GPP Criteria for Waste Water Infrastructure
Technical Background Report
This technical background report accompanies the GPP criteria for waste water infrastructure and has been

PREPARED BY
COWI A/S

COMMISSIONED BY
European Commission – DG Regional and Urban Policy
under the supervision of Mikel Landabaso – Head of unit,
assisted by Mathieu Fichter – Team Leader of "Sustainable Growth" Team

ACKNOWLEDGMENTS
The authors of this report would also like to thank for their support representatives of DG Environment, in particular Mr Robert Kaukewitsch and Mr Jose Martin Rizo.

DISCLAIMER
The European Commission accepts no responsibility or liability whatsoever with regard to the information presented in this document.
Contents

1 Introduction ... 10
 1.1 Background .. 10
 1.2 GPP criteria for waste water infrastructure ... 10
 1.3 Present waste water handling in EU ... 11
 1.4 This report ... 12

2 Relevant European Environmental Policy and Legislation 14
 2.1 Introduction .. 14
 2.2 Legal Framework .. 14
 2.3 GPP in EU policy .. 15
 2.4 Description of GPP relevant legislation for waste water infrastructure 15
 2.4.1 Key environmental impacts and how to deal with them .. 15
 2.4.2 Waste water discharge and sludge reuse ... 16
 2.4.3 Development of waste water infrastructure ... 16
 2.4.4 Operation of waste water infrastructure ... 16
 2.5 The various contract types .. 16
 2.6 EU Public procurement directives ... 17
 2.7 EU environmental principles and regulation ... 20
 2.7.1 Horizontal regulation .. 21
 2.7.2 Water specific regulation .. 23
 2.7.3 Waste, energy-saving and other areas of relevance ... 30
 2.8 GPP relevant criteria for waste water infrastructure projects 32

3 Waste Water Technologies .. 37
 3.1 Sewerage systems ... 37
 3.1.1 Combined and separate sewer systems ... 37
 3.2 Waste water and Sludge Treatment Technologies .. 39
 3.2.1 Typical waste water treatment plant configuration ... 39
 3.2.2 Extended aerated activated sludge plant .. 44
 3.2.3 Submerged Biological Filter .. 44
 3.2.4 Sequencing Batch Reactor .. 45
 3.2.5 Membrane bioreactor (MBR) .. 46
 3.2.6 Sludge Digestion .. 46
 3.2.7 Sludge dewatering .. 47
 3.2.8 Sludge Drying .. 48
 3.2.9 Sludge incineration ... 49

4 Procurement methods ... 51
 4.1 Alternative Implementation Contracts .. 51
 4.1.1 Type of contract ... 51
 4.1.2 Selection of contract type ... 52
 4.2 Design Stages .. 54
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>General outline design</td>
<td>54</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Feasibility study</td>
<td>54</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Conceptual design/Clients requirement</td>
<td>54</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Preliminary design</td>
<td>55</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Detailed design (Red Book – Employer’s design)</td>
<td>55</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Working design (Yellow, Silver and Golden Book – Contractor’s design)</td>
<td>55</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Summary</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Definition of scenarios</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Criteria for selection of scenarios</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Description of scenarios</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Key environmental impacts</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>Energy</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>Natural resources and waste</td>
<td>59</td>
</tr>
<tr>
<td>6.3</td>
<td>Harmful substances/priority substances</td>
<td>60</td>
</tr>
<tr>
<td>6.4</td>
<td>Water</td>
<td>60</td>
</tr>
<tr>
<td>6.5</td>
<td>Transport</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Life-cycle costing considerations and methodology</td>
<td>62</td>
</tr>
<tr>
<td>7.1</td>
<td>What is LCC?</td>
<td>62</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Definitions and concepts</td>
<td>62</td>
</tr>
<tr>
<td>7.1.2</td>
<td>How it has been applied so far</td>
<td>66</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Examples in relation to GPP</td>
<td>67</td>
</tr>
<tr>
<td>7.2</td>
<td>Methodological considerations</td>
<td>70</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Issues in relation to the construction phase</td>
<td>70</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Issues in relation to the operation phase</td>
<td>71</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Issues in relation to decommissioning</td>
<td>72</td>
</tr>
<tr>
<td>7.3</td>
<td>Suggested approach</td>
<td>72</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Cost functions for construction and use costs</td>
<td>73</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Assumptions for decommissioning costs</td>
<td>76</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Assumptions for valuation of externalities</td>
<td>76</td>
</tr>
<tr>
<td>7.4</td>
<td>LCC scenario calculations</td>
<td>78</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Financial LLC costs for waste water treatment plants</td>
<td>79</td>
</tr>
<tr>
<td>7.4.2</td>
<td>External LCC costs</td>
<td>81</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Total LCC for the selected scenarios</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to environmental criteria for waste water infrastructure projects</td>
<td>89</td>
</tr>
<tr>
<td>8.1</td>
<td>Process of defining criteria</td>
<td>89</td>
</tr>
<tr>
<td>8.2</td>
<td>Key environmental aspects</td>
<td>90</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Different national calculation methods and standards for energy</td>
<td>90</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Climate zones</td>
<td>91</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Water scarcity</td>
<td>91</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Local/national differences in availability and sustainability of materials used</td>
<td>92</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Local sensitiveness of water bodies</td>
<td>92</td>
</tr>
</tbody>
</table>
Appendices

Appendix A Scenarios

Appendix B GPP Criteria approach for scenarios

Appendix C Information sources
List of abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT</td>
<td>Best Available Technology</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>BREF</td>
<td>BAT reference documents</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost-Benefit Analysis</td>
</tr>
<tr>
<td>CEN</td>
<td>Comité Européen de Normalisation</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>COMMPS</td>
<td>Combined Monitoring-Based and Modelling-Based Priority Setting</td>
</tr>
<tr>
<td>CPR</td>
<td>Construction Product Regulation</td>
</tr>
<tr>
<td>DB</td>
<td>Design/Build</td>
</tr>
<tr>
<td>DBO</td>
<td>Design/Build/Operate</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichloro-diphenyl-trichloroethane</td>
</tr>
<tr>
<td>DEHP</td>
<td>Di(2-ethylhexyl)phthalate</td>
</tr>
<tr>
<td>DS</td>
<td>Dry Solids</td>
</tr>
<tr>
<td>EEA</td>
<td>European Economic Area</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EMAS</td>
<td>Eco-Management and Audit Scheme</td>
</tr>
<tr>
<td>EN</td>
<td>European Standard</td>
</tr>
<tr>
<td>EPD</td>
<td>Environmental Product Declaration</td>
</tr>
<tr>
<td>EQS</td>
<td>Environmental Quality Standards</td>
</tr>
<tr>
<td>ETS</td>
<td>Emission Trading System</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAQ</td>
<td>Frequently Asked Question</td>
</tr>
<tr>
<td>FEASIBLE</td>
<td>Financing for Environmental, Affordable and Strategic Investments that Bring on Large-scale Expenditure</td>
</tr>
<tr>
<td>FIDIC</td>
<td>Federation Internationale des Ingenieurs-Conseils</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gases</td>
</tr>
<tr>
<td>GPA</td>
<td>General Procurement Agreement</td>
</tr>
<tr>
<td>GPP</td>
<td>Green Public Procurement</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>IPPC</td>
<td>Integrated Pollution Prevention and Control</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilo Watt Hours</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LCC</td>
<td>Life cycle cost</td>
</tr>
<tr>
<td>MBR</td>
<td>Membrane bioreactor</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MEAT</td>
<td>Economically advantageous tender</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquid Suspended Solids</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MTBM</td>
<td>Microtunnel Boring Machine</td>
</tr>
<tr>
<td>N/A</td>
<td>Not applicable</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>Nos</td>
<td>Number</td>
</tr>
<tr>
<td>NPV</td>
<td>Net present value</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic hydrocarbons</td>
</tr>
<tr>
<td>PE</td>
<td>Person Equivalent</td>
</tr>
<tr>
<td>PFOS</td>
<td>Perfluorooctane Sulfonic Acid</td>
</tr>
<tr>
<td>RB</td>
<td>River Basin</td>
</tr>
<tr>
<td>RBMP</td>
<td>River Basin Management Plan</td>
</tr>
<tr>
<td>SBR</td>
<td>Sequencing Batch Reactor</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SCC</td>
<td>Social Cost of Carbon</td>
</tr>
<tr>
<td>SEK</td>
<td>Swedish crown</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended Solids</td>
</tr>
<tr>
<td>TBM</td>
<td>Tunnel Boring Machine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UWWT</td>
<td>Urban Waste Water Treatment</td>
</tr>
<tr>
<td>UWWTD</td>
<td>Urban Waste Water Treatment Directive</td>
</tr>
<tr>
<td>WFD</td>
<td>Water Framework Directive</td>
</tr>
<tr>
<td>WLC</td>
<td>Whole Life Costs</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organisation</td>
</tr>
<tr>
<td>WWTP</td>
<td>Waste water Treatment Plant</td>
</tr>
</tbody>
</table>
List of Tables

Table 2-1: Environmental Quality standards (EQS) for the 33 priority substances covered by Directive 2008/105/EC (daughter directive of the WFD). 27
Table 2-2: Discharge requirements 29
Table 2-3: Additional requirements for discharge to sensitive areas 30
Table 2-4: Basic Sludge Requirements 31
Table 2-5: Categories of requirements that must be covered by GPP criteria for waste water infrastructure projects 33
Table 3-1: Comparison of different sludge dewatering methods 47
Table 5-1: Waste water infrastructure scenarios 56
Table 7-1: Comparison of assessment concepts 62
Table 7-2: Key results from the assessment of the Thames tideway project 67
Table 7-3: Cost functions for operational costs 74
Table 7-4: Construction and operation cost assumptions 78
Table 7-5: Construction and operation cost assumptions 79
Table 7-6: Calculation of operational costs for LCC 79
Table 7-7: Financial LCC estimates for scenario 6-8 - NPV in million EUR (2011 price level) 80
Table 7-8: Material content in the waste water treatment plant kg per PE 80
Table 7-9: Climate change costs related to embedded energy in materials for scenario 6 81
Table 7-10: Climate change costs related to embedded energy in materials in EUR 81
Table 7-11: Outlet concentrations in mg/l of N and P by scenario 82
Table 7-12: External costs of discharge of N and P in EUR per year 83
Table 7-13: External costs of electricity consumption during use - costs of GHG emissions in EUR per year 83
Table 7-14: Discharge of heavy metals 83
Table 7-15: Discharge of heavy metals 84
Table 7-16: External LCC estimates for scenario 6 to 8 - NPV in MEUR (2011 price level) 84
Table 7-17: LCC example - Scenario 6 85
Table 7-18: LCC estimations for Scenario 6, 7 and 8 85
Table 9-1: Approach for developing the GPP criteria for waste water infrastructure 93
Table 9-2: Emission levels ranges associated with the use of BAT 103
List of Figures

Figure 7-1: ISO definition of whole life costs and lifecycle costs 62
Figure 7-2: Lifecycle cost elements 64
Figure 7-3: Lifecycle costing and project planning stages 65
Figure 7-4: Value improvement potential from LCC at different project cycle stages 66
Figure 7-5: Replacement value function for waste water collection networks 73
Figure 7-6: Investment expenditure functions for waste water treatment 74
Figure 7-7: Unit costs for air pollutants 77
Figure 8-1: Process for developing GPP criteria for waste water infrastructure 89
1 Introduction

1.1 Background

Green Public Procurement (GPP) is defined in the Communication (COM (2008) 400) “Public procurement for a better environment” as "a process whereby public authorities seek to procure goods, services and works with a reduced environmental impact throughout their life cycle when compared to goods, services and works with the same primary function that would otherwise be procured."

Green purchasing is also about influencing the market. By promoting and using GPP, public authorities can provide industry with real incentives for developing green technologies and products. In some sectors, contracting authorities command a large share of the market (e.g. public transport and construction, health services and education) and so their decisions have considerable impact.

GPP is a voluntary instrument, which means that Member States and public authorities can determine the extent to which they implement it.

Presently, GPP criteria have been developed for 19 products, service groups and works. Additional GPP criteria are being developed. In 2010, a new procedure for developing EU GPP criteria was established to enhance the synergies among policy instruments such as EU GPP and the EU Ecolabel.

Investments in waste water infrastructure are substantial today, and the use of GPP criteria is expected to have a high impact on the greening of infrastructure projects. Therefore, the GPP criteria are important to guide investments in waste water infrastructure in order to align public procurement with the Europe 2020 strategy.

This report presents the Technical Background Report for the GPP Criteria for Waste Water Infrastructure based upon the "shortened procedure". For the purpose of this report waste water infrastructure refers waste water collection systems and waste water treatment. The scope of the accompanying EU GPP criteria includes consultancy services for the design of waste water infrastructure, and both the construction of new facilities and the renovation or maintenance of existing facilities.

1.2 GPP criteria for waste water infrastructure

Objective

The objective of this project “GPP Criteria for Waste Water Infrastructure” is to provide managing authorities, intermediate bodies and implementing agencies with adequate guidance to meet the environmental legal requirements and information about effective technological alternatives, as well as to inform them on best practices through the development of GPP criteria for procurement of waste water infrastructures.
Outputs
The project outputs are:

- This technical background report including:
 - Analysis of proper waste water treatment to fulfil existing regulations
 - Key environmental impacts/contribution to resource efficiency
 - Feasibility analysis of the different waste water infrastructure technologies/scenarios including methodology for Life cycle costing (LCC) and other conditions for implementation

- EU Green Public Procurement criteria, with core and comprehensive criteria for each scenario assessed and type of contract identified.

The GPP criteria for waste water infrastructure works will be developed for:

- Construction/renovation of collecting systems
- Waste water treatment covering different level of treatment methods and technologies incl. treatment of sludge.

1.3 Present waste water handling in EU
In this section, a brief overview of present waste water handling in the EU is given, as this is important for understanding the need for development and implementation of the GPP criteria. The information in this section is mainly based on 6th Commission Summary on the Implementation of the Urban Waste Water Treatment Directive.¹

Implementation of the Urban Waste Water Treatment Directive (described in Section 2.7 of this report) is essential for fulfilment of the water quality standards of the water recipients in the Member States. The objective of the Directive is to protect the water environment from the adverse effects of discharges of urban waste water from settlement areas and some specific industries by requiring the Member States to ensure that such waste water is collected and adequately treated. Full implementation of the Directive is a pre-requisite for meeting the environmental objectives set out in the EU Water Directive.

Waste water collecting systems
In general, waste water collecting systems showed a very high level of compliance in EU-15 and slightly increased compliance for some EU-12 Member States.

¹ EU Commission Staff working Paper of 7.12.2011
² EU-15 refers to Member States which joined the EU before the 2004 enlargement: Austria, Belgium, Denmark, Germany, France, Finland, Greece, Ireland, Italy, Luxemburg, Portugal, Spain, Sweden, The Netherlands and United Kingdom; however it should be noted that, on what regards this Summary, EU-15 does not cover United Kingdom, referring therefore to 14 Member States only
³ EU-12 refers to Member States who acceded to the EU in 2004 and 2007 enlargements: Czech Republic, Cyprus, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, Slovenia, Bulgaria and Romania.
Waste water collecting systems were in place for 99% of the total polluting load of EU-15 and for 65% of the total generated load of EU-12. Most EU-15 Member States had almost fully implemented waste water collecting systems except for Italy and Greece which have 93% and 87% of generated load collected in collecting systems, respectively. For EU-12, Bulgaria, Slovakia and Slovenia had a share between 70 to 80%, all other new Member States have a share of around 80% and Malta 100% of the generated load collected in collecting systems. Only Cyprus and Romania had only around 50% of their load collected in a collecting system.

Waste water treatment
Secondary treatment was in place for 96% of the load for EU-15 and for 48% of the load for EU-12. As the waste water treatment plants in operation cannot always achieve quality standards in line with the Directive's requirements due to for instance inadequate capacity, performance or design etc., only 89% of the total generated load for EU-15 and 39% of the total generated load for EU-12 were reported to work adequately showing compliant monitoring results for secondary and more stringent treatment respectively.

More stringent treatment, i.e. typically nitrogen and/or phosphorus removal, was in place for 89% of the load for EU-15 and for 27% of the generated load for EU-12. Again, the WWTPs in operation cannot always achieve quality standards in line with the Directive's requirements (same reasons as for secondary treatment), 79% of the total generated load for EU-15 and 24% of the total generated load for EU-12 were reported to work adequately.

Need for infrastructure projects
Based on the above data, it is obvious that there is still a large need for new waste water infrastructure projects, especially in some of the EU-12 countries, in order to fulfil the requirement in the UWWTD. The main purpose of procurement of many waste water infrastructure projects will hence be to fulfil the requirements in the Directive.

In addition, there is a large need for upgrading existing facilities. In many Member States (both EU-15 and EU-12 countries) part of the existing waste water collection systems need extensive renovation, and also several waste water treatment plants need renovation and upgrading.

Use of GPP criteria
Implementation of waste water infrastructure projects will have a significant positive environmental impact on the receiving water bodies. The use of GPP criteria for waste water infrastructure should therefore be seen as an opportunity for waste water managing authorities to supplement basic requirements and specifications with additional criteria either to ensure that waste water infrastructure projects are procured and implemented in the most environmentally-friendly way possible, or to give credit to innovative technical solutions that fulfil even stricter waste water effluent values for the treated waste water.

1.4 This report
The present Technical Background Report includes the following items:
• Description of the relevant European environmental policies and legislation in relation to public procurement

• Description of the most relevant and used waste water infrastructure technologies within the EU Member States

• Description of the normal waste water infrastructure procurement methods, type of contract and commonly used design stages, identifying where GPP criteria could fit in

• Key environmental impacts from construction and operation of waste water infrastructure projects

• Definition and description of typical waste water infrastructure project scenarios relevant for demonstration of GPP criteria

• Life-cycle costing considerations and suggested approach for applying LCC in relation to waste water infrastructure projects

• Introduction to environmental criteria for waste water infrastructure projects

• Proposed core and comprehensive GPP criteria for waste water infrastructure projects.

In the GPP Criteria for waste water infrastructure, the core and comprehensive criteria are further specified, including a description of how the criteria can be practically applied in waste water infrastructure projects.
2 Relevant European Environmental Policy and Legislation

2.1 Introduction
This section presents the results of the desk study reviewing the legal framework, EU legislation concerning public procurement and GPP, EU environmental policies and modalities of public contracts for waste water infrastructure and related water specific regulations.

2.2 Legal Framework
The legal framework for public procurement is defined by the provisions of the Treaty on the Functioning of the European Union and by the EU Procurement Directives (Directives 2004/17/EC and 2004/18/EC). The case law of the European Court of Justice establishes the interpretation of these instruments in practice, and a number of interpretative communications have also been issued by the European Commission. From an international perspective, the EU is bound by the conditions of the General Procurement Agreement (GPA) of the World Trade Organisation (WTO).

The above-mentioned framework establishes a number of rules and principles which must be observed in the award of public contracts. Within this framework, environmental objectives can be implemented in a variety of ways.

Sector-specific EU legislation also creates certain mandatory obligations for the procurement of specific goods and services, for example, by setting minimum energy-efficiency standards which must be applied. Mandatory environmental obligations currently apply in the following sectors:

- Office IT equipment - IT products purchased by central government authorities must meet the latest minimum energy efficiency requirements prescribed by the EU Energy Star Regulation (Regulation No 106/2008 on a Community energy-efficiency labelling programme for office equipment)

- Road transport vehicles - all contracting authorities must take into account the operational energy and environmental impacts of vehicles as part of the procurement process. (Directive 2009/33/EC on the promotion of clean and energy-efficient road transport vehicles)

- Buildings - from 2013 at the latest, minimum energy performance requirements will need to be applied in all new build and major renovation projects. From 1 January 2019, all new buildings occupied and owned by public authorities must be “nearly zero-energy buildings” (Directive 2010/31/ EU on the energy performance of buildings).

In addition, some Member States have specific rules which create mandatory GPP standards for particular sectors or types of contracts.

http://ec.europa.eu/environment/gpp/buying_handbook_en.htm
2.3 GPP in EU policy

GPP has been endorsed in a number of EU policies and strategies to reflect its recognised potential to encourage a more sustainable use of natural resources, establish behavioural changes for sustainable consumption and production, and drive innovation. Europe 2020, the EU strategy for smart, sustainable and inclusive growth highlights GPP as one of the measures to achieve such growth.

In 2008, the European Commission adopted a Communication on GPP, which, as part of the Sustainable Production and Consumption Action Plan, introduced a number of measures aimed at supporting GPP implementation across the EU. Its key features are:

EU GPP criteria

To assist contracting authorities in identifying and procuring greener products, services and works, environmental procurement criteria have been developed for 19 product and service groups, which can be directly inserted into tender documents. These GPP criteria are regularly reviewed and updated to take into account the latest scientific product data, new technologies, market developments and changes in legislation.

Helpdesk

The European Commission established a Helpdesk to disseminate information about GPP and to provide answers to stakeholders’ enquiries. Contact details are available on the GPP website at: http://ec.europa.eu/environment/gpp/helpdesk.htm

Monitoring

The European Commission has commissioned several studies aimed at monitoring the implementation of GPP at all governmental levels. The most recent study was published in 2011, and the results can be found on the GPP website: http://ec.europa.eu/environment/gpp/studies_en.htm

Information

The GPP website is a central point for information on the practical and policy aspects of GPP implementation. It provides links to a wide range of resources related to environmental issues as well as local, national and international GPP information. This includes a News-Alert featuring the most recent news and events on GPP, a list of responses to Frequently Asked Questions (FAQs), a glossary of key terms and concepts, studies and training materials. All are available for download from the website: http://ec.europa.eu/environment/gpp

Source: Buying Green - A handbook on green public procurement. EU, 2011./

2.4 Description of GPP relevant legislation for waste water infrastructure

2.4.1 Key environmental impacts and how to deal with them

The establishment and operation of waste water infrastructure triggers various types of environmental impacts. They can initially be divided into two groups. One group includes the intended impacts of the waste water operation as such, namely to improve quality of discharge and ensure sludge reuse. The
other group includes unintended environmental impacts connected with the materials, equipment and physical activities related to construction and operation of infrastructure.

2.4.2 Waste water discharge and sludge reuse
The capacity of a waste water infrastructure facility will need to be sufficient to handle the quantities and qualities of waste water of the geographic area in question and provide adequate treatment. This depends on population density and the general environmental sensitivity of the considered region.

2.4.3 Development of waste water infrastructure
The construction and maintenance or renovation of the infrastructure will generate various “unintended” environmental impacts. These impacts are linked to construction materials used, noise control, waste generation during the construction process, energy consumption, the recycling potential of equipment and other installations included under in construction or renovation process. Quite a few of these impacts are similar to those which apply for buildings in general, so guidance can be found in the GPP criteria concerning construction. The importance of these impacts depends very much on the activities and decisions during the planning phase, when the infrastructure and works process is determined.

2.4.4 Operation of waste water infrastructure
The environmental impacts connected to operation of the infrastructure (besides environmental impact from the discharge of treated waste water, including repairs and other maintenance) include energy consumption, consumption of precipitation chemicals and polymers, waste generation as well as air pollution and generation of odours and noise. Leakages, overflows and similar irregularities will obviously have particularly critical impacts. There are also, in addition to the construction of infrastructure as such, impacts created by vehicles, pumps, measuring instruments and other moveable equipment that are part of the operation.

2.5 The various contract types
The manner of involving the private sector in waste water infrastructures depends very much on prevailing national practices for outsourcing. In some countries, the private sector may be asked to merely construct and repair whereas in others, the approach is to include the private sector in operation, occasionally involving actual transfer of ownership of the infrastructure.

These variations in policies are expressed in the different types of contracts used in the water sector. Contracts may concern only design and construction, together or separately. Other contracts concern management and operation might occur, and, finally, there are more comprehensive contracts where design, works and operation may be contracted as a whole, and the project as such delegated to the private party to execute. The obligation to maintain and repair infrastructure will often be contractually defined as an integrated part of the operational duties. Occasionally, the project may be extended to
include an obligation for the private party to make the necessary investments for the purpose of modernization.

Public-private partnerships are typically distinguished according to the extent to which they cover some or all of the above phases, hence the various abbreviations DB (design/build), DBO (design/build/operate) etc. The contracts may also differ as to the type of benefit that the private party receives. Thus, in the case of separate contracts for design, works or management, the benefit will be in the traditional form of payment of an agreed fee. In the case of a more comprehensive public-private partnership contract, the private party may instead be given the right to exploit the infrastructure and thus recover costs, including investments, through the tariffs charged to the customers. In these cases, the contractual relationship between the parties will often take the form of a concession. In the case of concession with say 30 years duration, the establishment of GPP criteria in the tender documents should be considered carefully, so the GPP criteria can be revised/updated based upon technological and environmental developments.

The different contract types represent different approaches with varying economic and commercial consequences; the relative advantages and disadvantages are subject to debate. However, when it comes to types and design of environmental obligations, none of these distinctions according to contract type or manner of consideration are important. What matters are the activities that the contract covers, and the distinction between planning, construction and operation. For the purpose of providing useful advice, focus should therefore be put on the activities to be included, without complicating matters by introducing further distinctions according to how contracts are habitually categorized and which of these are most frequently used in practice.

Section 4 of this report provides an outline of the FIDIC standard contracts, which are the most commonly used contracts in WWTP projects. These different contracts, more specifically Red Book, Yellow Book, Silver Book and Golden Book contracts address the activity phases described above. The three phases and the corresponding different requirements can be combined according to the structure of the FIDIC contracts or in other ways, including separate contracts for design and operation etc.

2.6 EU Public procurement directives

Public procurement

The public procurement directives (2004/17/EC and 2004/18/EC) set requirements for the manner in which certain public contracts above specified value thresholds must be awarded. The essential requirement is the use of a competitive procedure (tendering) with conditions and processes that are non-discriminatory, proportionate, transparent, verifiable and applied in a consistent manner. The

4 From the perspective of public policy, it is in any case crucial that outsourcing by means of PPP does not result in less emphasis on public policies, including not least environmental protection. Traditional contractual mechanisms for monitoring and sanctions are available to ensure this.
Directives allow the use of various tender procedures ranging from an open procedure through to competitive dialogue, which may be used in the case of particularly complex contracts. For the public sector, use of the negotiated procedure is only possible in exceptional circumstances, whereas in the utility sector (including networks for the production, transport or distribution of drinking water) the negotiated procedure may be used more freely.

The scope of the directives is limited to contracts above certain values because it is assumed to be particularly relevant in the context of economic activities between EU Member States. Concession agreements and other forms of public-private partnership are also not subject to the full application of the directives; however the general Treaty requirements and principles apply.

This broader application means in practice that the EU procurement rules must be considered for all types of public contract for the realisation of waste water infrastructure, whether they cover the design and construction only or also include operation and investment activities must be made subject to competitive procedures based on EU legal principles of equal treatment and transparency. The requirements relate to the advertising of contracts as well as the way in which competition is structured and the formulation of technical specifications, selection and award criteria. The directives explicitly allow environmental considerations to be included at different stages in the procedure, and the various options in this respect are further outlined in Section 2.8 below.

Selection criteria

Selection or qualification criteria determine which operators are eligible to submit a tender. These may either be assessed as part of a two-stage procedure (e.g. the restricted procedure) where a shortlist of tenderers is drawn up, or in an open procedure they act as threshold conditions determining which tenders go through to full evaluation. The directives set out an exhaustive list of the matters which can be examined at selection stage and the evidence which may be required. This means that other matters cannot be used as the basis for excluding operators from the competition. Under the directives selection criteria must concern the financial and economic standing or technical and professional capacity of operators. Furthermore they must be allowed to rely on the capacity of other organisations (e.g. subcontractors or partners in a consortium) in order to meet the criteria. Selection criteria of environmental relevance would for example concern specific environmental management experience and qualifications of staff.

