

HFC152a as the alternative refrigerant

Presented by:

William R. Hill

General Motors Corporation

Content

- Background
- Performance
- Direct emissions issue
- Mass
- Cost
- Risk Assessment
- Efficiency/LCCP
- ❖ Service/Timing
- Technical Issues Remaining
- Conclusions

Note: Organizer questions are shown in **RED**

Acknowledgement:

Larry Kettwich Underwriter's Lab

James A. Baker Delphi Automotive AC Supplier

Stella Papasaava General Motors Corporation

HFC152a-background

<u>Chemically Similar – Environmentally Very Different</u>

HFC-134a

ASHRAE A1 [Non-flammable]

GWP = 1300

Used in most production vehicles today

HFC-152a

ASHRAE A2 [flammable]

Similar Materials Compatibility

GWP = 120

Used in many refrigerant blends today

HFC152a-background

HFC152a-Performance

Vehicle Wind Tunnel Cool-down

•Without system optimization [Drop-in]

•HFC152a shows improved cool-down performance as compared to HFC 134a

Discharge A/C Temperature Comparison 100 °F x 40% R.H. Ambient (38 °C x 40% R.H.)

<u>Direct Evaporation System</u> reported by Delphi/GM/EPA at SAE Phoenix Alternate Refrigerant Symposium 2002

HFC152a- Direct Emissions

- ❖ 95+% Reduction in Direct Refrigerant GHG Emissions as compared to HFC134a
 - ➤ GWP of HFC152a is 120 vs 1300 for HFC134a*
 - ➤ Smaller Refrigerant charge
 - 35% less than HFC134a as demonstrated in Phoenix in Summer, 2003
 - Leakage is less than HFC134a due to molecular weight and lower system pressures with equivalent system hardware

HFC152a-System mass

❖ System mass is expected to be similar to HFC134a systems with direct expansion system

Evaporator	Same
Compressor	Same
Condenser	Same
Charge	-0.2-0.3 kg.
Plumbing/lines	Same
Safety system	+ 0.2-0.4 kg.

HFC152a Secondary Loop Option

If secondary loop system is used, additional components would add to system mass/cost

HFC152a-Cost

❖ How much more expensive is a current HFC152a based system compared with HFC-134a?

	Direct Expansion	Secondary Loop
Incremental system cost to manufacture	< 15 € [Est.]	< 40 € [Est.]

❖If secondary loop system, safety system is not needed, but there are additional system costs

HFC152a-Cost

- Manufacturing/Service (investment) equipment
 - ➤ New recovery/recycling equipment and service procedures
 - ➤ Additional safety requirements/equipment/training for vehicle assembly plant and service providers
 - > Use existing tooling for component suppliers

Risks Associated with HFC-152a

Flammability

- ➤ Under the EPA SNAP program, the use of flammable refrigerants in new systems is acceptable if necessary precautions are taken.
- ➤ Systems will comply with SAE [Society of Automotive Engineers] J639 [Refrigerant Safety Standards] and J1739 [FMEA-Failure Mode Effects Analysis]
- Combustion production for HFC-152a/HFC-134a
 - ➤ MSDS for both HFC134a and HFC152a have <u>identical</u> cautions for decomposition products
- ❖ Flammability and Atmospheric Decomposition products and their effects will be assessed in the risk assessment

HFC152a- Risk Assessment

Comparison of flammability:

Fluid	Lower Flammability Limit LFL [%]	Upper Flammability Limit UFL [%]	Heat of Combustion HOC * [kJ/g.]	Realistic Combustion energy [kJ/g]#	Index [RF] ##	Molecular Weight [g.]	ASHRAE Class ¹
HC290 propane	2.1*-2.2 #	9.5 #	50.3	44.0	56.6	44*	A3
HFC152a	3.7*-3.9 #	16.9 #	17.4	6.3	4.6	66*	A2
HFC134a	-	-	4.2*		-	102*	A1

*RF-No.: a New Index for Combustion Hazard of Refrigerants.

RF - No. = $[(\sqrt{UFL \cdot LFL} - LFL)/LFL] \cdot (HOC/M)$

UFL: Upper Flammability Limit, LFL: Lower Flammability Limit

HOC: Heat of Combustion, M: Molecular Weight

Ref.: S. Kondo, K. Tokuhashi, A. Takahashi, A. Sekiya, 31th Symposium on Safety

Engineering (Japan), Sg-1 (2001).

