A guide to the green public procurement of road lighting

December 2018

Shane Donatello, Rocio Rodriguez Quintero, Miguel Gama Caldas

The European Commission’s science and knowledge service

Joint Research Centre
Contents

• Know your lighting infrastructure and assets!
• Have "ALARA" light levels (As Low As Reasonably Achievable).
• Know the benefits with LED, but also the risks.
• The LED triple win if you dim.
• The factors you need to know in order to minimise energy costs.
• Skyglow and reduced star visibility – relevant design factors.
• The trade-off between blue light, CRI and ecological health effects.
• Life cycle costing.
• How to overcome high up-front costs of LED-conversion.
Know your lighting assets!

"if you can't measure it, you can't manage it"
This common business phrase is absolutely applicable to road lighting. First you need to know how many light points you have and where exactly.
Then you need to know how much electricity they consume.
Only then can you properly assess what possibilities exist to reduce costs and environmental impacts.

One good example of asset management is North Yorkshire, who have published their own asset management plan and have an online map of their light points which residents can use to report faults.
See:
ALARA light levels

The EN 13201 light levels are much higher than many existing roads across Europe (not ALARA).

These levels are recommendations - not obligatory in most of Europe.

In cases where legislation follows these levels, remember that they are maximum levels (i.e. some freedom to design for a lower light level within a given road class).

Road class is linked to number of users (a dynamic thing) so make lighting levels change with use patterns (i.e. curfew dimming).

EN 13201 recommendations

<table>
<thead>
<tr>
<th>Class</th>
<th>Cd/m²</th>
<th>Class</th>
<th>lx</th>
<th>Class</th>
<th>lx</th>
<th>Class</th>
<th>lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td></td>
<td>M1</td>
<td>2</td>
<td>C1</td>
<td>30</td>
<td>M2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>1</td>
<td>C3</td>
<td>15</td>
<td>P1</td>
<td>15</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>0.75</td>
<td>C4</td>
<td>10</td>
<td>P2</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>0.5</td>
<td>C5</td>
<td>7.5</td>
<td>P3</td>
<td>7.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>M6</td>
<td>0.3</td>
<td></td>
<td></td>
<td>P4</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td>3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P6</td>
<td>2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Mesopic vision(max)</td>
<td>0.1</td>
<td>Moonlight</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-class roads are used only by motorised vehicles (need to light?).

C-class roads are where conflict areas exist, i.e. where motorised vehicle roads or other roads interact.

P-class roads are used by pedestrians or low speed vehicles.

Higher classes (i.e. 6→0) are associated with higher traffic flows.
The benefits of LED and claims to look into..

Lifetime of LED:

LED light sources do not suffer abrupt failures but rather a gradual decrease in lumen output. But there can be other reasons for abrupt failure (e.g. driver).

Dimming potential:

Near proportional relationship between dimming and power consumption when dimming down to 10% of max. power.

- More energy efficient than HPS.
- Efficiency improving each year.
- Lots of dimming possibilities.
- No flickering.
- More possibilities with optics.
- Range of colours (CCT) possible.
- Last much longer than HID light sources (x2 to x5 or more).
- No abrupt failure of LED.
- No Mercury.

The risks with LED

HPS efficacies range from 50-120 LPW, rising as power rating rises. LED efficacies are much less dependent on power rating for efficacy but many LED products are clearly superior to HPS for efficacy...

Lifetime predictions must be reported in accordance with standards (e.g. IESNA LM80-TM21 in US or IEC 62722/63013 in EU).

Increased risk of overheating in cheaper luminaires with poorer heat sinks. Increased risk of failure in hot climates and when operating for long periods at maximum power output. Easiest way to reduce risk is to dim LED!

• Wide range of LED efficacies.
• Range of qualities for chips, drivers, optics and heat sinks.
• Higher capital costs = higher losses when things go wrong.
• Rapid evolution + long life = high risk of obsolescence
• Concerns with glare & blue light
• Need to verify lifetime claims.
• Even if light source doesn’t fail abruptly, driver can - overheating is biggest cause of premature failure.

2 - LED systems reliability consortium (LSRSC), 2014. LED luminaire lifetime: recommendations for testing and reporting.
A closer look at lifetime claims

- Lifetime claims with LED lamps are completely different to HID lamps.
- LxBy and Cz concepts.

E.g. L_{70}B_{10} at 50 000h means that after 50 000h operation, the total light output will still be at least 70% of the initial performance and that no more than 10% of the LED modules shall fail to meet 70% of their initial performance. L_x term is more important than B_y.

E.g. C_{10} at 50 000h means that after 50 000h, less than 10% of the LED modules shall have suffered abrupt failure (equivalent to 0.2% per 1 000 hours).

Be aware that all data is projected based on initial test results and is strongly dependent on test conditions (especially temp.).

Make sure claims are linked to the actual luminaire to be purchased, to accredited laboratories and that the test conditions are communicated.

2 - ZVEI, 2013. Guide to Reliable planning with LED lighting,
The triple win if you dim

- **Less electricity consumption** (easy to reduce electricity costs by 25-40% → reduced environmental impacts associated with electricity production).

- **Less light pollution** (less skyglow, less glare, less intrusive light, less effect on nocturnal species).

- **Lower risk of overheating** (and thus premature failure) – LED lifetime may be extended even beyond normal manufacturer claims.

