES.

2. ONE-STAGE ELEMENT SAMPLING DESIGNS
The set up for one-stage element sampling designs is as follows. Let the population of elements be given by

},...,,...,1{ NkU = . A probability sample s is selected from U using either sampling without replacement (WOR) or
probability proportional to size with replacement (PPSWR). In WOR sampling, s is an unordered sample and
element k has inclusion probability kπ . The sample design weights are simply kkw π1=  for Uk ∈ . In PPSWR,
we consider s as an ordered sample of n fixed draws with replacement and the element corresponding to selection k
is assigned the design weight )(1 kk pnw =  where kp  is the probability of selecting the element on each draw. Let

kUk yY ∈Σ=  be the population total for a variable of interest y . A design-based estimator is the Horvitz-Thompson

estimator kkskHT ywY ∈Σ=ˆ . It is design unbiased but usually not very efficient. We obtain more efficient estimators
by using the available auxiliary information.
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2.1. Auxiliary Information and Calibration

Suppose we know }{ kx  for sk ∈  and kUk xX ∈Σ= , where ),...,...,( 1 Jkjkkk xxx=′x  is a vector of auxiliary data for
element k. This auxiliary information can be used to produce calibrated weights kw~  using the calibration approach
proposed by Deville and Särndal (1992) or Huang and Fuller (1978). Deville and Särndal obtain these weights by
minimising a distance function between kw~  and the design weights kw  subject to the restriction that

kUkkksk w xx  ~ ∈∈ Σ=Σ . The Deville-Särndal procedure has been implemented in GES using the least squares distance

function k
2

kkksk wwwc 2)~( −Σ ∈ . This distance function is minimised with respect to the kw~ , subject to the
calibration equation

kUkkksk w xx ∈∈ Σ=Σ ~ (2.1)

and uwk << ~ � . Here �  and u are reasonable lower and upper bounds chosen to prevent negative weights or
extremely large weights. The positive values kc  allow weighting of the individual terms of the distance function. If
there are no bounds ),( ∞+=∞−= u�  on the calibrated weights, then the solution to the above problem is

})()(1{~ 1
kkkkkkskkkskkUkkk ccwwww xxxxx −

∈∈∈ ′Σ′Σ−Σ+= . These are the weights of the GREG estimator

)ˆ(ˆˆ BxkkkskHTGREG ywYY ′−Σ+= ∈  with )()(ˆ 1
kkkkskkkkksk cywcw xxxB ∈

−
∈ Σ′Σ= . Many traditional estimators are

obtained by assuming no bounds. For a single auxiliary variable, putting c xk k=  leads to the simple ratio estimator
when 0>kx . Table 1 shows how some well-known estimators can be obtained as calibration estimators for fixed
sample size designs. There is no closed form expression for kw~  when bounds are part of the problem specification.
The weights kw~  are calculated using the non-linear programming algorithm described by Estevao (1994). In either

case, the calibration estimator is written as kkkskkkskCAL ygwywY ∈∈ Σ=Σ= ~ˆ , where kg  is the calibration factor for
element k.

Table 1: Horvitz-Thompson, Hàjek and Ratio estimators for fixed sample size designs.

Estimator
CALŶ kx kc kg

Horvitz-Thompson
HTŶ kπ kπ 1

Hàjek
HT

HT

Y
N
N ˆ
ˆ

1 1
HTN

N
ˆ

Ratio
HT

HT

Y
X
X ˆ
ˆ

kx kx
HTX

X
ˆ

The calibrated weights kw~  should be close to the design weights kw  to minimise the bias and permit the estimation
of variance of the calibration estimator. This is shown in the next section.