Technical specifications

Technical specifications define the characteristics of the good, service or works being procured and are mandatory requirements which a tender must meet. If tenderers deviate from the specifications in their bids, the effect is that the bid must be rejected as non-responsive. Submission of alternative solutions may be authorised in the form of variants, however the contracting authority must still specify

5 In this connection the directives explicitly refer to the requirements under EU environmental arrangements concerning environmental management and eco-labels. However, to ensure transparency and equal treatment, products that fulfil the requirements under the eco-label without having the label must also be accepted.
its minimum requirements. Technical specifications can be a very effective way of communicating environmental priorities, as all bids will need to meet the requirements in order to be considered for contract award.

In the context of waste water infrastructure, typical specifications to safeguard environmental concerns would include the use of certain eco-friendly materials, requirements for the capacities and efficiency of the infrastructure, requirements regarding the frequency and scope of sampling, and other control procedures and requirements regarding the energy-efficiency and waste management levels of the operation in general. In the case of project–oriented procurement involving design, construction and operation, the technical specifications concerning the construction may be output-based or functional, leaving it open for each tenderer to design his own technical approach. This allows tenderers to choose (and take the risk for) solutions fulfilling the output requirements (including environmental ones) which best suit their operations.

Award criteria
Award criteria provide the basis for evaluating tenders and for identifying the winning bid. This phase of the procurement process involves bids from tenderers that have been evaluated as qualified and whose bids are otherwise compliant with technical specifications as well as the contract terms. The award criteria define the themes for competition, and the directives allow a choice between either lowest price only or the most economically advantageous tender (MEAT). It is in the latter case that environmental aspects become relevant. Use of MEAT allows costs to be assessed on the basis of LCC, either on a purely financial basis or with the inclusion of monetised environmental externalities. Both of these approaches are discussed at length in the GPP criteria document.

The award criteria must relate to the bid and must not be confused with the above qualification criteria, which concern the evaluation of the tenderers’ ability to perform the contract in question. Award criteria can on the other hand include issues that might as well have been used as technical specifications or for that matter contract terms. Award criteria may be formulated as performance requirements where tenderers are invited to commit to higher levels of (for example) waste water treatment efficiency or higher degrees of monitoring. Award criteria could allow tenderers to propose terms that go beyond a minimum that the contract prescribes, for example higher levels of investment or higher/stricter targets for pollution control on site, including reduction of other effects, such as odours.

Contractual terms
As regards contractual terms, there may be a number of points that are fixed in the draft contract which is part of the tender dossier issued by the procuring authority. This would include classical terms concerning liability, compensation etc., and any alternative proposals or reservations on the part of a tenderer will in many cases result in the bid being rejected as non-responsive along the same lines as in the case of technical specifications. Contractual terms of environmental relevance include for example requirements to ensure that eventual household charges are set in accordance with the polluter-pays principles, or a requirement for insurance to cover any environmental liability or
obligations. The operator could also be put under a contractual obligation to regularly report on environmental matters to the procuring entity to enable fulfilment of information obligations in relation to the public.

EU environmental legislation
The nature of various EU environmental legislation of relevance for water infrastructure is further outlined in Section 2.7 below. The procurement directives make reference to some of this legislation, notably the EMAS (Eco-Management and Audit Scheme) and the EU Ecolabel regulation. Both schemes are voluntary, and their inclusion in the directives does not mean that the use of these schemes is made mandatory. The purpose is to ensure transparency and equal usage and to limit the use of purely national schemes as in procurement criteria.

The references to EMAS and the EU Ecolabel in the procurement directives do not exclude the use of other environmental management systems or eco-labels. The procurement directives make quite clear that procuring entities cannot refuse to accept other certificates or, for that matter, environmental management systems or labelling schemes from a tenderer, if such alternatives offer meet the same criteria. This is important for contracting authorities to keep in mind when using these regulations as basis for requirements and criteria.

The role of these regulations in the public procurement process differs. The standards developed on the basis of the EU Ecolabel relate to the various categories of products that the regulation covers. These standards can be used as basis for development of technical specifications or award criteria. The EMAS Regulation concerns the environmental management of overall organisation and production processes. As such, it primarily concerns technical capacity and so should be assessed at the selection stage. However as discussed in Section 2.7 below, there are certain circumstances in which an environmental management system may serve to verify compliance with technical specifications or performance against contract award criteria. In all of these situations alternative forms of evidence must also be considered.

New proposals for a reform of the public procurement directives were tabled just towards the end of 2011. It is too early to say what the new directives will look like once adopted by the Council and the European Parliament. However, a notable new element is the explicit reference to life-cycle costing in the assessment of the most economically advantageous tender. The proposed rules require that the methodology of the cost calculation should be indicated in the tender documents and include other conditions to ensure that all bids in such cases are evaluated on an equal and transparent basis.

2.7 EU environmental principles and regulation
The EU environmental regulation of relevance for the establishment and operation of waste water infrastructures can be roughly divided into horizontal requirements applicable for installations in...
general and more specific requirements related to waste water infrastructure and processes, water quality and emission restrictions. In addition, certain requirements concerning energy efficiency and savings and sewage sludge are relevant for waste water infrastructure as well.

Application of these rules must take into consideration the specific principles of EU environmental policies, namely the precautionary principle, the principle of preventive action, the principle of rectification at source, and the polluter pays principle. These principles are not mere political declarations. They play an important role as guidance in cases where the detailed rules of the directives do not provide the full answer. The precautionary principle would for example speak in favour of design and construction of infrastructure that can easily be upgraded to progressively higher levels of discharge quality even in cases where the risks of increased environmental damage are not entirely certain and thus might be difficult to justify from the point of normal planning and in the context of a local political context. It is also the precautionary principle that can provide guidance, when it comes to choosing between GPP core criteria and GPP comprehensive criteria.

Similarly, rectification at source might in a situation of choice lead a procuring entity to insist on strict emission requirements even when the required quality levels in force, in the environment surrounding the infrastructure, allows some slack.

2.7.1 Horizontal regulation

Environmental Impact Assessment (EIA)

The Environmental Impact Assessment (EIA) Directive (Dir.2001/42) requires environmental assessment of various planned projects, including waste and water infrastructure projects. The assessment must cover all possible impacts of the planned action and consider whether any alternatives would have lesser impacts. The other important requirement of the directive is public consultation and information.

A distinction is made between categories of projects where assessment is mandatory and other categories where an assessment is only required if a significant environmental effect is likely for concrete reasons. Large waste water treatment plants servicing areas with populations beyond a certain size are covered by the first category, whereas other plants are covered by the second category.

The EIA is not made a condition for approval of such projects, but an EIA must have taken place before a project can be approved. The practical effect of this is that the question of EIA becomes relevant at the earliest phases of the planning of a project. For projects where an EIA is not automatically mandatory, the competent national authorities must establish procedures for screening of projects to check for likely environmental effects that would require EIA.

7 The principles are included in Art.191 of the EU Treaty but with the precise definition left to ECJ case law.
It depends on the concrete circumstances of the project to what extent EIA relevant activities are part of the planning and design phase. Such activities should in any case be made subject to separate procurement covering the design phase exclusively. To have EIA activities included as part of a tender for an entire waste water infrastructure project would lay the procurement process open to criticism due to the obvious conflict of interest that the appointed operator would inevitably find itself in.

Industrial emissions
Directive 2010/75 on industrial emissions (formerly integrated pollution prevention and control) includes requirements for national permit systems for large industrial installations and requires individual emission limits to be set in each permit based on best available technology (BAT). On the basis of the directive, a number of BAT reference documents (the so-called BREFs) have been developed for various sectors, including waste treatment in general and certain categories of waste water treatment. The directive does not apply to WWTPs covered by the urban waste water directive, see 2.7.2 below. However, the relevant BREFs would still be useful for formulation of, for example, technical specifications for construction.

Eco-management and audit system (EMAS)
Regulation 1221/2009 concerning an eco-management and audit system (EMAS) establishes a voluntary system open for industrial installations as well as a number of other types of sites for which environmental performance is relevant. The audit concerns sites rather than companies or organisations and requires comprehensive environmental strategies and action plans to be established for each site covering all environmental aspects and with the purpose of continuous improvement of environmental performance. The activities on the site and supporting management systems in the enterprise concerned must be audited, and the enterprise is obliged to issue regular environmental statements that are subject to independent validation. EMAS certification, or any other equivalent certification or other documentation for environmental management, may be used to establish environmental technical capacity at the selection stage, as authorised under Article 48.2 (f) and 50 of Directive 2004/18/EC. Such certification or procedures may also be relevant when assessing compliance with technical specifications, award criteria or contract performance clauses – although at these stages it is the specific proposals for carrying out the contract which are being assessed, rather than general organisational profile or capacity.

Control of major-accident hazards involving dangerous substances
The so called Seveso II Directive (Directive 96/82 on the control of major-accident hazards involving dangerous substances) is aimed at preventing major accidents involving large quantities of dangerous substances and to limit the consequences of such accidents. It requires operators of installations where dangerous chemicals are present, to take various preventive measures, including risk

8 See further section 5.2.4 in "Buying Green. A Handbook on Green Public Procurement" published by the Commission of the European Union.
assessments and emergency plans, and it sets forth relatively detailed rules on inspections by competent authorities.

Environmental liability
Directive 2004/35 on environmental liability is focused on environmental damages and provides for, in principle, strict liability for the polluter. The directive allows room for special national rules as regards, for example, cases where there was no fault or negligence on the polluter’s/operator’s part, and as to whether insurance should be compulsory. Depending on national solutions, the requirements of the directive could be reflected in contractual terms for the operator concerning strict liability for certain environmental damages and/or obligation to take up environmental damage insurance.

EU Ecolabel scheme
Amongst the horizontal measures Regulation 66/2010 on the EU Ecolabel scheme should also be mentioned. The regulation introduces a voluntary common EU label for enterprises to use in their marketing of products. The label can be used for the wide range of products for which Ecolabel criteria exist. This includes some of the equipment and materials to be used during the operation of a waste water infrastructure. The scheme is based on common criteria for each type of product and common assessment/verification procedures. The criteria relate to the important environmental impacts over the life cycle of the product in question and may include for example energy consumption, waste generation and release of hazardous substances. The Ecolabel criteria could be included as requirements in the technical specifications or award criteria for the equipment and materials used by the operator.

2.7.2 Water specific regulation

Water Framework Directive
The Water Framework Directive (WFD) (Dir. 2000/60) requires Member States to embark on a more comprehensive approach to protection of surface waters, groundwater and coastal waters based on river basin districts. The main objectives include reduction of discharges and a complete phasing-out of discharge of certain hazardous substances. In addition to managerial requirements as regards for example river management plans, the directive establishes overall objectives for the various water types.

The Water Framework Directive is especially important for the purpose of waste water treatment, when it comes to the chemical substances.

The European Community and individual Member States have over the years taken many initiatives and introduced various legislative and regulatory instruments to protect the aquatic environment against chemical pollution, many of which are now incorporated in the Water Framework Directive.

[9 For a catalogue of the various products for which the EU Ecolabel is available, see http://ec.europa.eu/ecat/](http://ec.europa.eu/ecat/)
Whereas Council Directive 91/271/EEC concerning urban waste water treatment establishes general requirements for the treatment of urban waste water and sets specific limit values for general waste water constituents and parameters (e.g. COD, BOD$_5$, SS, N and P), it does not directly address the issue of chemical substances occurring not only in industrial effluents, but also in urban sewage as a result of the ubiquitous use of such substances in modern society.

Instead, a number of other directives have been regulating chemical substances in relation to aquatic pollution, in particular Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community and its daughter directives.

However, the introduction of the Water Framework Directive (WFD) (Directive 2000/60/EC) marks a new approach to the protection of the aquatic environment in the European Community by taking the desired quality of the aquatic environment as the starting point, instead of the traditional source/discharge oriented approach applied e.g. in Directives 76/464/EC and 91/271/EEC. This approach implies that, in principle, any emission limit value should be established locally for the specific discharge by taking into consideration the required environmental quality, the size and conditions of the specific water body (not least the water exchange) and possible releases from other pollution sources. From that information, the acceptable substance concentration in the effluent in question is determined.

The WFD also introduced the terms "priority substances" and "priority hazardous substances", which the Member States are obliged to control by "progressively reducing pollution from priority substances and ceasing or phasing out emissions, discharges and losses of priority hazardous substances" (Article 4(a)(iv)).

A main long term environmental objective of the WFD is to achieve "good surface water status" in as many of the Community's surface waters as possible (exemptions possible for "heavily modified water bodies"). With regard to chemical pollutants, the basis for achieving this is that the surface water body has a "good surface water chemical status" meaning that the "concentrations of pollutants do not exceed the environmental quality standards established in Annex IX" to the directive.

Environmental Quality Standards

When the WFD was introduced in 2000, Annex IX only comprised quality standards (limit values) for a few substances, which had been adopted from the daughter directives of Directive 76/464/EEC. In 2001, Decision no. 2455/2001/EC established the first list of 33 priority substances, and in 2008 a daughter directive under the WFD, Directive 2008/105/EC on environmental quality standards in the field of water policy ("The EQS Directive"), entered into force. This directive confirmed 13 of the 33 "priority substances" as "priority hazardous substances" (Annex II) and establishes environmental quality standards (EQS) in "inland surface waters" and "other surface waters" (Annex I) for all 33 priority substances and for eight "other pollutants" from earlier legislation.

In relation to discharges to the aquatic environment, Directive 2008/105/EC requires that the EQS values are complied with in surface water bodies. Member States may designate mixing zones...
adjacent to points of discharge. Their extent should be "restricted to the proximity of the point of discharge" and "proportionate" (Article 4, point 3(a) and (b)). Concentrations of one or more of the priority substances or other pollutants may exceed the relevant EQS within such mixing zones if they "do not affect the compliance of the rest of the body of surface water with those standards".

Recently (31.01.2012), a proposal for a revised EQS directive has been put forward by the European Commission (COM (2011) 876 final). Among other things, the proposal suggests to add 15 new priority substances to the existing list and revise EQS values for a number of the existing substances. Nine of the new substances are pesticides, but the amended list also includes more waste water relevant substances such as e.g. PFOS (perfluorooctane sulphuric acid and its derivatives) and two substances with oestrogenic activity i.e. 14α-ethinylestradiol (synthetic oestrogen) and 17β-estradiol (natural oestrogen).

For the purpose of procurement processes, the availability of facilities and procedures to deal with the substances in question must be a part of the technical requirements for design, construction as well as operation. Award criteria could be designed to allow tenderers to compete on higher levels of facilities/procedures ability to deal with these hazardous substances or with other hazardous substances in addition to the ones presently covered by the directive.

Priority substances under the WFD

The Environmental Quality Standards (EQS) for the 33 priority substances under the WFD and EQS Directive (Annex I) are listed below in Table 2-1 (direct copy of Annex I to the EQS Directive). It is noted that the proposal for a revised EQS Directive (see above) also includes changes in EQS values for a number of the existing Annex I substances.

As appears from the table, two types of EQS are developed; and annual average value (AA-EQS) and a maximum allowable concentration (MAC-EQS), the former being relevant for continuous discharges, while the latter refers to releases occurring only occasionally and with short duration. For some substances, a short term EQS has not been defined.

Further, two sets of EQS, for "inland surface waters" and "other surface waters" (estuaries, coastal and marine waters) respectively, have been established for some substances due to observed or potential higher variation in sensitivity among organisms in the marine environment than among freshwater organisms. That is, the inland surface waters EQS are either higher or identical with the EQS for other surface waters.

It is also noted that a substantial number (12) of the 33 priority substances and 8 other pollutants are specific pesticides, which are not permitted or at least severely restricted in the EU today and therefore even less relevant to urban waste water treatment plants than pesticides in general.

Obviously, a list of only 33 plus 8 substances is not exhaustive, and the list may also, to some extent, be historically and/or geographically "biased" as the substances were identified and prioritised some years ago using a procedure, the so-called COMMPS procedure (combined monitoring-based and
modelling-based priority-setting), which takes into account the inherent substance properties, information about uses and volumes, and available aquatic monitoring data from throughout Europe to identify substances of EU-wide relevance; there may have been more rapid changes in some Member States than others.

Chemical pollutants are also addressed under the "good ecological status" objective of WFD. These pollutants, generally called "river basin specific pollutants" or "Annex VIII" pollutants, are substances identified by EU Member States as being of national or local concern. Member States derive EQS at national level for these substances and are required to meet them in order to reach good ecological status.
Table 2-1: Environmental Quality standards (EQS) for the 33 priority substances covered by Directive 2008/105/EC (daughter directive of the WFD).

<table>
<thead>
<tr>
<th>No</th>
<th>Name of substance</th>
<th>CAS number (°)</th>
<th>A.A.-EQS (1) (b)</th>
<th>A.A.-EQS (1) (b)</th>
<th>MAC-EQS (5) (b)</th>
<th>MAC-EQS (5) (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Alachlor</td>
<td>15972-60-8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>(2)</td>
<td>Anthracene</td>
<td>120-12-7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(3)</td>
<td>Atazanil</td>
<td>1912-24-9</td>
<td>0.6</td>
<td>0.6</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(4)</td>
<td>Benzene</td>
<td>71-43-2</td>
<td>10</td>
<td>8</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>(5)</td>
<td>Brominated diphenylether (°)</td>
<td>32534-81-9</td>
<td>0.0005</td>
<td>0.0002</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(6)</td>
<td>Cadmium and its compounds (depending on water hardness classes (°))</td>
<td>7440-43-0</td>
<td>≤ 0.08 (Class 1)</td>
<td>0.2</td>
<td>≤ 0.45 (Class 1)</td>
<td>≤ 0.45 (Class 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.08 (Class 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.09 (Class 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15 (Class 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25 (Class 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6a)</td>
<td>Carbon-tetrachloride (°)</td>
<td>56-23-5</td>
<td>12</td>
<td>12</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(7)</td>
<td>C10-13 Chloroalkanes</td>
<td>85535-84-8</td>
<td>0.4</td>
<td>0.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>(8)</td>
<td>Chlorfenvinphos</td>
<td>470-90-6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(9)</td>
<td>Chlorpyrifos (Chlorpyrifos-ethyl)</td>
<td>2921-88-2</td>
<td>0.03</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(9b)</td>
<td>Cyclodiene pesticides:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atezine (°)</td>
<td>309-00-2</td>
<td>0.01</td>
<td>0.01</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td></td>
<td>Dieckin (°)</td>
<td>60-57-1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endrin (°)</td>
<td>72-20-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isocarb (°)</td>
<td>465-73-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9d)</td>
<td>DOT (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>para-DOT (°)</td>
<td>not applicable</td>
<td>0.025</td>
<td>0.025</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td></td>
<td>meta-DOT (°)</td>
<td>not applicable</td>
<td>0.01</td>
<td>0.01</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(10)</td>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
<td>0.10</td>
<td>0.10</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(11)</td>
<td>Dichloromethane</td>
<td>75-09-2</td>
<td>0.2</td>
<td>0.2</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(12)</td>
<td>Dichloro(2-ethylhexyl)phthalate (DEHP)</td>
<td>117-81-7</td>
<td>1.3</td>
<td>1.3</td>
<td>not applicable</td>
<td>not applicable</td>
</tr>
<tr>
<td>(13)</td>
<td>Dioxon</td>
<td>310-54-1</td>
<td>0.2</td>
<td>0.2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>(14)</td>
<td>Endosulfan</td>
<td>115-29-7</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.01</td>
<td>0.004</td>
</tr>
<tr>
<td>(15)</td>
<td>Hexachlorobenzene</td>
<td>206-44-0</td>
<td>0.3</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(16)</td>
<td>Hexachlor-benzene</td>
<td>118-74-1</td>
<td>0.01 (°)</td>
<td>0.01 (°)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(17)</td>
<td>Hexachlor-benzene</td>
<td>87-68-3</td>
<td>0.1 (°)</td>
<td>0.1 (°)</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>(18)</td>
<td>Hexachloro-cyclohexane</td>
<td>608-73-1</td>
<td>0.02</td>
<td>0.002</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Further special directives

There are further special directives concerning groundwater, drinking water, bathing water as well as a directive concerning nitrates in water\(^\text{10}\). These directives essentially lay down various quality standards as opposed to emission restrictions. Only the nitrates directive includes restrictions in emissions by prohibiting use of certain fertilizers in certain vulnerable zones. For the purpose of procurement procedures, the various quality standards can be seen as minimum requirements for the treatment efficiency that waste water infrastructures must comply with. The quality standards might therefore be relevant for technical specifications in the design phase. A certain minimum of control

\(^{10}\) See directives 2006/118, 98/83, 2006/7 and 91/676 respectively
procedures for incoming waste water as well as for the discharges could also be part of the technical specifications as regards operation.

Urban waste water directive

Finally, the Directive 91/271 on urban waste water treatment (UWWT) includes a number of functional requirements aimed specifically at waste water infrastructure.

This directive concerns the collection, treatment and discharge of urban waste water, and the treatment and discharge of waste water from certain industrial sectors. Its aim is to protect the environment from any adverse effects due to discharge of such waste water. The directive adopts the emission limit value approach and thus focuses on the end product of a certain process, i.e. waste water treatment.

In practical terms, it requires establishment of sewage systems within areas with concentrations of population or economic activity above certain levels.

Authorisation is required for both discharge of waste water into such systems and for the operation of waste water treatment plants as such. General secondary (biological) treatment must be introduced and more stringent tertiary treatment must be in place for sensitive areas. There is a general ban on discharge of sludge into waters as well as requirements regarding reuse of sludge. In terms of procurement, the requirements of the directive can be converted into requirements concerning all aspects of design, construction and operation.

Member States are required to identify sensitive and less sensitive areas which receive treated waste water. The level of quality for the effluent, and therefore the treatment to be provided, will have to vary according to the sensitivity of the receiving waters. In general, the more sensitive the recipient waters, the costlier the treatment. Sensitive areas are typically lakes or marine bays threatened by eutrophication.

Basic requirements of the directive are given in the tables below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration</th>
<th>Min. % reduction of influent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD5</td>
<td>25 mg/l O2</td>
<td>70-90%, 40%, in mountains > 1,500 m</td>
</tr>
<tr>
<td>COD</td>
<td>125 mg/l O2</td>
<td>75 %</td>
</tr>
<tr>
<td>Total SS</td>
<td>35 mg/l; for > 10,000 PE 60 mg/l; 2,000-10,000 PE</td>
<td>> 10,000 PE: 90% 2,000-10,000 PE: 70%</td>
</tr>
</tbody>
</table>
The general rule is that secondary treatment is required for all areas except those defined as sensitive areas. For sensitive areas, more advanced treatment with enhanced removal of nutrients must be applied. In certain coastal and marine areas considered less sensitive, primary treatment may be sufficient.

The Directive leaves the choice as regards technologies to decisions at national level.

The UWWT Directive does not contain in itself emission limits for hazardous substances nor for viruses and bacteria. However, the Directive contains a provision allowing Member States to identify sensitive areas where further treatment is prescribed to fulfil other EU legislation. Thus, for instance, disinfection processes may be incorporated to a treatment plant where the quality criteria of the Bathing Water Directive (2006/7/EC) could be affected.

2.7.3 Waste, energy-saving and other areas of relevance

Sewage Sludge Directive

The Sewage Sludge Directive 86/278 concerns use of sludge as fertilizer in agriculture. It defines limits for heavy metal concentrations in sludge as well as for the soil in which it is applied. For procurement purposes, the requirements for sludge can be used as technical specifications or award criteria in connection with obligations on the operator as regards sludge reuse activities.

The Directive specifies that sewage sludge may be used in agriculture, provided that the Member State concerned regulates its use. Sludge must be treated before being used in agriculture, but the Member States may authorise the use of untreated sludge if it is injected or worked into the soil.

The approach adopted is based on maximum limit values. The directive lays down limit values for concentrations of heavy metals in the soil and in sludge, and for the maximum annual quantities of nutrients and heavy metals which may be introduced into the soil. The use of sewage sludge is prohibited if the concentration of one or more heavy metals in the soil exceeds the limit values.

The use of sludge is also prohibited:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration</th>
<th>Min. % reduction of influent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phosphorus</td>
<td>2 mg/l; 10,000 - 100,000 PE 1 mg/l; > 100,000 PE</td>
<td>80%</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>Annual means of 15 mg/l; 10,000 - 100,000 PE</td>
<td>70-80%</td>
</tr>
<tr>
<td></td>
<td>10 mg/l; > 100,000 PE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Or daily averages of 20 mg/l</td>
<td></td>
</tr>
</tbody>
</table>
• On grassland or forage crops if the grassland is to be grazed or the forage crops to be harvested before a certain period of time has elapsed
• On soil in which vegetable and certain fruit crops are growing
• On ground intended for the cultivation of certain fruit and vegetable crops, for a period of ten months preceding and during the harvest.

Basic requirements of the Directive are listed in the table below.

<table>
<thead>
<tr>
<th>Dry matter mg/kg</th>
<th>Metal in soil</th>
<th>Metal in sludge</th>
<th>Added kg/ha/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>1-3</td>
<td>20-40</td>
<td>0.15</td>
</tr>
<tr>
<td>Copper</td>
<td>50-140</td>
<td>1,000-1,750</td>
<td>12</td>
</tr>
<tr>
<td>Nickel</td>
<td>30-75</td>
<td>300-400</td>
<td>3</td>
</tr>
<tr>
<td>Lead</td>
<td>50-300</td>
<td>750-1200</td>
<td>15</td>
</tr>
<tr>
<td>Zinc</td>
<td>150-300</td>
<td>2,500-4,000</td>
<td>30</td>
</tr>
<tr>
<td>Mercury</td>
<td>1-1.5</td>
<td>16-25</td>
<td>0.1</td>
</tr>
</tbody>
</table>

The directive does not require any specific technical infrastructure to be used, though it does specify that the sludge should undergo treatment before being used in agriculture.

The European Commission is currently assessing whether the current sewerage sludge directive should be reviewed – and if so, the extent of this review. The background is that since the Directive was adopted, several Member States have enacted and implemented stricter limit values for heavy metals and set requirements for other contaminants.

Waste water package plants

A CEN standard for waste water package plants has been issued on the basis of the Building Material Directive (repealed by the Construction Products Regulation mentioned below). The standard EN 12566 concerns a number of requirements concerning construction of such plants, some of which are environmentally relevant. However, the standards are only relevant for such plants that are in reality a singular product in the same sense as a septic tank. Such products are of a relatively modest value and impact. They are for these reasons alone not subject to separate procurement procedures and they are therefore not relevant for developing GPP in the present context.

Construction Products Regulation

With the introduction of the Construction Products Regulation (305/2011/EU), standardisation activities (CE labelling) will need to take into account environmental requirements. This is due to the expansion of the basic safety requirements of the Regulation to cover sustainable use of natural resources,
including recyclability, durability, emissions etc. In this context, the relevant technical committee under CEN (TC 350) has been mandated to develop voluntary horizontal standardized methods for the assessment of the sustainability aspects of new and existing construction works and standards for the environmental product declaration of construction products. This work has resulted in EN 15804 concerning the product categories’ rules and frames for developing EPDs.

