The National Energy and Climate Plan for 2021-2030
Objectives and targets, and policies and measures
1. Overview and the process of developing the National Energy and Climate Plan for 2021-2030 3
 1.1. Consultation of the National Plan with national and EU entities .. 4
 1.2. National and EU energy system and policy context of the national plan 6
 1.3. Current climate and energy policies and measures across five dimensions of the Energy Union ... 11
 1.4. Administrative structure of the implementation of national climate and energy policies 15
 1.5. Implementing entities ... 16
 1.6. Executive summary ... 18
2. NATIONAL OBJECTIVES AND TARGETS .. 21
 2.1. Decarbonisation .. 22
 2.1.1. Greenhouse gas emissions and removals .. 22
 2.1.2. Renewable energy (2030 Framework Target) ... 26
 2.2. Energy efficiency .. 29
 2.3. Energy security .. 32
 2.4. Internal energy market ... 37
 2.4.1. Electricity interconnectivity (2030 framework target) .. 37
 2.4.2. Energy transmission infrastructure ... 38
 2.4.3. Market integration ... 41
 2.4.4. Energy poverty .. 44
 2.5. Research, innovation and competitiveness ... 45
3. POLICIES AND MEASURES ... 50
 3.1. Decarbonisation .. 51
 3.1.1. GHG emissions and removals (for the plan covering the period from 2021 to 2030, the 2030 Framework Target) ... 51
 3.1.2. Renewable energy (2030 Framework Target) .. 64
 3.1.3. Other elements of the dimension .. 72
 3.2. Energy efficiency .. 83
 3.3. Energy security ... 94
 3.4. Internal energy market ... 105
 3.4.1. Electricity infrastructure .. 105
 3.4.2. Energy transmission infrastructure ... 108
 3.4.3. Market integration .. 113
 3.4.4. Energy poverty .. 119
 3.5. Research, innovation and competitiveness ... 123
I. Energy support measures, including grants – national and non-national measures 133
List of abbreviations .. 141
1. Overview and the process of developing the National Energy and Climate Plan for 2021-2030

This draft National Plan is an effect of the work of an inter-ministerial working team coordinated by the Ministry of State Assets\(^1\). The working team consisted of representatives of\(^2\): the Ministry of Climate, the Ministry of Finance, the Ministry of Development, the Ministry of Development Funds and Regional Policy, the Ministry of Foreign Affairs, the Ministry of Agriculture and Rural Development, the Ministry of Science and Higher Education, the Ministry of Infrastructure, the Ministry of the Maritime Economy and Inland Waterways, the Ministry of Family, Labour and Social Policy, the Government Plenipotentiary for Strategic Energy Infrastructure, as well as the Energy Regulatory Office (Urząd Regulacji Energetyki - URE), the Central Statistical Office (Główny Urząd Statystyczny - GUS), the National Centre for Emissions Management (Krajowy Ośrodek Bilansowania i Zarządzania Emisjami - KOBiZE).

The National Plan presents an integrated approach to the implementation of the five dimensions of the Energy Union.

![Figure 1. Pillars of the Energy Union](image)

This document presents the national assumptions and goals (chapter 2), as well as policies and actions (chapter 3) concerning the above five dimensions. An analysis of the impacts of the planned policies and measures is presented in Annex 2 to this document, whose structure corresponds to the scope and numbering of Annex I to Regulation 2018/1999. The baseline scenario (i.e. with no policies and measures in place) is presented in Annex 1.

The final version of the National Plan was prepared taking into account the conclusions derived from inter-ministerial work and public consultations, updates of national sectoral development strategies following from the Strategy for Responsible Development until 2020 (with an outlook for 2030), as well as from regional

1 The Ministry of Energy changed its name to the Ministry of State Assets with effect from 15 November 2019.
2 The names of ministries have been adapted to reflect the situation in November 2019, in correspondence to the reallocation of powers among the individual ministries.

The draft is based on applicable national development strategies approved by the central government and draft strategic documents, which are at an advanced stage of preparation. The links between the National Plan and key sectoral strategies relevant for this document are presented in the graph below.

![Diagram showing links between NECP and development strategies](image)

Figure 2. Links between the NECP and development strategies following from the SRD

The above strategies identify the entities responsible for the implementation of individual activities/tasks, and define the funding framework.

In the event of changes of the goals or strategic directions envisaged by the national development policies, draft strategies (e.g. by the draft Energy Policy of Poland until 2040), and new developments in the EU medium- and long-term climate and energy policies, the National Energy and Climate Plan for 2021-2030 will be adjusted accordingly, if necessary.

The NECP presents the key tools and measures, which do not represent an exhaustive and closed list of implementation activities. Given the dynamics of economic developments (including in the energy sector), the list may be expanded to reflect the economic conditions and the effects of measures achieved. The NECP is a response to the EU legislation adopted to date.

As a consequence, the National Plan can be updated in the future as per Article 14 of the abovementioned Regulation 2018/1999, or it can be revised to reflect modifications of the goals or strategic lines of intervention envisaged by the national development policies.

1.1. Consultation of the National Plan with national and EU entities

The draft National Energy and Climate Plan was widely consulted between 14 January and 18 February 2019 with over 80 invited stakeholders, including institutions, industry chambers and associations, employers’ and employees’ organisations, and NGOs. The draft NECP was made public on the website of the Ministry of Energy (currently the Ministry of State Assets), who invited the general public to submit opinions. Responses from stakeholders were being received until the end of March 2019. The Ministry received approx. 1100 comments from ca. 80 parties, i.e. ministries and offices (7 ministries: the Ministry of Investment and Economic Development, Ministry of the Environment, Ministry of Maritime Economy and Inland Navigation, Ministry of
Infrastructure, Ministry of Family, Labour and Social Policy, Ministry of National Defence) and 4 offices, including the Energy Regulatory Office, General Directorate for Environmental Protection), all major energy sector State Treasury companies (including PGE S.A., Energa S.A., Tauron Polska Energia, Enea S.A., LOTOS S.A., PKN ORLEN), transmission system operators (i.e. PSE.S.A., PERN S.A., Gaz-System S.A.), industry associations (e.g. Polski Komitet Energii Elektrycznej (Polish Electricity Association), Polskie Towarzystwo Przesyłu i Rozdzielania Energii Elektrycznej (Polish Power Transmission & Distribution Association), Towarzystwo Gospodarcze Polskie Elektrownie (Polish Power Plants Association), Konferencja Pracodawców Lewiatan (Polish Confederation Lewiatan), Towarzystwo Obrotu Energią (Association of Energy Trading), Polskie Towarzystwo Nuklearnicze (Polish Nucleonic Association), Polskie Towarzystwo Elektrocieplowni Zawodowych (Polish Association of Commercial Heat and Power Plants), Towarzystwo Rozwoju Małych Elektrowni Wodnych (Association for Small Hydropower Development)), NGOs (including WWF Poland, Client Earth – Prawnicy dla Ziemi foundation, Stowarzyszenie Energii Odnawialnej – SEO (Renewable Energy Association), Forum Energii (Energy Forum), Instytut Spraw Obywatelskich INSPro (Civil Affairs Institute), local governments (e.g. Provincial Marshal’s Offices of the following Provinces – Kujawsko-Pomorskie, Podlaskie, Pomorskie, Warmińsko-Mazurskie, Małopolskie, Podkarpackie, Łódzkie, Zachodniopomorskie, Związek Województw (Union of Provinces), Śląski Związek Gmin i Powiatów (Silesian Union of Municipalities and Poviats)) and individuals interested in the subject. Most of the comments were detailed, expert or technical in nature. The most frequent comments from the stakeholders concerned ‘decarbonisation’, including the development of renewable energy sources. Other frequently addressed areas of the National Plan included energy efficiency, the role of the heating sector and cogeneration, inter alia in energy security, network infrastructure (especially that of distribution networks) and the use of alternative fuels in transport, including electromobility, hydrogen propulsion, and energy storage.

