Table of Contents

Executive Summary

- III

Table of contents

- XVII

List of Figures

- XXI

List of Tables

- XXV

List of Boxes

- XXVI

Abbreviations

- XXVII

Chapter 1 Introduction

- 1
 - 1.1 Aims and objectives of the project
 - 1
 - 1.2 Scope of the Report
 - 1

Chapter 2 The role of soil organic matter in ecosystems and society

- 3
 - 2.1 Current state of soil organic matter across Europe
 - 3
 - 2.2 Soil organic matter dynamics
 - 5
 - 2.3 Soil organic matter and its functions
 - 10
 - 2.4 Soil organic matter quantity and quality
 - 13
 - 2.4.1 Organic matter supplements to the soil
 - 13
 - 2.4.2 Land management to maintain or increase soil organic matter
 - 14
 - 2.5 Optimal and Maximum Input potential
 - 16
 - 2.6 The organic matter cycle
 - 17
 - 2.6.1 The global carbon cycle
 - 17
 - 2.6.2 Fluxes in ecosystems
 - 19
 - 2.6.3 Fluxes in society
 - 21
 - 2.7 Economic value of sequestering carbon in soils
 - 21

Chapter 3 Approach to assess regional soil organic matter balances and scenario analyses

- 25
 - 3.1 Introduction
 - 25
 - 3.2 The regional organic matter balance
 - 25
 - 3.2.1 Concepts
 - 25
 - 3.2.2 Components
 - 27
 - 3.3 Scenario analysis to assess the effect of selected environmental policy and resource management issues on soil organic matter levels
 - 29

Chapter 4 Maintenance of grassland

- 31
 - 4.1 Introduction
 - 31
 - 4.2 Scenario Approach and Method
 - 31
 - 4.3 Soil organic carbon stock under agriculture
 - 33
 - 4.3.1 Surface area of agriculture land
 - 33
 - 4.3.2 Status of soil organic matter under agriculture
 - 33
 - 4.4 Results
 - 34
 - 4.4.1 Distribution of soil organic carbon content in the surface horizon of grasslands
 - 34
 - 4.4.2 Distribution of soil organic carbon content in the surface horizon of arable land
 - 34
 - 4.4.3 Impact on soil organic carbon stocks of converting grasslands to arable
 - 35
4.4.4 Change in grassland areas and the change in the grassland share of agriculture due to the scenario option maintaining the current rules for the GAEC permanent pastures (BAU 2030), and for the scenario option abandoning the current rules for the GAEC permanent pastures (C-Poor 2030) .. 36
4.4.5 Change in soil organic carbon stock (tonnes/ha) due to the scenario option maintaining the current rules for the GAEC permanent pastures (BAU 2030), and for the scenario option abandoning the current rules for the GAEC permanent pastures (C-Poor 2030) __________ 38

Chapter 5 Use of set-aside (for EU-15 only) ______________________ 41
 5.1 Introduction ... 41
 5.2 Scenario approach and method ... 41
 5.3 Soil organic carbon stock under agriculture 42
 5.4 Results .. 42

Chapter 6 Change from utilized agriculture area (UAA) to forest ______ 45
 6.1 Introduction ... 45
 6.2 Scenario approach and method ... 45
 6.3 Soil organic carbon stock under forests 46
 6.3.1 Surface area of forest and other wooded land 46
 6.3.2 Status of soil organic matter under forests 49
 6.4 Results .. 51
 6.4.1 Trends in forest areas at Member State level 51
 6.4.2 Distribution of soil organic carbon content in the surface horizon of forests ... 52
 6.4.3 Impact on soil organic carbon stocks of converting UAA to forest 53
 6.4.4 Change in forest areas and the change in the forest share due to the scenario adopting the current change of UAA in favour of forests (BAU 2030) and adopting a faster decrease of UAA in favour of forests (C-Rich 2030) ... 54
 6.4.5 Change in soil organic carbon stock loss (tonnes/ha) due to the scenario adopting the current change of UAA in favour of forests (BAU 2030) and adopting a faster decrease of UAA in favour of forests (C-Rich 2030) ... 56