Energy performance of buildings

Directive 2010/31/EU on the energy performance of buildings is one of the many directives which together with the Construction Products Regulation have been included as basis for the formulation of GPP criteria for construction works. The Commission is currently developing new criteria for office buildings. These GPP criteria could therefore be relevant for buildings that are part of waste water infrastructures, such as buildings for offices and staff facilities.

There are, in addition, other EU Directives with various requirements for energy consumption of vehicles and various other equipment that would be relevant for waste water infrastructures, for example PCs, printers or pumps. These requirements are relevant, especially the energy performance of pumps, lighting, ventilations etc.

2.8 GPP relevant criteria for waste water infrastructure projects

The various considerations under Section 2.3 to 2.7 above lead to the following categories of requirements on the basis of which the actual GPP criteria can be developed. Some of the requirements may not apply to all waste water infrastructure projects, for example very small projects, and the qualification requirements may not need to be at the same level for all projects.
Table 2-5: Categories of requirements that must be covered by GPP criteria for waste water infrastructure projects

<table>
<thead>
<tr>
<th>1. Design</th>
<th>2. Construction/installation</th>
<th>3. Operation and investments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Technical specifications / performance requirements</td>
<td>- The WWTP and sewerage system should be designed so that any existing standard on effluents quality, reuse objectives, and bio solid regulations can be met with reasonable ease and cost.</td>
<td>Operational routines must be specified and include:</td>
</tr>
<tr>
<td></td>
<td>- The WWTP and sewerage system must be designed to allow discharges within the following pollution levels (include emission and quality levels) (i) legally defined and (ii) suitable for the agglomeration in question;</td>
<td>- Performance specifications involving continuous processing of water and sludge fulfilling the relevant environmental quality standards (include best practice as to how much deviation from the performance requirements are allowed before contractual sanctions are triggered);</td>
</tr>
<tr>
<td></td>
<td>- The WWTP and sewerage system must be designed to allow treatment consisting of (include the types of treatments depending on the sensitivity of the geographic areas to be served);</td>
<td>- Normal working routines that include measures to reduce energy consumption and other environmental impacts;</td>
</tr>
<tr>
<td></td>
<td>- The WWTP and sewerage system must be designed to allow sufficient performance under various climatic conditions of relevance for the location, including seasonal variations (include technical standards and solutions that would ensure that the plant and system can deal with normal and extraordinary amounts of waste water);</td>
<td>- Procedures (include any best practices/standards or leave to operator – guiding principle is the precautionary principle) for regular check of buildings/installations/equipment and especially the entire collecting system to prevent leakages, overflows etc.;</td>
</tr>
<tr>
<td></td>
<td>- The WWTP and sewerage system must be designed:</td>
<td>- Procedures (include any best practices/standards or leave to operator - guiding principle is the precautionary principle) for sampling and monitoring WWTP discharge to ensure quality and emission levels according to various water directives [indicate directives] (include concrete levels);</td>
</tr>
<tr>
<td></td>
<td>• limit (to a certain percentage) pollution of receiving waters from storm water overflows via collecting systems under unusual</td>
<td>- Procedures (include any best practices/standards or leave to operator - guiding principle is the precautionary principle) for sampling and monitoring the waste water being captured in the collection system before WWTP to ensure quality and emission levels according to various water directives [indicate directives] (include concrete levels);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Design</td>
<td>2. Construction/installation</td>
<td>3. Operation and investments</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>situations, such as heavy rain; • enable treatment, reuse and safe disposal of sludge (include the normal procedure and the capacities corresponding with the general capacity of the system as a whole; treatment priority is reuse); - Use of LCA tools in the design of WWTP and collection/sewerage system (indicate which specific tools); - The project proposal must include factual information on possible environmental impacts for the purpose of EIA according to directive 85/337, including the impact of alternative designs that have been considered; - The project proposal must include appropriate material concerning the environmental impacts for the purpose of public consultation prior to the approval of the project.</td>
<td>- Procedures for processing, reuse and disposal of sludge according to the specific requirements of the directive and prevailing best practices (include relevant requirements and operational best practices as regards sludge treatment and management); - Procedures for inspections and repairs of the infrastructure in accordance with the precautionary principle; - Tariff policies that comply with the polluter pays principle; - Procedures for keeping any pollution at the sites of the infrastructure below the requirements for the areas in question, including (up front) reduction of any odours stemming from the operation; - Use of low-emission/energy vehicles and other equipment (Eco labels or similar level of standard); - Fulfilment of relevant EMAS or equivalent conditions to obtain positive EMAS audit or similar approval of the site or part thereof. investment policies determined by precautionary principle. A continuous obligation to update infrastructure in tune with best available technology (BAT), including existing BREFs of</td>
<td></td>
</tr>
</tbody>
</table>

11 Further guidance on the scope of EMAS in the case of WWTP operation can be found in the special EMAS toolkit developed by DGENVI. http://ec.europa.eu/environment/emas/toolkit/toolkit_13_4_2.htm
1. Design

<table>
<thead>
<tr>
<th>B. Qualification criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>The architects, engineers etc. must, in addition to appropriate professional qualification, demonstrate experience in designing WWTP infrastructures in accordance with environmental building design (includes in addition to construction GPPs any environmental requirements of relevance for sites in question, including, the nature habitat, emissions from materials used, preferably involving capacities and treatment methods required for the concrete area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Construction/installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Demonstrated technical capacity to design/implement waste water infrastructures by means of references from previous assignments (include requirements to the information that must be included on the reference list).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Operation and investments</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Possession of required permits (include specific requirements) and demonstrated technical capacity to design/implement waste water infrastructures by means of references from previous assignments (include requirements to the information that must be included on the reference list);</td>
</tr>
<tr>
<td>- Demonstrated technical capacity to put in place environmental management measures (include EMAS certificates) to meet the following criteria:</td>
</tr>
<tr>
<td>-- Ensure effective protection of fauna and flora in the infrastructure sites and surroundings (where the areas of the sites are sensitive);</td>
</tr>
<tr>
<td>-- Environmental management measures aimed at minimizing waste generation on the sites and respecting noise regulations;</td>
</tr>
<tr>
<td>-- Measures to ensure energy efficiency.</td>
</tr>
</tbody>
</table>

C. Award criteria

<table>
<thead>
<tr>
<th>1. Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The WWTP and other required infrastructures must be designed to have minimum impact on the site where it is to be placed and maximum flexibility to take into account future technological developments and regulations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Construction/installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Optimal levels of waste water and sludge treatment capacity;</td>
</tr>
<tr>
<td>- Capacity to deal with other hazardous substances in addition to the ones presently covered by the Urban Waste water Directive, e.g. some of the hazardous substances defined under the Water Framework Directive (see Section 6.3)</td>
</tr>
<tr>
<td>- Capacity for improved discharge quality below the required levels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Operation and investments</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Optimal quality of discharged water and/or optimal quality of sludge for reuse;</td>
</tr>
<tr>
<td>- Minimal energy-use/emission from vehicles to be used;</td>
</tr>
<tr>
<td>- Eco labelling or similar standard for all or selected types of equipment or materials used during operation;</td>
</tr>
<tr>
<td>- High targets for pollution control on site;</td>
</tr>
<tr>
<td>- Size of investment programme to embrace technological and regulatory development;</td>
</tr>
</tbody>
</table>
1. Design

Contract terms

- Normal conditions for delivery of services.

2. Construction/installation

Normal environmental conditions for execution of work contracts, including for example waste management on site and use of low-emission and low-energy machinery and transport.

3. Operation and investments

- Accept strict environmental liability.
- Tariff policies must reflect polluter-pays principle;
- Performance monitoring of operator to ensure that he fulfils environmental obligations;
- Operator must, in the course of operation, be obliged to fulfil various information and reporting obligations that follow from EU directives.
- Investment obligations to cover needs for reinvestments arising out of new environmental requirements rather than just wear and tear.
- Environmental liability: Contractual terms requiring compulsory insurance to cover any environmental liability.
3 Waste Water Technologies

This section gives a short description of the waste water infrastructure technologies most commonly used within and outside the EU. It does not include all of the technologies, but covers an absolute majority used in most procured waste water infrastructure projects.

3.1 Sewerage systems

3.1.1 Combined and separate sewer systems

Sewerage systems are normally classified as combined or separate systems. Both systems may comprise pipe network, retention basins and pumping stations.

Combined systems

Sewerage systems may include storm water runoff. Systems designed for handling of storm water are known as combined systems. Combined sewer systems are usually avoided in new developments because precipitation causes widely varying flows, reducing the waste water treatment plant’s efficiency. Combined sewers require much larger and more expensive treatment facilities than separate sanitary sewers. Heavy storm runoff may overload the treatment system, causing insufficient efficiency or overflow. Sanitary sewers are typically much smaller than combined sewers, and they are not designed to transport storm water.

Separate systems

New and modern developments tend to be provided with separate storm drain systems for storm water. As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, oil and grease etc. Sensitive water recipients may require storm water to receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for storm water include retention basins, wetlands, or different filtration technologies.

3.1.2 Construction methods

Sewer construction techniques

Three construction techniques are typically used to build sewers – trenching, micro-tunnelling and large bore tunnelling.

Trenching

Trenching is the oldest sewer construction method. Most old sewers are constructed according to this technique, and it is still used today in new areas when:

- The sewer pipe can be placed at a shallow depth. Deeper sewers that are trenched require complicated digging and forms to prevent collapse of the trench
- The pipe diameter is small – larger pipes require very large trenches which can be expensive and get in the way of neighbourhood activities
• There is room above ground for equipment and operations.

In short, the method requires that the contractor digs a trench, places the pipe in the trench, backfills the trench, and then repaves the street and repairs any other surfaces that were disturbed when digging the trench.

Micro-tunnelling

Micro-tunnelling has become a popular alternative to trenching, especially in high-density neighbourhoods with busy streets and shallow utilities that often conflict with surface digging.

The contractor excavates two pits. A jacking, where the micro-tunnel boring machine (MTBM) is lowered into the ground and creates a tunnel opening while passing excavated earth through the back of the machine. The MTBM is remote controlled and no workers enter the tunnel. The receiving pit is smaller, only large enough to retrieve the MTBM. The excavated soil is temporarily stored until it can be hauled offsite. MTBMs are laser guided for accuracy. Cutting teeth bore through soil until the MTBM reaches the receiving pit. The pipe is then pushed into the tunnel. The tunnel and pits are then backfilled and the surfaced is repaired.

Large bore tunnelling

This method of construction is for very large-diameter pipelines placed under busy urban areas and through challenging geological conditions. Tunnelling gives the ability to align sewers under hills and other areas that would not normally be accessible using trenching or micro-tunnelling techniques.

As in micro-tunnelling, the contractor excavates a shaft and shores up the walls. These shafts are deeper and wider than micro-tunnelled shafts. Workers and the tunnel boring machine (TBM) is lowered to the bottom the shafts. Excavation is similar to micro-tunnelling, but the machine is much larger with digging heads capable of boring large diameter tunnel. A worker rides inside the TBM from where it is controlled. Excavated dirt is conveyed behind the TBM to small, open rail cars that haul the dirt back to the shaft where it is lifted out and hauled away. Concrete liner pipes are used to support the tunnel and prevent collapse. The sewer pipes are then brought into the tunnel and joined together by work crews. The machines are removed, shafts are filled, and ground surfaces are resurfaced.

No-dig technologies repair methods

A brief description of the main no-dig sewer repair technologies are given below.

Cures-in-place liner

Cures-in-place liners are pulled through the old pipe by a winch. The liner is inserted through the main clean-out, so that no digging is required. The liner is then cured which results in a new joint less pipe melded inside the host pipe.

Cures-in-place liners can be made from several materials e.g. polyester, glass fibre and epoxy. The method for curing can be quite different depending on the project and the choice of material for the liner.
The liners are most often cured with hot water, steam or UV.

Pipe bursting
This pipe repair technique requires one pit at each end of the pipe section. The burst head is pulled by a winch and is followed by a polyethylene pipe. As the burst head is pulled through, the old pipe is burst aside into the surrounding soil, and the new pipe replaces it. Pipe bursting can be used to increase the size of the pipe being replaced.

3.2 Waste water and Sludge Treatment Technologies
The most commonly used waste water and sludge treatment and disposal technologies used in the EU Member States include:

Waste water treatment technologies
- Trickling filters
- Activated sludge plant with primary clarifiers
- Extended aeration activated sludge plant
- Sequencing batch reactors
- Expanded bed bio film or fluidised reactor
- Membrane bioreactor
- Stabilisation ponds.

Sludge treatment technologies
- Gravity thickeners
- Mechanical thickeners
- Sludge stabilisation by extended aeration
- Aerobic sludge stabilisation
- Anaerobic sludge stabilisation
- Sludge dewatering
- Sludge drying beds
- Drying
- Incineration
- Co-processing (for instance at cement production).

This section does not give a complete list and description of all waste water and sludge treatment technologies, but gives short a description of the ones most commonly used within the EU Member States.

3.2.1 Typical waste water treatment plant configuration
A typical major waste water treatment plant includes the following treatment units:

- Coarse screens
- Inlet pumping station
- Fine screens
- Grit and grease chambers
- Primary clarifiers
- Activated sludge tanks
- Secondary clarifiers
- Gravity sludge thickener (primary sludge)
- Mechanical sludge thickener (biological sludge)
Below the different technologies are shortly described.

Coarse screens
In order to protect the inlet pumps from large pieces of solids, automatic operated coarse screens are provided upstream of the pumps. The coarse screens are automatic due to the expected high content of solids in the waste water. Screenings are deposited in a container at ground level.

Inlet pumping station
An inlet pumping station lifts the waste water up to the primary treatment facilities.

Primary Treatment
Primary treatment typically involves screening, grit and grease removal and sedimentation and is the process by which about 30 to 50 percent of the suspended solid materials in raw waste water are removed. Typical technologies are:

- Fine screens, including automatic screening compacting in closed systems
- Aerated grit and grease chambers, including sand washing and dewatering
- Primary clarifiers, including raw sludge pumping station.

Screens
The raw waste water is pumped to fine screens, where larger elements such as paper and plastic are retained. The screenings are automatically removed and dumped into a screenings press where compaction takes place before the final disposal in a container. Possible by-pass of the fine screen through a manually raked coarse screen is proposed.

Grit and grease chambers
From the screens, the waste water flows to combine aerated grit and grease chambers. Grit is removed in order to reduce wear and tear of the mechanical installations in the subsequent treatment units, and grease is removed to avoid anaesthetic conditions caused by malodorous floating sludge. Settled grit is dewatered and transported to a container by means of a grit separator. Retained grease is scraped off to a grease collector.

Primary clarifiers
In the primary clarifiers a major part of the suspended solids and organic matter is removed. Clarified waste water is drawn from overflow weirs at the surface, and the settled primary sludge is concentrated at the bottom hopper before withdrawal.

The following removal rates are expected in the primary clarifiers:

- \(\text{BOD}_5 \) 20-30%
- Suspended solids 30-60%
Nitrogen and phosphorus 5-10%.

Secondary and tertiary treatment

Secondary treatment as defined in the UWWD removes dissolved and suspended biological matter including organic matter and tertiary treatment includes nitrogen and phosphorus removal and might involve both biological and chemical processes. Secondary and tertiary treatment is commonly carried out using activated-sludge processes, but other technologies are also used as described in the following sections.

Activated sludge tanks

Primary clarified waste water is led to the activated sludge tank where biological decomposition of organic matter, nitrification, denitrification and biological phosphorous removal takes place by means of micro-organisms (activated sludge) suspended in the waste water.

The biological processes for decomposition of the organic matter and nitrification require supply of considerable amounts of oxygen, and it is important that the activated sludge is fully suspended during the processing period. Oxygen is provided in the form of compressed air or by surface aerators. Start and stop of the blowers or aerators are normally automatically controlled by on line metering of the actual oxygen concentration in the process tanks. During the denitrification process, which takes places under anoxic conditions, nitrate is transformed into nitrogen gas consuming organic matter. The suspension of activated sludge is provided by mixers.

Most waste water treatment plants, with the requirement of removing phosphorus, are designed with chemical precipitation. The chemicals may be added to primary, secondary or tertiary processes or to a combination of these. The most commonly used chemicals for phosphorus precipitation include ferric chloride, ferrous sulphate or aluminium sulphate.

Apart from phosphorus removal by chemical precipitation, the other main method applied is enhanced biological excess phosphorus removal (or bio-P removal), which is a waste water treatment configuration applied to activated sludge systems for the removal of phosphate. The common element in bio-P removal implementations is the presence of an anaerobic tank (nitrate and oxygen are absent) prior to the aeration tank. Under these conditions, a group of bacteria are selectively enriched in the bacterial community within the activated sludge. These bacteria accumulate large quantities of polyphosphate within their cells, and the removal of phosphorus is said to be enhanced.

The biological-chemical processes create new sludge continuously. An equivalent amount of sludge must be removed from the process tank as surplus sludge.

Secondary clarifier

The activated sludge from the process tank is discharged into the secondary clarifiers. In the clarifier, suspended sludge and treated waste water are separated by sedimentation.
Treated waste water is drawn from the surface via overflow weirs, and settled sludge is concentrated in the bottom hoppers. Floating sludge formed in the clarifier is retained in the clarifier and scraped off to a collector for floating sludge.

The concentrated sludge is returned to the process tanks in order to secure a sufficient amount of activated sludge in the process tanks. The return sludge pumping is controlled in correspondence with the influent flow.

Additional treatment

Effluent standards vary depending on the responsible water authority, and for some waste water treatment plants, there could be stricter national or local standards that require additional treatment e.g. for removal of additional nitrogen or phosphorus, pathogens, heavy metals, organic hazardous substances etc.

Additional treatment technologies can, for instance, include the following facilities:

- Sand filtration
- Polishing lagoons
- Disinfection systems, like UV radiation or chlorination
- Membrane filtration and separation
- Activated carbon adsorption.

Sludge treatment

Sludge thickening

For thickening of primary sludge, traditional gravity thickener is often used which can increase the dry solids content of the primary sludge up to approx. 5-6% DS, which is ideal for the design and operation of the following sludge digester.

For thickening of surplus biological sludge, mechanical sludge thickeners can be used which can increase the sludge content to approx. 5-6% DS (compared to traditional thickeners, which gives approx. 3-4% DS for surplus activated sludge). This is a benefit in relation to the design and operation of the sludge digesters. Mechanical thickeners require a consumption of polymer in an amount of approx. 2-3 kg/tonnes dry solids.

Sludge digestion

Thickened primary and surplus activated sludge are pumped to the digesters for anaerobic stabilisation. In the anaerobic digestion process, the organic material, in mixtures of primary settled and biological sludge, is converted biologically to a variety of end products including methane and carbon dioxide.

The most common anaerobic process used for the treatment of sludge is a mesophilic fully mixed digester, where the sludge is heated to approx. 35 °C. The main parameter for anaerobic sludge digestion is the hydraulic retention time; typical design figures are 20-25 days.
As an optional solution for sludge stabilisation aerobic digestion could be considered.

Gas utilisation system
The gas produced in the digesters can be utilised in a combined heat and power plant. The gas drives a gas-engine that runs a power generator. Cooling water from the gas-engine is used for heating and maintains the mesophilic temperatures of the sludge in the digesters.

The produced electricity from the generator covers some 30-50% of the total electric power demand of the waste water treatment plants' total power consumption.

The complete combined heat and power plant includes an emergency cooler system and a co-heating boiler. The emergency cooler is required in case there is no demand for heat from the digesters or other heat consumers. A co-heating plant is required in the situation that the gas produced is insufficient to heat the digester satisfactorily, to start up the digester, and also optional for district heating of selected buildings on the WWTP. The co-heating boiler can be based on either natural gas or light fuel oil.

Sludge dewatering
For mechanical sludge dewatering, three different methods are the most commonly used: centrifuges, belt filter press and plate filter press.

The sludge will be dewatered to a dry solids content of approx. 20-35%DS.

Polymer consumption for the dewatering of the sludge in belt filter press is approximately 5-8 kg active polymer per tonnes dry solids.

Control and automation system
In order to operate the WWTP in a consistent and energy-efficient way, a control and automation system incl. Supervisory Control and Data Acquisition (SCADA) for the WWTP is used.

The SCADA system provides facilities for monitoring of actual and historic process values and status, alarms and operation hours of a selected number of equipment. Moreover, the SCADA system offers the possibility to control selected processes from a central place.

Most equipment is to be locally controlled from a control-panel adjacent to the equipment to be controlled, but monitored by the SCADA system. Other facilities, such as e.g. the aeration system and return sludge pumps, could be centrally controlled via the SCADA system due to the treatment process and the relatively high energy consumption.

3.2.2 Extended aerated activated sludge plant
Instead of having primary sedimentation of the raw waste water in primary clarifiers with the corresponding removal of inlet suspended solids and organic matter, full biological treatment and nitrogen removal can take place in activated sludge tanks and secondary clarifiers. This is typically the situation for small or medium sized treatment plants.
The construction of the process tanks and secondary clarifiers are similar as described in Section 3.2.1. However, the process tanks, aeration equipment, mechanical mixers, blower station etc. need to be increased in sizes and capacities.

The main benefits for this treatment option compared to a configuration with primary sedimentation are:

- More simple operation and less treatment units
- Not necessary to handle primary sludge and therefore reduced risk of odour problems
- Activated sludge can be stabilised in the process tanks.

The main disadvantages are:

- Higher operation costs as there is no recovery of energy from gas production in the digesters.

3.2.3 Submerged Biological Filter

Bio-filters are characterised by bacteria being attached to a solid surface in form of a bio-film. The basic biological processes that take place in a bio-filter are identical to the processes in an activated sludge plant.

The main advantages for bio-filter technology compared to activated sludge are:

- Less footprint
- Biological purification and retention of SS at the same time
- Often fairly quick recovery after a toxic shock.

The main disadvantages compared to activated sludge include:

- Higher construction cost
- More difficult to operate and control
- Risk of clogging (can be avoided by primary sedimentation or precipitation).

Submerged filters are filters where the filter medium is located under the surface of the water. Among many different characteristic designs of filters, the most important characteristic is a stationary or movable filter.

Stationary filter medium

For filters based on stationary filter medium, the thickness of the bio-film and the supply of oxygen to the water are especially important.

In respect of the thickness of the bio-film and problems with clogging, two different approaches can be taken:
1. Filter media with sufficient space and hydraulic conditions, which prevent excessive thicknesses of the film, can be used. With such filter media, it is not possible to obtain a large specific surface area, and these plants take up correspondingly more space.

2. The alternative is to backwash the filter. This is done by applying a high flow of water. In filters containing an immobilised filter medium, the washing effect is reached through the flow of water eroding the bio-film off the material.

In filters for the removal of organic matter to which oxygen must be supplied, the oxygen can be blown in at the bottom of the filter. When the bubbles rise, the water in the filter is oxidised.

Movable filter medium

Plants based on movable filter medium can in principle be divided into three different principles:

- **Expanded filter.** A filter with an up flow through a loose filter medium, typically sand, will have a stationary filter medium as long as the filter medium is not lifted off the pressure gradient from bottom to top. If the pressure in the bottom of the filter equals the weight corresponding to the weight of the filter above, a lifting of the filter medium will occur.

- **Fluidised filter.** If the up-flow in the filter is increased beyond the point where a lifting occurs, the filter medium will expand and for a given rate through the filter, a balance between the up flow rate and the settling velocity of the particles will occur which depends on the density of the particles. The individual particles of the filter medium will be separated from each other and whirled around in the turbulent up-flow. Fluidised filters are the most volumetric efficient biological reactor available. The reactor is, however, not simple to operate.

- **Suspended bio-film reactor.** In the fluidised filter, the filter medium is kept in suspension in the up-flow turbulence. This turbulence can, of course, be established without up-flow and instead by a mechanical mixing. Hence, it is a suspended bio-film reactor. Consequently, the connection to the activated sludge plant has been established. The difference is just that for the aeration tank, an inert carrier is intentionally added to which the bacteria adhere.

3.2.4 Sequencing Batch Reactor

As an alternative to the traditional activated sludge plant with separate process tanks and secondary clarifiers, a plant based on the SBR process could be considered.

The SBR process (Sequencing Batch Reactors) is a fill-and-draw, variable reactor volume technology, developed as one of the first treatment plant types based on the activated sludge concept. Shortly after the initial studies, the emphasis switched to continuous flow "conventional" activated sludge. Further developments with SBR technology were not pursued because of limitations of equipment and engineering experience.

Recent innovations in aeration systems, monitoring and control systems, level meters etc. have revitalised interest in SBR technology, which has led to construction of several waste water treatment plants based on this technology. The plants have mainly been built in the U.S.A, whereas the number of plants in Europe is moderate. In Great Britain and Ireland, SBR tanks are relatively often used.
The SBR consists of a self-contained treatment system incorporating equalisation, aeration, anoxic reaction (if necessary), and clarification within one basin.

The SBR process has some advantages compared to continuous flow systems. For instance, the SBR process is more tolerant to peak flows, as the waste water is always led to an equalisation tank. Furthermore, return sludge or recycling systems are unnecessary and total quiescence during clarification occurs.

On the other hand, the SBR process is somewhat more sophisticated and difficult to operate and control due to the intermitting operation. Furthermore, aeration equipment must be larger since process air must be supplied over a shorter period.

3.2.5 Membrane bioreactor (MBR)
Membrane bioreactor (MBR) technology combines biological-activated sludge process and membrane filtration. MBR has become more popular and accepted in recent years for the treatment of many types of waste waters including municipal waste water. Although MBR capital and operational costs exceed the costs of conventional process, it seems that the upgrade of the conventional process occurs even in cases where the conventional treatment works well.

Membrane separation is carried out either by pressure-driven filtration in side-stream MBRs or with vacuum-driven membranes immersed directly into the bioreactor, which operates in dead-end mode in submerged MBRs. The most common MBR configuration for waste water treatment is the latter one, with immersed membranes, although a side-stream configuration is also possible, with waste water pumped through the membrane module and then returned to the bioreactor.

3.2.6 Sludge Digestion
In the anaerobic digestion process, the organic material in mixtures of primary settled and biological sludge is converted biologically to a variety of end products including methane and carbon dioxide. The process is carried out in an airtight reactor. Sludge, introduced continuously or intermittently, is retained in the reactor for varying periods of time. The stabilised sludge, withdrawn from the reactor, is reduced in organic and pathogen content.

The most common anaerobic process used for the treatment of sludge is a mesophilic fully mixed digester, where the sludge is heated to approx. 35°C. The main parameter for anaerobic sludge digestion is the hydraulic retention time; typical design figures are 20-25 days.

Trends in sludge stabilisation technologies
Sludge has traditionally been stabilised with the main objective of minimising the risk of odours. In addition, a substantial reduction in sludge solids is achieved during the stabilisation process.

In order to accelerate the solids reduction during stabilisation, the use of modified and new stabilisation methods is increasing:
Termophilic anaerobic digestion where the stabilisation takes place at about 55°C (normal mesophilic stabilisation operates at about 30°C) increases the decomposition of sludge and increases gas production.

Thermal hydrolysis in combination with anaerobic digestion further accelerates the decomposition of organic matter in the sludge to more easily degradable substances, thereby increasing gas production and reducing solids content in the subsequent digestion step. The thermal hydrolysis process is operated in a pressure vessel at about 50 bar pressure and a temperature of 200°C.

3.2.7 Sludge dewatering

For mechanical sludge dewatering, three different methods are the most commonly used: centrifuges, belt filter press and plate filter press.

In the table below, obtainable dry solids contents for stabilised combined primary and surplus activated sludge from the different methods are presented. Furthermore, the main advantages and disadvantages are listed.