2.2. Bias and Variance Estimation

The bias and variance of CALŶ  are obtained by representing ky  as a linear function of kx  over the population U. We
write

kkk Ey +′= Bx  for Uk ∈ (2.2)

where B is defined as

)()( 1
kkkUkkkkUk cyc xxxB ∈

−
∈ Σ′Σ= . (2.3)

It is important to note that this is a conceptual representation over the population. It does not have to provide a
proper linear fit. We do not generally expect y to be linearly related to the auxiliary variables x . Using (2.2) we
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have kUkkUkkUk EyY ∈∈∈ Σ+′Σ=Σ= Bx  and kkskkkskCAL EwwY ~~ˆ
∈∈ Σ+′Σ= Bx . From the calibration equation (2.1), we

then obtain kkskkUkCAL EwY ~ˆ
∈∈ Σ+′Σ= Bx . The design bias of CALŶ  is )}~({E kkksks wwE −Σ ∈  which can be written as

)1(E)ˆ( Bias −Σ= ∈ kskUkCAL gEY (2.4)

where )1(E −ks g  is the expected value of )1( −kg  over all samples containing element k. The bias will be small if

kg  is close to 1 or equivalently, kw~  is close to kw . This provides a rationale for the distance minimisation

approach. Since BxkUk ′Σ ∈  is a constant, the variance of CALŶ  is simply the variance of kksk Ew~∈Σ . By assuming
1=�kg  for sk ∈  over all samples, we obtain

)(Var)~(Var)ˆ(Var kkskskksksCAL EwEwY ∈∈ Σ=Σ= � . (2.5)

An estimate of )ˆ(Var CALY  can be obtained by replacing the kE  with the sample residuals Bx ˆ
kkk ye ′−=  where

)()(ˆ 1
kkkkskkkkksk cywcw xxxB ∈

−
∈ Σ′Σ= . We can also incorporate the calibration factors in the variance estimate

by using kkk egu =  instead of ke . For stratified WOR designs, an estimate of the variance is given by

)()()ˆ(arV̂ 1 lk
lkkl

lkkl
slsk

H
hCALWOR uuY

hh πππ
πππ −ΣΣΣ= ∈∈= (2.6)

where H is the number of strata and klπ  is the joint inclusion probability of elements k and l in stratum h. In
stratified SRSWOR selection of hn  elements from the hN  in stratum h, this variance is

22
1 )()})1(()1({)ˆ(arV̂ hkskhhhh

H
hCALSRSWOR uunnfNY

h
−Σ−−Σ= ∈=  with hkskh nuu

h∈Σ=  and hhh Nnf = .

For stratified PPSWR sampling, the variance of CALŶ  is estimated by

2
1 )}ˆ())({(

1
)ˆ(arV̂ hhkhksk

h

hH
hCALPPSWR nUpnu

n
nY

h
−Σ

−
Σ= ∈= (2.7)

)(ˆ  where khkskh pnuU
h∈Σ=  and hn  is the number of selections with replacement in stratum h. In stratified

SRSWR, hk Np 1=  for hsk ∈ and the variance reduces to 22
1 )(}))1(({)ˆ(arV̂ hkskhhh

H
hCALSRSWR uunnNY

h
−Σ−Σ= ∈=

with hkskh nuu
h∈Σ= . The jack-knife analogue is 2

1 )ˆˆ())1(()ˆ(arV̂ CALhjCALjhh
H
hCALJK YYnnY −Σ−Σ= =  where hjCALŶ  is

the estimate of Y after deleting element j in stratum h. Hidiroglou (1991) notes that the similarity between
)ˆ(arV̂ CALSRSWOR Y  and )ˆ(arV̂ CALSRSWR Y  suggests (2.6) can be approximated by

2
1 )}ˆ())(({)}1()1{( hhkhkskhhh

H
h nUpnunnf

h
−Σ−−Σ ∈=  where hf  is an appropriate “sampling fraction” such as

)1(� ∈ hsk khn π . Other approximations have been given by Rao (1963), Ardilly (1994) and Rosén (1991). GES

currently computes variance estimates for stratified designs under SRSWOR and PPSWR. The approximations for
without replacement PPS schemes are not yet implemented in GES.