A wide range of dimming controls are available which can be broadly split into timers, photocells and motion sensors. **Timers are the simplest and cheapest option, based on an astronomical clock.** For ease of adjustment, dimming controls should ideally be able to be accessed and reprogrammed at ground level or remotely.
The factors that affect energy costs

<table>
<thead>
<tr>
<th>Annual Energy Consumption Indicator</th>
<th>Power Density Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh.m⁻².yr⁻¹</td>
<td>W.lx⁻¹.m⁻²</td>
</tr>
<tr>
<td>1 / (LE.MF.U)</td>
<td></td>
</tr>
</tbody>
</table>

Luminous efficacy (LE, in lm/W) Maintenance factor (MF) Utilance factor (U)

- Luminous efficacy for LED luminaires is still improving each year (a conservative estimate is +5 to +7% per year). According to 2017 US data, 50% of LED roadway lighting is centred in the range 90-120 lm/W (LPW), i.e. influence PDI by 25-30%.
- The maintenance factor (MF) is poorly understood, assumptions may range from 0.80 to 0.97 (i.e. influence PDI by 17%). Lower MFs may result in over-designed lighting and more light pollution.
- The utilance factor is improving with LED but may require special optics to achieve a good factor in narrow roads <5m wide. Typical range is 0.35 to 0.70 (i.e. reduce PDI by 50%).
- The light level is hugely significant and impacts directly on AECI. Going down just 2 light classes in the design can reduce AECI by 50%.
- The dimming factor, via reasonable dimming during periods of low night-time road use intensity can reduce AECI by 25-40%.

\[
\text{AECI} = \text{PDI} \times E_m \times F_D \times T \times 0.001
\]

Image source: Original source unknown, identified in presentation available on LinkedIn titled: Lighting design procedure for flood in illumination engineering. https://www.slideshare.net/rajendranjrf/lighting-design-procedure-for-flood
Skyglow and reduced star visibility

The loss of star visibility is difficult to appreciate because the lighting patterns tend to be the same every night in a given place and are influenced by light from up to 100km away.

Even if light levels do not increase in terms of lumens on the road, replacing HPS lights with LED could result in a significant increase in sky brightness. Why? Because blue light (from LED) scatters more in atmosphere (the same reason why the sky is blue during the day).

Occasionally the opportunity arises (in this case when the Eastern power grid from Ontario to New York failed) it was possible to see just how much star visibility is reduced every night.

Glare and intrusive light (and skyglow again)

The diagram below explains the distinction between skyglow (combination of direct upward light and upward reflected light), glare (direct and indirect) and obtrusive light (light that spills into areas not intended to be lit – especially obtrusive when it spills into residential buildings).

- Once going upward, blue light contributes much more to skyglow.
- Because it scatters more – LED typically has more blue light than HPS.
- Scattering is a function of: $\frac{1}{\lambda}$

Upward reflected light cannot be controlled by the lighting engineer if they have no control over the surface. However, it should be noted that reflectivity coefficients vary greatly depending on the surface.
E.g. asphalt = 0.07 while concrete can easily be 0.10 (i.e. 30% more luminance for the same luminous flux from the luminaire).

Know your real surface reflectance to avoid overlighting.
Specifications to limit skyglow

- Skyglow = wasted energy / money

- Important to specify the luminaire and shielding.
- Not only important for skyglow, but also glare and intrusive light.
- However, be aware that too much shielding might lead to spot-lighting...
- Strike the right balance between uniformity, cost and light pollution

Luminaire specs that can reduce light pollution:
- Lower light levels.
- Less blue light.
- CIE flux codes.
- R_{ULO} 0.0% (i.e. CIE flux code #4).

CIE flux code of: 45 65 95 100 68
Of all the light generated by the light source, 68% comes out from the luminaire. 45% of all the light coming out of the luminaire falls within 41° of the vertical. 65% of all the light coming out of the luminaire falls within 60° of the vertical. 95% of all the light coming out of the luminaire falls within 75.5° of the vertical. 100% of all the light coming out of the luminaire falls within 90° of the vertical (i.e. 0% R_{ULO}).
Blue light and related specifications

- Correlated Colour Temperature (CCT) is a way of describing the appearance of light to the human eye.
- Higher values mean a “colder, whiter light” (typical of LED and MH lamps) while lower values represent a “warmer, redder light” (typical of HPS lamps).

As a light source becomes whiter (higher CCT) it **typically** contains more blue light (see red trendline).

But the relationship is **not perfect** (look at the arrows where CCT is similar but blue light content is up to x8 higher).

Which is why, if you really want to limit blue light, we recommend to use a more accurate specification: **e.g. the G-Index.**
How to finance major lighting conversions?

Golden Rule: Need to shift from “lowest initial cost” to “lowest total cost of ownership” mentality, i.e. a lower life cycle cost.

Consider 3 main aspects: (i) Capital costs, (ii) Energy costs and (iii) Maintenance costs.

<table>
<thead>
<tr>
<th>Self-financing (traditional) model:</th>
<th>Leasing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public authority procures the design, equipment, installation and maintenance of the lighting installation (possibly being directly responsible for the maintenance).</td>
<td>Public authority does not pay any upfront investment costs and rents the lighting installation until the costs (incl. agreed interest) have been paid back. The public authority should pay the energy costs as normal (which should be lower than before and these savings can help pay the “rent”).</td>
</tr>
</tbody>
</table>

Problems:
Major obstacle is initial investment cost.

Tips:
- Buy in bulk (joint procurement with other public authorities – especially important for small municipalities).
- Check for national or European subsidies.
- Check for low interest loans linked to sustainable development and/or smart city goals.

Public Private Partnerships:
Public authority signs a contract with a private Company/consortium. The private partner brings the capital finance and technical expertise and assumes any financial and performance compliance risks.

Performance contracting:
Typically the public authority will work with an ESCO (Energy Savings Company) which provides most of the capital while money saved due to lower operational costs is shared between both sides according to an initial agreement.
Hope this helps!

Any questions?
You can write to us at jrc-b5-roadlighting@ec.europa.eu

Project website:

Stakeholder platform:
http://eippcb.jrc.ec.europa.eu/batis/