Chapter 7 Use of crop residues and straw ______________________ 59
 7.1 Introduction ... 59
 7.2 Scenario Approach and Method .. 59
 7.3 Regional organic matter balance for crop residue 60
 7.4 Results .. 69

Chapter 8 Use of manure and compost __________________________ 73
 8.1 Introduction ... 73
 8.2 Scenario approach and method .. 73
 8.2.1 Production of organic matter from urban areas 74
 8.2.2 Reported compost production 74
 8.2.3 Potential compost production 75
 8.2.4 Humified Organic Carbon of compost as spread on UAA 77
 8.2.5 Organic carbon flux of livestock manure 78
Table of Contents

8.3 **Results**
- 8.3.1 Projected trends in livestock manure production 82
- 8.3.2 Projected trends in potential compost production 82
- 8.3.3 Impact of different resource management options on regional soil organic carbon fluxes from livestock manure and potential compost production 84
- 8.3.4 Livestock manure 86
- 8.3.5 Compost 86

Chapter 9 Use of forest residues 89

9.1 Introduction 89

9.2 Scenario approach and method 89

9.3 Production of organic matters from forest 90
- 9.3.1 Forest biomass production 90
- 9.3.2 Forest biomass compartments 93
- 9.3.3 Fluxes from living forest biomass to the soil 96
- 9.3.4 Fluxes from felled biomass to the soil 97
- 9.3.5 Forest organic carbon balance 97

9.4 Loss of organic matter from forest products 100

9.5 Results 101

Chapter 10 Conservation of peatlands 105

10.1 Introduction 105

10.2 Scenario approach and method 105

10.3 Soil organic carbon stock under peatlands 106
- 10.3.1 Surface area under peatland 106
- 10.3.2 Current state of soil organic carbon under peatlands 108
- 10.3.3 SOC stock loss under peatlands 110

10.4 Soil organic carbon fluxes under peatland 112
- 10.4.1 Positive SOC fluxes under peatland 112
- 10.4.2 Negative carbon fluxes for peatland 112

10.5 Contribution of peatland to GHG balance 114
- 10.5.1 Contribution of peatland to GHG balance 114
- Contribution of peatlands to GHG emissions 115

10.6 Results 117
- 10.6.1 BASE 2000: Impact of peat extraction rate on carbon stock gains and losses 117
- 10.6.2 Scenarios 117

Chapter 11 Summary and conclusions of soil organic carbon stock and fluxes analysis 121

11.1 Soil organic carbon stocks under agriculture and forests 121

11.2 Soil organic carbon fluxes under agriculture 124
- 11.2.1 Crop residues 126
- 11.2.2 Compost/manure 126

11.3 Soil organic carbon fluxes under forests 127

11.4 Soil organic carbon stocks and fluxes under peatlands 128

Chapter 12 Identification of best practices in relation to soil organic matter management on the basis of selected case studies 131
12.1 Selection of case studies .. 131
12.2 The effect of long term crop rotations on soil organic matter status in North Eastern Italy .. 134
12.3 Long term effect of reduced tillage systems on soil organic matter in Northern France .. 134
12.4 Evaluation of crop residue management options on soil organic matter levels in Jutland (Denmark) .. 135
12.5 Production and management of compost in Northern Belgium .. 135
12.6 Production and management of sugar-beet composts (vinasse) in South Western Spain .. 136
12.7 Effects of afforestation on arable land in Northern Europe .. 136
12.8 Conservation of mires in Latvia .. 137
12.9 Restoration of bogs in Ireland .. 137

Chapter 13 Recommendations .. 139

References .. 141

Annex I Description of LUMOCAP .. 145
Annex II Case studies .. 149
LIST OF FIGURES