2.3. Calibration Using Sub-Populations Totals
Calibration can be carried out within groups of any partition of the population with auxiliary information. We
assume the population is partitioned into P mutually exclusive and exhaustive calibration groups 1U ... pU ... PU  and
that the following auxiliary information is available within each group:

(i) ),...,...,( 1 Jkjkkk xxx=′x  for psk ∈  where ps  is the sample in pU
(ii) kUkp p

xX ∈Σ=
The partition may be based on strata or post-strata. When there is only one group, the entire population, we obtain a
combined estimator. Otherwise, we obtain a separate estimator over strata or post-strata.
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2.4. Estimation of Ratios
Many parameters of interest can be expressed as functions of totals. One of the simplest functions is the ratio

kUkkUk yyYYR 2121 ∈∈ ΣΣ==  of the totals of variables 1y  and 2y . We estimate this ratio by CALCALCAL YYR ,2,1
ˆˆˆ =

where kkskCAL ywY 1,1
~ˆ

∈Σ=  and kkskCAL ywY 2,2
~ˆ

∈Σ=  are the estimated totals for 1y  and 2y  respectively. The mean or
average of y is a special ratio with kk yy =1  and 12 =ky  for Uk ∈ . The estimated mean of y is given by

CALCALCAL NYY ˆˆˆ =  where kskCAL wN ~ˆ
∈Σ= .

The estimated variance of CALCALCAL YYR ,2,1
ˆˆˆ =  involves a linearisation of this ratio. We obtain a linearised statistic

or z-score CALkCALkk YyRyz ,221
ˆ)ˆ( −= , which we then substitute for ke  in the formulas in section 2.2. In fact, ke

can be viewed as the z-score for a total. A similar approach is used for the estimation of the variance of a mean.

2.5. Estimation for Domains

A domain dU  is an arbitrary subset of the population of elements U. Domains can cut across strata. In many
surveys, the strata are domains of interest. It is important to note that for cluster designs, a domain can include
elements from different clusters.

For a given domain dU , the estimator of the domain total for variable y is kdkskCALd ywY )()(
~ˆ

∈Σ=  where kdy )(  is equal

to ky  if dUk ∈  and zero otherwise. A ratio within domain dU  is estimated by CALdCALdCALd YYR )(,2)(,1)(
ˆˆˆ =  where 1y

and 2y  are the two variables of interest and kdikskCALdi ywY )(,)(,
~ˆ

∈Σ=  for 2,1=i . Similarly, a domain mean is

estimated by CALdCALdCALd NYY )()()(
ˆˆˆ =  with kdkskCALd ywN )(,2)(

~ˆ
∈Σ=  where kdy )(,2  is equal to 1 if dUk ∈  and zero

otherwise. The calibrated weights kw~  do not depend on the domain. They are computed within the calibration
groups.

3. ONE-STAGE CLUSTER SAMPLING DESIGNS

For one-stage cluster sampling designs, the population of clusters is denoted by },...,,...,1{)( NiU C =  and the

population of elements among the clusters is given by )(EU . For simplicity, we consider only WOR sampling
although the extension to PPSWR sampling can be done as in section 2.2. A sample )(Cs  is selected from )(CU  with
cluster i having inclusion probability iπ . All elements in the selected clusters form the sample of elements )(Es . The

cluster sample design weights are iiw π1=  for )(CUk ∈ . In view of the design, the element sample design weights
are iikk ww === ππ 11  for ik ∈ . Since there are two populations, auxiliary information may be known for

clusters or elements. For the clusters, we may have a vector of auxiliary variables iz  for )(Csi ∈  and corresponding

totals iUi C z)(∈Σ=Z . Similarly, for the elements, we may have a vector of auxiliary variables kx  for )(Esk ∈  and
corresponding totals kUk E xX )(∈Σ= . This gives rise to calibration on either the cluster or element information and
two different families of calibration estimators.