Between 8 and 30 August 2019, regional consultations were held on the draft National Energy and Climate Plan, as required by Article 12 of Regulation (EU) 2018/1999 on the Governance of the Energy Union and Climate Action. Requests for written comments on the draft NECP were sent to 8 countries, including the V4 (the Czech Republic, Slovakia, Hungary), countries with which Poland has a transboundary connection (Germany, Sweden, Lithuania) and Denmark (in connection with the Baltic Pipe investment), as well as Romania (on account of the country’s interest in bilateral cooperation, i.e. within the energy working group). During the consultation process, Hungary expressed an opinion in which it considered the goals set by Poland realistic. Hungary expressed its interest in the creation by Poland of a gas transmission and trading hub and in the construction of the North-South corridor, and welcomed the plan to deploy nuclear energy in Poland, emphasizing that this will increase the security of energy supply. Hungary is open to exchange of experience in this area. In addition, minor remarks were made on decarbonisation calculations in the ETS sector by 2030, which have been fully taken into account. The Czech Republic, Slovakia and Romania communicated that they had no comments. The other countries invited did not submit any comments.

Issues regarding draft national plans and regional consultations were also addressed in 2019 by the BEMIP High Level Group, of which Poland is a member.

On 18 June 2019, the European Commission issued Recommendation C(2019)4421 on the draft integrated National Energy and Climate Plan of Poland covering the period 2021-2030, which contains 10 recommendations. Given the wide range of issues they address and their impact on the economy in strategic terms, the Commission’s recommendations are chiefly analysed in terms of the interactions between the individual dimensions of the Energy Union, taking into account the domestic conditions, forecasts for the development of the economy and individual sectors, the potential for the development of individual technologies, as well as the evolutionary process of just energy transition and its socio-economic considerations. It must be emphasised that pursuant to Regulation 2018/1999, the Commission recommendations are not binding.

At a request made pursuant to the Act of 8 October 2010 on the cooperation of the Council of Ministers with the Sejm and the Senate in matters relating to Poland’s membership in the European Union (Journal of Laws [Dziennik Ustaw] No 213, item 1395), the draft Position of the Polish Government on the above European Commission recommendations was prepared. The draft was prepared jointly by: the Ministry of Energy (leader), Ministry of the Environment, Ministry of Infrastructure, Ministry of Investment and Development, Ministry of Family, Labour and Social Policy, Ministry of Agriculture and Rural Development, Ministry of Maritime Economy and Inland Navigation, and Ministry of National Defence. On 15 October 2019, the Position was adopted by the Committee for European Affairs. The position contains an indicative response to the recommendations.

The conclusions of the national and regional consultations, as well as of the Commission recommendations were taken into account in the preparation of this version of the document.
1.2. National and EU energy system and policy context of the national plan

The Polish energy system is among the largest in the European Union. It is one of the top ten systems in terms of the main macro energy indicators. This corresponds to the potential of the Polish economy, which ranks eighth in the European Union in terms of the GDP (EUR 496.4 billion in current prices in 2018), and sixth in terms of population (37.9 million). As regards the volume of primary and gross final energy consumption in 2018, Poland ranks sixth in the EU.

The total global energy consumption in 2018 was 4490.7 PJ. Gross domestic energy consumption per capita amounted to around 116 GJ, slightly diverging from the European average of 137.1 GJ.

In 2018, direct energy consumption amounted to 3551.8 PJ. Industry was the sector of the economy that had the largest share in direct energy consumption (34.5%). The transport sector, with a share of 27% in 2018 and rising steadily in recent years, ranked second. In 2018, households consumed 23% of energy, agriculture 4.6%, and other consumers 9%.

Figure 3. Dynamics of primary and final energy intensity of GDP in the period 1990-2017 (kgoe/euro00)

The primary and final energy intensity of GDP decreased in 2017 compared to 1990 by 61.5% and 57.3% respectively, with the rate of improvement slightly higher after the climate adjustment. Poland has seen a steady decrease in energy intensity, with periods of slight rises in 2010, 2016 and 2017. The decline in primary and final energy intensity is attributable to energy-efficiency measures, improved efficiency of industrial processes, and the fact that the GDP has been growing faster than energy consumption.

Historically, there has been a growing divergence between the increase in GDP and the emission of greenhouse gases in Poland over the last three decades (1988-2018). The rising GDP does not lead to an increase in emission levels, which is shown in the graph below. In 1988-2018, GHG emissions declined by 32%, while GDP grew nearly 3 times.

3 Fuel and Energy Economy in 2017 and 2018 (Gospodarka paliwowo-energetyczna w latach 2017 i 2018), Central Statistical Office, 2019
The sectors of production and supply of electricity, gas, steam and hot water, as well as the mining and extraction sector account for approx. 4.5% of the gross value added of Polish GDP (with approx. 258 thousand employees⁴). As regards the added value dynamics in the sector in 2018, the industry sub-category ‘Generation and supply of electricity, gas, warm service water and steam’ recorded a 3.6% growth compared with the previous year.

In 2018, the volume of production in the Polish electricity sector amounted to approx. 170 TWh, while domestic electricity consumption reached approx. 175.7 TWh⁵. Electricity imports in the year amounted to 13.8 TWh, while exports to 8.1 TWh. Thus, the annual balance of cross-border electricity exchange was about 5.7 TWh for Poland in 2018. The figure below shows the production structure by carriers.

⁴ Statistical Yearbook of Industry, GUS, 2018
⁵ Polish Energy Statistics 2018, ME/URE/ARE S.A., 2019
Figure 5. Electricity production structure by carriers in 2018

The above data shows that electricity production is based on coal and that coal provides Poland with an appropriate level of energy security and production stability. The coal mining sector in Poland (lignite and coal) also plays a very important social role. In 2018, the Polish coal mining industry employed directly approx. 135,000 people (compared to 175,000 in 2010). The ongoing energy transition leads to changes on the labour market, which results in miners moving to other industries.