Figure 1 Status in 1990 of organic carbon content in topsoils (0–30 cm) in Europe ... 3
Figure 2 The breakdown of organic material such as natural plant residues, forest litter, compost, manure or bio-waste into soil organic matter pools ... 7
Figure 3 Composition of soil organic matter ... 8
Figure 4 The global carbon cycle and carbon reservoirs ... 18
Figure 5 The organic matter balance ... 26
Figure 6 Share of arable land, permanent grassland, permanent crops and set aside to utilised agricultural area ranked by share of arable land according to 2006 Eurostat farm statistics, where PGrass = permanent grassland, PCrops = Permanent crops ... 33
Figure 7 Mean topsoil organic carbon content (%) for permanent grasslands in the EU ... 33
Figure 8 Mean topsoil organic carbon content (%) for arable land in the EU ... 35
Figure 9 Potential SOC stock loss in tonnes/ha as a result of converting grassland to arable land on the basis of the topsoil organic carbon maps and assuming a surface horizon thickness of 20 cm ... 36
Figure 10 Grassland share of total utilised agricultural area in the baseline year (BASE 2000) in the background (shade of brown), with the percentage change in grassland area for the scenario maintaining the current rules for the GAEC permanent pastures (BAU 2030 – blue bars), and for the scenario abandoning the current rules for the GAEC permanent pastures (C-Poor 2030 – red bars) ... 37
Figure 11 Potential SOC stock loss (in tonnes/ha) resulting from maintaining the current rules for the GAEC permanent pastures (BAU 2030) and abandoning the current rules for the GAEC permanent pastures (C-Poor 2030) ... 39
Figure 12 Arable share of agricultural area in the baseline year (BASE 2000) in the background (shade of brown), with the percentage change in arable area for the scenario all set-aside changing to arable (BAU 2030 – blue bars), for the scenario 10% of set-aside changing to forest (C-Medium 2030 – green bars), and for the scenario 25% of set-aside changing to forest (C-Rich 2030 – purple bars) ... 42
Figure 13 SOC stock loss (in tonnes/ha) due to conversion from set-aside area ... 44
Figure 14 The 2000 forest cover map ... 49
Figure 15 The distinguishing characteristics of mor, moder and mull humus forms in forest soils ... 50
Figure 16 Organic carbon content (left) and organic carbon stock (right) as related to humus type in forest plots ... 51
Figure 17 Topsoil organic carbon content (%) for forest soils per NUTS2 region ... 53
Figure 18 Stock gain in tonnes C/ha as a result of afforestation of arable land on the basis of the topsoil organic carbon map ... 54
Figure 19 Forest share of MS in the baseline year (BASE 2000) in the background (shade of brown), with the percentage change in forest area for the scenario all set-aside changing to arable (BAU 2030 – blue bars), and for the scenario
adopting a faster decrease of UAA in favour of forests (C-Rich 2030 – purple bars) __55

Figure 20 SOC stock changes (in tonnes/ha) due to conversion from arable land to forest, weighted for the total area of land use change under BAU, C-Poor, C-medium and C-rich scenarios __57

Figure 21 SOC stock changes (in tonnes/ha) due to conversion from arable land to forest, weighted for the entire forest area under C-poor, C-medium, C-rich scenarios ___58

Figure 22 Comparison of average humified organic carbon production (tonnes/ha) under cereal with straw incorporated into the soil (green) and straw harvested (yellow) ___62

Figure 23 Comparison of average humified organic carbon production (tonnes/ha) under sugar beet with shoot & head incorporated into the soil (green) and shoot & head harvested (brown) ___63

Figure 24 Comparison of average humified organic carbon production (tonnes/ha) under oilseed with straw incorporated into the soil (green) and straw harvested (brown) ___63

Figure 25 Comparison of average humified organic carbon production (tonnes/ha) under grass with grass incorporated into the soil (green) and grass harvested (yellow) ___64

Figure 26 Humified organic carbon production (tonnes/ha) under cereal with straw incorporated into the soil (top) and straw harvested (bottom) across Europe ___65