3.1. Estimators Based on Element Auxiliary Information

We use the least squares approach described in section 2.1 to obtain weights kkk gww =~  for the elements in )(Es  by

minimising k
2

kkksk wwwcE 2)~()( −Σ ∈  subject to the calibration equation

kUkkksk EE w xx )()(
~

∈∈ Σ=Σ (3.1)

where kc  is a positive coefficient and kg  is the calibration factor for )(Esk ∈ . The total kUk yY ∈Σ=  is estimated by

kksk
E

CAL ywY E
~ˆ

)(
)(

∈Σ= . We examine the properties of this estimator by considering the following linear representation.
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k
E

kk Ey +′= )(Bx  for )(EUk ∈ (3.2)

where )(EB  is defined as

)()( )()(
1)(

kkkUkkkkUk
E cyc EE xxxB ∈

−
∈ Σ′Σ= . (3.3)

Using (3.2) and (3.1), we write kUk
E

kUkkUk EyY EE ∈∈∈ Σ+′Σ=Σ= )(
)()( Bx  and kksk

E
kUk

E
CAL EwY EE

~ˆ
)()(

)()(
∈∈ Σ+′Σ= Bx .

Since kkikisikksk EgwEw CE ∈∈∈ ΣΣ=Σ )()(
~ , it follows that the design bias of )(ˆ E

CALY  is

)1(E)ˆ( Bias )()(
)( −��= ∈∈ kikskUk

E
CAL gEY CE (3.4)

where )1(E )( −� ∈ kiks gC  is the expected value of )1( −� ∈ kik g  over all cluster samples containing cluster i (and the

elements ik ∈ ). If 1=�kg  for )(Csik ∈∈  over all cluster samples, we obtain the following approximation to the
variance.

.))((
)(

)(Var)ˆ(Var

)()(

)(
)(

kjkkik
ji

jiji
UjUi

kkikisi
E

CAL

EE

EgwY

CC

C

∈∈∈∈

∈∈

ΣΣ
−

ΣΣ=

ΣΣ=

ππ
πππ

�

(3.5)

An estimate of )ˆ(Var )(E
CALY  which includes the calibration factors is given by,

))((
)(

)ˆ(arV̂ )()(
)(

kkjkkkik
jiji

jiji
sjsi

E
CAL egegY CC ∈∈∈∈ ��

−
��=

πππ
πππ

(3.6)

where )(ˆ E
kkk ye Bx′−=  and )()(ˆ

)()(
1)(

kkkkskkkkksk
E cywcw EE xxxB ∈

−
∈ Σ′Σ= . Under stratified SRSWOR selection of

hn  clusters from the hN  in stratum h, we have 22
1

)( )()})1(()1({)ˆ(arV̂ )( hisihhhh
H
h

E
CALSRSWOR uunnfNY C

h
−Σ−−Σ= ∈=

where kkiki egu ∈Σ= , hisih nuu C
h

)(∈Σ=  and hhh Nnf = .

3.2. Estimators Based on Cluster Auxiliary Information

We use a similar approach when we have auxiliary information for the clusters. We obtain weights iii gww =~  for the

clusters in )(Cs  by minimising i
2

iiisi wwwcC 2)~()( −Σ ∈  subject to the calibration equation

iUiiisi CC w zz )()(
~

∈∈ Σ=Σ (3.7)

where ic  is a positive coefficient for cluster i in the function and ig  is the calibration factor for )(Csi ∈ . In this case,

the total kUk yY ∈Σ=  is estimated by •∈∈∈ Σ=ΣΣ= iisikikisi
C

CAL ywywY CC
~~ˆ

)()(
)(  where kiki yy ∈• Σ= . The bias and variance

of this estimator are obtained by considering the following linear representation.

i
C

ii Ey +′=•
)(Bz  for )(CUi ∈ (3.8)

where )(CB  is defined as

)()( )()(
1)(

iiiUiiiiUi
C cyc CC •∈

−
∈ Σ′Σ= zzzB . (3.9)

Using (3.8) and (3.7), we then write iUiiisi
C

CAL EEwYY CC )()(
~ˆ )(

∈∈ Σ−Σ=− . It follows that the design bias is

)1(E)ˆ( Bias )()(
)( −�= ∈ isiUi

C
CAL gEY CC (3.10)

where )1(E )( −is gC  is the expected value of )1( −ig  over all cluster samples containing cluster i. Assuming 1=�ig

for )(Csi ∈  over all samples, the approximate variance of )(ˆ C
CALY  is given by
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.
)(