<table>
<thead>
<tr>
<th>Dewatering Method</th>
<th>DS content with polymer addition</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuges</td>
<td>22 - 30%</td>
<td>Clean appearance, minimal odour problems, fast start up and shut down capabilities, Easy to install, Relatively low capital cost to capacity ratio, Low floor area required for equipment</td>
<td>Scroll wear potentially a high maintenance problem, Skilled maintenance personnel required, Moderately high suspended solids in filtrate, Relatively high energy requirements</td>
</tr>
<tr>
<td>Belt filter press</td>
<td>20 - 25%</td>
<td>Low energy requirements, Relatively low capital and operating costs, Less complex mechanically and easier to maintain</td>
<td>Sensitive to incoming sludge feed characteristics, Automatic operation generally not advised</td>
</tr>
<tr>
<td>Plate filter press</td>
<td>30 - 35%</td>
<td>Highest cake solids concentration, Low suspended solids in filtrate</td>
<td>Batch operation, High capital costs, Labour-intensive, Large floor area required for equipment, Skilled maintenance personnel required</td>
</tr>
</tbody>
</table>
3.2.8 Sludge Drying
During drying of dewatered sludge (20-30% DS) up to 90-95% DS, the sludge undergoes different phases. First, the free water then, the capillary water and finally, the bound water is evaporated.

Sewage sludge dryers can be classified as direct or indirect dryers with open or closed loop. Further, they can be characterised as convective - or as contact dryers.

Direct dryers
The most simple and efficient dryer is a direct dryer with an open loop. In this system, the drying medium, typically flue gas is mixed with the sludge. After the dryer, the gas and sludge is separated, and the gas is, after a cleaning stage, emitted to the atmosphere. A main problem in relation to direct dryers is to avoid odour nuisances.

Typical examples of direct dryers are rotary-drum dryers and belt dryers.

Indirect dryers
In the indirect dryer, the sludge will not come into contact with the heating medium, but will only be in contact with a "hot wall" heated by the heating medium (contact dryer), or a drying gas in a closed loop which also is heated via a heat exchanger (convective dryer). Indirect dryers are much easier to make odourless, as only a very small amount of gasses has to be treated before emission to the atmosphere.

The indirect contact dryer is often used for pre-drying the sludge up to 35-40% DS in connection with incineration of sludge. Typical examples are disc/paddle dryers and thin film dryers. Steam, hot water or thermal oil are the most used heating media.

Energy demand for drying
Before starting drying, the dewatering process should be optimised. Removing water mechanically is still cheaper than using thermal energy. A typical energy demand (as fuel) for drying 1 kg DS from 20% DS to 90% DS is approximately 13 MJ, when a boiler produces the heat.

If digesters are installed at the waste water treatment plant, it will be obvious to utilise energy from the gas production for the drying process. In other cases, a fossil fuel (oil or natural gas) can be burned in a boiler. However, other sources can also come into question, such as surplus energy from industrial processes or the waste heat from a gas engine.

3.2.9 Sludge incineration
With sludge incineration, the water content in the sludge is evaporated and all organic compounds are destroyed leaving only the ash for further utilisation/disposal. In the incineration process, the energy content in the sludge will be utilised.

In the EU Member States, incineration is mainly used where local conditions and/or the sludge quality, with respect to heavy metals or other harmful substances, hamper agricultural use.
Sludge incineration can be carried out either separately (mono-incineration) or in a combination with other types of waste and/or fuels (co-incineration). In many cases, other types of waste produced at the waste water treatment plant like screenings, grit and grease can be co-incinerated.

The dewatered sludge is normally pre-dried before entering the furnace in order to enable auto combustion.

The most common type of furnace nowadays is a fluidised bed type. Formerly, multiple hearth furnaces or rotary ovens were used. However, fluidised bed ovens are generally considered superior both regarding combustion efficiency and environmentally.

A flue gas cleaning must be included in the process. The cleaning will typically be carried out in two or three stages:

- Dust separation
- Main cleaning including residual dust separation and absorption of acidic components
- Polishing stage mainly for adsorption of mercury and dioxins.

The flue gas cleaning can be designed as dry, semidry or wet cleaning. Typically, sodium hydroxide, sodium hydrogen carbonate or lime are used.

After the incineration process the inorganic substances from the sludge will be left in the ash. Further, a minor residue from the flue gas cleaning will be created. In most cases, the ash and the residue from the flue gas cleaning are land filled.

Co-processing

An alternative to the direct sludge incineration could be incineration in production facilities (cement production or similar) in order to valorise the energy and mineral content in the sludge. However, often the net energy potential is limited due to the water content in dewatered sludge. Energy consumption is needed in relation to drying and transportation of sludge to the production unit. Furthermore, investigations have shown that the value of minerals in the sludge in relation to co-processing is very limited, and the technical, environmental and health impact from heavy metals in the sludge is uncertain.
4 Procurement methods

4.1 Alternative Implementation Contracts

4.1.1 Type of contract

The type of contract that is most frequently used within the EU Member States for the implementation of waste water infrastructure projects is the FIDIC type developed by Federation Internationale des Ingenieurs-Conseils, or similar national contract types.

The three relevant types of FIDIC contracts are presented below. They are developed for different purposes; however, they may in principle all be applied for implementation of waste water infrastructure projects.

<table>
<thead>
<tr>
<th>Type of contract</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Yellow book"</td>
<td>Conditions of Contract for Plant and Design-Build</td>
<td>1999</td>
</tr>
</tbody>
</table>

The **Red Book** is applied for building or engineering works designed by the Employer, here, the contracting authority. The Contractor constructs the works in accordance with a detailed design provided by the Employer. However, the works may include elements of contractor-designed civil, mechanical, electrical and/or construction works. Sewer collecting systems are most commonly tendered as Red Book.

In a Red Book contract, the Employer/Consultant will consider the GPP criteria. In the tender, the Contractor will price the detailed design, and not provide his own approach and plant layout.

In this way, the Employer has full control of the type of waste water treatment units and equipment that will be applied. For sewer system projects, a Red Book approach is often used.

The **Yellow Book** is applied for establishing electrical and/or mechanical plants, and for the design and execution of building or engineering works designed by the Contractor in accordance with the Employer's requirements and GPP criteria.

The tendering is typically based on a conceptual design prepared by the Employer, where the main waste water treatment technologies and design parameters are defined by the Employer. In the tender, the Contractor will propose a preliminary design based on the conceptual design provided or
an alternative approach which fulfils the requirements of the Employer. Before execution of the contract, the Contractor will make a detailed design for approval by the Employer.

This procurement process provides the Employer with a high degree, although not full, control and influence on the selection of appropriate treatment technologies, which will be applied and on the plant layout.

The Silver Book is applied for establishing, on a turnkey basis, process plants or infrastructure projects, where (i) a higher degree of certainty of final price and time is required, and (ii) the Contractor assumes total responsibility for the design including choice of technology and execution of the project, with little involvement and influence of the Employer.

The tendering is typically based on performance and quality requirements for the treatment plant - the "end result". The Contractor will propose his own type of plant in the tender which will fulfil the effluent criteria and other performance requirements established by the Employer including the GPP criteria.

The Contractor will prepare the design and construct the plant, which eventually will fulfil the Employer's requirements, fully operational at "the turn of the key". In this process, the Employer has little influence on the actual design of the plant.

The Golden Book is applied for establishing entire process plants or infrastructure projects with design-build obligation and a long-term operation commitment, where (i) a higher degree of certainty of final price and time is required, and (ii) the Contractor assumes total responsibility for the design including choice of technology construction and the long-term operation, with little involvement and influence of the Employer. This form of contract differs from the Silver Book with a supplementary operation agreement as the operation includes a long-term operation period - say 20 years.

The contractor shall design, execute and complete the works and provide operation services in accordance with the contract.

The tendering, as with the Yellow, Silver and Golden Book, are typically based on performance and quality requirements for the treatment plant and the operation. The Contractor will propose its own type of plant in the tender, which will fulfil the effluent criteria and other performance requirements established by the Employer including the GPP criteria, but also optimise the design and construction to minimise the operation cost.

4.1.2 Selection of contract type

Typical criteria for selection of the most appropriate type of contract for the actual waste water infrastructure project are illustrated below. The different types of contract offer different approaches to such important issues as:

1. Responsibility for design of the treatment process and collecting system
Responsibility for the plant layout and the design of structures, mechanical and electrical equipment,

Responsibility for cost overrun during implementation

Control of correct interim payments of the Contractor's work

Distribution of responsibility between Employer and Contractor during construction,

Responsibility of the treatment performance and efficiency

Employer's influence and control of the construction process

Employer's influence and control of the operation.

The compliance with these requirements is assessed for each type of contract in the table below.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Red Book</th>
<th>Yellow Book</th>
<th>Silver Book</th>
<th>Golden Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility for treatment process/collecting system</td>
<td>Employer</td>
<td>Contractor</td>
<td>Contractor</td>
<td>Contractor</td>
</tr>
<tr>
<td>Responsibility for design of plant and structures</td>
<td>Employer</td>
<td>Contractor</td>
<td>Contractor</td>
<td>Contractor</td>
</tr>
<tr>
<td>Responsibility for cost overrun</td>
<td>Employer / Contractor</td>
<td>Contractor</td>
<td>Contractor</td>
<td>Contractor</td>
</tr>
<tr>
<td>Control of interim payments</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Distribution of responsibility during construction</td>
<td>May be difficult</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td>Employer's control of construction process</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Employer's control of operation</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
4.2 Design Stages
The design process of a waste water infrastructure project is often complex and time consuming.

The design process brings together various requirements of the Client (Employer), the many stakeholders, the consultant and/or the Contractor as to the best way to construct the project in reality. The design process can be viewed as acting through a number of logical stages as described below.

4.2.1 General outline design
General outline design is the level at which solutions might be presented in a Master Plan, generally, in discussion with local authorities and operators, knowing the problems and conditions, although not themselves being designers. These are ideas and exchange of mutual experience for solving technical problems, improving level of services from experience of similar solutions and local knowledge.

4.2.2 Feasibility study
At the feasibility study stage, the general outline design idea is further developed to see, if it is feasible. It also examines options to solve the basic problems and makes recommendations to the most optimal solution on technical applications, costs, environmental and not least practical grounds. The feasibility study will be assessed on the details of planning concerning the practical implementation, the site selected, constraints, foreseen difficulties and a number of key success criteria like:

- What are the estimated costs for the project at this stage, to build and operate it?
- The assumptions made for the cash flow and cost benefit analyses?
- Will the project have financial commitment to issue for tender?
- Will the project work, be subject to further and detailed development?
- What are the risks attached to the current “idea”?
- Are there any factors, which will rule out the “idea” completely?
- Any changes compared to the early fact finding and recommendations for project selection, ownership, topographical and engineering surveys, geo-technical and ground surveys, environmental analyses etc.?
- What else needs to be done, to assure the client that project will work, and that the risks are manageable?

4.2.3 Conceptual design/Clients requirement
The conceptual design covers further work to assure the Client that risks are reduced, the costs are more accurate and to provide design-build contractors with sufficient information to understand the proposal and to develop the preliminary design upon which their tender is based.

The information includes overruling information such as legal requirements needed for the construction to commence, land ownership, access to site, existing utilities, public hearing, authorities' approval etc.
The conceptual design takes a first view on Employers (Clients) requirements, and the Contractor designs the project and builds it to his design based on a book of Client’s requirements.

The Employer’s requirements will include a set of specifications, bills of quantities to be completed by the Contractor and a number of conceptual drawings.

The Employer’s requirements will include a.o.:

- The functional requirements, technology, capacity, size, quality of the works sufficiently comprehensive to ensure that they are understood in the same manner by each of the tenderers
- Requirements to the Contractor’s design and design criteria to be used
- Present physical conditions on site or specifications to tenderers, as to which investigations they should carry out as part of their tender and existing permissions. This could include borders of land, site available, access roads, topographic, soil and ground conditions, utilities etc.
- Possible environmental constraints during construction and EIA obtained
- Specification of selected GPP criteria
- Permissions required to be obtained by Employer or Contractor.

4.2.4 Preliminary design
The preliminary design by the Contractor is, in this context, the design of the design-build Contractor at the tender stage. It assesses all the risks, so that these can be priced and covers a number of eventualities. It provides sufficient information to allow the Client to assess and evaluate the tender.

4.2.5 Detailed design (Red Book – Employer’s design)
The detailed design by the Employer/Consultant includes, in this context, the complete detailed design, engineering, drawings and itemized bill of quantity for pricing by the Contractor.

4.2.6 Working design (Yellow, Silver and Golden Book – Contractor’s design)
The working design by the Contractor enables the project to be built and provides all the details necessary combining structural, process, hydraulic, mechanical, electrical plant, foundation, flotation, dynamic, static loads and earthquake and other possible constraints.

4.2.7 Summary
The design criteria must be decided on the basis of a realistic project implementation process for the actual projects and satisfy the Client’s need according to EU Environmental Directives. The GPP criteria are defined based upon the type of tender.
5 Definition of scenarios

5.1 Criteria for selection of scenarios

For demonstration of GPP criteria within waste water infrastructure projects, a number of typical waste water infrastructure project scenarios have been defined.

The scenarios have been selected to cover typical waste water infrastructure projects and commonly used waste water technologies for sewer systems and waste water treatment. The design of waste water treatment plants depends on the local conditions, especially characteristics of receiving waters and the size of the agglomeration which is served by the plant. Therefore, scenarios have, according to the Terms of Reference, been defined to cover at least the following items:

Agglomerations of:

1. Less than 2,000 PE: Agglomerations covered by article 7 of the Urban Waste water Directive, subject to "appropriate treatment" whenever their waste waters are collected.
2. Between 2,000 PE and 10,000 PE: Agglomerations subject to secondary or even lower treatment level based on their discharge into fresh or coastal waters respectively.
3. Between 10,000 PE and 100,000 PE: Agglomerations subject to secondary treatment when discharging into "normal areas", or to more stringent treatment when discharging into sensitive areas, and in this case to certain nitrogen and phosphorus removal requirements, when applicable.
4. Above 100,000 PE. Agglomerations subject to secondary treatment when discharging into "normal areas", or to more stringent treatment when discharging into sensitive areas, and in this case to certain nitrogen and phosphorus removal requirements, when applicable.

When defining the process to establish the level of treatment, all the regulations are involved and especially the requirements established by:

- The Water Framework Directive
- The Directive 91/271/EEC concerning urban waste water treatment
- The Directive 2006/7/EC concerning the management of bathing water quality.

For each of the above mentioned four categories, different technologies have been defined, and the different item units calculated and described.

5.2 Description of scenarios

The following 16 scenarios have been defined and briefly described in Table 5-1 below.

In Appendix A, a more precise description of the different scenarios are given including typical type of contract, level of treatment (assumed effluent standards) and a precise description of the different units and technologies that are included in the scenarios.

In Appendix B approach for selection of GPP criteria for the different scenarios are described.
Table 5-1: Waste water infrastructure scenarios

<table>
<thead>
<tr>
<th>Scenario no.</th>
<th>No. of persons</th>
<th>Type of contract</th>
<th>Type of treatment</th>
<th>UWWTD/ Effluent standards</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10,000</td>
<td>Works contract based on detailed design</td>
<td>None</td>
<td>NA</td>
<td>Minor sewer network extension and rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>120,000</td>
<td>Works contract based on detailed design</td>
<td>None</td>
<td>NA</td>
<td>Major sewer network extension and rehabilitation project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>1,500</td>
<td>Design-Build contract</td>
<td>Basic secondary treatment</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l</td>
<td>New minor waste water treatment plant (activated sludge)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>1,500</td>
<td>Design-Build contract</td>
<td>Basic secondary treatment</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l</td>
<td>New minor waste water treatment plant (low tech - ponds)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>8,000</td>
<td>Design-Build contract</td>
<td>Basic secondary treatment</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge stabilisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>50,000</td>
<td>Design-Build contract</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.5 mg/l</td>
<td>New major WWTP (extended aeration)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>50,000</td>
<td>Design-Build contract</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.5 mg/l</td>
<td>New major WWTP (primary clarifiers, digesters and gas utilisation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>50,000</td>
<td>Design-Build contract</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.5 mg/l</td>
<td>New major WWTP (MBR technology)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>150,000</td>
<td>Design-Build contract</td>
<td>Nitrogen and phosphorus removal Removal of pathogens</td>
<td>According to UWWD + disinfection: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.0 mg/l Total e-coli < 1000 nos /100 ml</td>
<td>New major WWTP (incl. demands for disinfection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>150,000</td>
<td>Design-Build contract</td>
<td>Nitrogen and phosphorus removal Removal of pathogens</td>
<td>According to UWWD + disinfection: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.0 mg/l Total e-coli < 1000 nos /100 ml</td>
<td>New major WWTP (incl. sea outfall)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario no.</td>
<td>No. of persons</td>
<td>Type of contract</td>
<td>Type of treatment</td>
<td>Effluent standards</td>
<td>Short description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>11.</td>
<td>300,000</td>
<td>Design-Build-Operate contract (20 years operation) FIDIC Golden Book</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.0 mg/l</td>
<td>New large WWTP</td>
</tr>
<tr>
<td>12.</td>
<td>80,000</td>
<td>Works contract based on detailed design FIDIC Red Book</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.5 mg/l</td>
<td>Extension and renovation of existing waste water treatment plant</td>
</tr>
<tr>
<td>13.</td>
<td>300,000</td>
<td>Design-Build-Operate contract (20 years operation) FIDIC Golden Book</td>
<td>Sludge stabilisation</td>
<td>NA</td>
<td>Sludge digester and gas utilisation plant</td>
</tr>
<tr>
<td>14.</td>
<td>300,000</td>
<td>Design-Build-Operate contract (20 years operation) FIDIC Golden Book</td>
<td>Sludge drying and incineration</td>
<td>NA</td>
<td>Sludge drying and incineration plant</td>
</tr>
<tr>
<td>15.</td>
<td>10,000</td>
<td>Works contract based on detailed design / functional demands FIDIC Red and Yellow Book</td>
<td>Basic secondary treatment</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l</td>
<td>Sewer and waste water treatment project (minor town)</td>
</tr>
<tr>
<td>16.</td>
<td>80,000</td>
<td>Works contract based on detailed design / functional demands FIDIC Red and Yellow Book</td>
<td>Nitrogen and phosphorus removal</td>
<td>According to UWWD: COD < 75 mg/l; BOD < 25 mg/l Total N < 10 mg/l; Total P < 1.5 mg/l</td>
<td>Sewer and waste water treatment project (major town)</td>
</tr>
</tbody>
</table>
6 Key environmental impacts

The key role of waste water infrastructure is to reduce the environmental impacts from other activities in society. Legislation ensures that the extent of waste water and sludge treatment is increased and that minimum treatment levels are obtained. Waste water and sludge treatment contributes positively by reducing the overall impact from human activities in the receiving water.

When focus is directed to the waste water treatment plants, life-cycle assessments indicate that the most important potential environmental impacts derive from the emission of effluents from the plants to receiving water bodies. The most affected environmental elements would be the hazardous substances covered by Directive 2008/105/EC (daughter directive of the WFD) and the eutrophication in the recipient waters. Based on this knowledge, emphasis is put on the presence of hazardous substances and nutrients in the following sections.

To maintain adherence and recognisability to other technical background reports on green public procurement, energy, natural resources and waste are also described in the following sections.

6.1 Energy

Energy is very often used as a measuring parameter for environmental and economical achievement because energy influences the operating costs and causes various environmental impacts. This is especially the case when the system is dominated by an operation phase with high energy consumption during the full lifecycle.

Often energy consumption is linked with emission of green house gasses which causes global warming. Based on the knowledge of green house gasses as the most important parameter from energy consumption, the measuring parameter for global warming potential is appointed through data on energy consumption.

As the energy consumption during the operation phase is continuously reduced due to energy efficient ventilation, machines, pumps etc., the energy consumption during production of materials etc. gains increased importance.

Thus focus must be put on the embedded energy and the energy during the operation phase, to incorporate the two most significant energy consuming phases of waste water infrastructure projects. Presently, there are models and databases available to perform these assessments e.g. by using LCA on construction materials.

6.2 Natural resources and waste

Increasing focus is directed on the use of non renewable resources, as it is recognised that intervention is needed.
It is recognised that maintaining the current use of resources is not an option. /Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Roadmap to a resource efficient Europe. 2009/.

Resource scarcity is increasing and is also denominated as the "the ticking bomb". As many scarce materials are used for construction of waste water infrastructure and fossil fuels for the operation phase, resource scarcity is a significant subject to consider.

6.3 Harmful substances/priority substances
Urban waste water is known to contain a wide range and considerable number of organic and inorganic chemical substances in varying concentrations, depending on the number and types of possible specific pollution sources in the catchment to a waste water treatment plant. Many of these substances are known or suspected to be harmful to the (aquatic) environment. It could be considered to use the waste water treatment plant to remove or minimised these substances before the effluent is discharged to surface water bodies.

In addition, construction and operation of sewers and WWTPs are the cause of use and emission of harmful substances which affects humans and the environment. Examples are the use of substances to disinfect the effluents or the use of building materials containing heavy metals, flame retardants etc. These emissions can occur during extraction of raw materials, production and use. For some of the construction materials, the substances are embedded in the materials and are only emitted after use - thus, in disposal of the materials.

The concerns about chemical contamination of the aquatic environment in the European Community are addressed through the Water Framework Directive (Directive 2000/60/EC) and more specifically through Directive 2008/105/EC on environmental quality standards in the field of water policy. The latter Directive establishes at present standards for 33 priority (hazardous) substances in the surface waters of the Community, which must be complied with at the border of a mixing zone of limited size (depending on the specific local conditions). Another 15 substances have recently been proposed for inclusion in the Directive (COM (2011) 876 final). More details about the legislation and the current quality standards are given in Section 2.7.2.

6.4 Water
Water use is a central area in the sustainable construction and operation of waste water infrastructure. However, the importance of water use and reuse varies significantly in the Member States.

During the construction phase, water is primarily used for cleaning and as an additive to construction parts e.g. concrete. The total water consumption during this phase is considered to be minor compared to the water use during the operation of the waste water infrastructure.

Water use during the operation is significant in the life cycle of a waste water infrastructure. This water use is determined by several decisions:
• Choice of water saving installations
• Possibility for reuse of treated waste water
• The use of grey waste water
• The behavioural knowledge of the employees
• The need for flushing of the sewers
• Chance of water harvesting
• Reduction in the risk for leakages
• Etc.

6.5 Transport

Transport is used in all phases of waste water infrastructure projects. Due to the use of fuel for transport, emissions occur which leads to numerous environmental impacts.

In the construction phase, materials are transported to the construction site. Just as in the previous section, the operation phase is the most significant.

In the operation phase, there are transport of process chemicals and other materials used at the WWTP, trucks for flushing the sewers, if necessary, transport of sludge etc. Particularly the latter has a significant impact on the total transport need and thus also the environmental impact from transport.
7 Life-cycle costing considerations and methodology

This section describes life-cycle costing considerations and presents our suggested approach for applying LCC in relation to waste water infrastructure projects.

7.1 What is LCC?

The concept of Life cycle costs originates from the construction industry where large investments with long life span have created a need for considering the implication of alternative decision in the construction phase that impact on the cost in the operating phase of the assets lifetime.

As such, it can be seen as tool for the financial planning of investments in long-lived assets such as buildings, transport, infrastructure etc.

Gradually, more and more cost elements have been considered making the LCC more complete in taking into account all factors that impacts on costs.

A different avenue of methodology development comes from Life Cycle Assessment (LCA), which is a tool for considering environmental impacts of products over their life time. LCA is about the environmental impacts, but there have been methodological developments to include monetary valuation of the environmental impacts. One example is from the Danish Environmental Protection Agency that financed a number of development projects in the mid 1990s where valuation of the external effects was added to an LCA, thereby becoming what was called a Life Cycle Cost approach.

The more recent studies aiming to give guidance on LCC, depart from the original LCC in the construction industry, but also add environmental and other external effects.

7.1.1 Definitions and concepts

LCC can roughly be defined as a methodology where costs of a given asset are considered over the assets lifetime.

Though the basic principle is straightforward, the specific definition can vary. The crucial part of the definition is which cost elements are considered and included in the LCC.

The ISO/DIS 15686-5 standard includes "definitions" of LCC in terms of the cost elements included and the link to other concepts.

The ISO standard presents Whole Life Costs (WLC) as the more comprehensive concept, and LCC is part of WLC.
Figure 7-1: ISO definition of whole life costs and lifecycle costs

![Diagram showing the relationship between whole life cost (WLC), lifecycle cost (LCC), non-construction costs, income, construction, operation, maintenance, and end of life.]

Source: ISO/DIS 15686-5.2 Part 5: Life cycle costing

The above WLC and LCC concepts could be compared to the economic notion of a cost-benefit analysis. A standard cost-benefit analysis (CBA) should include the costs and benefits over the lifetime of the investment. WLC, LCC, and CBA are therefore similar in many respects. Below, the key concepts for monetary assessments of infrastructure projects are compared.

Table 7-1: Comparison of assessment concepts

<table>
<thead>
<tr>
<th></th>
<th>Financial assessment</th>
<th>Economic assessment</th>
<th>All life cycle phases included</th>
<th>Both costs and income included</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLC</td>
<td>√</td>
<td>(✓)</td>
<td>√</td>
<td>✓</td>
</tr>
<tr>
<td>LCC</td>
<td>√</td>
<td>(✓)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CBA</td>
<td>✓</td>
<td>(✓)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Financial assessment (feasibility study)</td>
<td>✓</td>
<td>(✓)</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Source: Consultant's assessment

The meaning of the terms financial and economic assessments is set out below. From the perspective of a waste water company (whether owned by a municipality or privately owned), the financial analysis is the one that describes the expenditure and income that the unit will face. At the planning stage, the economic assessment taking the overall effects on the society into account will be relevant.
The financial analysis consists of comparing revenue and expenses (investment, maintenance and operation costs) recorded by the concerned economic agents in each project alternative (if relevant) and in working out the corresponding financial return ratios.

The economic analysis aims at identifying and comparing economic and social benefits accruing to the economy as a whole, setting aside for example monetary transfers between economic agents.

As the table shows, the LCC, as a concept, is similar to other financial and economic assessment tools.

In this study the LCC approach will include:

- Financial and economic assessment of all lifecycle phases (insofar as possible)
- The income will generally not be included, though for some scenarios there could be income elements that should be included.