Figure 27 Humified organic carbon production (tonnes/ha) under sugar beet with shoots & heads incorporated into the soil (top) and shoots & heads harvested (bottom) across Europe ___66

Figure 28 Humified organic carbon production (tonnes/ha) under oilseed with straw incorporated into the soil (top) and straw harvested (bottom) across Europe ___67

Figure 29 Humified organic carbon production (tonnes/ha) with grass ploughing (top) and grass harvesting (bottom) across Europe ___68

Figure 30 Humified organic carbon (tonnes/ha) under cereal production for different scenarios of residue management (0%, 10%, 30%, 50% and 100% of straw removed; 0% removed equals all residues incorporated into the soil) __70

Figure 31 Humified organic carbon (tonnes/ha) under sugar beet production for different scenarios of residue management (0%, 10%, 30%, 50% and 100% of shoots & heads removed; 0% removed equals all residues incorporated into the soil) __70

Figure 32 Humified organic carbon (tonnes/ha) under oilseed production for different scenarios of residue management (0%, 10%, 30%, 50% and 100% of straw removed; 0% removed equals all residues incorporated into the soil) __70

Figure 33 Distribution of humified organic carbon (HOC tonnes/ha) across EU-27 under cereal production with different levels of residue management ________71

Figure 34 Distribution of humified organic carbon (tonnes/ha) across EU-27 under grass with harvest in 2000 (left) and 2030 (right) ____________________________72
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Distribution of humified organic carbon (tonnes/ha) across EU-27 under grass ploughing in 2000 (left) and in 2030 (right)</td>
<td>72</td>
</tr>
<tr>
<td>36</td>
<td>Regional map of reported compost production from urban areas (2005)</td>
<td>75</td>
</tr>
<tr>
<td>37</td>
<td>Population map of Europe (2005) at NUTS2 level</td>
<td>76</td>
</tr>
<tr>
<td>38</td>
<td>Regional distribution of potential compost production in 2005 for EU-27 based on assumptions by Barth et al. (2008)</td>
<td>76</td>
</tr>
<tr>
<td>39</td>
<td>Humified organic carbon (in kg/ha UAA) from actual and potential Kitchen (K-) and Green (G-) compost in 2005</td>
<td>78</td>
</tr>
<tr>
<td>40</td>
<td>Regional distribution of cattle, sheep and pig livestock units (LU) per ha of UAA</td>
<td>79</td>
</tr>
<tr>
<td>41</td>
<td>Livestock manure applied to agricultural land (N kg/ha)</td>
<td>81</td>
</tr>
<tr>
<td>42</td>
<td>Distribution of humified organic carbon from livestock manure applied to agricultural areas (C tonnes/ha)</td>
<td>82</td>
</tr>
<tr>
<td>43</td>
<td>Regional map of potential compost production (tonnes/ha) in 2005 (left) and 2030 (right) across EU-27</td>
<td>83</td>
</tr>
<tr>
<td>44</td>
<td>Evolution of potential kitchen compost until 2030 as compared to current actual compost as spread over the Utilised Agricultural Area per Member State</td>
<td>84</td>
</tr>
<tr>
<td>45</td>
<td>Evolution of potential green compost until 2030 as compared to current actual compost as spread over the Utilised Agricultural Area per Member State</td>
<td>84</td>
</tr>
<tr>
<td>46</td>
<td>Humified organic carbon (tonnes C/ha) from projected manure production applied to the UAA per NUTS 2 region (BAU 2030)</td>
<td>85</td>
</tr>
<tr>
<td>47</td>
<td>Humified organic carbon (tonnes C/ha) from 60% of projected manure production applied to the UAA per NUTS 2 region (C-Poor 2030)</td>
<td>85</td>
</tr>
<tr>
<td>48</td>
<td>Comparison of mean humified organic carbon (HOC in tonnes/ha) for different manure management options (Base 2000, BAU 2030, C-Low 2030 and C-Poor 2030) for MS</td>
<td>86</td>
</tr>
<tr>
<td>49</td>
<td>Comparison of mean humified organic carbon (HOC in tonnes/ha) for different kitchen compost management options (Actual 2005, Potential 2005, BAU 2030, C-Medium 2030 and C-Rich 2030) for MS</td>
<td>87</td>
</tr>
<tr>
<td>50</td>
<td>Comparison of mean humified organic carbon (HOC in tonnes/ha) for different green compost management options (Actual 2005, Potential 2005, BAU 2030, C-Medium 2030 and C-Rich 2030) for MS</td>
<td>87</td>
</tr>
<tr>
<td>51</td>
<td>Different available databases for linking forest surface area and biomass production</td>
<td>91</td>
</tr>
<tr>
<td>52</td>
<td>Growing Stock (in m³/ha) of broadleaved forests based on data from UNECE (2000)</td>
<td>92</td>
</tr>
<tr>
<td>53</td>
<td>Growing Stock (in m³/ha) of coniferous forests based on data from UNECE (2000)</td>
<td>93</td>
</tr>
<tr>
<td>54</td>
<td>Felling and removal (in m³/ha) in broadleaved forests based on data from UNECE (2000)</td>
<td>95</td>
</tr>
<tr>
<td>55</td>
<td>Felling and removal (in m³/ha) in coniferous forests based on data from UNECE (2000)</td>
<td>95</td>
</tr>
<tr>
<td>56</td>
<td>Structure of a tree and relation to biomass sources (A Foliage, B Branches, C Top, D Stem, E Trunk & roots, F Fine roots, G Small trees, H Litterfall)</td>
<td>96</td>
</tr>
</tbody>
</table>
List of Figures