Developments in the Polish power sector lead to an increase in the share of RES in the structure of installed capacity within the National Power System (NPS) and in electricity production. In 2018, the share of RES in electricity production was 12.7%. In 2018, installed RES-based generation capacity increased to ca. 8.5 GW of total installed capacity within the NPS of ca. 44.3 GW in 2018. In 2010-2018, installed RES capacity increased 4 times and RES electricity production doubled. In 2018, Poland was ahead of 16 EU countries in terms of installed RES capacity volume⁶.

In the context of the structure of electricity production, of which coal remains an important component, as well as bearing in mind the transformational nature of the present developments, the relationship between emissions from the electricity sector and the dynamics of electricity production, as shown in figure below, should be highlighted. The data shows that the upward trend in electricity production continuing in Poland since 2011 has not resulted in a growth in CO₂ emissions in this sector. On the contrary, emissions from this sector were reduced by approximately 7% in the years 2011-2018. This means that the sector’s emissivity has been gradually decreasing.

Regarding the development of renewable energy sources, their share in gross final energy consumption in 2018 was about 11%, with the nationwide 2020 target at 15%. The graphs below present progress towards the national RES targets for individual Member States. Attaining these targets is a challenge for a number of countries, even those pursuing the most ambitious climate and energy policies, such as France, Belgium, the Netherlands, Germany or the UK. Only 11 out of 28 EU countries have already achieved their national targets concerning the share of renewable energy sources in the gross final energy consumption set for 2020.
The deceleration of the increase in the share of RES in gross final energy consumption in recent years has been partly attributable to an increase in final energy consumption, resulting from the good economic situation in Poland and a high increase in the official consumption of diesel and gasoline connected with a decline of illegal trade in these fuels. The temporary stagnation of renewable energy development has been caused, inter alia, by a change in the regulatory environment through the Act of 20 May 2016 on investments in wind farms, and by the introduction of a new mechanism of auction-based support. Owing to weather conditions, despite an increase in installed capacity of RES, 2018 saw a decline in electricity production. The above factors slowed down the growth in the share of RES in gross final energy consumption.

Given the large share of domestic energy resources in the national energy balance, Poland is among the most energy-independent EU countries. The energy dependency rate for Poland was 38% in 2017, with the EU average at 55%.
At present, there are two strategic framework documents that define the state energy policy. They are: The Energy Policy of Poland, which is currently being updated (the public consultation of the draft Energy Policy of Poland until 2040, hereinafter EPP2040, as part of a strategic environmental assessment has ended), and the Responsible Development Strategy 2020 – with an outlook for 2030 (adopted in 2017, hereinafter: Strategy for Responsible Development, Strategy or SRD).

The main objective of the Energy Policy is to ensure energy security while safeguarding the competitiveness of the economy and energy efficiency, reducing the impact of the energy sector on the environment and making the optimum use of own energy resources. The draft EPP2040 envisages eight strategic directions, namely: (1) making the optimum use of own energy resources, (2) expanding electricity-production and network infrastructure, (3) diversifying the supply of natural gas, oil, and liquid fuels and expanding the associated network infrastructure, (4) developing energy markets, (5) deployment of nuclear power, (6) developing renewable energy sources, (7) developing the heating and cogeneration sector, (8) improving energy efficiency of the economy.

With respect to the structure of energy carriers, the leading role of coal is planned to be maintained, but given the anticipated increase in the demand for energy, the need to reduce CO₂ emissions and the rule of rational management, which includes, inter alia, analysing the cost or resources, CO₂ emissions and use of state-of-the-arts technologies, the percentage share of this fuel in the energy mix will decrease gradually, down to approximately 56-60% in 2030. The above trend will continue in the following decade, i.e. until 2040. At the same time, Poland will prioritise diversifying energy carriers by successively increasing the share of RES (the role of which in electricity generation will be mainly enhanced by wind power and photovoltaics) and by including nuclear power in the energy balance starting from 2033. Increased use of natural gas will play an important role, too. Access to diversified sources and ease of obtaining gas as a commodity at a price acceptable to the final consumer will allow its wider use in the national economy for heat and electricity production. This will reduce the emissivity of the economy while, at the same time, providing an effective tool in fighting for clean air.

The latter of the above documents, i.e. the Strategy for Responsible Development, has a more general nature. In accordance with the Strategy, the main mission of the energy sector is to safeguard stable energy supplies for the economy, institutions and citizens, adapted to their needs as much as possible and at a price acceptable from the economic point of view. According to the SRD, this should be pursued through reasonable and effective use of locally available resources, waste-to-energy, and RES, while exploiting the potential of innovation in the generation, transmission and distribution of energy. At the operational level, the Strategy proposes increasing the share of stable RES, including energy clusters, cooperatives, etc. and giving continued priority to improving the energy efficiency of the economy, which includes eliminating emissions harmful to the environment. It is also essential that energy storage technologies be developed, along with the introduction of smart energy networks, the development of electromobility and the introduction of energy-saving and high-efficiency technologies. The strategy also includes projects supporting its implementation, which include: a capacity market, a regional gas transmission and trading hub, an electromobility development programme, developing and exploiting Poland’s geothermal potential, unlocking the hydropower potential, and restructuring the hard coal mining sector.

The provisions of the above national documents are consistent with the energy policy principles formulated by the European Union. They include enhancing energy security, improving energy efficiency, building a stable and efficient internal market, reducing carbon emissions, increasing renewable energy generation and developing innovation in the energy sector.

The strategic directions of development introduced successively to date from the beginning of the current decade, along with the 2030 policy targets, are materialising through the Energy Union. The Union combines the approach applied to date with a new one that is to determine the EU’s long-term energy policy until 2050. The Energy Union contributes to integration of efforts and promotes their uniform management, evaluation and assessment.

1.3. Current climate and energy policies and measures across five dimensions of the Energy Union

Poland pursues an active climate and energy policy and undertakes measures across all dimensions of the Energy Union.

The priority within the framework of the five Energy Union dimensions – from the perspective of the Polish raison d’etat and the country’s stable development – is ‘energy security’. Two main components of
energy security must be analysed, i.e. electricity generation and gas and crude oil supply. In the former area, Poland undertakes measures to ensure the stability and continuity of electricity generation – based on domestic energy carriers – in order to satisfy internal demand. This includes regulatory measures and measures relating to investments in the generation, transmission and distribution infrastructure. As regards measures supporting electrical power security, attention should be drawn to the introduction of capacity market, which is to guarantee funding for the maintenance of additional capacity at times of increased demand and in peak periods (winter-summer) and secure intermittent energy sources (RES). This mechanism will enhance the stability of the entire electricity system. Additionally, activities are carried out to support the development of high-efficiency cogeneration and renewable energy sources, as well as to deploy nuclear power. Investments in these technologies aimed at restoring and increasing capacity in the electricity system ensure that energy security will be achieved consistently with the horizontal targets of the Polish energy sector, i.e. reduction in the emission of pollutants from the electricity sector, enhancement of energy efficiency and improvement of the competitiveness of the economy. Additionally, in order to safeguard security of supplies the electricity transmission and distribution infrastructure must be upgraded and expanded. The above will make it possible to evacuate power from existing generation sources and to connect new capacity, to improve the certainty of supplies to consumers, to create safe working conditions for RES, to ensure the possibility of reducing unscheduled power flows from the electricity systems of neighbouring countries and thus also to increase international power exchange capabilities, and to implement a uniform electricity market throughout the EU.