)(Var)ˆ(Var

)()(

)(
)(

ji
ji

jiji
UjUi

iiisi
C

CAL

EE

EgwY

CC

C

ππ
πππ −

ΣΣ=

Σ=

∈∈

∈

�

(3.11)

An estimate of )ˆ(Var )(C
CALY  which includes the calibration factors is given by,

))((
)(

)ˆ(arV̂ )()(
)(

jjii
jiji

jiji
sjsi

C
CAL egegY CC πππ

πππ −
ΣΣ= ∈∈ (3.12)

where )(ˆ C
iii ye Bz′−= •  and )()(ˆ

)()(
1)(

iiiisiiiiisi
C cywcw CC •∈

−
∈ Σ′Σ= zzzB . Under stratified SRSWOR selection of hn

clusters from the hN  in stratum h, we have 22
1

)( )()})1(()1({)ˆ(arV̂ )( hisihhhh
H
h

C
CALSRSWOR uunnfNY C

h
−Σ−−Σ= ∈=  where

iii egu = , hisih nuu C
h

)(∈Σ=  and hhh Nnf = .

The framework in sections 3.1 and 3.2 can be readily extended to handle calibration groups based on element or
cluster auxiliary information. We also note that these two families generally produce different estimators since they
are based on different auxiliary information.

4. TWO-PHASE SAMPLING DESIGNS
Two-phase sampling is increasingly being used at Statistics Canada due to the wealth of timely administrative data.
This is especially the case in business surveys where this procedure has been used for several annual and sub-annual
surveys. Two-phase sampling for annual surveys are described in Choudhry et al. (1989), and Armstrong and
St-Jean (1994), whereas for sub-annual surveys, they are described in Hidiroglou et al. (1995), and Binder et al.
(2000).

The use of auxiliary information in two-phase element designs is described in Hidiroglou and Särndal (1998).
Estevao and Särndal have extended this to a general framework for estimation in two-phase designs with auxiliary
information at each phase. The main ideas in their paper are described in this section assuming WOR sampling. The
population { }NkU ...,,...,,1=  is first divided into strata hU . The first-phase probability sample 1s  is selected
within each of these strata. The probability of selecting element k in stratum hU  is denoted by k1π  and its
first-phase sampling weight is defined as kkw 11 1 π= . The first-phase sample is then divided into second-phase
strata is1  with iss

i 11 �= . A second-phase sample 2s  is obtained by selecting within each of these strata. The

conditional probability of selecting the first-phase element k in 2s  is denoted by k2π  and the conditional
second-phase weight is given by kkw 22 1 π= . The final sampling weight for element 2sk ∈  is kkk www 21= . We
assume that we have two sets of auxiliary variables for the first phase elements. These are denoted by 1x  and 2x .
The population totals kUk 11 xX ∈Σ=  are known for the auxiliary variables 1x , whereas 2x  have no known
population totals. In view of the nested nature of the design, the values of 1x  and 2x  for the first-phase sample are
also known for the second-phase sample. In this presentation, it is useful to define a general auxiliary vector x that
may contain any of the variables in 1x  and 2x . This vector is defined quite generally, but we are particularly
interested in the cases 1xx =  and ),( 21 ′′′= xxx . The auxiliary vector kx  is known for each element k in the
second-phase sample along with the value ky  for the variable of interest y. Here, we consider only the estimation of
the total kUk yY ∈Σ= . The estimation of domain parameters follows from the discussion in sections 2.4 and 2.5.