Figure 57 Humified Organic Carbon from broadleaved forest (tonnes HOC/ha) per Member State ___98
Figure 58 Distribution of Humified Organic Carbon from broadleaved forest (tonnes HOC/ha)__99
Figure 59 Humified Organic Carbon from coniferous forest (tonnes HOC/ha) per Member State __99
Figure 60 Distribution of Humified Organic Carbon from coniferous forest (tonnes HOC/ha)__100
Figure 61 Contribution of forest residue to Humified Organic Carbon (tonnes/ha) in coniferous forest across Europe according to different scenarios __________101
Figure 62 Contribution of forest residue to Humified Organic Carbon (tonnes/ha) in broadleaved forest across Europe according to different scenarios _______102
Figure 63 Distribution of humified organic carbon (tonnes/ha) across EU-27 under coniferous forest with different levels of forest residue management__103
Figure 64 Distribution of humified organic carbon (tonnes/ha) across EU-27 under broadleaved forest with different levels of forest residue management 104
Figure 65 Relative cover (%) of peat and peat-topped soils in the Soil Mapping Units (SMUs) of the European Soil Database ___________________________107
Figure 66 Relative contribution of peatland areas in the EU Member States to the total EU-27 peatland area ________________________________108
Figure 67 Mean topsoil organic carbon content (%) for inland wetland areas___109
Figure 68 Land use on peat soils in EU-27 for those countries having more than 1400 ha peatland, inset ______________________________________110
Figure 69 Relative contribution of different land uses on peat soils to the peatland GHG emission budget for EU-27 and for 10 selected countries with considerable peatland areas __115
Figure 70 Annual carbon emission (i.e. CO2 and CH4) as % of estimated peatland C stock with and without current rates of peat extraction (unit is %/yr) – BASE 2000 (estimated C stock is the total soil carbon stock in peatland areas)117
Figure 71 Relative increase of carbon emissions due resulting from the BAU 2030 peatland conservation scenario (continued trend in historical conversion rates) ___118
Figure 72 Relative increase of carbon emissions due resulting from the C-Medium 2030 peatland conservation scenario (50% reduction in historical conversion rates) ___118
Figure 73 Relative decrease of carbon emissions due to different rates of peatland restoration ___119
Figure 74 SOC stock changes (in tonnes/ha) due to land use conversions in a C-poor scenario ___122
Figure 75 SOC stock changes (in tonnes/ha) due to land use conversions in a C-rich scenario ___122
Figure 76 SOC stock changes (in tonnes/ha) due to land use conversions to and from agricultural land, i.e. UAA to forest, arable-grassland conversions and set-aside ___123
Figure 77 Flux of Humidified Organic Carbon (tonnes per ha) into the soil from grass, oilseed, cereal and sugar beet residues based on BAU 2030, C-Low, C-Poor ___124
and C-Worst Case scenarios at the EU-27 level (In Base 2000 all residues remain on the field, whereas in C-worst all residues are removed from the field)__124