The ISO LCC definition is related to the use of LCC in planning and decision making around construction assets such as buildings etc. It is therefore also relevant to consider in relation to the waste water infrastructure.
Figure 7-2: Lifecycle cost elements

Whole Life Cost (WLC)

Non-construction costs

<table>
<thead>
<tr>
<th>Y/N</th>
<th>Examples of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site costs (land and any existing building)</td>
</tr>
<tr>
<td></td>
<td>Interest or cost of money and wider economic impacts</td>
</tr>
<tr>
<td></td>
<td>User Support Costs (1) Strategic property management</td>
</tr>
<tr>
<td></td>
<td>Includes in-house resources and real estate / property management (general inspections, acquisition, disposal and removal)</td>
</tr>
<tr>
<td></td>
<td>User Support Costs (2) Use Charges</td>
</tr>
<tr>
<td></td>
<td>Utility charges, parking charges, charges for associated facilities</td>
</tr>
<tr>
<td></td>
<td>User Support Costs (3) Administration</td>
</tr>
<tr>
<td></td>
<td>Reception, helpdesk, switchboard, post, IT services, library services, catering, hospitality, vending, equipment, furniture, internal plants (flowers), stationary, refuse collection, caretaking and portering, security, ICT, internal moves</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Taxes on non-construction items</td>
</tr>
</tbody>
</table>

Income

- Income from sales
- Third party income during operation
- Taxes on income
- Disruption
- Downtime, loss of income
- Other

Life Cycle Cost (LCC)

Construction

- Professional fees: Project design and engineering, statutory consents
- Temporary works: Site clearance etc.
- Construction of asset: Including infrastructure, fixtures, fitting out, commissioning, valuation and handover
- Initial adaptation or refurbishment of asset: Including infrastructure, fixtures, fitting out, commissioning, valuation and handover
- Taxes: Taxes on construction goods and services (e.g. VAT)
- Other: Project contingencies

Operation

<table>
<thead>
<tr>
<th>Y/N</th>
<th>Examples of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building owner and/or occupier</td>
</tr>
<tr>
<td></td>
<td>Cyclic regulatory costs: Fire, access inspections</td>
</tr>
<tr>
<td></td>
<td>Utilities: Including fuel for heating, cooling, power, lighting, water and sewage costs</td>
</tr>
<tr>
<td></td>
<td>Taxes</td>
</tr>
<tr>
<td></td>
<td>Other: Rates, local charges, environmental taxes</td>
</tr>
</tbody>
</table>

Maintenance

- Maintenance management: Cyclic inspections, design of works, management of planned service contracts
- Adaptation or refurbishment of asset in use: Including infrastructure, fitting out commissioning, validation and handover
- Repairs and replacement of minor components/small areas: Defined by value, size of area, contract terms
- Replacement of major systems and components: Including associated design and project management
- Cleaning: Including regular cyclic cleaning and periodic specific cleaning
- Grounds maintenance: Within defined site area
- Redecoration: Including regular, periodic and specific decoration
- Taxes: Taxes on maintenance goods and services
- Other

End of Life

- Disposal inspections: Final condition inspections
- Disposal and Demolition: Including decommissioning, disposal of materials and site clean up
- Reinforcement to meet contractual requirements: On condition criteria for end of lease
- Taxes: Taxes on goods and services
- Other

Source: ISO/DIS 15686-5.2 Part 5: Life cycle costing
In terms of using the LCC, it should be considered where in the project cycle phases the LCC could be most relevant to apply. As illustrated below, LCC can in principle be used in all phases.

![Figure 7-3: Lifecycle costing and project planning stages](image)

Source: ISO/DIS 15686-5.2 Part 5: Life cycle costing

Typical decisions informed by LCC analysis include:

- Evaluation of different investment scenarios (e.g. to adapt and redevelop an existing facility, or to provide a totally new facility); - *at the investment planning stage*

- Choices between alternative designs for the whole, or part, of a constructed asset, - *at the feasibility study stage*

- Detailed element level LCC analysis; - *during design and construction stage*

- Choices between alternative components, all of which have acceptable performance (component level LCC analysis); - *during the construction or in operation stages.*

A discussion of where in the project cycle it is most relevant to use LCC for waste water infrastructure projects is included in the next section.

7.1.2 How it has been applied so far

Most applications have so far been in the construction industry. Focus has been on the trade off between high initial investment costs and lower operation and maintenance costs at the operation phase and low initial costs followed by higher costs in the later lifecycles.
The recent work by DG Enterprise12 on the use of LCC in the EU illustrates that the so far limited use of LCC in public procurement has mainly been in relation to the investment decision and option appraisal phase, i.e. at the investment planning stage or at the feasibility study stage.

Before the investment decision is made, a WLC assessment, where also the benefits of the investment, is included can lead to better investment decisions.

Whether it is called WLC or LCC, the examples from a number Member States illustrates that the concept is introduced to improve decision making around public procurement.

The value of undertaking LCC at different stages of the project cycle is shown below. The figure shows that at the investment planning stage where more options are available, there is potential for a large value improvement. Further down the project cycle, there is less freedom to chose and hence less improvement potential from LCC calculations.

The fact that the potential benefit is largest in the initial stages does not mean that the use of LCC should be restricted to those stages. The LCC can typically be more simple and easy to apply in the later stages, and the costs of undertaking the LCC also decreases from the planning stage to operation stage.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure74.jpg}
\caption{Value improvement potential from LCC at different project cycle stages}
\end{figure}

\textbf{Source: ISO/DIS 15686-5.2 Part 5: Life cycle costing}

\subsection{Examples in relation to GPP}

Two examples are presented in this section: A very complex example, where all lifecycle stages and all types of costs have been considered, and a much simpler example, where only the financial costs of purchase and operation are included.

The Thames tideway project is an example where LCC was applied in the option analysis phase-before the procurement process. The Thames tideway project is the construction a collection system

12 Davis Langdon (2007) Towards a common European methodology for Life Cycle Costing (LCC) – Literature Review
for storm water in London preventing overflow of untreated sewage into the Thames in case of heavy rainfall.

As part of the comprehensive assessment of options for solving the problem, a full LCC was undertaken. The project considered alternative routing of large collectors along the river and connections to existing waste water treatment facilities.

The LCC assessment included all costs elements in the construction and operation phase of the project. Possible later decommission was not included. Most of the investment was in the construction of the collection network, which would have a very long lifetime.

Key results from the assessment are illustrated in the following table taken from a report by the Cost-benefit Working Group. It shows the financial cost - investment and operational costs - as well as financial benefits and non-market costs. The non-market costs are economic costs, see further below for what was included.

<table>
<thead>
<tr>
<th>Option</th>
<th>Financial Costs: Capex (£m)</th>
<th>Financial Costs: Opex (£m)</th>
<th>Financial Benefits (£m)</th>
<th>Non-Market Costs (£m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2364</td>
<td>366</td>
<td>41</td>
<td>108</td>
</tr>
<tr>
<td>1b</td>
<td>2262</td>
<td>347</td>
<td>40</td>
<td>99</td>
</tr>
<tr>
<td>1c</td>
<td>2453</td>
<td>356</td>
<td>41</td>
<td>108</td>
</tr>
<tr>
<td>1c phased</td>
<td>2460</td>
<td>363</td>
<td>42</td>
<td>109</td>
</tr>
<tr>
<td>2a</td>
<td>1816</td>
<td>310</td>
<td>30</td>
<td>61</td>
</tr>
<tr>
<td>2b</td>
<td>1878</td>
<td>361</td>
<td>30</td>
<td>65</td>
</tr>
<tr>
<td>2c</td>
<td>1907</td>
<td>314</td>
<td>30</td>
<td>57</td>
</tr>
</tbody>
</table>

Given the nature of this specific waste water infrastructure project, the main cost element was the investment costs. The operational costs comprise only around 15% over a 60 years lifetime. The non-market costs comprise less than 5% of the investment costs.

All the elements that were actually quantified included:

- Cost of energy embodied in materials
- Recreation effects (during construction)
- Energy used for tunnel boring
- Delays to traffic
- Transport construction waste
- Disposal of construction waste
- Use of Thames bubblers
- Flood risk

The Thames Tideway project is an example of a very comprehensive assessment undertaken as part of the investment planning stage. The LCC, using the ISO terminology from above, was in fact a full Whole Life Cost analysis to perform the decision about the project. It was a full cost-benefit analysis including the benefits of the alternative options. In relation to this study it is interesting as it shows that LCC has been applied and that it can be useful in the investment planning stage where all relevant options are appraised.

It should be noted that it required significant resources at the investment planning stage to do the full LCC, and even though these costs are limited compared to the investment costs, the body responsible for the decision about the infrastructure and the procurement process should be able to commit such funds in case it wants to undertake a full LCC.

The Thames example illustrates a relatively complicated use of LCC, where all elements are covered. There are examples, where more simple LCC approaches have been used.

A Swedish waste water company has used LCC to procure pumps, where the energy cost during operation was taken into account.

They defined the following award criteria:14:

\textbf{Award criteria:} Most economically advantageous tender on the basis of purchase price plus the cost of energy consumption by the pumps over a ten-year period, calculated according to the following formula:

\[\text{Energy consumption of pump at specified capacities} \times \text{Hours per year operating at that capacity} \times \text{Cost of energy} = 1 \text{ SEK per kWh} \times 10\]

This is an example where the requirements regarding pump capacities and operational hours were given, and the Contractor should provide the specific energy consumption of the offered pumps as part of the financial offer.

14 Ryaverket waste water treatment plant, Sweden - GPP criteria example
The example shows that using LCC can be very simple and easy, and that it can be included at any stage. The purchase of a pump could be in the construction phase as well as in the operation phase when replacement would be required.

7.2 Methodological considerations

In order to make recommendations for the use of LCC as part of the procurement of waste water infrastructure, the application of the suggested LCC approach to the scenarios defined in the Section 5 will allow testing and revision of the approach.

Based on the definition of the concepts, the specific application to waste water infrastructure is discussed in the following sections in order to identify where the elements of the LCC approach is particularly relevant to assess and test in relation to waste water infrastructure.

There are some overall issues that should be investigated when applying LCC to the scenarios. These issues include:

- Where in the project cycle should LCC be recommended for use?
- How should it be applied in the planning stage?

These questions relate to what is illustrated in Figure 7-4. At the planning stage, where alternative options to deliver the necessary service or compliance with the relevant legislation is assessed and compared, the potential improvement in the overall value of the project (i.e. less costs) is higher than at the later stages.

The assessment of the scenarios will provide insight into the potential improvements at different life cycle stages and thereby give recommendations on where and how to apply LCC.

The issues of how to consider the external costs are described and discussed as part of each project life cycle.

7.2.1 Issues in relation to the construction phase

The main issue to consider is what cost elements should be included, specifically in relation to waste water infrastructure.

What should be included?

- Land acquisition
- Capital investment costs
- Embodied energy in key construction materials
 - Concrete
 - Steel
 - Plastic
- Disruptions caused by the construction (most relevant for sewage systems)
• Expected life time of the components.

The costs of land might be relevant to consider as different technical solutions might require different amounts of land. The capital investment costs are the core of the project costs and should obviously be included in any LCC. In relation to the capital costs, the expected lifetime of each component should be considered. The lifetime would be expected to be a very important parameter for the overall LCC. It is also one that could be difficult to quantify and validate as part of the procurement process. Hence, this is one of the issues to be further considered and investigated as part of the scenario calculations.

One of the important externalities associated with the construction of the infrastructure includes the energy embodied in the material being used. Ideally, the estimation should be based on a full account of the environmental impacts, which is the same as applying an LCA, and all the environmental effects should be monetised. As the material might be produced using different technologies and at different locations, it will be difficult to estimate all the impacts, and the monetary values to allow for the cost estimation might not be available. Estimation of the carbon emissions associated with the embodied energy has been done with regard to large infrastructure projects and was also included in the Thames Tideway example presented above. Hence, this seems feasible to include the embodied energy.

These elements will be further considered in the application of LCC on the scenarios as a basis for making the final recommendation on what should be included in the GPP guideline.

7.2.2 Issues in relation to the operation phase

The elements that should be considered include:

• All operational costs (e.g. manpower, energy, chemicals, transport)
• Maintenance costs (manpower, spare parts etc)
• External costs related to treatment level (e.g. costs of the nitrogen and phosphorous emissions)
• External costs related to the discharge of heavy metals and other priority hazardous substances
• External costs associated with energy use (carbon and air pollution).

Inclusion in the LCC of the operational costs as well as the maintenance costs is relatively straightforward.

The external cost related to the treatment level is more complicated to include. The question is how to determine the value of additional removal of for examples BOD, N or P.
The environmental damage from the discharge of BOD, N or P will depend on the local or regional condition in the receiving water body. Hence, general monetary values for the environmental effect of these discharges can not be established.

If a River Basin Management Plan (RBMP) has been established according the requirements of the Water Framework Directive (WFD), it might allow an assessment of the benefits of increasing the treatment for a waste water treatment plant within the catchment area of a water body. Ideally, the RBMP should be made in a way that minimises the costs of achieving the WFD objectives. The WFD includes a requirement to undertake a cost-effectiveness analysis to determine that the right options have been selected. If an optimal RBMP has been made and the treatment requirements for each waste water treatment plant have been set accordingly, then there is no benefit from providing better treatment, and this element should therefore not be included in the LCC.

The use of energy causes carbon emission and air pollution dependent on the type of source of energy used to operate the waste water infrastructure. In most cases, it will be electricity and national emission values would be available. The carbon emission can be valued through either a national carbon price or by using an appropriate EU value.

The removing of priority harmful substances can be estimated - the quantities discharged when applying different technical options. The monetisation of these discharges is more uncertain, but there are unit costs for example for heavy metals and therefore, the cost impacts of the emission/discharge of such substances will be considered.

7.2.3 Issues in relation to decommissioning

The decommissioning of waste water infrastructure is very similar to for example the decommissioning of buildings.

Whether costs of separating parts and materials that could be reused or recycled can be affected by the design is a difficult question to answer. There is probably not sufficient data available on the costs of decommission to allow such an assessment.

The LCC can include the costs of the decommissioning and the value of recycling of materials and costs of the disposal of materials that can not be recycled. The assessment of the scenarios will illustrate how important the decommissioning phase is in the overall LCC and thereby give recommendations regarding how this stage should dealt with in the LCC.

7.3 Suggested approach

The approach to be used for the LCC calculation of the scenarios is described in this section.

The LCC is defined as:

\[
\text{LCC} = \text{Investment costs} + \text{operational costs} + \text{decommissioning costs} + \text{external costs}.
\]
The purpose of the assessment of the LCC for the scenarios is to estimate the importance of the various elements and of the life cycle stages and to illustrate the use of LCC.

The assessment of the scenarios will enable the further development of the GPP criteria and the suggestions for how to use LCC.

The assumptions regarding the estimation of each component is described in the next sections.

7.3.1 Cost functions for construction and use costs

The main parts of the LCC are likely to be the investment and operational costs. The estimate of these costs could be done either as detailed bottom-up approach or through a more top-down approach using cost functions.

The way costs are estimated during planning and feasibility stages can be through a top-down cost function approach, or bottom-up calculations. In the design stages, costs are estimated through detailed bottom-up estimations.

For the purpose of estimating the LCC for the scenarios, an approach based on cost functions has been applied. The applied cost functions\(^\text{15}\) have been developed as part of comprehensive cost model\(^\text{16}\). Using an already established cost function approach has many advantages:

- It is a tested and documented approach.
- The cost functions will give “average” level of costs for typical treatment and collection systems, and will allow this study to focus on including external costs and the decommission phase.
- Using cost functions means that the estimation of compliance costs are made in a transparent manner, as all assumption can be reviewed.

The cost functions covers:

- Collection systems;
- Treatment level (primary, secondary and tertiary treatment).

These cost functions has provided the basis for the estimation of the investment and operational costs of the scenarios. The scenarios include technologies that are not directly included in the cost function database. For these scenarios, there are - based on experience - either added or subtracted from the base estimate depending on which components are additionally included or not included.

\(^{16}\) The basis for the suggested costing approach is developed and used in preparing sector strategies in the water sector in a number of countries since 1998. The approach called FEASIBLE (Financing for Environmental, Affordable and Strategic Investments that Bring on Large-scale Expenditure) allows for costing of water sector infrastructure\(^\text{16}\).
The cost functions for the collection system and for treatment are presented below.

Collection
The generic cost function for the collection system has been developed based on the following:

- Function of the total length of pipes with number of PE as driver;
- Distribution of pipe length on pipe diameters;
- Cost for each diameter size.

The resulting cost function displaying the unit costs per PE as a function of agglomeration size in PE is illustrated below (Figure 7-5). The graph includes both the point cost estimates and the fitted curve which has been used to derive the costs used here.

![Figure 7-5: Replacement value function for waste water collection networks](image)

The total replacement value function illustrated above is a result of combining the assumptions on the function concerning total pipe length based on connected population, with the default distribution on pipe diameters as a function of population size and, finally, the unit price of pipes of different diameters. It reflects the unit replacement value of the collection system as a function of population.

The investment cost function show the costs of a single pipe separate system excluding storm water run-off, i.e. it is designed for separate sanitary waste water only.

Treatment
As part of developing the feasible model, cost functions for waste water treatment were developed\(^\text{17}\).

The cost functions are illustrated in Figure 7-6.

\[^{17}\text{DEPA: Calculation system for investment costs for waste water treatment (in Danish), COWI and Lønholt & Jans I-S, 1990.}
\text{These cost functions is also used in a text book on civil engineering in the waste water sector: Winther, L et al, “Spildevandsteknik”, 2009 Polyteknisk Forlag. (in Danish).}\]
The cost functions indicate cost categories for different levels of treatment. Specific technologies will have specific costs that deviate from these cost categories. In the examples of LCC for selected scenarios, the effects of the specific technologies are illustrated, see Section 7.4.

Figure 7-6: Investment expenditure functions for waste water treatment

The operational costs for waste water services are estimated using a percentage of the investment expenditure. This covers all operational expenditure except electricity, which will be specified separately.

Other operation costs: 3% of the total investment expenditure for waste water treatment. The operational cost functions by technology are presented in the Table below

Table 7-3: Cost functions for operational costs

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost functions EUR perPE2008 DK price level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O&M excl energy kWh/PE</td>
</tr>
<tr>
<td>1 Primary (Mechanical)</td>
<td>5 % of investment 15</td>
</tr>
<tr>
<td>2 Secondary (mechanical biological)</td>
<td>5 % of investment 25</td>
</tr>
<tr>
<td>3P Advanced with P-removal</td>
<td>5 % of investment 40</td>
</tr>
<tr>
<td>3N Advanced with N-removal</td>
<td>5 % of investment 40</td>
</tr>
<tr>
<td>3NP Advanced with N and P removal</td>
<td>5 % of investment 40</td>
</tr>
</tbody>
</table>

Consultant’s estimate

Given the assumed electricity consumption and current electricity prices the total operational costs including energy amount to about 6% of the investment costs.
Example

An example of the use of the cost functions is scenario 9, which is a new WTTP for 150,000 PE with disinfection. The base investment costs would be estimated as the number of PE times the unit costs as indicated in Figure 7-6. Based on experience data, the investment cost is estimated based on the unit costs of disinfection. The results would be:

\[
\text{Investment costs} = 150,000 \text{ PE} \times (230 \text{ EUR per PE} + \text{unit cost of disinfection})
\]

The costs related to the other scenarios have been estimated in a similar way.

7.3.2 Assumptions for decommissioning costs

We have experience from a number of decommissioning projects, and the cost examples have been applied as a basis for estimating the dismantling of the infrastructure. Most of the materials can be recycled. The value of the recycled material will to some extent depend on the local conditions. Scrap metal can be valued by the current prices on scrap metal, while the concrete will have local specific price.

7.3.3 Assumptions for valuation of externalities

The external costs can be valued using alternative approaches. The most principal alternatives are whether the external effects are valued based on the damage costs or by "alternative" abatement cost approach. The damage cost approach is the most appropriate in policy assessment where the level of external effects is addressed. For procurement processes covered by the GPP criteria, an alternative abatement cost approach can be seen as more appropriate.

For example, emissions of CO$_2$ and other greenhouse gasses are regulated by other legislation and agreements. It means that if a new waste water treatment plant will emit CO$_2$, then other sources will have to reduce their emissions. Hence, applying the marginal costs of removing CO$_2$ in the LCC calculation means that the LCC supports a cost-effective reduction of CO$_2$. An alternative waste water treatment technology with less CO$_2$ emissions will have a lower LCC only if it can achieve the reduced CO$_2$ emissions at lower costs than the marginal costs for achieving the national reduction target.

A similar situation exists with regards to reduction of nutrients. Here, the Water Framework Directive requires that river basin plans are developed where the measures to achieve the target of Good Ecological Status are defined. In principle, it means that the River Basin Management Plans should identify the requirements for removal of nutrients for each waste water treatment plant. If it is possible to achieve additional removal, it should only be done if it is cheaper than removal from the other sources.

The externalities that have been valued in the LCC estimations for the scenarios include:

- CO$_2$ (from embodied energy and energy in operational phase)
- Heavy metals (discharged from the WTTPs)
• Nutrient pollution (remaining discharges of N and P).

External costs from emission of CO$_2$ can be calculated using unit price/costs per CO$_2$-equivalent.

It is recommended to apply the same approach as required for Energy Performance of Buildings according to Regulation (EU) No 244/2012. Here the CO$_2$-equivalent cost is based on the long term ETS scenario assessments. The reference scenario includes the following minimum values:

<table>
<thead>
<tr>
<th>Carbon price evolution</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference (frag. action, ref. fossil f. prices)</td>
<td>16.5</td>
<td>20</td>
<td>36</td>
<td>50</td>
<td>52</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Effect. Techn. (glob. action, low fossil f. prices)</td>
<td>25</td>
<td>38</td>
<td>60</td>
<td>64</td>
<td>78</td>
<td>115</td>
<td>190</td>
</tr>
<tr>
<td>Effect. Techn. (frag. action, ref. fossil f. prices)</td>
<td>25</td>
<td>34</td>
<td>51</td>
<td>53</td>
<td>64</td>
<td>92</td>
<td>147</td>
</tr>
</tbody>
</table>

It means a value of 20 €/tons CO$_2$-equivalent until 2025, 35 20 €/tons up to 2030 and 50 €/tons beyond 2030. These are minimum values and such values could be revised if new reduction targets are agreed or policies are updated.

Scenarios based on long term EU targets for the ETS regulated sectors are likely to give CO$_2$ costs that are lower than the marginal reduction cost for non-ETS sectors. An ETS based price is common for all EU Member States while costs for the non-ETS sectors would vary across Member States. Hence, there could national agreed values that are higher than the above values. If a Member State has estimated the marginal cost of achieving the national target for reduction of GHG emissions this value could be higher.

This approach is for example used by the UK. The UK Department of Energy & Climate Change recommends this approach based on the abatement costs needed to meet the emission reduction targets. It calculates estimates of abatement costs that will be needed to reach the emission limits that each country has agreed to meet. Based on this approach, the costs in the UK have been estimated to lie between 30 and 75 Euros per tonne of CO$_2$ in 2020.

It is therefore recommended that if an LCC approach is applied to consult with the relevant national authority responsible for the national targets on reduction of GHG emissions. They can advice on the most relevant CO$_2$ price would be considering the national situation.

For emissions of heavy metals, the same approach of alternative reduction costs should be applied. Typically, it is cheaper to reduce emission at source rather than end of pipe solutions. If it is locally important to address heavy metals, it should be done, if it is a cost-effective solution to remove them at the waste water treatment plant.
For the scenario LCC calculation, there are no alternative reduction costs available and instead unit costs are applied based on a recent study on the costs of air pollution. The costs are based on two intake routes - inhalation and indigestion - so the values for emissions to the water environment have to be adjusted as there is only one uptake route.

![Figure 7-7: Unit costs for air pollutants](image)

Source: EEA (2011); *Revealing the costs of air pollution from industrial facilities in Europe*; EEA Technical report No 15/2011

7.4 LCC scenario calculations

Based on the suggested approach and using the assumptions presented above, this section includes examples of LCC calculations based on the scenarios described in Section 5.

The estimation of the LCC is divided into financial and external costs. Hence, the LCC costs included in the categories are the following:

<table>
<thead>
<tr>
<th>Total LCC</th>
<th>Financial costs</th>
<th>External costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Investment costs</td>
<td>Cost of carbon in materials</td>
</tr>
<tr>
<td>Operation</td>
<td>Net present value over life time of O&M costs</td>
<td>Net present value of emissions over life time.</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>NPV of decommissioning at end of life time</td>
<td>Saved carbon costs from recovered materials</td>
</tr>
</tbody>
</table>

The next sections describe firstly, the financial costs and secondly, the estimation of the external costs.
7.4.1 Financial LLC costs for waste water treatment plants

Here the LCC estimations for Scenario 6, 7 and 8 are presented. These scenarios all cover the construction of the new waste water treatment plant for an agglomeration of 50,000 PE.

Construction and operational costs

The assumptions regarding the investment and O&M costs are illustrated in the next table. The data give order of magnitude estimates for the relevant unit costs. It is important to note that the unit costs are estimates of an average EU27 cost level and that local costs could deviate with more than 50% due to both general differences in price and cost levels across EU and as result of specific local (technical) conditions.

Table 7-4: Construction and operation cost assumptions

<table>
<thead>
<tr>
<th>PE</th>
<th>50,000</th>
<th>Construction</th>
<th>O&M</th>
<th>Energy (excl sludge)</th>
<th>Sludge handling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unit cost in EUR/PE</td>
<td>in % of investment cost</td>
<td>kWh/PE</td>
<td>% of investment cost</td>
</tr>
<tr>
<td>Scenario 6</td>
<td>Extended aeration</td>
<td>210</td>
<td>4.0%</td>
<td>45</td>
<td>2%</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>Gas utilisation etc</td>
<td>230</td>
<td>5.0%</td>
<td>30</td>
<td>2%</td>
</tr>
<tr>
<td>Scenario 8</td>
<td>MBR</td>
<td>240</td>
<td>6.5%</td>
<td>40</td>
<td>2%</td>
</tr>
</tbody>
</table>

The construction costs are based on the cost functions presented in Figure 7-6 and Table 7-4 above and adjusted based on experience data. Based upon a number of feasibility studies the relative costs of alternative technologies can be derived, and this information has been used to estimate the unit costs.

Using the cost functions shown in Figure 7-6, the unit cost per PE for a treatment plant that remove N and P is about 275 EUR for a plant with a capacity of 50,000 PE. This cost is in a Danish price level of 2008. Adjusting the price level to EU27 average and inflating the cost to a 2011 price level, the resulting unit cost is 210 EUR per PE. This cost is assumed for the Scenario 6 waste water treatment plant. The other two technologies have slightly higher investment, operation and maintenance costs. Only Scenario 7 technology has lower energy costs.

The characteristics of the three technologies are described below:

- Extended aeration: Low investment costs, high energy costs
- Gas utilisation: Medium investment costs, low energy costs
- MBR: High investment costs, high operational costs, higher treatment efficiencies, less area required for the site (around 30% less).

Using the above unit costs and the assumptions regarding the O&M costs, the following set of unit costs can be applied.
The investment costs should be included in any LCC assessment and they are key part of any standard procurement process.

The challenge is how to include the operational costs. Unless the contract is a design-build-operate, the Contractor will not have detailed information that allows the estimation of the operational costs. The waste water company would therefore have to specify some of the elements and calculation formulas. Through the planning stage where feasibility studies are prepared, the necessary information regarding the operational phase would be developed.

The operational costs could be categorised and the calculation methods defined for each category.

<table>
<thead>
<tr>
<th>Vary with technology - costs defined by formula for each technology</th>
<th>Vary with individual design - contractor should estimate costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>Yes</td>
</tr>
<tr>
<td>Materials (spare parts etc)</td>
<td>Yes</td>
</tr>
<tr>
<td>Staff</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The elements that are specified by a formula means that the tenderer will only activate this element by selecting to propose a specific technology, while for the elements that could vary within each technology, the tenderer will have to estimate the specific costs.

Decommissioning costs

The decommissioning is assumed to cost about 25 EUR/PE derived as an expert estimate. This unit cost is assumed to be the same for all three technologies. This is the costs of the demolishing of the site and treatment/disposal of the waste. The value of the material that can be recycled should be included as an income. It is assumed that only the metals have a value. For the calculations, the value of the scrap metal is assumed to be 200 EUR per tonne.