4.1. Calibration for Two-Phase Sampling

We obtain calibration estimators by determining calibrated weights kw1
~  and kw~  using the available auxiliary

information at the two phases. We start by obtaining first-phase calibrated weights kkk gww 111
~ =  for each element k

in the first-phase sample, where kg1  is the first-phase calibration factor. We then determine the overall calibrated
weights kkkk gwww 221

~ =  for the elements in the second phase sample, where kg2  is the second-phase calibration
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factor. The first-phase and overall calibrated weights are kw~1  and kw~ . These weights satisfy the following two
calibration equations.

kkskkksk

kUkkksk

ww

w

xx

xx

1

111

~~

~

12

1

∈∈

∈∈

Σ=Σ

Σ=Σ
(4.1)

The first-phase calibrated weights kw1
~  are obtained by minimising  )~( 1

2
111s1 kkkkk wwwc −Σ ∈  with respect to kw1

~

subject to kUkkksk w 111
~

1
xx ∈∈ Σ=Σ  and bounds 111

~ uw k <<� . As in section 2.1, kc1  are positive values that provide
arbitrary weighting coefficients in the objective function. Once the first-phase weights kw1

~  have been determined,

the final calibrated weights kw~  are obtained by minimising  )()~( 21
2

21s2 kkkkkkk wwwwwc −Σ ∈  with respect to kw~ 
subject to kkskkksk ww xx 1

~~ 
12 ∈∈ Σ=Σ  and bounds uwk << ~ � .

The two-phase calibration estimator for Y is then given by kkskCAL ywY ~ˆ
2∈Σ= . As in one-phase sampling, the

calibrated weights kw~  are sample dependent. They are a function of the auxiliary variables k1x  and kx  for 1sk ∈
and the known totals kUk 11 xX ∈Σ= . The calibration estimator is not design unbiased. It is close to unbiased if

11 =�kg  for 1sk ∈  and 12 =�kg  for 2sk ∈ . This is shown in the next section.

4.2. Bias and Variance Estimation
The following derivation of the bias and variance of the two-phase estimator is given by Estevao and Särndal. We
assume that y is linked to x by kkk Ey +′= Bx , and that Bx′  is then linked to 1x  by kkk E111 +′=′ BxBx  for Uk ∈  as
shown below.

kkk

kkk

E
Ey

111 +′=′
+′=
BxBx
Bx

(4.2)

As in section 2, this is a conceptual representation over the population. Given this representation, kUk yY ∈Σ=  can be

written as )( 111 kkUk EEY +Σ+′= ∈BX . Using (4.1) and (4.2), we have kkskkkskCAL EwEwY ~~ˆ
21 1111 ∈∈ Σ+Σ+′= BX . It can

be shown that the bias of CALŶ  is given by

)}1(E{E)1(E)ˆ( Bias 2111 1|2111
−Σ+−Σ= ∈∈ ksskkskskskUkCAL gEwgEY (4.3)

where 
1

E s  is the expectation over the first phase samples containing element k, and 
1|2

E ss  is the conditional

expectation over the second phase samples given 1s  has been selected and element k is in 2s . From this expression,
it is clear that the bias should be relatively small if 11 =�kg  for 1sk ∈  and 12 =�kg  for 2sk ∈ .

The representation given by (4.2) leads to an approach similar to the one given by Axelson (1998) to provide
alternative variance estimators for two-phase sampling. The approximate variance of the two-phase calibration
estimator is obtained by assuming 11 =�kg  for 1sk ∈  and 12 =�kg  for 2sk ∈ .
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�

� (4.4)

where kl1π  is the first-phase joint inclusion probability }),Pr{( 1slk ∈  and kl2π  is the conditional joint inclusion
probability }|),Pr{( 12 sslk ∈ .
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An estimate of the variance (4.4) is obtained by replacing kE  and kE1  by the corresponding sample-based values.

These are B̂kkk xye ′−=  and 111
ˆˆ BBx kkk xe ′−′=  where )()( 221

1
221 22

ˆ
kkkkkskkkkkksk cywwcww xxxB ∈

−
∈ Σ′Σ=  and

)()( 111
1

11111
ˆˆ

11 kkkkskkkkksk cwcw BxxxxB ′Σ′Σ= ∈
−

∈ .