Figure 78 Humidified Organic Content in tonnes per ha from the application of kitchen compost, green compost and livestock manure based on Base 2000, C-Poor 2030, C-Low 2030, BAU 2030, C-Medium and C-Rich scenarios at the EU-27 level ______________________________125

Figure 79 Flux of Humidified Organic Content in tonnes per ha from broadleaved and conifer forest residues to the soil based on Base 2000, C-Rich 2030, BAU 2030, C-Low, C-Poor and C-Worst Case 2030 scenarios at the EU-27 level ___127

Figure 80 Carbon fluxes from the soil in tonnes per ha per year from peatlands during Base 2000, C-Poor 2030, C-Low 2030, BAU 2030, C-Rich 2030, and 50% and 100% restoration scenarios at the EU-27 level (Positive values are gains, negative values are losses) __129

Figure 81 Screenshot of the LUMOCAP PSS__145

Figure 82 The LUMOCAP system diagram __146
List of Tables

Table 1
C:N of common soil amendments and manure types
Table 2
SOC content in soils as related to soil function
Table 3
Global estimates of land area, net primary productivity (NPP), and carbon stocks in living plants and soil organic matter for ecosystems of the world (Amthor et al. 1998)
Table 4
Data sets used to calculate fluxes of organic matter to and from the soil
Table 5
Scenarios to assess the effect of selected environmental policy and resource management issues and options on soil organic matter levels in the EU to the 2030 horizon
Table 6
Grassland area (ha) in the Member States for the baseline year (BASE 2000), for the scenario maintaining the current rules for the GAEC permanent pastures (BAU 2030), and for the scenario abandoning the current rules for the GAEC permanent pastures (C-Poor 2030)
Table 7
Set-aside area (ha) per Member State (EU-15) in 2000
Table 8
Surface area in 1000 ha of forest and other woodland (FOWL), of which forest and protected forest, and percentages of broadleaved, coniferous and mixed forest (source data: UNECE, 2000; CLC; COSTE4)
Table 9
Change in forest area (based on UNFCCC reporting) for the period 1990 to 2007
Table 10
Forest areas and forest area changes per Member State for BASE 2000, BAU 2030 and C-Rich 2030
Table 11
Average crop parameters for organic matter production on agricultural land
Table 12
Reported and calculated potential compost production (tonnes/year) in 2005 across EU-27
Table 13
Mean nitrogen content coefficients, carbon to nitrogen ratios and humification coefficients different livestock categories for EU-27 based on OECD data (2004)
Table 14
Percentage change in livestock population between 2000 and 2030 based on LUMOCAP projections
Table 15
Turn-over rate, mass fractions, decomposition and humification rates for each compartment and for coniferous (CON) and broadleaved (BL) forest as used in REGSOM
Table 16
Proportions of tree components to standing volume (adapted from Eggers, 2002; Marklund, 1988)
Table 17
Contribution of woody residue (stemwood, branches and stump) to humified organic carbon into the soil and decline due to residue harvesting. Figures in italic show ranges based on Member State values. Baseline is in 2000, all scenarios are in 2030
Table 18
Estimates of European carbon storage in peatlands. Rough carbon storage estimates for the entire Russian and Canadian peatlands included for comparison
Table 19	Carbon loss (in million tonnes per year and in tonnes per ha per year) in peat soils under agricultural land use; surface areas are based on Byrne et al. (2004)	111
Table 20	Average emission factors (kg C or N.ha^-1.yr^-1) based on measured fluxes from European bogs and fens under different land uses	113
Table 21	Peatland carbon and GHG balance and relative contribution of the national peatland GHG budget to the total GHG emissions per Member State	116
Table 22	Summary information concerning the selected case studies	133
List of Boxes