As the amounts of metals used in construction vary for the three technologies, the resulting decommissioning costs also vary slightly. The estimated costs vary between 356,000 EUR to 365,000 EUR for the 50,000 PE plants.
Financial LCC
Based on the above assumptions, the LCC for the three technologies can be estimated. The lifetime of the plants are assumed to be 30 years as average for all components. The LCC values are net present values over the 30 year period discounted with a rate of 4%.

Table 7-7: Financial LCC estimates for scenario 6-8 - NPV in million EUR (2011 price level)

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>10.5</td>
<td>11.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Operation</td>
<td>14.8</td>
<td>16.5</td>
<td>20.1</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Total LCC</td>
<td>25.6</td>
<td>28.4</td>
<td>32.4</td>
</tr>
</tbody>
</table>

The operation phase accounts for the majority of the financial LCC - around 60% of the LCC is due to the operation of the treatment plants.

7.4.2 External LCC costs

External costs in the construction phase
The main external cost element in the construction phase is related to the energy content of the construction materials. The indicator for the external costs is the GHG emissions associated with each material.

The amounts of materials used in each of the technologies have been estimated. These are rough indications of the likely amounts for each technology and divided into material fractions.

Table 7-8: Material content in the waste water treatment plant kg per PE

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>140.4</td>
<td>126.4</td>
<td>98.3</td>
</tr>
<tr>
<td>Steel in concrete</td>
<td>9.60</td>
<td>8.64</td>
<td>6.72</td>
</tr>
<tr>
<td>Carbon steel and cast iron</td>
<td>1.803</td>
<td>2.163</td>
<td>1.262</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>0.410</td>
<td>0.492</td>
<td>0.492</td>
</tr>
<tr>
<td>Plastics</td>
<td>0.450</td>
<td>0.450</td>
<td>0.540</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>Cobber</td>
<td>0.038</td>
<td>0.038</td>
<td>0.038</td>
</tr>
</tbody>
</table>
The external cost is estimated using an average amount of CO₂ equivalents per kg of material. This is a rough estimation, as the energy used to produce the material varies dependent on where the material has been manufactured and the technologies applied.

The external cost related to the emissions of GHS by material is estimated using a value of 50 EUR per CO₂ equivalent. This is based on an average of the UK marginal costs which are in the range between 30 and 75 EUR per tons CO₂ equivalent.

Table 7-9: Climate change costs related to embedded energy in materials for scenario 6

<table>
<thead>
<tr>
<th>Material</th>
<th>CO₂ per kg</th>
<th>Total CO₂ costs per PE</th>
<th>Total external costs in EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>0.1</td>
<td>0.70</td>
<td>35,100</td>
</tr>
<tr>
<td>Steel in concrete</td>
<td>1.5</td>
<td>0.72</td>
<td>36,000</td>
</tr>
<tr>
<td>Carbon steel and cast iron</td>
<td>0.7</td>
<td>0.06</td>
<td>3,200</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>3.5</td>
<td>0.07</td>
<td>3,600</td>
</tr>
<tr>
<td>Plastics</td>
<td>1.8</td>
<td>0.04</td>
<td>2,000</td>
</tr>
<tr>
<td>Aluminium</td>
<td>11</td>
<td>0.01</td>
<td>300</td>
</tr>
<tr>
<td>Cobber</td>
<td>3</td>
<td>0.01</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.61</td>
<td>80,500</td>
</tr>
</tbody>
</table>

Note: Numbers are rounded.

The resulting estimates of the carbon costs of construction materials for the three technologies are presented in the table below.

Table 7-10: Climate change costs related to embedded energy in materials in EUR

<table>
<thead>
<tr>
<th>Material</th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>35,100</td>
<td>31,600</td>
<td>24,600</td>
</tr>
<tr>
<td>Steel in concrete</td>
<td>36,000</td>
<td>32,400</td>
<td>25,200</td>
</tr>
<tr>
<td>Carbon steel and cast iron</td>
<td>3,200</td>
<td>3,800</td>
<td>2,200</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>3,600</td>
<td>4,300</td>
<td>4,300</td>
</tr>
<tr>
<td>Plastics</td>
<td>2,000</td>
<td>2,000</td>
<td>2,400</td>
</tr>
<tr>
<td>Aluminium</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Cobber</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>80,500</td>
<td>74,700</td>
<td>59,300</td>
</tr>
</tbody>
</table>
The external costs associated with the energy content of the construction materials are not very high when valued through the social costs of the carbon emissions.

External costs in the operation phase
The external costs of the operation phase are estimated through three elements:

- Costs of the remaining N and P discharges
- The costs of the carbon emissions from the used energy
- The discharge of heavy metals.

All three technologies comply with the UWWTD requirements. With respect to N and P removal, this means that the outlet concentrations will be below 10 mg N per litre and below 1.5 mg P per litre. For the estimations, the following outlet concentrations of N and P are assumed.

<table>
<thead>
<tr>
<th>Table 7-11: Outlet concentrations in mg/l of N and P by scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>Total Phosphorous</td>
</tr>
</tbody>
</table>

The total amount of N and P is estimated based on a waste water volume of 200 l/PE/day.

The value of the N and P discharges will depend on the local conditions. The assessment illustrated here only suggests possible order of magnitude results. The requirement for removal of nutrients should follow from the River Basin Management Plan that has already been developed for each river basin within EU as required by the Water Framework Directive.

For the scenario LCC calculation, the monetisation of N and P pollution is based on indicative values. The cost of removal of N and P vary significantly based on local conditions. If the alternative removal is from another WWTP, then for example the size of the plant has a large effect on the resulting unit cost. There could be variations by factor of 10 or more between the cheapest reduction and the most expensive within a river basin. It is therefore important to consult with the relevant River Basin authority to understand if additional N and P removal (above the UWWTD requirements) would be relevant and cost-effective in each case.

For the scenario calculations, the applied values are 8 EUR per tonnes of N and 75 EUR per tonnes of P removed.

Applying these values to the three scenarios, the annual external costs of nutrients pollution can be derived.
Table 7-12: External costs of discharge of N and P in EUR per year

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>168,000</td>
<td>168,000</td>
<td>167,000</td>
</tr>
<tr>
<td>P</td>
<td>177,000</td>
<td>177,000</td>
<td>83,000</td>
</tr>
<tr>
<td>Total</td>
<td>345,000</td>
<td>345,000</td>
<td>250,000</td>
</tr>
</tbody>
</table>

The external costs of the electricity used for the treatment is assessed with regard to the GHG emissions. It could be argued that the electricity price already include this effect. All electricity producers are included in the EU Emission Trading System (EU ETS) and hence, the market price of electricity, in principle, includes a price of CO₂ emissions. So far, the carbon price has been relatively low due to high allocation of ETS allowances.

To illustrate the possible order of magnitude of this effect, an estimation using the average EU GHG emissions for electricity and the cost of 50 EUR per tonne of CO₂ has been done.

Table 7-13: External costs of electricity consumption during use - costs of GHG emissions in EUR per year

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption</td>
<td>45</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>CO₂ equivalents</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Total in EUR per</td>
<td>33,750</td>
<td>22,500</td>
<td>30,000</td>
</tr>
</tbody>
</table>

The last external cost element that has been assessed is the discharge of heavy metals. The assumptions regarding the inlet concentrations and the assumed treatment levels are presented in the table below.

Table 7-14: Discharge of heavy metals

<table>
<thead>
<tr>
<th>Inlet concentration</th>
<th>Estimated treatment efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.56</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.40</td>
</tr>
<tr>
<td>Lead</td>
<td>8.39</td>
</tr>
<tr>
<td>Nickel</td>
<td>11.00</td>
</tr>
</tbody>
</table>
The valuation of the damage is based on the unit costs presented in Figure 7-7 above. These values are related to air pollution, and they are therefore higher than what would be the case for discharges into water. The estimation still gives an order of magnitude assessment that can be used to determine how to account for these types of impacts.

<table>
<thead>
<tr>
<th>Damage cost</th>
<th>EUR per kg</th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>50</td>
<td>18</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Mercury</td>
<td>1000</td>
<td>16</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Lead</td>
<td>1000</td>
<td>470</td>
<td>470</td>
<td>80</td>
</tr>
<tr>
<td>Nickel</td>
<td>5</td>
<td>1,170</td>
<td>1,170</td>
<td>100</td>
</tr>
<tr>
<td>Chrome</td>
<td>50</td>
<td>1,090</td>
<td>1,090</td>
<td>90</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.5</td>
<td>16,150</td>
<td>16,150</td>
<td>1,940</td>
</tr>
<tr>
<td>Copper</td>
<td>0.5</td>
<td>1,220</td>
<td>1,220</td>
<td>720</td>
</tr>
<tr>
<td>Arsenic</td>
<td>500</td>
<td>240</td>
<td>240</td>
<td>30</td>
</tr>
<tr>
<td>Total costs</td>
<td>-</td>
<td>20,400</td>
<td>20,400</td>
<td>3,000</td>
</tr>
</tbody>
</table>

The assessment indicates that the order of magnitude is lower than the external costs associated with the discharges of N and P. It should be noted that the damage costs are uncertain and therefore, it might not be relevant to include this type of effect in an LCC.

Total external costs

The total external costs for the three scenarios are illustrated below.
Table 7-16: External LCC estimates for scenario 6 to 8 - NPV in MEUR (2011 price level)

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Operation</td>
<td>6.9</td>
<td>6.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>Total LCC</td>
<td>7.0</td>
<td>6.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

The external costs during operation are discounted over a 30 year lifetime and with a discount rate of 4%.

7.4.3 Total LCC for the selected scenarios

For Scenario 6, the resulting LCC is illustrated below. The example shows the distribution of each of the included LCC elements.

Table 7-17: LCC example - Scenario 6

<table>
<thead>
<tr>
<th>Total LCC in MEUR</th>
<th>Financial costs</th>
<th>External costs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>10.6</td>
<td>11.6</td>
<td>12.1</td>
</tr>
<tr>
<td>Operation</td>
<td>21.7</td>
<td>23.2</td>
<td>24.9</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Total LCC</td>
<td>32.6</td>
<td>35.1</td>
<td>37.4</td>
</tr>
</tbody>
</table>

The example for the Scenario 6 technology illustrates that the financial costs are the main cost element, and similarly that the operation phase accounts for the majority of the LCC costs both with respect to the financial and the external costs.

The results are similar regarding the other two technologies. All three scenarios are compared with respect to the LCC in the table below.

Table 7-18. LCC estimations for Scenario 6, 7 and 8

<table>
<thead>
<tr>
<th></th>
<th>Scenario 6</th>
<th>Scenario 7</th>
<th>Scenario 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Financial</td>
<td>10.5</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Operation</td>
<td>Financial</td>
<td>14.8</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>6.9</td>
<td>6.7</td>
</tr>
</tbody>
</table>
The main findings are:

- The operational phase accounts for the majority of the LCC - around two-thirds of the costs fall in the operational phase.
- The financial costs accounts for around 80% of the LCC.
- The majority of the external costs are associated with the operation - about 97% - though this is sensitive to the specific values for the damage from N and P discharges.
- The MBR technology has higher LCC, but it also achieves higher removal of pollutants and hence the external costs are lower - additional benefits of the technology is removal of bacteriological pollutants (not monetised), and the area of the plant site is only about 70% of the other two technologies.

The result of the LCC estimations suggests the following regarding the elements to include in an LCC for waste water treatment plant procurement:

<table>
<thead>
<tr>
<th>Decommissioning</th>
<th>Financial</th>
<th>0.4</th>
<th>0.4</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>External</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-0.0</td>
<td></td>
</tr>
<tr>
<td>Total LCC</td>
<td>Financial</td>
<td>25.6</td>
<td>28.4</td>
<td>32.4</td>
</tr>
<tr>
<td>External</td>
<td>7.0</td>
<td>6.8</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32.6</td>
<td>35.1</td>
<td>37.4</td>
<td></td>
</tr>
</tbody>
</table>

The LCC values are illustrated graphically below.
• All the financial cost elements should be included
• External costs should be included where appropriate.

The scenario LCC calculations have illustrated the relevance of the external costs, though they might not always be significant.

The external costs related to the operation phase seem to be most significant, but it can not be concluded in general that only external costs in this phase should be included. Possible traffic and other disturbances during construction work (mostly relevant for waste water collection infrastructure) could be relevant to include.
8 Introduction to environmental criteria for waste water infrastructure projects

In this section, an introduction to environmental criteria for waste water infrastructure projects is given.

Waste water infrastructure projects are much diversified. Thus it was decided to split waste water infrastructure into three categories: sewers (pipes, pumping stations etc.), waste water treatment plants (in- or excluding pipes) and sludge drying and incineration (see Section 3).

The core and comprehensive criteria in the accompanying GPP Criteria for the three categories of waste water infrastructure projects addresses the most common and largest environmental issues in all of the Member States. It can be favourable for the single Member State to omit some criteria due to lack of the specific problem. An example of this is water consumption, which is pertinent in some countries and extraneous in other countries.

When considering environmental criteria, be it as technical specifications, qualification or award criteria, it is vital to be aware of the fundamental requirements of EU public procurement. This translates into ensuring that such criteria are designed in such a way that they are transparent in the sense that they can be understood in the same manner by all tenderers. Secondly, such criteria must promote equal treatment by not giving any undue advantage to certain tenderers. This is the reason why as regards specifically technical specifications the directives indicate a preference for basing such specifications on international standards.

8.1 Process of defining criteria

As the GPP criteria are developed to assist all Member States in the EU, it is vital to develop the criteria so they include the many aspects which can be individual for each Member State and region in EU.

The following process has been used during development of the criteria:
This process has resulted in a number of core and comprehensive criteria which have been accessible and open for commenting by all stakeholders.

In the rest of this section, the main areas for significant differences in the national and local context are described.

8.2 **Key environmental aspects**

In this section, selected environmental aspects are discussed.

The reason for pointing out some environmental aspects is that the severities differ greatly in the Member States.

Therefore, the section can be used by Member States or public authorities as a basis for discussion of whether the environmental aspects must be included as criteria in the public procurement stage of a project.

The approach to tackle these environmental aspects is described in Section 9 and the GPP Criteria for waste water infrastructure.

8.2.1 **Different national calculation methods and standards for energy**

Construction of waste water treatment plants and sludge treatment facilities often also includes construction of buildings for offices, etc.

Thus, the aspects concerning buildings described in the Technical Background Report and Product Sheet for Construction are also relevant for the GPP criteria for waste water infrastructure.
On 18 May 2010, the European Union adopted a recast of the directive on energy performance of buildings (2001/91/EC). Under this frame, the Member States applies energy performance requirements for new and existing buildings.

Currently, there are no European minimum performance requirements.

Due to the harmonised regulation of process equipment via Directive 2006/42/EC on machinery and the implemented declarations in each Member State, the specifications for process equipment and machines can be applied throughout all Member States in the EU.

8.2.2 Climate zones
The large differences in temperature in the Member States have great influence on the energy consumption and the treatment efficiency.

Furthermore, the climate zones influence the possibility of using bio fuels for energy requiring operations.

Due to these variations in climate zones, no general requirements for energy demand and treatment efficiency can be applied in the public green procurement criteria for waste water treatment infrastructure. Thus, the contracting authorities must insert national or local values to reflect the specific conditions according to the GPP Criteria.

8.2.3 Water scarcity
As described previously, the access to water is very limited in some countries which can be seen in the following figure:
These countries, with water scarcity, can have an interest in incorporating criteria on water usage during construction and operating phase, while other countries without water scarcity may neglect this issue. These differences in the need for incorporating environmental considerations will be handled in the GPP Criteria where the contracting authorities must address specific aspects targeted at the actual project and site.

It is expected that this water stress will increase during the next years and can be severe for several billions of people. The problem is expected to increase partly due to the effects of climate change.

8.2.4 Local/national differences in availability and sustainability of materials used
When a waste water treatment plant, sludge treatment facilities or sewage pipes is constructed many materials are used. Some of these materials are CE labelled.

According to the new Construction Product Regulation (CPR), all CE labelled products must have an Environmental Product Declaration (EPD), which enables the user to compare products based on potential environmental impacts.

The implementation level of the CPR must be determined by contacting the relevant national body in the Member State responsible for implementation of CPR.

The EPD enables the contracting authorities to set limits for the emission of e.g. greenhouse gases from construction materials. Restrictions or benchmarks are often used for the construction materials which have the largest potential environmental impacts.

As described previously, there are also national schemes for sustainable building and eco-labels which the specific contracting authority can use for the construction materials.

8.2.5 Local sensitiveness of water bodies
The importance of the environmental impact by the effluents from waste water treatment plants is at present widely recognised. This knowledge has been acquired thorough studies addressing many different water bodies, whose characteristics differ greatly locally and nationally. Several studies also conclude that salt water bodies are more sensitive (i.e. more impacted) than fresh water bodies.

In some Member States, permission to discharge treated waste water from waste water treatment plants is indispensable for operation of the waste water treatment plant. This requirement can apply to waste water treatment plants - but also for the industries, hospitals etc. which are discharging to the waste water treatment plant. Naturally, these permits can restrict and control the emission of contaminants to the receiving water bodies.

Some Member States also require environmental permits for sludge incineration plants and sludge digesters containing limit emission values for handling polluted waste water, discharge of flue gas etc.

19 See for instance http://www.eu-neptune.org/Publications%20and%20Presentations/index_EN
This regulation and thus restriction in the emission of nutrients, pathogens, heavy metals and organic priority substances differs greatly. Still, the level, method and content of regulation are a national and even local matter.

The reason for differences can be the tradition in the individual Member States for detailed regulation of specific pollutants, the sensitiveness of the receiving water bodies etc. To some extent, these demands should be harmonised via the implementation of the Water Framework Directive.

These national and local differences are depicted in the setup of the criteria. Traditionally, there are restrictions in the discharge of nutrients (responsible of eutrophication) which are reflected in the core criteria, since their removal is always one of the goals of these installations.

As the demands for discharge of other contaminants often differ nationally and locally, the criteria for all these contaminants must be included in the comprehensive criteria, if they are included in national permit levels.

There can also be hazardous substances, not covered by the national permit levels, which can be included in the comprehensive criteria. The specific compounds are described in Section 9.3.5 and the GPP Criteria for waste water infrastructure.
9 Recommended criteria options

In this section, the proposed criteria for waste water infrastructure are described and commented upon briefly.

The criteria are listed and described in detail in the GPP Criteria for waste water infrastructure. Thus, the exact criteria and measures to evaluate the tenderers’ environmental performance are not listed in this Technical Background Report, but the overall subjects to be included in the core and comprehensive criteria are discussed. The process and methodology for implementing the criteria are also described.

The proposed GPP criteria are designed to reflect the key environmental impacts. The approach is summarised in Table 9-1. The order of the environmental impacts does not necessarily translate to the order of their importance.

<table>
<thead>
<tr>
<th>Key Environmental Impacts</th>
<th>GPP Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Energy consumption especially in the operation phase</td>
<td>• Purchase equipment with high energy efficiency</td>
</tr>
<tr>
<td></td>
<td>• Increase the energy efficiency of electricity and heat producing units20</td>
</tr>
<tr>
<td></td>
<td>• Promote use of renewable energy sources</td>
</tr>
<tr>
<td>• Emission of nutrients with the treated waste water</td>
<td>• Purchase equipment with a high treatment efficiency</td>
</tr>
<tr>
<td>• Emission of pathogens and/or hazardous substances with the treated waste water</td>
<td></td>
</tr>
<tr>
<td>• Emissions from sludge incineration</td>
<td>• Purchase equipment with a high flue gas treatment efficiency</td>
</tr>
<tr>
<td>• Water consumption</td>
<td>• Incentivise the reduction of water consumption</td>
</tr>
<tr>
<td></td>
<td>• Promote reuse of water and use of grey/rain water</td>
</tr>
</tbody>
</table>

9.1 Process and methodology for GPP criteria

The core and comprehensive criteria are developed for use in all phases of development and implementation of a waste water infrastructure project. Nevertheless, the individual steps in the procurement process need to be addressed with specific criteria for the actual needs and possibilities for incorporating environmental issues.

20 E.g. gas boilers and gas engines
This process description is prepared as guidance for the contracting authorities when the need for procuring waste water infrastructure arises. The steps and application are described in the following.

9.1.1 Initial stages
The initial stages include the general outline (Section 4.2.1), feasibility study (Section 4.2.2) and to some extent conceptual design (Section 4.2.3). Common for these stages is that several solutions to the actual problem are discussed. Furthermore, the initial decision to handle the problem and determination of the economic frame are typically made by politicians based on recommendations from municipal officers and consultants.

The decisions made during the initial stages have great impact on the sustainability and environmental performance of the project. Thus, it is very important to incorporate sustainability and environmental considerations very early in the process by developing a strategy. An example is to decide on the treatment focus and level for the waste water treatment plant, e.g. should the effluent standards be stricter than demanded in the UWWTD, by requiring for instance bathing water quality in the receiving water bodies? This results in specific requirements for the treatment efficiency of the waste water treatment plant to remove pathogens.

This strategy can very well contain lines of direction for specific focus areas as well as methodology for weighting the environmental impacts in proportion to the economic consequences of the project.

When the process develops, the conceptual design phase must further investigate the overall principles, e.g. type, demands and efficiency of primary, secondary and perhaps tertiary treatment facilities, type of sludge treatment etc.

In this initial phase, environmental criteria are also relevant, as for instance construction materials and energy consumption give rise to environmental impacts which can be addressed and limited by GPP criteria.

9.1.2 Preparatory stage
The preparatory stage is also called the preliminary design in Section 4.2.4.

The site of the waste water treatment plant, sludge incinerator, sewage pipes etc. has been decided in the previous stages. Furthermore, the function of the waste water infrastructure facilities has been decided, e.g. to incinerate sludge, treat waste water to specific effluent demands, etc.

In the preparatory stages, the frameworks have been decided upon but the specific solutions to the problem have not been decided. So the remaining questions can be: is it best to have chemical precipitation contrary to biological removal of phosphorous? Which aeration system is optimal in an activated sludge waste water treatment plant? Should the sludge be treated on site or at an external sludge treatment plant?

The answers to these questions can be supported via the selection criteria applied for the specific project.
In this stage, for instance energy demands can be used for assessment of parts of the waste water treatment plant, the entire waste water treatment plan, sludge incinerator or sewage system. In this way, the single contractor must suggest a technical solution to the problem and also estimate the environmental impacts from energy consumption, construction materials, water consumption etc.

These analyses enable the contracting authority to make the best overall choices for the most sustainable solutions to technical problems.

9.1.3 Detailed design stage
In the detailed design (see description in Section 4.2.5), the full design is developed. This means that the construction materials have been selected and most decisions have been made.

However it still remains to seek the supplier's information on process equipment and construction materials.

There can be relatively big differences in the potential environmental impacts from one supplier of a construction material to another. An example is concrete, where the emission of greenhouse gasses can differ with as much as 60% from different suppliers providing a number of cement types. This fact makes it important to set requirements for the major construction materials in this phase.

Furthermore, it is important to set energy requirements during the operation phase of the process equipment in the detailed design. This will have a great influence of the total energy consumption during the entire life-cycle.

9.1.4 Operation phase
During the operation phase, there are a number of environmental aspects to consider.

It must be ensured that the specifications guaranteed by the contractor are fulfilled. E.g. when the contractor guarantees a certain treatment efficiency, it must be verified during operation of the waste water treatment plant or sludge incinerator. If the promised treatment efficiencies are not fulfilled, it can have a significant impact on the total environmental impact.

During the operation phase, there must also be focus on the energy consumption, water consumption and consumption of chemicals. Often this is done via the yearly reports where the consumption is indexed in relation to m³ treated waste water (for waste water treatment plants), ton sludge (sludge incineration) or m³ transported waste water (for sewage networks).

The contracting authority can use the GPP criteria for waste water infrastructure to verify the intended and promised performances (see the text about verification in the GPP Criteria for Waste Water Infrastructure).

During the operation phase, there will also be focus on the consumption of chemicals during operation. The applicable approach here can be like the comprehensive criteria for construction
materials, where the chemicals chosen for the operation must be purchased after an evaluation of the sustainability of these chemicals. This fact makes the GPP criteria applicable in the operation phase.

9.1.5 End of life / decommissioning phase
During the tender phase, where the contractors have provided information about the construction materials, information about the construction materials' disposal after use, i.e. at decommissioning, has also been given. This information must have been incorporated during the detailed design or working design, where the materials have been chosen. So, for end of life, the GPP criteria are also effective.

9.2 Core environmental GPP criteria
The core GPP criteria are designed to tackle the key environmental impacts to be used by any European contracting authority. They are designed to be used with minimum additional verification effort or cost increases.

Thus, the core criteria ensure that the quick wins are obtained without any expert consultation.

It must be mentioned that not all of the large contributors to potential environmental impacts from emission of treated waste water are incorporated in the core criteria. The reason is that data on treatment efficiencies of heavy metals, pathogens, pharmaceuticals and organic priority substances can be time consuming and demand the involvement of experts. Nevertheless, the contracting authorities must be encouraged to include these aspects as they contribute significantly to the total potential environmental impact from waste water treatment plants. This can be done by incorporating the comprehensive criteria.

In the following sections, the themes of the environmental impacts are described briefly.

9.2.1 Subject matter and selection criteria
In this section, the subject matter and selection criteria will be defined.

Subject matter
The subject matter is defined to be:

- Construction of waste water treatment plants, sewage systems and sludge treatment technologies minimising energy consumption and using environmental friendly construction materials and products during the entire life cycle; or

- Renovation of waste water treatment plants, sewage systems and sludge treatment technologies minimising energy consumption and using environment friendly construction materials and products during the entire life cycle.

Selection criteria
The engineers, planners and architects are important players when contracting authorities decide to build waste water infrastructure. The reason is that they typically set the frame for the plant and buildings and thus also decides on many of the construction materials.
Demands for the technical capacity of the contractor are equally important for the project, and particularly the operation phase, where energy is consumed and treated waste water is discharged to the receiving water bodies. Therefore, the contractor must have experience in complying with environmental criteria etc.

The procurement directives allow requirements that the engineers/planners/architects and contractors document his technical capacity (Articles 54 of Directive 2004/17/EC and Article 48 of Directive 2004/18/EC). The contracting authority should establish such criteria to:

- Identify the experience of the engineers, planners and architects in environmental design and construction.
- Identify the technical capacity of contractors to take the necessary environmental management measures in order to ensure that the construction works are executed in an environmentally friendly way.

The above mentioned experience and technical capacity must be documented in the manner prescribed by the directives, for example by a list of previous relevant projects with appropriate references to allow for verification.

9.2.2 Specifications and award criteria - energy

The energy consumption for waste water infrastructure is dominated by the energy consumption during operation. Thus, it is recommended to focus on energy performance in this phase.

Process equipment

The ideal approach for setting energy requirements and reducing potential environmental impacts from energy consumption is to establish minimum standards which the contractor must comply with. This can be done for the entire plant or for specific installations and process equipment like:

- Aeration systems/blowers
- Pumps for transporting waste water
- Pumps for transporting sludge
- Mixers
- Sludge dewatering equipment
- Sludge dryers
- Gas utilisation equipment (boilers and generators)
- Sludge incinerators
- Lightning etc. in buildings
- Etc.

The aeration systems/blowers typically consume the majority of the total energy consumption at a waste water treatment plant. Pumps (waste water and sludge) are typically the second largest consumers of electricity. The rest of the above mentioned process equipment are only relevant for specific scenarios and will thus not be described in detail.

In sludge digesters, gas is produced. The gas is used to produce either heat or electricity and heat. So the energy performance of the sludge digester is the ability to transform energy in the sludge to gas. The energy efficiency of the equipment after the sludge digester is measured by the efficiency to produce either heat or electricity.
Sludge dewatering efficiencies can be evaluated by measuring the energy consumption per dewatered ton of sludge. In this way, it is possible to compare several technologies from an energy perspective.