Incorporating the calibration factors, we obtain the following estimator of the variance
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∈∈
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(4.5)

This framework for the two-phase calibration estimator is quite general. The expressions for the bias, variance and
estimated variance are valid for any definition of x including the case of no auxiliary variables - φ=1x , φ=2x  and

φ=x . This case gives the two-phase expansion estimator. We note that when 1xx = , the population representation

(4.2) gives BB =1  and 01 ====kE  for Uk ∈ . We also obtain the correct correspondence BB ˆˆ
1 =  and 01 =ke  for

2sk ∈ . Furthermore, in the special case of 12 ss = , we can verify that the formulas reduce to those for a one-phase
or a one-stage design. In this case, we note 1=== 2kl2l2k πππ  and kk cc 12 =  lead to kk ww 1=  and kk gg 12 = .

The estimator of variance (4.5) can be simplified for stratified SRSWOR and PPSWR. For these two designs, Binder
et al. (2000) express it as the sum of three terms, each involving single sums. For example, let us consider a design
with SRSWOR at each phase. We have hhk nNπ =1  for hsk 1∈  and ggk mMπ =2  for gsk 2∈  where hN  and hn
are the respective first phase population and sample sizes in stratum h, and gM  and gm  are the respective second
phase population and sample sizes in stratum g. The corresponding sampling fractions are hhh Nnf =  and

ggg Mmf = . Arcaro (1998) shows that for stratified SRSWOR at each phase, we can express (4.5) as
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In the description of the 3 terms in this formula, it is convenient to define kkkkk egege 2111
~ +=  and kkk ege 2

~ = . In the

first term of this expression, )1(]~)([~)( }{ 2
1

2
1

2
22

−ΣΣΣΣ= ∈∈ − hhkggskgkggskgh nnemMemMs
gg

. In the second

term, )1()~~( 2
)(1)(1

2
1 2

−−Σ= ∈ ghkhskhg mees
g

 with kkh ee 1)(1
~~ =  if hsk 1∈ , 0 otherwise and gkhskh mee

g )(1)(1
~~

2∈Σ= . The

last term has )1()~~( 22
2 2

−−Σ= ∈ gkskg mees
g

 with gksk mee
g

~~
2∈Σ= .

It is possible to extend this framework when auxiliary totals are known for subgroups of the population. This allows
us to define first-phase and second-phase calibration groups as described by Hidiroglou and Särndal (1998). In
addition, it is possible to have different stratification for the first-phase and second-phase samples. This creates a
general family of two-phase calibration estimators. Estevao and Särndal analyse the properties of these estimators
and provide a general discussion on the use of auxiliary information in two-phase designs.

5. FUTURE PLANS
Some new methodologies are being considered for implementation in GES. Linear and non-linear parameters of
interest, such as population means, ratios, linear and logistic regression coefficients can be expressed as solutions to
population estimating equations. Parameter estimates can be obtained by solving the corresponding sample
estimating equations involving the design weights and the calibration factors determined from the auxiliary
information. As Hidiroglou et al. (1999) have shown, the standard errors of such estimates can be obtained by
regressing the components of the estimating functions on the auxiliary variables. The automation of the required
computations is relatively simple, only requiring the form of the derivatives to linearise the functions of interest. The
estimating equation approach allows the estimation of functions of totals which are not available in GES.
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Another area of research is variance estimation in the presence of imputation. Current variance estimation
procedures do not take imputation into account. That is, they treat imputed data the same as actual responses. This
typically results in an underestimate of the variance. Several papers have addressed this problem. These include
Särndal et al. (1992), Rao and Shao (1992), Rancourt et al. (1994), Rao and Sitter (1995) and Rao (1996). The push
to incorporate these variance correction procedures in the GES is emphasised in Lee et al. (1994), Gagnon et al.
(1996) and Gagnon et al. (1997). A preliminary version of such a system, called SIMPVAR has been developed but
is not currently part of GES. SIMPVAR requires the additional specification of the imputation process: the
imputation method, the imputation groups, the auxiliary data used for imputation, respondent flags, and donor
identifiers for the donor imputation methods.
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