In 2017, the EU adopted two legislative acts which have now become the central regulatory pillars of European energy security, i.e. Regulation concerning measures to safeguard the security of gas supply (2017/1938) and Decision establishing an information exchange mechanism with regard to intergovernmental agreements and non-binding instruments between Member States and third countries in the field of energy (2017/684). The former document addresses directly the security of the natural gas market, while the IGA Decision provides for the exchange of information on intergovernmental agreements related to natural gas and oil. In Polish legislation, the security of resource supply is regulated by the Energy Law. The Diversification Regulation¹ (in force since 10 May 2017) is the latest legislative act relevant for the security of supply. It defines the maximum share of natural gas to be imported by an energy company from a single source in a given calendar year. This share may be 70% until 2022, but must not exceed 33% from January 2023 onwards.

The key projects enhancing Poland’s energy security include the construction of a gas pipeline connecting Poland and Denmark across the Danish territory with gas deposits on the Norwegian continental shelf, known as the Baltic Pipe, and extension of the LNG terminal in Świnoujście. The projects are part of a wider infrastructure initiative referred to as the North-South Corridor². In addition, two-way interconnections are planned with Slovakia, Lithuania, the Czech Republic and Ukraine. The above projects will enable Poland to establish a gas transmission and trading hub for Central and Eastern Europe and the Baltic states in Poland. Energy security activities will be gradually complemented by further diversification projects and intensified gas extraction by domestic gas companies from foreign deposits.

Poland does not have substantial crude oil reserves and mainly covers domestic demand by imports (approx. 96%). For the most part, Poland imports crude oil used by the refining industry from the east, but recently there has been a major shift in the structure of import directions as a result of an effective trade policy, but above all, an increase in Poland’s technical capacity to receive and store oil. In order to secure supply, further measures are needed to ensure real diversification of directions and supplies.

Such measures are provided for by Resolution on the Policy of the Polish Government for logistics infrastructure in the oil sector, which was adopted by the Council of Ministers on 28 November 2017.

The main purpose of the Policy is to define actions to improve the fuel security of Poland. In light of the above, the Policy defines the following specific objectives:

1. Construction and development of logistics infrastructure in such a way as to ensure the supply of hydrocarbons to customers in crisis situations and secure smooth trading conditions for trading companies.
2. Construction and development of logistics infrastructure towards diversification of the sources and routes of crude oil supply to Poland.
3. Ensuring that companies fully owned by the State Treasury control the hydrocarbon transmission and storage infrastructure that is crucial for the state’s fuel security.
4. In addition, both in relation to crude oil and fuels, as well as natural gas, the security of Poland is ensured by a developed system of intervention reserves based on the Act on reserves of crude oil, petroleum products and natural gas and on measures to be applied in response to threats to national fuel security and
disruptions on the crude oil market.

The diversification of the structure of the Polish energy balance while increasing the role of low- and zero-emission and high-efficiency technologies and solutions in all economy sectors will help to achieve positive results in the area of decarbonisation. With respect to the 2020 reduction targets, the Effort Sharing Decision defines a ‘positive target’ for Poland whereby sectors which are not covered by the ETS may increase their emissions by 14% as compared with 2005. In the above context, attaining the 2030 national reduction target in non-ETS sectors, which is set at -7% in the 2018 Effort Sharing Regulation, will be an ambitious challenge. Attaining the reduction goals ensuing from EU legislation, i.e. mitigating greenhouse gas emissions by at least 40% compared to the 1990 level, requires taking suitable actions also in non-ETS sectors, i.e. transport, where the 2030 EU reduction target is set at 30% relative to 2005. In order to meet the reduction goals and satisfy the projected increase in demand for fuels, Poland will support low-carbon transport, inter alia by developing alternative fuels, primarily electricity, as well as LNG and CNG, which will contribute to both reducing Poland’s dependency on oil imports and to limiting the harmfulness of the transport sector to the environment.

The generation of renewable energy constitutes an important element of measures aimed at decarbonisation, as well as at energy diversification and the satisfaction of increasing energy demand. It reflects care for the natural environment and is an answer to the need to promote sustainable development as well as to strengthen regions and local communities in the European Union. The green energy sub-sector is tasked with supporting the energy security of the country without engaging excessive budgetary resources in a way divergent from real benefits for the public and the economy and the entire energy system. Poland supports the development of renewable energy defined in this way by undertaking a number of specific measures. These measures are implemented on the basis of the Act on renewable energy sources, which has been revised in 2016, 2017, and 2019. The legislation envisages a number of solutions aimed at creating a stable environment for the growth of production in the renewable energy sector. They are: energy clusters, energy cooperatives, an auction system for most of the key RES technologies, interim solutions for the green certificate system, support for consumers and a range of rules and conditions for conducting activity in the field of electricity generation, agricultural biogas, heat and bioliquids, as well as instruments intended to support them in a systemic fashion. Additionally, the Polish Government supports, by means of legislative acts, distributed energy generation, especially clusters and energy cooperatives, which are designed as a technologically neutral tool available to any local community, which, by self-organising, has an opportunity to safeguard energy independence within the region where cooperation is developed.

The main value of such a bottom-up approach to RES lies in its contribution to the development of specific regions and local economies and stimulation of the labour market, which is achieved through the utilisation of resources available locally in the form of energy substrates, energy carriers, and human and financial capital and leads to their most effective use. At the same time, as a result of measures in the form of regulatory facilitations, as well as the allocation of additional funding, the number of emerging clusters is growing gradually. Ultimately, the energy cluster formula is to be the basic form of developing distributed renewable energy in the sector of medium-sized and partly large installations (selected technologies). Since February 2019, the Ministry of State Assets (formerly the Ministry of Energy), as part of the MENAG scientific consortium together with the AGH University of Science and Technology and the National Centre for Nuclear Research, has been pursuing a research project entitled “Development of distributed energy in energy clusters (KlastER)”. The main goal of the project is to develop a “Strategy for the development of energy clusters in Poland”. The solution fully implements the provisions of Articles 21 and 22 of Directive (EU) 2018/2.