*Engineered systems, 18(11):74-88, November,2001

* DuPont Technical Informationpresumes less than 100% combustion of refrigerant [3/2002] [NFPA]

##Based on DuPont numbers

[Note:Numbers from Journal of

Hazardous Materials, A93-2002 fall in

between these values.]

#US EPA 09-MAR-1994, Dean Smith

11-FEB-2003

12

HFC152a- Risk Assessment

- ❖ Given the liability issues relating to flammability, will the vehicle manufacturers introduce HFC-152a to vehicles?
 - ➤ Use of HFC152a [with direct or indirect expansion system] will depend on the risk assessment results.
- ❖ What happens if some refrigerant is mixed with HFC-152a?
 - Not likely this will occur in a vehicle system since all refrigerants have unique service fittings per SAE J639
 - ➤ If other refrigerants are mixed with HFC152a during service, results depend on properties of the refrigerant that is added. [L. Kettwich-UL]

HFC152a- Efficiency/energy consumption

- Results of HFC152a tests have shown system to be an average of 10% more efficient than HFC134a at conditions from 27°C to 46°C.
 - > Use of secondary loop system will result in efficiency similar to current HFC134a

Mechanical COP = System Air Cooling Capacity/ Measured Compressor Shaft Power

<u>Direct Evaporation System</u> reported by Delphi/GM/EPA at SAE Phoenix Alternate Refrigerant Symposium 2002

HFC152a- Efficiency/energy consumption

- ❖ What are the potential efficiency improvements and what is the limit to these improvements?
 - ➤ Oil Separator
 - > Suction line heat exchanger
 - > Improved Effectiveness of heat exchangers
 - > Improved efficiency of compressor
 - ➤ Capacity Controlled compressor, externally controlled
 - ➤ Controlled Air Re-circulation on the evaporator
 - > Improved lubricant compatibility
- ❖ A secondary loop needs to be assessed
 - ➤ Mass and Cost will increase, efficiency similar to current HFC134a systems
- ❖ Is it possible to produce a cost vs efficiency improvement pareto?
 - ➤ Similar to those items under consideration with the enhanced R134a system

HFC152a- LCCP

Direct Evaporation System reported by Delphi/GM/EPA at SAE Phoenix Alternate Refrigerant Symposium 2002

HFC152a-Service Assessment

A Can leaks be identified?

- ➤ Use of Infrared technology has been demonstrated to work similar to HFC134a leak detectors.
- > Service fittings are identified

HFC152a-Timing/feasibility for production

* What would be such a reasonable transition period?

- ➤ 2 additional years of development are necessary to optimize system efficiency, durability, safety, and mass and assure refrigerant manufacturing capacity
- > 2-4 additional years is necessary for a global vehicle model introduction
- * How mature is the technology itself?
 - > Component technology developed [current HFC134a hardware]
 - > System controls are still under development
- ❖ To what extent are the problems relating to the introduction of HFC152a systems related to technology itself, and how much to "simply" cost?
 - ➤ Problems related to introduction are mainly technical issues around flammability control in operation, servicing and production.

HFC152a-Technological issues

❖ Dual evaporator loops?

➤ Secondary loop system would be used for dual evaporator loops

❖ Direct expansion vs secondary loop?

- ➤ No problem to use HFC152a with secondary loop systems
- ➤ Secondary loop will have additional cost and reduced efficiency as compared to direct expansion

Heat pump capability?

- ➤ Per SAE paper 2003-01-0733
 - System demonstrated with coolant as Heat Source
 - Heat capacity at -18°C is over 8 kW
 - Results were similar with both R134a and R152a

HFC152a-Conclusions

Environmental Consideration

- > 95+% reduction in direct refrigerant emissions vs. HFC-134a
- Up to 10% reduction in indirect emissions vs. HFC-134a [reduced fuel usage]

AC system considerations

- ➤ HFC-152a and HFC-134a have nearly identical pressure / temperature curves-minimal component changes required
- Cooling performance and overall energy efficiency are better than HFC-134a
- Current HFC-134a components, lubricants and materials can be used with HFC-152a
 - Flexible component manufacturing possible
- Relative ease of industry conversion
- ❖ Risk Assessment
 - Low flammability
 - > R152a is still an HFC and it could fall under any HFC regulations
 - > Risk assessment results will be available when complete

Thank you for your kind attention!