Sludge dryers can be compared by evaluating the heat consumption per kg dried sludge and the percentage of total energy which are withdrawn from the sludge. These can be the key parameters for comparing sludge dryers.

In the GPP Criteria, energy efficiencies are listed for the main energy consuming process equipment which is mentioned in the above-mentioned list.

Information sources
In some EU Member States, there are national minimum standards and requirements for waste water infrastructure which the contractor must comply with. For process equipment, there are often no national requirements.

Due to lack of national energy requirements, it is recommended that demands for waste water infrastructure are developed based on:

- National requirements for operation of buildings
- National legislation and guidance concerning energy consumption for new and renovated buildings
- Relevant CEN standards for assessing the energy performance of buildings
- The Environmental Product Declaration of construction materials and process equipment
- Best Available Technique
- Specification and verification from the producers of pumps, blowers, mixers, sludge dewatering equipment, sludge dryers etc. regarding efficiency
- Expert knowledge and experience from other waste water infrastructure projects.

The specific criteria can be read in the GPP Criteria for Waste Water Infrastructure.

Tests after installation of process equipment can verify the energy efficiency. Therefore, it is recommended to insert requirements for tests for the contractor into the technical specifications before handing over of the final work.

Cures-in-place liner
Regarding the renovation of sewer pipes, there can be great differences in the energy consumption for installation of cures-in-place pipe liner. Furthermore, the material for the pipe liner can vary significantly. Due to the many variations in installation method and material, no clear recommendations and criteria for cures-in-place pipe liner can be set up.

Nevertheless, a benchmark for energy consumption can be used in those situations, where the material for the cures-in-place pipe liner has been decided upon. Another option is to use available environmental product declarations together with information about the energy consumption during installation to assess the total energy consumption for several contractors offer to renovate sewer pipes.
Monitoring
As the operations phase is very important for the total energy consumption during the life cycle of waste water infrastructure, it is recommended to specify requirements for monitoring.

Specifications
The exact specification for energy consumption can be seen in the GPP Criteria.

An example is the overall total energy demand for operation of the waste water treatment plant is \([x\%]\) lower than \([x \text{ kWh/year}]\).

In this case, the contracting authority must determine the typical or estimated energy consumption for the planned waste water treatment plant. Typically, there are no national legislation defining the energy consumption for operation of waste water treatment plants, sludge treatment technologies and sewage systems.

Other examples could be specification of energy consumption per kg oxygen transferred to the aeration tanks, efficiency of pumps, efficiency of gas boilers and gas generators etc.

Finally, it could include specification to train the personnel operating the waste water treatment plants, sludge treatment technologies and sewage systems in energy efficiency.

Award criteria
The award criteria must ensure that the extra efforts to reduce the energy consumption even further, compared to that depicted in the core criteria, will be rewarded with additional points.

An example of how this can be done is by granting extra points for reduced energy consumption for the single energy consuming units (e.g. the aeration system, pumps etc.). The points could be given linearly e.g. 0 points for providing equipment with the typical/experienced energy consumption. Maximum points can then be given to equipment using the lowest energy consumption for the single unit available on the market. Thus, the points are awarded on the basis of a sliding scale between best and worst bids.

9.2.3 Specifications and award criteria - construction materials and products
The largest potential environmental impacts from construction materials are the primary energy content (deriving from extraction, processing, transportation and disposal) and the use of hazardous substances and non renewable resources.

The choice of construction materials depend on many parameters such as price, aesthetics, social aspects, technical performance, working environmental aspects, exposure, maintenance, operational aspects etc. This means that the criteria for environmental performance are just a part of the numerous considerations.
Specifications
It is possible to restrict the use of certain hazardous substances from an environmental and working environmental point of view. The national legislation regarding the working environment can include information about the substances that are restricted or banned for use.

Thus, the specifications for construction materials criteria contain restrictions on the use of certain substances e.g. sulphurhexafluoride.

Another example is the use of wood from sustainable and legal sources.

Regarding the full specifications, attention is referred to the Product Sheet for Construction and GPP Criteria for Waste Water Infrastructure.

Award criteria
As only a few of the construction materials are of fundamental importance to the construction phase, the most important materials can be selected for further investigation.

Environmental product declarations (EPD) include external and working environmental considerations. Thus, this documentation can be a good source of information to evaluate these parameters.

When EPDs are not available, the selected possible suppliers can be asked to provide information about the emission of greenhouse gasses (most important for materials with high consumption of primary energy), content of hazardous substances etc.

Designated databases (ESUCO, Ökobau, PE International, Ecoinvent etc.) also contain information about the environmental performance of many construction materials.

The award criteria are listed in the Product Sheet for Construction and GPP Criteria for Waste Water Infrastructure containing possibilities for the contracting authorities to grant extra point for the contractors who:

- Use construction materials which reduce environmental impacts through the full life cycle
- Use of sustainable forestry sources
- Etc.

9.2.4 Specifications and award criteria - water consumption
Several water saving technologies have been initiated and commenced in all areas reducing the water consumption significantly.

Specifications
Examples of water saving technologies at waste water treatment plants which are demanded via the core criteria are toilet flush with water saving equipment and dual flush. Furthermore, taps must be equipped with water saving technology.
Other aspects at waste water treatment plants are high use of treated/cleaned waste water for cleaning of screens, membranes, grids, sludge dewatering equipment etc. Information about the consumption of fresh water per m³ cleaned waste water is required so that the contracting authority can assess the measures taken by the contractors to reduce the use of fresh water.

Also the equipment for cleaning can be fitted with water saving technology.

The water consumption for sewage pipes can be difficult to assess and compare. Furthermore, this water consumption is often of minor importance during installation. During the operation phase, water is used for cleaning pipes. But due to numerous conditions which determine the need for cleaning, no key parameters are used to assess the water consumption during the operation phase.

The use of water for cleaning pipes after installation can differ greatly in the Member States and among contractors. Often, the water consumption can be minimised by reducing the number of flushes after installation or/and the amount of water per meter cleaned pipe.

The use of water for renovation has typically relatively low impact compared to the impacts from the materials used. Nevertheless, due to water scarcity in some Member States, it can be relevant to use water reduction measures in the construction phase.

Water is also used for cleaning the flue gas after incineration of sludge. As grey water or treated/cleaned waste water can be used for this operation, the consumption of fresh water can be reduced. After cleaning the flue gas, this waste water is returned to the waste water treatment plant as it contains significant concentrations of hazardous substances.

Another measure to reduce the consumption of fresh water at a waste water treatment plant is by using treated/cleaned waste water for mixing of polymers.

Award criteria

The award criteria will be based on:

- The use of rainwater and grey water
- Periodical measures to control and assess the water consumption pr. m³ sewage or sludge.

These are examples of awarding contractors with additional points for reducing water consumption. The full award criteria can be read in the GPP Criteria for Waste Water Infrastructure.

9.2.5 Specifications and award criteria - waste water treatment efficiencies

Discharge of treated waste water is the largest potential environmental impact from waste water treatment plants. Furthermore, studies have shown that the largest potential environmental impact from sludge incineration is discharge of water from the scrubber.
Water treatment efficiencies are an important issue as treating/cleaning the waste water is the exact purpose of the waste water treatment plant.

Specifications
The focus on treatment efficiency is often varied depending on tradition, legislation and demands in the discharge permits in the single Member States. Another important parameter is the state and characteristics of the receiving water body.

In the Water Framework Directive, focus is on nutrients (nitrogen and phosphorous) which can cause eutrophication in the water bodies. Waste water does always contain nutrients contrary to other pollutants, which presence is determined by the contributors to the waste water treatment plant e.g. hospitals, industries etc.

Thus, the treatment efficiencies of nutrients are included in the core criteria. As many waste water treatment plants use chemicals/precipitation agents for the removal of phosphorous, the treatment efficiency of phosphorous depend on the consumption of precipitation agents. This is the reason for including a core criteria concerning information about the consumption of precipitation agents as well.

Pathogens are also present in waste water. In most cases, the receiving water bodies are not sensitive to pathogens. Furthermore, the outlets are often constructed and placed so that the discharge of waste water with pathogens does not cause any problems.

The specific criteria can be seen in the GPP Criteria for Waste Water Infrastructure.

As the industry, hospitals, households etc. use and discharge numerous substances, there are many considerations to take into account when a waste water treatment plant is designed. These substances and their incorporation into criteria are described in Section 9.3.5.

The sludge dryer also uses water for the scrubber which cleans the flue gas. The water contains hazardous substances including heavy metals. As the water is polluted, it is often recycled to the waste water treatment plant for cleaning. Thus, the potential environmental impact from scrubber is included in the aspects about treatment efficiency of the waste water treatment plant. The emission via flue gas is described in Section 9.2.6 and 9.3.6.

Award criteria
As the substances remaining in the waste water after treatment are very important to the total environmental impact, focus is put here.

The contractors can be rewarded with extra points for guaranteeing the lowest emission of the selected substances in the waste water. These are listed in the GPP Criteria for Waste Water Infrastructure. For the core award criteria, focus are on nutrients and thus the treatment efficiency of phosphorous and nitrogen.
9.2.6 Specifications and award criteria - treatment efficiency of flue gas filter

The incineration of sludge causes emissions to air and water. The emission to air is handled by recirculation of the waste water for cleaning in the waste water treatment plant.

The emission to air is controlled by a flue gas filter. The efficiency of this filter is therefore determining the magnitude of the environmental impact from the sludge incinerator.

Specifications

The facilities to incinerate sludge must comply with the Directive on Incineration of Waste (2000/76/EC) and the BREF document for Waste Incineration from August 2006.

This entails that the emissions from the flue gas filter must not be higher than:

<table>
<thead>
<tr>
<th>Substance(s)</th>
<th>½ hour average</th>
<th>24 hour average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dust</td>
<td>1 - 20</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Hydrogen chloride (HCl)</td>
<td>1 - 50</td>
<td>1 - 8</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF)</td>
<td><2</td>
<td><1</td>
</tr>
<tr>
<td>Sulphur dioxide (SO₂)</td>
<td>1 - 150</td>
<td>1 - 40</td>
</tr>
<tr>
<td>Nitrogen monoxide (NO) and nitrogen dioxide (NO₂), expressed as nitrogen dioxide for installations using SCR</td>
<td>40 - 300</td>
<td>40 - 100</td>
</tr>
<tr>
<td>Nitrogen monoxide (NO) and nitrogen dioxide (NO₂), expressed as nitrogen dioxide for installations not using SCR</td>
<td>30 - 350</td>
<td>120 - 180</td>
</tr>
<tr>
<td>Gaseous and vaporous organic substances, expressed as TOC</td>
<td>1 - 20</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>5 - 100</td>
<td>5 - 30</td>
</tr>
</tbody>
</table>

Notes: The ranges given in this table are the levels of operational performance that may generally be expected as a result of the application of BAT – they are not legally binding emission limit values.

/AntiPollution Prevention and Control. Reference document and the Best Available Techniques for Waste Incineration (Table 5.2). August 2006/

Award criteria

Award criteria are given for the improved performance.

Additional points are given for reducing the emission of the substances listed in Table 9.2 below limit values.
The points are awarded on the basis of a sliding scale between best and worst bids.

The specific award criteria can be read in the GPP Criteria for Waste Water Infrastructure.

9.2.7 Contract performance clauses
Contract performance clauses aim to reduce the environmental impacts during the performance stage.

There are several aspects which can vary from one project to another.

The core criteria for contract performance focus on transport of materials, functional tests, energy consumption and waste management.

9.3 Comprehensive environmental GPP criteria
The comprehensive criteria are intended for those contracting authorities who wish to choose the best option/project based on environmental considerations.

Fulfilment of the comprehensive criteria will require an extra effort by the contractors. Managing and handling the information from the contractors will also require additional administrative effort and minor costs for the contracting authority.

Some of the comprehensive criteria are quite complex and do require detailed expertise in environmental aspects. Some contracting authorities can have a demand for sourced expert advice.

This is especially important for the waste water treatment efficiency as discharge of treated/cleaned waste water is the largest potential environmental impact from waste water treatment plants.

Furthermore, the weighting of impacts from hazardous substances, pathogens, pharmaceuticals and nutrients has a very high influence on the results. This indicates the need for detailed and extensive knowledge about these mechanisms to interpret the results and thus assess the contractors depending on their performance. An example is the recurring issue regarding heavy metals - is copper damaging the environment more than cadmium? These issues can be dealt with by using weighting.

The comprehensive criteria can be seen in the GPP Criteria. It must be stressed that contracting authorities are not obliged to implement all of the criteria. The criteria must be evaluated by the contracting authorities to determine the relevant criteria for the actual project in question. An example is the comprehensive criteria for pathogens which are intended for use, when it has been decided that the contracting authority wants to establish a waste water treatment plant with demands for bathing water quality in the receiving stream, lake, sea etc.

9.3.1 Subject matter and selection criteria
The comprehensive criteria regarding subject matter focus on the experience of the engineers, planners and architects just like the core criteria. The comprehensive criteria are more detailed about the experience which must be documented by a list of previous relevant projects.

In this section, the subject matter and selection criteria will be defined.
Subject matter
The subject matter is defined to be:

- Construction of waste water treatment plants, sewage systems and sludge treatment technologies using sustainable construction materials and products, reducing energy and water consumption, optimising treatment efficiencies and flue gas treatment during the entire life cycle or

- Renovation of waste water treatment plants, sewage systems and sludge treatment technologies using sustainable construction materials and products, reducing energy and water consumption, optimising treatment efficiencies and flue gas treatment during the entire life cycle

Selection criteria
It is important that the engineers, planners and architects can demonstrate knowledge of:

- Process equipment
- The construction of waste water treatment plants, sludge incinerators, sludge digesters, sewers etc. with focus on reducing environmental impacts.
- Water efficiency
- Reduction of water consumption
- Use of LCC and LCA in design and selection of materials
- High efficiency co-generation.

The full list of required areas of knowledge is shown in the GPP Criteria for Waste Water Infrastructure.

The above mentioned experience and technical capacity must be documented by a list of previous relevant projects with appropriate references to enable verification.

9.3.2 Specifications and award criteria - energy
The comprehensive criteria focus on almost the same areas as the core criteria - just in more detail.

In addition to the core criteria, the comprehensive criteria require that the contracting authority set up benchmarks or levels for best available technique to measure the degree of energy savings and efficiencies which the contractors offers.

Regarding energy for buildings at the waste water treatment plant or sludge incineration plant, criteria in the Product Sheet for Construction can be applied.

As the most of the energy consumption derives from aeration systems, pumps, mixers etc., the focus on energy efficiency of the buildings are relatively low from an environmental point of view.

Award criteria
Award criteria are given for improved performance.
Additional points are given for reducing the energy consumption below the reference values for the most energy consuming technical installations.

The points are awarded on the basis of a sliding scale between best and worst bids.

Another initiative to reduce the energy consumption is to create technologies or measures to activate the users by making energy savings visible during the production phase. These initiatives can ensure continuous attention to energy savings during the life time of the waste water treatment plant, sludge incinerator etc.

Award points are given according to the number of employees who have attended a course in energy efficient behaviour.

9.3.3 Specifications and award criteria - construction materials and products

Overall criteria for construction materials are described in Section 9.2.3. The comprehensive criteria elaborate and expand on the core criteria.

It is especially for these criteria that the need for experts emerges, as environmental assessment of products are quite specialised.

Specifications
Specifications for comprehensive criteria are described in the Product Sheet for Construction.

Award criteria
Additional points are awarded for choosing sustainable materials. Aspects to consider are:

- Environmental aspects in a life cycle perspective
- Life Cycle Costs
- Social aspects
- Aesthetics
- Technical requirements.

There are several models and tools available to make this overall and initial assessment. Based on this the most important, construction materials can be selected.

The most important materials e.g. concrete and steel must then be assessed in greater detail to choose the most optimal material for the specific use.

21 According to “Guidelines for Social Life Cycle Assessment of Products” from UNEP social aspects considered can be “Social impacts are consequences of positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Social impacts are understood by these Guidelines to be consequences of social relations (interactions) weaved in the context of an activity (production, consumption or disposal) and/or engendered by it and/or by preventive or reinforcing actions taken by stakeholders (ex. enforcing safety measures in a facility)”.

http://www.unep.fr/shared/publications/pdf/DTIx1164xPA-guidelines_sLCA.pdf
A recognised method for quantifying and evaluating the potential environmental impacts is Life Cycle Assessment (LCA). There are several databases available which enable the specialist to make recommendations for materials use. The new Construction Product Directive requires the existence of an environmental product declaration for all CE labelled products and can therefore also be a reliable and good source of information about construction materials' environmental performance.

The LCA data include information about the use of renewable resources and is thus incorporated in the assessment of materials.

At this stage, the life time/durability of materials must also be included, as it has a significant impact on the result and recommendations.

When the material type has been decided upon, LCA can also be used to create the basis for choosing between several suppliers of materials with the same specifications.

Regarding social issues, a Social LCA can be performed for the most dominating materials. There are several other methods for assessment of social aspects in the full life cycle. The ambition level and request for data from the contractor must be decided by the contracting authority.

The contractor is also obliged to present technical data sheets, safety data sheets and declarations of content where possible for the selected materials.

The contractor must then account for the choice of sustainable materials and suppliers based on the 5 aspects mentioned above.

9.3.4 Specifications and award criteria - water consumption

The comprehensive criteria regarding water consumption is relevant for parts of Europe with water scarcity.

For these regions, it can be necessary to restrict the water consumption by incorporating the comprehensive criteria.

For all other scenarios than waste water treatment plants there are no comprehensive criteria.

Specifications

For waste water treatment plants, the consumption of water can be important in areas with water scarcity. To reduce the consumption of fresh water, it is important that treated/cleaned waste water is used for cleaning grids, equipment, membranes etc.

Another way to reduce the consumption of fresh water is by using treated/cleaned waste water for mixing polymers.

There are numerous other options to reduce the use of fresh water depending on the specific needs of the specific project. The tenderer must describe and document the total consumption of fresh water, grey water and treated/cleaned waste water to enable the contracting authority to compare the offers from the tenderers.

The specifications can be seen in the GPP Criteria for Waste Water Infrastructure.
Award criteria

- The use of rainwater and grey water
- Periodical measures to control and assess the water consumption pr. m³ sewage or sludge.

These are examples of awarding contractors with additional points for reducing water consumption. The full award criteria can be read in the GPP Criteria for Waste Water Infrastructure.

9.3.5 Specifications and award criteria - waste water treatment efficiencies

The comprehensive criteria for waste water treatment efficiencies include the most important and largest potential environmental impacts from waste water treatment plants.

Thus, it is strongly recommended to include these criteria in the final evaluation of the tenderer's proposals.

The comprehensive criteria concern treatment efficiencies of heavy metals, pharmaceuticals, priority substances and pathogens.

In principle, all the current 33 and the proposed 15 new priority substances in WFD can occur in urban waste water. However, in reality, many of them will rarely be detectable or at least only be present at very low levels because of their origin or their properties, and hence, for such substances, it will not be very relevant to establish requirements to the performance of WWTPs in relation to lowering their concentrations in the effluent.

In consideration of the context and objectives of this study, it is proposed to select a few indicator substances from the list of relevant hazardous substances to for which documentation of WWTP performance could be required. It is suggested to omit volatile substances, which will typically be removed from the water phase by stripping during the treatment processes or shortly after discharge, and also leave out substances posing special analytical challenges (e.g. brominated flame retardants).

Relevant indicator substances include the metals (and their compounds):

- Cadmium and its compounds
- Lead and its compounds
- Mercury and its compounds
- Nickel and its compounds

and the following selected among the organic priority substances:

- Di(2-ethylhexyl)phthalate (DEHP)
- Naphthalene
- Nonylphenols and octylphenols
- Benzo(a)pyrene (to represent the Polycyclic Aromatic hydrocarbons (PAHs).
The substances in **bold** are the priority **hazardous** substances for which an obligation to cease discharges into surface waters exist. It may therefore be relevant to focus particularly on these substances.

It should, however, be mentioned that the proposal for revision of the EQS Directive (COM (2011) 876 final) sets a lower EQS for nickel, which will probably lead to more compliance problems than today as the background concentration of nickel in freshwater bodies is sometimes quite high.

Further, a significantly lower EQS for benzo(a)pyrene is proposed, which may make this substance less suitable as an indicator due to technical complications in ensuring a sufficiently low quantification limit in typical analytical methods. Possibly, anthracene or fluoranthene could be used as alternative indicators of PAHs.

The current EQS directive does not include natural or synthetic oestrogens, but the natural oestrogen 17β-estradiol and the synthetic oestrogen 17α-ethinylestradiol are included in the proposal for a revised directive. Should these substances be included in the revised directive, it could be considered to include one of them among the "indicator substances" as they are highly relevant in relation to aquatic ecology and quality of surface waters.

Specifications

The European contracting authority must specify or indicate the typical content of substances in the incoming waste water if possible. Based on this knowledge, it is possible to point out the substances or groups of substances which are important and thus also the relevant comprehensive criteria.

If the waste water treatment plant must have a discharge permit, it is highly relevant to initiate a dialogue with the supervisory authority about the future discharge limits for the waste water plant.

In some cases, the supervisory authority or political system can also decide to set up demands for the discharge of pathogens on the grounds of bathing water requests for the receiving water body. In this case, it is relevant to use the comprehensive criteria about pathogens.

Award criteria

An example of comprehensive award criteria is: The waste water treatment plant's treatment efficiency of cadmium must be \([x] \) % lower than the maximum defined in the discharge permit for the waste water treatment plant or the EQS for cadmium.

The full core and comprehensive criteria can be read in the GPP Criteria for Waste Water Infrastructure.

9.3.6 Specifications and award criteria - treatment efficiency of flue gas filter

The comprehensive criteria for the treatment efficiency of the flue gas filter are - in addition to the core criteria - treatment efficiencies for more substances e.g. mercury etc.
The facilities to incinerate sludge must comply with the Directive on Incineration of Waste (2000/76/EC) and the BREF document for Waste Incineration from August 2006.

Specifications
An example of the comprehensive criteria for the flue gas filter in a sludge incineration plant is:

The concentration of mercury and its compounds (as Hg) must not be higher than 0.05 mg/Nm3 measured by a non-continuous sample.

The specification for the treatment efficiency of the flue gas filter must incorporate the following compounds:

- Mercury
- PAHs
- Total cadmium and thallium (and their components expressed as the metals)
- Zinc
- The sum of other metals.

Award criteria
Award criteria are given for the improved performance.

Additional points are given for reducing the emission below limit values of the substances listed in the above mentioned specification included for the comprehensive criteria.

The points are awarded on the basis of a sliding scale between best and worst bids.

The specific award criteria can be read in the GPP Criteria for Waste Water Infrastructure.

9.3.7 Contract performance clauses
The comprehensive contract performance clauses include environmental considerations at the performance stage. There are several aspects to take into consideration, and most of the environmental impacts are project specific.

Just like the core criteria the comprehensive criteria focus on transport of materials, functional tests, energy consumption and waste management.
Appendix A Scenarios

In this section, the 16 defined waste water infrastructure project scenarios are given with detailed specification of the different waste water components and technologies that are assumed for each scenario.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Name</th>
<th>Type of contract</th>
<th>Persons connected</th>
<th>Effluent standards (main parameters)</th>
<th>Sewer system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minor sewer network extension and rehabilitation</td>
<td>Works contract based on detailed design</td>
<td>10.000</td>
<td>NA</td>
<td>2 km ø 300 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red Book</td>
<td></td>
<td></td>
<td>5 km ø 400 mm (no-dig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Retention tanks: 1 tank 3000 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pumping station(s): 1 PST 250 m³/h at 15 m head</td>
</tr>
<tr>
<td>2</td>
<td>Major sewer network extension and rehabilitation project</td>
<td>Works contract based on detailed design</td>
<td>120.000</td>
<td>NA</td>
<td>8 km ø 300 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red Book</td>
<td></td>
<td></td>
<td>4 km ø 500 mm (no-dig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 km ø 400 mm (no-dig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 km ø 600 mm (no-dig)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Retention tanks: 2 tank 5000 m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pumping station(s): 1 PST 2000 m³/h at 15 m head</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 PST 2500 m³/h at 15 m head</td>
</tr>
<tr>
<td>3</td>
<td>New minor wastewater treatment plant, activated sludge</td>
<td>Design-Build contract</td>
<td>1.500</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>4</td>
<td>New minor wastewater treatment plant, low tech - ponds</td>
<td>Design-Build contract</td>
<td>1.500</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>5</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge</td>
<td>Design-Build contract</td>
<td>8.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>6</td>
<td>New major WWTP, extended aeration</td>
<td>Design-Build contract</td>
<td>50.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>7</td>
<td>New major WWTP, primary clarifiers, digesters and gas utilisation</td>
<td>Design-Build contract</td>
<td>50.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>8</td>
<td>New major WWTP, EU Directive effluent demands - MBR technology</td>
<td>Design-Build contract</td>
<td>50.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>9</td>
<td>New major WWTP, EU Directive effluent demands + disinfection</td>
<td>Design-Build contract</td>
<td>150.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>10</td>
<td>New major WWTP, EU Directive effluent demands + sea outfall</td>
<td>Design-Build contract</td>
<td>150.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>11</td>
<td>New large WWTP, EU Directive effluent demands</td>
<td>Design-Build-Operate contract (20 years</td>
<td>300.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation) FIDIC Golden Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>12</td>
<td>Extension and renovation of existing wastewater treatment plant</td>
<td>Works contract based on detailed design</td>
<td>80.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>13</td>
<td>Sludge digester and gas utilisation plant</td>
<td>Design-Build-Operate contract (20 years</td>
<td>300.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation) FIDIC Golden Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>14</td>
<td>Sludge drying and incineration plant</td>
<td>Design-Build-Operate contract (20 years</td>
<td>300.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation) FIDIC Golden Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>15</td>
<td>Sewer and wastewater treatment project, minor town</td>
<td>Works contract based on detailed design</td>
<td>10.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red and Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>16</td>
<td>Sewer and wastewater treatment project, major town</td>
<td>Works contract based on detailed design</td>
<td>80.000</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIDIC Red and Yellow Book</td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
<td>COD < 75 mg/l/BOD < 25 mg/l</td>
</tr>
<tr>
<td>Scenario</td>
<td>Name</td>
<td>Waste water treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Minor sewer network extension and rehabilitation</td>
<td>Inlet PST</td>
<td>Screen</td>
<td>Grit & grease chambers</td>
<td>Primary clarifiers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Major sewer network extension and rehabilitation project</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>New minor wastewater treatment plant, activated sludge</td>
<td>1 PST 70 m³/h 6 m head</td>
<td>1 fine screen 70 m³/h</td>
<td>1 aerated grit chambers</td>
<td>6 m³</td>
</tr>
<tr>
<td>4</td>
<td>New minor wastewater treatment plant, low tech - ponds</td>
<td>1 PST 70 m³/h 6 m head</td>
<td>1 fine screen 70 m³/h</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge stabilisation</td>
<td>1 PST 350 m³/h 6 m head</td>
<td>1 fine screen 350 m³/h</td>
<td>1 aerated grit chambers</td>
<td>30 m³</td>
</tr>
<tr>
<td>6</td>
<td>New major WWTP, extended aeration</td>
<td>1 PST 3800 m³/h 6 m head</td>
<td>2 fine screens each 1500 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>7</td>
<td>New major WWTP, primary clarifiers, digesters and gas utilisation</td>
<td>1 PST 3000 m³/h 6 m head</td>
<td>2 fine screens each 1500 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>8</td>
<td>New major WWTP, EU Directive effluent demands - MBR technology</td>
<td>1 PST 3000 m³/h 6 m head</td>
<td>2 fine screens each 1500 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>9</td>
<td>New major WWTP, EU Directive effluent demands + disinfection</td>
<td>1 PST 7000 m³/h 6 m head</td>
<td>3 fine screens each 2500 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>10</td>
<td>New major WWTP, EU Directive effluent demands + sea outfall</td>
<td>1 PST 7000 m³/h 6 m head</td>
<td>3 fine screens each 2500 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>11</td>
<td>New large WWTP, EU Directive effluent demands</td>
<td>1 PST 18000 m³/h 6 m head</td>
<td>4 fine screens each 4500 m³/h</td>
<td>4 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>12</td>
<td>Extension and renovation of existing wastewater treatment plant</td>
<td>1 PST 4000 m³/h 6 m head</td>
<td>4 fine screens each 1000 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
<tr>
<td>13</td>
<td>Sludge digester and gas utilisation plant</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>Sludge drying and incineration plant</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>Sewer and wastewater treatment project, minor town</td>
<td>1 PST 400 m³/h 6 m head</td>
<td>1 fine screen 400 m³/h</td>
<td>1 aerated grit chambers</td>
<td>40 m³</td>
</tr>
<tr>
<td>16</td>
<td>Sewer and wastewater treatment project, major town</td>
<td>1 PST 4000 m³/h 6 m head</td>
<td>2 fine screens each 2000 m³/h</td>
<td>2 aerated grit and grease chambers</td>
<td>150 m³</td>
</tr>
</tbody>
</table>