Energy efficiency is another pillar of the Energy Union. The crucial act of Polish legislation in this area is the Energy Efficiency Act, which requires obliged entities to implement projects increasing energy efficiency (or to purchase white certificates, subject to a limit). The Act covers both the private and public sectors and imposes savings obligations on all entities. It enumerates energy efficiency improvement measures which can be employed by public bodies, including energy performance contracts. In accordance with the Act, the private sector, including large companies, is obliged to conduct energy audits at four years’ intervals. The system transposes EU legislation into Polish law. Its main task is to achieve the goal of increasing energy efficiency by 20% in 2020 for the entire EU. For Poland, the target is set at 13.6 Mtoe in 2020 relative to the reference value for Poland calculated on the basis of the baseline scenario in a forecast prepared for the European Commission (PRIMES - Baseline 2007). In absolute terms, the target translates into primary consumption at a level of 96.4 Mtoe and final consumption reaching 71.6 Mtoe in 2020. The 2020 revision to the Act will transpose the provisions of Directive (EU) 2018/2002 of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. Since 2019, this National Energy and Climate Plan has replaced the National Energy Efficiency Action Plan.
Another dimension of the Energy Union in which measures are undertaken is the internal energy market, which is being created through actions in the electricity and gas sectors. The area of EU internal electricity market requires a two-track approach and synchronisation. This implies undertaking measures ensuring energy sufficiency as well as expanding and intensifying cooperation as part of the pan-European system.

The responsibility for the transmission infrastructure in the Polish power system lies with Polskie Sieci Energetyczne PSE S.A., whose activity thus determines, to a large extent, the security of the entire energy system of Poland. The investment plans of the Polish transmission system operator are defined in short-, medium- and long-term perspectives. They have been formulated in several documents, including: Annual Tangible Investment Plan (IP) – one year’s perspective; Contemplated Investment Plan (CIP) – five years’ time horizon; Transmission Grid Development Plan (TGDP) – ten years’ time horizon; Forecast concerning the security status of energy supplies – prepared for fifteen years. In the 2030 perspective, improving flow in the synchronous system of interconnections between Germany, the Czech Republic and Slovakia, and the full synchronisation of the transmission systems of the Baltic states will be particularly important. The incorporation and synchronisation of the power systems of associated countries, which are on the track towards closer relations with the EU, should be within the area of interest of the Members States, which are building the Energy Union.

In 2019, pursuant to Article 15 of Regulation (EU) 2019/943, an Action Plan was drafted to fulfil the obligation to provide market participants with cross-zonal capacity of at least 70% of the transmission capacity (CEP 70% target). With the application of the Plan, the deadline for achieving the CEP 70% target is 31 December 2025. The Plan applies to one synchronous area (borders: Poland - Germany, the Czech Republic, Slovakia) and one asynchronous border: Poland - Sweden. The Action Plan does not apply to the second asynchronous border: Poland - Lithuania. Therefore, on the Poland - Lithuania border, the CEP 70% target will be attained as from 1 January 2020, which stems from international obligations.

The programme for building a smart power network is a major project for the next years in Poland. It encompasses work on organisational and legal solutions which will enable the deployment of new technologies such as smart metering. Only then will it be possible to implement electricity demand management mechanisms and, as a result, to use electricity in a more sustainable manner. This will be possible by bridging the gap in knowledge about measures and preferences between energy consumers and its producers and suppliers.

Operator Gazociągów Przesyłowych GAZ-SYSTEM S.A. is the natural gas transmission infrastructure operator, which ensures that the developed transmission infrastructure fosters Poland’s energy security. In accordance with EU guidelines and Article 16.2 of the Energy Law, GAZ-SYSTEM draws up a 10-year national development plan. The activities related to gas supply source diversification presented in the 2018-2027 Development Plan assume that the principal new sources of imported gas will be located in the north-west of the country and will include the Baltic Pipe with the capacity of the interconnector of up to 10 billion m³ per year, and the expanded LNG terminal in Świnoujście with a capacity of 7.5 billion m³ annually. The operator also focuses on developing interconnections with Poland’s neighbours, i.e. Lithuania, Slovakia, the Czech Republic, and Ukraine, and the expansion of domestic transmission infrastructure.

Poland actively participates in the legislative work of the Council of the European Union and its auxiliary bodies on legislative projects related to electricity and natural gas markets. It also partners up with neighbouring countries and international organisations, including the International Energy Agency, the Energy Community, the Energy Charter Treaty, and the Eastern Partnership, to create a secure energy environment. The Energy Regulatory Office, which is the Polish electricity and gas market regulator, cooperates with its counterparts through the Agency for the Cooperation of Energy Regulators (ACER). The goal of the Agency’s work is to create an efficient and transparent internal market for electricity and natural gas in the EU. Polish electricity and natural gas system operators are also members of European associations influencing the EU energy market. PSE S.A. is a member of the European Network of Transmission System Operators for Electricity (ENTSO-E), while GAZ-SYSTEM S.A. is a member of the European Network of Transmission System Operators for Gas (ENTSO-G). Immediately after the establishment of the ACER, i.e. in 2011, ENTSO-E proposed the Electricity Target Model. Poland has been engaged in the implementation processes of this model. At present, cooperation is coordinated at the regional level and then a project covering the entire EU is to be launched. By virtue of a decision of the ACER, a central macro-region has been created for coordinating cooperation for the implementation of the market model adopted in 2011. At present, Poland belongs to the recently expanded CORE area that brings together energy systems of thirteen centrally located European countries, working jointly to establish a common energy market. An analogous analysis was carried out by the Council of European Energy Regulators (CEER) for the natural gas market, which resulted in the creation of the Gas Target Model.
in 2011. The study was devoted to access to infrastructure on the wholesale market and development needs. In 2014, ACER updated the analysis to promote the introduction of flexible regulatory frameworks on the gas wholesale market in order to increase its liquidity and develop tools to support its integration. As a result of the analysis, work was started on the gas network codes adopted in previous years, to regulate inter alia the following issues: congestion management, capacity allocation mechanism in transmission networks, gas balancing rules in transmission networks, transmission tariff structures, interoperability, and information exchange.

The area of “research, innovation and competitiveness” is one that is being given an increasing attention. The energy sector sees an ever increasing need for developing a new approach, the most important tools of which will be new technologies and process innovations. Poland’s innovation policy is being focused on implementations. State budget resources are used in combination with European funds and energy companies’ own funds. The pro-innovation activity of energy companies is a trend that supports the innovation-oriented approach. An ever increasing tendency is developing in Poland – supported by the government's activity – consisting in offering incubation schemes to start-up businesses which create ideas and develop their activity in the energy sector. Leading Polish energy companies have established their own acceleration centres for newly established companies (incubators) and joint venture companies. The newly established entities include: PGE Ventures (a company set up by PGE S.A.), InnVento – a technology incubator (an entity set up by PGNiG S.A.), Tauron Magenta (established by Tauron S.A.), Enea Innovation (a venture capital company set up by Enea S.A.), ORLEN Innowacje&Startupy (a platform and incubator of ORLEN). The activity of Polish energy companies in the area of incubation and acceleration of new projects, as well as the visible role of the state in stimulating R&D activities in the energy sector, is expected to result in a growing level of innovation of the Polish energy sector over the next few years.