Box 1 Organic carbon stock in a soil layer ________________________________ 5
Box 2 Important terminology related to soil organic matter ________________ 9
Box 3 Nitrogen in organic matter ______________________________________ 12
Box 4 Effective organic matter __ 14
Box 5 Carbon in peat soils ___ 16
Box 6 Key messages __ 23
Box 7 Important biomass production definitions from forest inventories (as reported in UNFCCC, FAO, UNECE, 2000) ________________________ 94
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU</td>
<td>Business as usual</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CFI</td>
<td>Carbon Financial Instruments</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>CCX</td>
<td>Chicago Climate Exchange</td>
</tr>
<tr>
<td>CRU</td>
<td>Climate Research Unit</td>
</tr>
<tr>
<td>CAP</td>
<td>Common Agricultural Policy</td>
</tr>
<tr>
<td>CLC</td>
<td>Corine Land Cover</td>
</tr>
<tr>
<td>DG ENV</td>
<td>Directorate General Environment</td>
</tr>
<tr>
<td>DG JRC</td>
<td>Directorate General Joint Research Centre</td>
</tr>
<tr>
<td>DOM</td>
<td>Dissolved organic matter</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>EFISCEN</td>
<td>European Forest Information Scenario Database</td>
</tr>
<tr>
<td>EFSOS</td>
<td>European Forest Sector Outlook Study</td>
</tr>
<tr>
<td>EOC</td>
<td>Effective Organic Carbon</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FSS</td>
<td>Farm Structure Survey</td>
</tr>
<tr>
<td>FC</td>
<td>Field Capacity</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organisation</td>
</tr>
<tr>
<td>FAO-FRA</td>
<td>Food and Agricultural Organisation</td>
</tr>
<tr>
<td>FOWL</td>
<td>Forest and other woodland areas</td>
</tr>
<tr>
<td>FAWS</td>
<td>Forest areas available for wood supply</td>
</tr>
<tr>
<td>FSCC</td>
<td>Forest Soil Co-ordinating Centre</td>
</tr>
<tr>
<td>GAEC</td>
<td>Good Agricultural and Environmental Conditions</td>
</tr>
<tr>
<td>GHG</td>
<td>Green house gas</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HOM</td>
<td>Humus organic matter</td>
</tr>
<tr>
<td>IOM</td>
<td>Inert organic matter</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogrammes</td>
</tr>
<tr>
<td>MIP</td>
<td>Maximum input potential</td>
</tr>
<tr>
<td>Mha</td>
<td>Million hectares</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tons</td>
</tr>
<tr>
<td>NVZ</td>
<td>Nitrates vulnerable zones</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NAI</td>
<td>Net annual increment</td>
</tr>
<tr>
<td>NUTS</td>
<td>Nomenclature of Units for Territorial Statistics</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>POM</td>
<td>Particulate organic matter</td>
</tr>
<tr>
<td>PWP</td>
<td>Permanent wilting point</td>
</tr>
<tr>
<td>SOC</td>
<td>Soil organic carbon</td>
</tr>
<tr>
<td>SOM</td>
<td>Soil Organic Matter</td>
</tr>
<tr>
<td>S</td>
<td>Sulphur</td>
</tr>
<tr>
<td>T</td>
<td>Tons</td>
</tr>
<tr>
<td>UAA</td>
<td>Utilised agricultural area</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>VFG</td>
<td>Vegetable, fruit and garden</td>
</tr>
<tr>
<td>WHC</td>
<td>Water holding capacity</td>
</tr>
</tbody>
</table>