GPP Criteria for Waste Water Infrastructure - Technical Background Report
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Name</th>
<th>Waste water treatment, continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sludge pumping stations</td>
</tr>
<tr>
<td>1</td>
<td>Minor sewer network extension and rehabilitation</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Major sewer network extension and rehabilitation project</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>New minor wastewater treatment plant, activated sludge</td>
<td>1 return sludge pump 50 m³/h 2 m head 1 surplus sludge pump 1 m³/h 4 m head</td>
</tr>
<tr>
<td>4</td>
<td>New minor wastewater treatment plant, low tech - ponds</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge stabilisation</td>
<td>2 return sludge pump 100 m³/h 2 m head 1 surplus sludge pump 5 m³/h 4 m head</td>
</tr>
<tr>
<td>6</td>
<td>New major WWTP, extended aeration</td>
<td>4 return sludge pumps each 450 m³/h 4 m head 2 surplus sludge pumps each 25 m³/h 4 m head</td>
</tr>
<tr>
<td>7</td>
<td>New major WWTP, primary clarifiers, digesters and gas utilisation</td>
<td>4 return sludge pumps each 450 m³/h 4 m head 2 surplus sludge pumps each 25 m³/h 4 m head</td>
</tr>
<tr>
<td>8</td>
<td>New major WWTP, EU Directive effluent demands - MBR technology</td>
<td>2 surplus sludge pumps each 25 m³/h 4 m head</td>
</tr>
<tr>
<td>9</td>
<td>New major WWTP, EU Directive effluent demands + disinfection</td>
<td>6 return sludge pumps each 600 m³/h 4 m head 2 surplus sludge pumps each 75 m³/h 4 m head</td>
</tr>
<tr>
<td>10</td>
<td>New major WWTP, EU Directive effluent demands + sea outfall</td>
<td>6 return sludge pumps each 600 m³/h 4 m head 2 surplus sludge pumps each 75 m³/h 4 m head</td>
</tr>
<tr>
<td>11</td>
<td>New large WWTP, EU Directive effluent demands</td>
<td>12 return sludge pumps each 750 m³/h 4 m head 4 surplus sludge pumps each 75 m³/h 4 m head</td>
</tr>
<tr>
<td>12</td>
<td>Extension and renovation of existing wastewater treatment plant</td>
<td>4 return sludge pumps each 600 m³/h 4 m head 2 surplus sludge pumps each 40 m³/h 4 m head</td>
</tr>
<tr>
<td>13</td>
<td>Sludge digester and gas utilisation plant</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>Sludge drying and incineration plant</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>Sewer and wastewater treatment project, minor town</td>
<td>2 return sludge pump 125 m³/h 2 m head 1 surplus sludge pump 6 m³/h 4 m head</td>
</tr>
<tr>
<td>16</td>
<td>Sewer and wastewater treatment project, major town</td>
<td>4 return sludge pumps each 600 m³/h 4 m head 2 surplus sludge pumps each 40 m³/h 4 m head</td>
</tr>
<tr>
<td>Scenario</td>
<td>Name</td>
<td>Waste water treatment, conditioned - Sludge treatment</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sludge thickeners</td>
</tr>
<tr>
<td>1</td>
<td>Minor sewer network extension and rehabilitation</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Major sewer network extension and rehabilitation project</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>New minor wastewater treatment plant, activated sludge</td>
<td>1 combined sludge thickener /sludge storage tank</td>
</tr>
<tr>
<td>4</td>
<td>New minor wastewater treatment plant, low tech - ponds</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge stabilisation</td>
<td>1 combined sludge thickener /sludge storage tank</td>
</tr>
<tr>
<td>6</td>
<td>New major WWTP, extended aeration</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>New major WWTP, primary clarifiers, digesters and gas utilisation</td>
<td>1 sludge thickener 15 m² and 45 m³</td>
</tr>
<tr>
<td>8</td>
<td>New major WWTP, EU Directive effluent demands - MBR technology</td>
<td>1 sludge thickener 15 m² and 45 m³</td>
</tr>
<tr>
<td>9</td>
<td>New major WWTP, EU Directive effluent demands + disinfection</td>
<td>2 sludge thickeners each 25 m² and 75 m³</td>
</tr>
<tr>
<td>10</td>
<td>New major WWTP, EU Directive effluent demands + sea outfall</td>
<td>2 sludge thickeners each 25 m² and 75 m³</td>
</tr>
<tr>
<td>11</td>
<td>New large WWTP, EU Directive effluent demands</td>
<td>2 sludge thickeners each 45 m² and 135 m³</td>
</tr>
<tr>
<td>12</td>
<td>Extension and renovation of existing wastewater treatment plant</td>
<td>2 sludge thickeners each 12 m² and 35 m³</td>
</tr>
<tr>
<td>13</td>
<td>Sludge digester and gas utilisation plant</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>Sludge drying and incineration plant</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>Sewer and wastewater treatment project, minor town</td>
<td>1 combined sludge thickener /sludge storage tank</td>
</tr>
<tr>
<td>16</td>
<td>Sewer and wastewater treatment project, major town</td>
<td>2 sludge thickeners each 12 m² and 35 m³</td>
</tr>
<tr>
<td>Scenario</td>
<td>Name</td>
<td>Additional treatment facility</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Minor sewer network extension and rehabilitation</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Major sewer network extension and rehabilitation project</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>New minor wastewater treatment plant, activated sludge</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>New minor wastewater treatment plant, low tech - ponds</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>New collector and small WWTP, secondary treatment and aerobic sludge stabilisation</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>New major WWTP, extended aeration</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>7</td>
<td>New major WWTP, primary clarifiers, digesters and gas utilisation</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>8</td>
<td>New major WWTP, EU Directive effluent demands - MBR technology</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>9</td>
<td>New major WWTP, EU Directive effluent demands + disinfection</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>10</td>
<td>New major WWTP, EU Directive effluent demands + sea outfall</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>11</td>
<td>New large WWTP, EU Directive effluent demands</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>12</td>
<td>Extension and renovation of existing wastewater treatment plant</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>13</td>
<td>Sludge digester and gas utilisation plant</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>14</td>
<td>Sludge drying and incineration plant</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
<tr>
<td>15</td>
<td>Sewer and wastewater treatment project, minor town</td>
<td>NA</td>
</tr>
<tr>
<td>16</td>
<td>Sewer and wastewater treatment project, major town</td>
<td>Activated carbon filter for odour treatment</td>
</tr>
</tbody>
</table>
Appendix B GPP Criteria approach for scenarios

Scenario 1
This scenario is defined as minor sewer network extension and rehabilitation. The works contract is based on detailed design (red book).

1 Assumptions
 It is assumed the project is procured according to FIDIC’s red book (design).
 There is one pump.
 There is no water scarcity. Nevertheless the procurer is interested in reducing the energy consumption.

2 Design basis and requirements
 The contracting authority determine the initial design parameters and requirements like:
 - Capacity of pipes [m3/sec.]
 - The self cleaning ability of the pipes
 - Environmental focus areas (energy and water consumption during operation and maintenance)

2.1 Applicable GPP criteria
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services (Section 5.2)
 - Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
 - Core or comprehensive criteria (Section 5.3.1) regarding energy performance requirement [kWh/m3]. The technical specifications and award criteria are applicable. When using the core criteria, the total energy consumption for the entire wastewater infrastructure is assessed. When the comprehensive criteria are applied, in addition the energy requirements are applied to the pumps.
 - Comprehensive criteria regarding water consumption (Section 5.3.2). Technical specifications regarding the cleaning of installed pipes during maintenance can be applied. Award criteria 2 regarding the use of water just before and after installation.
 - Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

2.2 Process
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.22

22 Guidance about weighting can be found via the national action plans and targets at the local, regional and national level. Furthermore, knowledge about normalization and weighting potential environmental impacts has been developed for the use in LCA’s and recommendations can thus be found at for instance Joint Research Center’s homepage (http://www.jrc.europa.eu/).
Scenario 2
This scenario is defined as major sewer network extension and rehabilitation. The works contract is based on detailed design (red book).

1 Assumptions
It is assumed the project is procured according to FIDIC’s red book (design).
There are two pumps.
There is water scarcity.

2 Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- Capacity of pipes [m3/sec.]
- The self cleaning ability of the pipes
- Environmental focus areas (energy and water consumption)

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria
The applicable core and comprehensive criteria for the project are selected:
- Core criteria regarding energy performance requirement [kWh/m3] (Section 5.3.1). The technical specifications and award criteria are applicable.
- Comprehensive criteria regarding water consumption (Section 5.3.2). Technical specifications regarding the cleaning of installed pipes during maintenance can be applied. Award criteria 2 regarding the use of water just before and after installation.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 3
This scenario is defined as a new minor wastewater treatment plant with activated sludge. The treatment plant primarily removes organic material (COD and BOD).

a. Assumptions
It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract). There is no water scarcity in the area.
The sludge is not handled at the treatment plant.
The wastewater is discharged to a water body without bathing water requirements.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD and COD
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy and additional BOD and/or COD removal)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Core criteria regarding energy performance requirements (Section 5.3.1). Technical specifications and award criteria can be applied.
- Core criteria regarding treatment efficiencies (Section 5.3.3). The technical specifications for COD and BOD and award criteria 1 for BOD can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the entire plant is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 4
This scenario is defined as a minor low tech treatment plant e.g. ponds. The treatment plant primarily removes organic material (COD and BOD).

a. Assumptions
It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract). The treatment plant is situated in an area with sufficient water. The sludge is not handled at the treatment plant. The wastewater is discharged to a water body without bathing water requirements.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD and COD
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy and additional BOD removal)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Core criteria regarding energy performance requirements (Section 5.3.1). Technical specifications and award criteria can be applied.
- Core criteria regarding treatment efficiencies (Section 5.3.3). The technical specifications for COD and BOD and award criteria 1 for BOD can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the entire plant is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 5
This scenario is defined as a collector and a small wastewater treatment plant with secondary treatment. The treatment plant primarily removes organic material (COD and BOD).

a. Assumptions
It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract).
The treatment plant is situated in an area with sufficient water.
The sludge is not handled at the treatment plant.
The wastewater is discharged to a water body without bathing water requirements.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD and COD
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Capacity of pipes [m3/sec.]
- The self cleaning ability of the pipes
- Environmental focus areas (energy and additional BOD removal)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Core or comprehensive criteria regarding energy performance requirements (Section 5.3.1). Technical specifications and award criteria can be applied.
- Core criteria regarding water consumption (Section 5.3.2). Technical specifications regarding the cleaning of screen and sewage pipes (installation and maintenance).
- Core criteria regarding treatment efficiencies (Section 5.3.3). The technical specifications for COD and BOD and award criteria 1 for BOD can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the entire plant is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 6
This scenario is defined as a major new WWTP with extended aeration. The WWTP has demands for removing BOD, COD, N and P.

a. Assumptions
- It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract).
- The WWTP is situated in an area with water scarcity.
- The receiving water body is not used for bathing purposes.
- The sludge is dewatered but sludge incineration does not occur at the plant.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy, water, treatment of hazardous substances etc.)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The technical specifications and award criteria are applicable.
- Comprehensive criteria regarding water consumption as the WWTP is situated in an area with water scarcity (Section 5.3.2). Technical specifications regarding the cleaning of grids, membranes etc. at the wastewater treatment plant and for water consumption in office/administration buildings can be applied. Award criteria 1 (use of rain water and grey water).
- Core and comprehensive criteria regarding treatment efficiencies of COD, BOD, SS, N, P, hazardous substances etc. (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 7
This scenario is defined as a major new WWTP with primary clarifiers, digesters and gas utilization. The WWTP has demands for removing BOD, COD, N and P.

a. Assumptions
It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract). The WWTP is situated in an area without water scarcity. The receiving water body is not used for bathing purposes. The sludge is dewatered but sludge incineration does not occur at the plant.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy, water, treatment of hazardous substances etc.)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The gas production can also be incorporated into the comprehensive criteria with the efficiency of the gas utilization equipment and the generated amount of energy. The generated energy is subtracted from the energy consumption.
- Core criteria regarding water consumption (Section 5.3.2). The technical specifications and award can be applied.
- Core and comprehensive criteria regarding treatment efficiencies of COD, BOD, SS, N, P, hazardous substances etc. (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 8
This scenario is defined as a major new WWTP with a Membrane BioReactor (MBR). The WWTP has demands for removing BOD, COD, N and P according to the EU Wastewater Directive.

a. Assumptions
 It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract).
 The WWTP is situated in an area without water scarcity.
 The receiving water body is not used for bathing purposes.
 The sludge is dewatered but sludge incineration does not occur at the plant.
 The MBR is installed to remove priority organic pollutants e.g. estrogens and PAH's.

b. Design basis and requirements
 The contracting authority determine the initial design parameters and requirements like:
 - The inlet concentration of BOD, COD, N, P, heavy metals, estrogens etc.
 - The average and maximum flow to the plant
 - The desired treatment efficiencies (ambition level)
 - Environmental focus areas (energy, water, treatment of hazardous substances etc.)
 - Etc.
 When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services (Section 5.2)
 - Selection criteria for construction contract (Section 5.3), specification and award criteria
 The applicable core and comprehensive criteria for the project are selected:
 - Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The technical specifications and award criteria are applicable.
 - Core criteria regarding water consumption (Section 5.3.2). The technical specifications and award can be applied.
 - Core and comprehensive criteria regarding treatment efficiencies of COD, BOD, SS, N, P, hazardous substances etc. (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
 - Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 9
This scenario is defined as a major new WWTP with primary clarifiers, digesters and gas utilization. The WWTP has demands for removing BOD, COD, N, P and pathogens according to the EU Wastewater Directive.

a. Assumptions
 It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract).
 The WWTP is situated in an area without water scarcity.
 The receiving water body is not used for bathing purposes.
 The sludge is dewatered but sludge incineration does not occur at the plant.
 There are requirements concerning the outlet concentration of pathogens as the discharge occurs to a water body with bathing water requirements.

b. Design basis and requirements
 The contracting authority determine the initial design parameters and requirements like:
 - The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
 - The average and maximum flow to the plant
 - The desired treatment efficiencies (ambition level)
 - Environmental focus areas (energy, water, treatment of hazardous substances, pathogens etc.)
 - Etc.
 When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services (Section 5.2)
 - Selection criteria for construction contract (Section 5.3), specification and award criteria
 The applicable core and comprehensive criteria for the project are selected:
 - Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The technical specifications and award criteria are applicable.
 - Core criteria regarding water consumption (Section 5.3.2). The technical specifications and award can be applied.
 - Core and comprehensive criteria regarding treatment efficiencies of COD, BOD, SS, N, P, hazardous substances, pathogens etc. (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
 - Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 10
This scenario is defined as a major new WWTP. The WWTP has extended aeration and demands for removing BOD, COD, N and P according to the Urban Waste Water Directive.

a. Assumptions
It is assumed the project is procured according to FIDIC’s yellow book (a design-build contract).
The WWTP is situated in an area with water scarcity.
Treated wastewater is discharged to a sensitive water body used for bathing purposes.
The sludge is dewatered but sludge incineration does not occur at the plant.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy, water, treatment of hazardous substances)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The technical specifications and award criteria are applicable.
- Comprehensive criteria regarding water consumption as the WWTP is situated in an area with water scarcity (Section 5.3.2). Technical specifications regarding the cleaning of grids, membranes etc. at the wastewater treatment plant and for water consumption in office/administration buildings can be applied. Award criteria 1 (use of rain water and grey water) is applicable.
- Core and comprehensive criteria regarding treatment efficiencies of COD, BOD, N, P and pathogens (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 11
This scenario is defined as a major new WWTP. The WWTP has demands for removing BOD, COD, N and P according to the Urban Waste Water Directive.

a. Assumptions
It is assumed the project is procured according to FIDIC’s golden book (a design-build-operate contract).
The WWTP is not situated in an area with water scarcity. Treated wastewater is discharged to a sensitive water body used for bathing purposes. The sludge is dewatered but sludge incineration does not occur at the plant.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy, water, treatment of hazardous substances)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (e.g. the aeration, inlet pumps, mixers). The technical specifications and award criteria are applicable.
- Core criteria regarding water consumption (Section 5.3.2). The technical specifications and award can be applied.
- Core and comprehensive criteria regarding treatment efficiencies of BOD, COD, N and P (Section 5.3.3). Technical specifications and award criteria 1 and 2 for the core criteria and award criteria 1-4 for comprehensive criteria can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 12
This scenario contains extension and renovation of existing wastewater treatment plant.

a. Assumptions
It is assumed the project is procured according to FIDIC’s red book (a detailed design contract).
The WWTP is situated in an area with water scarcity.
The sludge is dewatered but sludge incineration does not occur at the plant.

b. Design basis and requirements
The contracting authority determine the initial design parameters and requirements like:
- The inlet concentration of BOD, COD, N, P, heavy metals, pathogens etc.
- The average and maximum flow to the plant
- The desired treatment efficiencies (ambition level)
- Environmental focus areas (energy, water, treatment of hazardous substances)
- Etc.
When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. Applicable GPP criteria
(Reference are made to relevant sections in the GPP Criteria Report)
- Selection criteria for consultancy services (Section 5.2)
- Selection criteria for construction contract (Section 5.3), specification and award criteria

The applicable core and comprehensive criteria for the project are selected:
- Comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming new and renovated equipment (e.g. the pumps, screens etc.). The technical specifications and award criteria are applicable.
- Comprehensive criteria regarding water consumption as the WWTP is situated in an area with water scarcity (Section 5.3.2). Technical specifications regarding the screens, screening press, conveyors etc. can be applied. Award criteria 1 (use of rain water and grey water) is applicable.
- Core criteria regarding treatment efficiencies of BOD, COD, N and P (Section 5.3.3). Technical specifications and award criteria 1 and 2 can be applied.
- Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. Process
When the GPP criteria for the project have been chosen, the following process is left:
- The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
- The award points
- Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
- Development of an evaluation model with the overall weights of economical, technical and environmental items
- Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 13
This scenario contains a sludge digester and gas utilization plant.

a. **Assumptions**
 It is assumed the project is procured according to FIDIC’s golden book (a design-build-operate contract).
 The sludge digester and gas utilization plant are not situated in an area with water scarcity.
 The sludge is dewatered but sludge incineration does not occur at the plant.

b. **Design basis and requirements**
 The contracting authority determine the initial design parameters and requirements like:
 - Sludge production (tons/day and tons dry solids/day)
 - Effectiveness of the gas utilization plant
 - Environmental focus areas (energy, water, amount of generated gas etc.)
 - Etc.
 When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. **Applicable GPP criteria**
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services (**Section 5.2**)
 - Selection criteria for construction contract (**Section 5.3**), specification and award criteria

 The applicable core and comprehensive criteria for the project are selected:
 - Comprehensive criteria (**Section 5.3.1**) regarding energy performance requirements specifying energy efficiencies for the most energy consuming and generating equipment (e.g. the pumps etc.). The technical specifications and award criteria are applicable.
 - Core criteria regarding water consumption (**Section 5.3.2**). The technical specifications and award can be applied.
 - Comprehensive or core criteria regarding contract performance clauses (**Section 5.3.5**)

d. **Process**
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 14
This scenario contains sludge drying and a sludge incineration plant.

a. **Assumptions**
 It is assumed the project is procured according to FIDIC’s golden book (a design-build-operate contract).
 The sludge is dewatered, dried and incinerated.

b. **Design basis and requirements**
 The contracting authority determine the initial design parameters and requirements like:
 - The average and maximum amount of sludge to the incineration plant
 - The desired flue gas treatment efficiencies (ambition level)
 - Environmental focus areas (energy, water, hazardous substances emitted to air etc.)
 - Etc.
 When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. **Applicable GPP criteria**
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services *(Section 5.2)*
 - Selection criteria for construction contract *(Section 5.3)*, specification and award criteria
 The applicable core and comprehensive criteria for the project are selected:
 - Comprehensive criteria *(Section 5.3.1)* regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (the pumps, dryer etc.). The technical specifications and award criteria are applicable.
 - Core criteria regarding water consumption *(Section 5.3.2)*. The technical specifications and award can be applied.
 - Core and/or comprehensive criteria regarding flue gas treatment. *(Section 5.3.4)* The technical specifications and award can be applied.
 - Comprehensive or core criteria regarding contract performance clauses *(Section 5.3.5)*

d. **Process**
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 15
This scenario comprises a sewer and wastewater treatment project in a minor town.

a. **Assumptions**
 - It is assumed the project is procured according to FIDIC’s red and yellow book (a detailed design/functional demands contract).
 - The project is established in a town with water scarcity.
 - The sludge is dewatered but sludge incineration does not occur at the plant.

b. **Design basis and requirements**
 - The contracting authority determine the initial design parameters and requirements like:
 - The inlet concentration of BOD and COD etc.
 - The average and maximum flow to the plant
 - The desired treatment efficiencies (ambition level)
 - Environmental focus areas (energy, water etc.)
 - Etc.
 - When these initial decisions have been made, the Contracting Authority is ready for the selection of the GPP criteria for the actual project.

c. **Applicable GPP criteria**
 - Selection criteria for consultancy services (Section 5.2)
 - Selection criteria for construction contract (Section 5.3), specification and award criteria
 - Core criteria for the wastewater treatment plant and sewerage system or comprehensive criteria (Section 5.3.1) regarding energy performance requirements specifying energy efficiencies for the most energy consuming equipment (the aeration system, pumps etc.). The technical specifications and award criteria are applicable.
 - Comprehensive criteria regarding water consumption as the WWTP is situated in an area with water scarcity (Section 5.3.2). Technical specifications regarding the grit etc. can be applied. Award criteria 1 (use of rain water and grey water) and award criteria 2 (for pipe installation) is applicable.
 - Core criteria regarding treatment efficiencies of BOD and COD (Section 5.3.3). Technical specifications and award criteria 1 and 2 can be applied.
 - Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. **Process**
 - The estimated or calculated energy consumption for the most important components (pumps, aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and environmental items
 - Development of the evaluation model to weight the individual environmental aspects against each other e.g. is the acidification more important than global warming etc.
Scenario 16
This scenario comprises a sewer and wastewater treatment project in a major town.

a. **Assumptions**
 It is assumed the project is procured according to FIDIC’s red and yellow book (a detailed
design/functional demands contract).
 The project is established in a town with sufficient water supply.
 The sludge is dewatered but sludge incineration does not occur at the plant.

b. **Design basis and requirements**
 The contracting authority determines the initial design parameters and requirements like:
 - The inlet concentration of COD, BOD, N, P etc.
 - The average and maximum flow to the plant
 - The desired treatment efficiencies (ambition level)
 - Environmental focus areas (energy, discharged concentrations of organic material etc.)
 - Etc.
 When these initial decisions have been made, the Contracting Authority is ready for the selection
 of the GPP criteria for the actual project.

c. **Applicable GPP criteria**
 (Reference are made to relevant sections in the GPP Criteria Report)
 - Selection criteria for consultancy services (Section 5.2)
 - Selection criteria for construction contract (Section 5.3), specification and award criteria
 The applicable core and comprehensive criteria for the project are selected:
 - Core criteria for the wastewater treatment plant and sewerage system or comprehensive
 criteria (Section 5.3.1) regarding energy performance requirements specifying energy
 efficiencies for the most energy consuming equipment (the aeration system, pumps etc.). The
 technical specifications and award criteria are applicable.
 - Core criteria regarding water consumption (Section 5.3.2). The technical specifications and
 award can be applied.
 - Core criteria regarding treatment efficiencies of COD, BOD, N ad P (Section 5.3.3). Technical
 specifications and award criteria 1 and 2 can be applied.
 - Comprehensive or core criteria regarding contract performance clauses (Section 5.3.5)

d. **Process**
 When the GPP criteria for the project have been chosen, the following process is left:
 - The estimated or calculated energy consumption for the most important components (pumps,
aeration equipment etc.) is assessed. Rules for awarding points are developed.
 - The award points
 - Decisions regarding the technical specifications. The Contracting Authority must define and
 develop the required technical specifications which must be included in the tender documents
 - Development of an evaluation model with the overall weights of economical, technical and
 environmental items
 - Development of the evaluation model to weight the individual environmental aspects against
 each other e.g. is the acidification more important than global warming etc.
Appendix C Information sources

European legislation

Public Procurement regulation

Horizontal Environmental regulation

Water specific regulation

Waste, energy-saving regulation and other regulation of relevance

Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture

Other sources

Communication (COM (2008) 400) “Public procurement for a better environment”

Buying Green - A handbook on green public procurement. EU, 2011

COM (2011) 896 final of 20 December 2011

Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Roadmap to a resource efficient Europe. 2009
Davis Langdon (2007) Towards a common European methodology for Life Cycle Costing (LCC) – Literature Review

COWI (2004) The FEASIBLE Model Version 2 The report and cost function documentation can be found at OECDs website: [FEASIBLE Model documentation website](#)

DEPA: Calculation system for investment costs for waste water treatment (in Danish), COWI and Lønholt&Jans I-S, 1990. These cost functions is also used in a text book on civil engineering in the waste water sector: Winther, L et al, "Spildevandsteknik", 2009 Polyteknisk Forlag. (in Danish)

Ahroth (2009). Developing a weighting set based on monetary damage estimates. Method and case studies; Royal Institute of Technology Stockholm, Sweden

EEA (2011); Revealing the costs of air pollution from industrial facilities in Europe; EEA Technical report No 15/2011

Internet sources

http://ec.europa.eu/environment/gpp/helpdesk.htm

http://ec.europa.eu/environment/gpp/studies_en.htm

http://ec.europa.eu/environment/gpp

http://www.oilgae.com/ref/glos/waste water_treatment.html

http://www.euneptune.org/Publications%20and%20Presentations/D4-3__NEPTUNE.pdf

www.ig-passivhaus.de

www.passivhaus.org.uk/index.jsp?id=669

www.cepheus.de/eng

www.europeanpassivehouses.org