The electromobility development project is a flagship initiative in the field of innovative solutions strongly related to the energy sector. It is being developed with a strong participation of the state – in regulatory and funding terms – but it is to become reality through intense cooperation with energy companies, transport sector companies and other players representing the private sector. At present, the direction for the electromobility project is set by the Strategy for Responsible Development, and in more detail by the Electromobility Development Plan ‘Energy for the Future’. Subsequently, at the implementation level, the project is delivered under the Act on electromobility and alternative fuels, adopted on 22 November 2018, as well as under a number of supporting legislative acts. The objective of the project is to create conditions for the development of electromobility. This is to be achieved through support for expanding the core infrastructure network and the system of incentives encouraging potential buyers to purchase electric vehicles, and for developing industry towards the use of vehicles with alternative drives. For 2025, the programme sets an indicative target of a million electric-drive vehicles. The programme also envisages an increase in the number of LNG or CNG fueled vehicles, including the construction of 4 installations for gas bunkering for vessels on the Polish coast. Stabilisation of the electricity network will be another positive effect for the Polish power system. Using it to charge so many vehicles, while providing the right incentives to create the desired behaviour on the part of electric vehicle users (e.g. night tariffs for recharging electric vehicles), will help flatten the electricity demand curve and thus stabilise it, which will be beneficial in terms of the operating characteristics of the key power generation units in the Polish energy system. The above-described programme is one of the main strategic development programmes aimed at improving the innovation of the energy and transport sector, changing it to stimulate more sustainable development of the country and joining the world’s leader states in the field of electromobility.

1.4. Administrative structure of the implementation of national climate and energy policies

The National Energy and Climate Plan presents policy lines consistent with and complementary to the country’s horizontal development strategy, i.e. the Strategy for Responsible Development, and its integrated sectoral strategies, which were updated in 2019 or are currently being updated, in particular with draft Energy Policy of Poland until 2040, the draft State Environmental Policy 2030 – strategy for development in the area of environment and water management, the Sustainable Transport Development Strategy 2030, and the Strategy for Sustainable Development of Agriculture, Rural Areas and Fisheries for 2030.

The responsibility for implementing measures aimed at meeting the targets set in the National Plan rests on a number of public bodies, depending on their scope of competence, as well as – at the operating level – on private entities.

The graph below presents the structure of entities engaged in the preparation of the draft NECP along with the
1.5. Implementing entities

The responsibility for the implementation of the National Energy and Climate Plan 2021-2030 lies with a range of entities: central and local government bodies, government institutions, fuel and energy sector entities, as well as economic operators that fulfil statutory obligations and implement good practices in the field of energy use.

The following entities play a central role in implementing the National Plan. If the Act on divisions of government administration is revised, the competence of individual ministers may change.

- Minister competent for energy
- Minister competent for the environment
- Minister competent for transport
- Minister competent for regional development
- Minister competent for agriculture and rural development
- Minister competent for development, land use planning, spatial development and housing
- Minister competent for maritime economy and inland navigation
- Minister competent for the economy
- Minister competent for foreign affairs
- Minister competent for public finance
- Minister competent for family, labour and social security
- Minister competent for science and higher education
- Minister competent for education and upbringing
- Government Plenipotentiary for Strategic Energy Infrastructure
- Plenipotentiary of the Prime Minister for the “Clean Air” Programme
- President of the Polish Energy Regulatory Office
- President of the National Atomic Energy Agency
- The National Fund for Environmental Protection and Water Management
- Transmission system operators and distribution system operators
- Storage System Operator
- Local governments
- Research institutes and universities
- Enterprises
1.6. Executive summary

The National Energy and Climate Plan has been prepared with a view to establishing a stable framework forming an environment for a sustainable, economically effective and just transition towards a low-carbon economy. This document is to produce synergy through the delivery of activities in the five interrelated dimensions of the Energy Union, taking into account the “energy efficiency first” principle. The second chapter of the document describes the national assumptions and goals of Poland’s energy and climate policy, while the third the policies and measures designed to implement them. Because some goals, as well as policies and measures, aim at strengthening more than one dimension, they are assigned to those where they are expected to have the greatest impact. In order to add clarity to the document, the assumptions and goals, as well as policies and measures, are marked with the colours assigned to the individual dimensions of the Energy Union.

The main goals of Poland’s energy and climate policy which are identified in this document and constitute the future measure of its implementation are presented in the graph below. It should be noted here that the renewable energy use target is conditional, i.e. attainable at 23% if Poland is granted additional EU funds, including those allocated for just transition. The national targets contribute to the joint fulfilment by the EU of its climate commitments under the Paris Agreement and to the pursuit of climate neutrality.

![Figure 10. Poland’s 2030 climate and energy goals](image)

Decarbonisation

The decarbonisation dimension addresses issues related both to emission and removal of greenhouse gases and air pollution, as well as those regarding the use of renewable energy sources. Given the ever more frequent extreme weather phenomena, the adaptation to climate change is also taken into account.

The reduction target for Poland in terms of greenhouse gas emissions in sectors not covered by the ETS is set at -7% in 2030 compared with 2005; The declared target is to be achieved by reducing emissions in transport, construction and agriculture, taking into account the beneficial effects of the absorption of CO₂ by ecosystems and the flexibility associated with land use, change to land use, and forestry. In this context, crucial importance is also attached to improving the quality of life for people living in Poland, notably the protection of their health and living standard, having regard to environmental protection. In particular, this means solving the problem of ‘low-stack’ emissions, which are produced by transport and individual heat sources.
As part of meeting the EU-wide 2030 target, Poland declares to achieve a 21%-23%* share of RES in gross final energy consumption (aggregate consumption in the electricity sector, heating and cooling sector, and in transport) by 2030. By 2030, the share of RES in the heating and cooling sector is estimated to grow on average by 1.1 percentage points annually. In transport, a 14% share of renewable energy is expected to be achieved by 2030. In order to attain the above targets, RES is planned to be supported through existing and new support and promotion mechanisms. There are also plans to use advanced biofuels, develop offshore wind energy, and add momentum to the development of RES-based microinstallations.

Energy efficiency

The PRIMES 2007 forecast sets the 2030 national target for improving energy efficiency at 23% for primary energy consumption, which corresponds to primary energy consumption at 91.3 Mtoe in 2030. Actions aimed at reducing energy consumption are given priority since they simultaneously lead to further reduction of emissions and contribute to achieving the energy and climate goals. In this context, developing eco-friendly and effective heating systems, cogeneration, smart grids and mechanisms stimulating energy end-use savings and pro-saving behaviour come to the fore. Both as regards energy efficiency and improvement of the housing conditions for residents, it is considered important to develop a long-term strategy for the renovation of Poland’s stock of residential and non-residential buildings, both public and private ones, as provided for by revised Directive 2010/31/EU. Actions are also planned to increase energy efficiency in transport, by promoting more sustainable methods of transporting goods (e.g. intermodal transport, rail transport) and passengers (e.g. public transport). The document provides for increasing energy efficiency through the creation of a coherent, sustainable, innovative and user-friendly transport system at the national, European and global level.

Energy security

Energy security is treated as a priority in Poland. In this dimension, satisfying the growing demand for fuels and energy in connection with the forecast economic growth and ensuring uninterrupted energy supplies are of utmost importance. Maintaining far-reaching energy independence, diversifying the energy mix and directions of imported fuel supplies are a central focus in this context. This pertains to both crude oil and natural gas, which means that there is a need for infrastructure development in these sectors.

In order to satisfy the growing demand for electricity, adding more electricity generation capacity will be needed. The National Plan highlights the deployment of nuclear power in Poland as crucial for ensuring stable supply of electricity and for diversifying energy sources. The first unit (with a capacity of ca. 1-1.5 GW) of the first nuclear power plant is expected to be commissioned in 2033, with another five units to be launched every 2-3 years (with a total capacity of approx. 6-9 GW).

Given the availability of domestic hard coal and lignite deposits, domestic coal production is expected to be maintained at a level capable of satisfying the demand of the energy sector. However, the share of coal in electricity production will gradually decline. In 2030, it is bound to reach 56-60%, with the downward trend maintained until 2040.

Internal energy market

In developing its internal energy market, Poland will strive to enhance the availability and capacity of existing power interconnections and to integrate the national natural gas transmission system with the systems of Central and Eastern European countries and the Baltic region. In this context, further investments in internal gas and electricity networks that will ensure security of energy supply will also be necessary. As regards production of energy from renewable sources, measures will be taken to guarantee an appropriate level of flexibility of the energy system. In order to drive the development of a competitive market, the aim is to increase consumers’ knowledge and incentivise them to play a more active role in the energy market, while curbing energy poverty and protecting vulnerable groups.

Research, innovation and competitiveness

* The 23% target is achievable only if Poland is granted additional funds, including those allocated for just transition.
Research, innovations and actions enhancing the competitiveness of the economy will be crucial for delivering the objectives and policies outlined in the NECP since this dimension intertwines with others by providing new technologies and solutions conducive to energy transition. The central aim in this dimension is to bridge the civilization gap between Poland and developed countries, and to improve the living standards for Polish society. Poland also intends to boost the competitiveness of the economy through a more complete use of social and territorial resources and automation, robotisation and digitisation of enterprises. By supporting the development of energy innovations, Poland intends to enhance the competitiveness of the Polish energy sector and thereby maximize the benefits for the Polish economy. Another goal is to accelerate sales of technologies by Polish companies on foreign markets, which is associated with adding international importance and competitiveness to Polish science. The objectives in this respect will be delivered through increased expenditure on R&D in Poland (from 0.75% of the GDP in 2011 to 1.7% in 2020 and 2.5% in 2030) and new rules for using such expenditure, better suited for present conditions. In order to maximise benefits, it is reasonable to further cooperation with the European Commission and EU Member States regarding the Strategic Energy Technology (SET) Plan. One of the main research goals will be to determine the potential for production, use and development of hydrogen technologies in Poland.
2. NATIONAL OBJECTIVES AND TARGETS

The structure of this chapter reflects the systematics and numbering from Annex I to Regulation 2018/1999
II. National objectives and targets - Dimension Decarbonisation

2.1. Decarbonisation

The objectives and priority lines related to the decarbonisation dimension are set out by sectoral development strategies, primarily by:

- State Environmental Policy 2030 – strategy for development in the area of environment and water management of 16 July 2019
- Sustainable Transport Development Strategy 2030 of 24 September 2019
- 2030 Strategy for Sustainable Development of Agriculture, Rural Areas and Fisheries of 15 October 2019

2.1.1. Greenhouse gas emissions and removals

a) Member State’s binding national 2030 target for greenhouse gas emissions in the non-ETS sectors, the annual binding national limits in accordance with Regulation (EU) 2018/842 and the commitments under Regulation (EU) 2018/841;

1. Non-ETS (greenhouse gas emissions from the non-ETS sectors): On the basis of Regulation (EU) 2018/842, the greenhouse gas emission reduction target in the non-ETS sectors has been set at a level of -7% in 2030 as compared with its level in 2005.

The non-EU ETS sectors (mainly transport, agriculture, municipal and domestic sector, waste management, as well as non-ETS industrial emissions) are a source of ca. 50% of the total greenhouse gas (GHG) emissions in Poland.

For 2020, the Climate and Energy Package sets, inter alia, the EU-wide 20% GHG emission reduction target (compared with 1990), including the target for the non-ETS sectors of -10% as compared with 2005. The ESD (Effort Sharing Decision, or the non-ETS Decision) has set national targets for Member States for 2020, as their contributions to the EU-wide ambition. In accordance with the above regulation, Poland may increase emissions in non-ETS sectors to +14% until 2020 relative to 2005.

By adopting the new EU Climate and Energy Policy framework, the EU set a 2030 reduction target for greenhouse gas emissions of 40% relative to 1990, including a target of 30% for non-ETS sectors compared to 2005. Poland's contribution to the above target in non-ETS sectors is set out in Annex I to the ESR Regulation. The proposed 2030 reduction target of -7% should be considered an ambitious commitment.

2. Share of the LULUCF sector in meeting the 2030 reduction targets in the EU.

The LULUCF Regulation sets out the accounting rules (the rules for generating carbon credits to be possibly used to account for national emissions of greenhouse gases in the non-ETS sector) based on the net balances of emissions and removals of greenhouse gases for utilised forest land, cropland, grassland and afforested and deforested land from 2021 to 2030.

In the LULUCF Regulation, the Member States have been proposed the maximum values of the generated credits (accounting allocations) from the managed forest land category. These allocations have been limited to 3.5% of the national emission of a given Member State in the base year. As part of the mechanism of credit generation
the reference levels must be taken into account as the minimum removal value for managed forest land. Reaching these minimum values will be a condition for generating credits, if any. The reference levels will be set in line with the forest stock development scenarios prepared on the basis of the effect of forest practices observed in the period 2000-2009, which are being developed at the national level. The National Forestry Accounting Plan, developed by the Ministry of the Environment in 2018, is the relevant document in this respect. The National Forestry Accounting Plan lists the detailed actions to be taken to implement Article 4 of the LULUCF Regulation. The LULUCF Regulation has also introduced a mechanism for compensating possible emissions from managed forest land in case the country does not reach a removal value equivalent to the reference level. Nevertheless, its operation has been based only on a single limited parameter, namely the afforestation rate of the Member State (the average afforestation rate for the reference period 2000-2009).

Poland has been allocated a compensation limit for 10 years (2021-2030) amounting to -22.5 million tonnes of CO$_2$ equivalent (this is the total maximum limit that can be used over a period of 10 years).

Poland does not rule out the use of the ESR/LULUCF flexibility mechanism.

For cropland and grassland, the proposed base level for accounting purposes is the average value from the years 2005-2009. On average, it will total ca. 1500 kt of CO$_2$ equivalent for the entire accounting period – this is a preliminary value (consistent with the National Inventory Reports submitted to the UNFCCC Secretariat). Only the accounts of afforesting/deforesting balances and harvested wood products (with the exclusion of paper) will not be limited, either by the allocation or by the reference level.

b) If applicable, other national objectives and targets consistent with existing long-term low emission strategies. If applicable, other objectives and targets, including sector targets and adaptation goals.

1. Efforts to mitigate national greenhouse gas emissions, including CO$_2$

The effects of climate change observable in the last few decades are deepening, especially as regards the increase in frequency and severity of extreme weather phenomena. Thus, they pose a threat to social and economic development and to natural resources. It is therefore necessary to take further measures to mitigate greenhouse gas emissions and, in parallel, to exercise efforts to adapt to the anticipated impacts of climate change. As regards measures to reduce GHG emissions, the State Environmental Policy 2030 acknowledges the reasonableness of contributing to the objectives of the EU’s 2030 climate policy and the Paris Agreement. Among the indicators of the delivery of the State Environmental Policy 2030, the Policy points to reducing the nationwide dynamics of greenhouse gas emissions to 77.1% compared to the reference year 1990.

The draft Energy Policy of Poland until 2040 envisages a 30% reduction of domestic CO$_2$ emissions by 2030 (compared to 1990).

2. Reduction of the negative impact of transport on the environment, as envisaged by the Sustainable Transport Development Strategy 2030:

- 2025 intermediate target – reduction of average CO$_2$ emissions from new
<table>
<thead>
<tr>
<th>II. National objectives and targets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Decarbonisation</td>
<td></td>
</tr>
<tr>
<td>- passenger cars and light commercial vehicles by 15% compared to 2021;</td>
<td></td>
</tr>
<tr>
<td>- main target – from 2030, reduction of average CO$_2$ emissions from new passenger cars by 37.5% and light commercial vehicles by 31% compared to 2021;</td>
<td></td>
</tr>
<tr>
<td>These targets strengthen pressure to move away from vehicles with conventional combustion engines and to switch to clean vehicles (and to minimise the effects of the development of the transport sector on the environment, including among other things to slow down the increase in greenhouse gas emissions). The task of reducing emissions in the transport sector will be even more challenging given the fact that further significant growth in transport volumes, especially freight transport, is envisaged both in Poland and throughout the EU as an unavoidable effect of continued economic growth. The expected emission reduction will require both the optimisation of transport needs, and the use of the potential of the transport system and an increase in the use of alternative fuels.</td>
<td></td>
</tr>
<tr>
<td>3. Improving the quality of the environment and environmental safety, with account taken of the principles of sustainable development until 2030, by implementing the State Environmental Policy 2030, which will produce, inter alia, the following effects:</td>
<td></td>
</tr>
<tr>
<td>increasing the Environmental Performance Index8 to > 70 points compared to 64.11 points in 2018,</td>
<td></td>
</tr>
<tr>
<td>improved status of surface and underground water bodies,</td>
<td></td>
</tr>
<tr>
<td>the percentage of population using a sewerage system relative to the total population increased to 85% from 70.5% (in 2017).</td>
<td></td>
</tr>
<tr>
<td>the percentage of population using a sewage treatment plant increased to 86% from 73.6% (in 2017),</td>
<td></td>
</tr>
<tr>
<td>achieving the limit and target values for substances defined in Directives 2008/50/EC and 2004/107/EC, and maintaining them in the areas in which they have been met, and in the case of PM2.5, also the exposure concentration limit and the National Exposure Reduction Target,</td>
<td></td>
</tr>
<tr>
<td>achieving, by 2030, the levels of substance concentrations in the air specified by the WHO and meeting new requirements under legal regulations proposed in EU laws,</td>
<td></td>
</tr>
<tr>
<td>total reduction of the number of zones with exceedances of the limit value for PM10, increasing the number of agglomerations and cities with more than 100,000 residents where the average exposure indicator does not exceed the PM2.5 exposure concentration limit of 20 µg/m3 to 30 compared to the base level of 11 cities, reducing the share of degraded areas in the total area of the country.</td>
<td></td>
</tr>
<tr>
<td>4. Adaptation to climate change by ensuring sustainable management of environmental health (e.g. air quality, water status, environmental impact on human health) and the health and vitality of ecosystems (e.g. wastewater treatment, nitrate pollution, changes to afforestation, fish stocks, species protection, level of GHG emissions).</td>
<td></td>
</tr>
</tbody>
</table>
II. National objectives and targets - Dimension Decarbonisation

environmental resources and the effective functioning of the economy and society in climate change conditions through the implementation of the State Environmental Policy 2030, which will produce, inter alia, the following effects:

- the percentage of inhabitants of Polish cities covered by urban adaptation plans increased to 60% (compared to the base value of 0% in 2015);
- the capacity of small retention reservoirs increased to approx. 844 836 dam3 (compared to the base level of 826 034.2 dam3 in 2016),
- increasing the afforestation rate in Poland to 31% from the current 29.6%;
- progress towards sustainable forest management, by increasing from 95.7% to 99% the share of forest areas subject to approved forest management documentation relative to the total forest area,
- covering 100% of Natura 2000 areas with conservation task plans and protection plans,
- level of municipal waste prepared for reuse and recycling at 60% by weight.

5. Reducing emissions of anthropogenic pollutants into the atmosphere: sulphur dioxide (SO$_2$), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs), ammonia (NH$_3$), and fine particular matter (PM2.5) by 2030.

Directive 2016/2284 of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC (NEC Directive) obliges Poland to achieve its pollution reduction targets in two periods, namely 2020-2029 and from 2030 (relative to the reference year 2005). The targets are as follows:

- 59% and 70% for SO$_2$,
- 30% and 39% for NOx,
- 25% and 26% for NMVOC,
- 1% and 17% for NH$_3$,
- 16% and 58% for PM2.5.

6. Reduction of the share of coal and lignite in electricity production to 56-60% in 2030 and further decreasing trend until 2040

At present, the share of coal and lignite in electricity generation is ca. 77%. The share of coal-fired generation units will gradually decrease as a result of the decommissioning of old end-of-life conventional generation units which do not meet the environmental requirements in terms of pollution emissions (BAT conclusions), and the deployment of high-efficiency conventional technologies. The implementation of technologies that are characterised by high efficiency of energy generation and reduce losses (e.g. in transmission) will add considerably to sustainable use of energy resources and reduction of pollutant emissions. The need to replace production technologies will gradually increase the share of low- and zero-emission technologies, in particular RES and nuclear power. Given the Polish conditions, gas will be a crucial transformational fuel in the transition period, with its importance growing not only in power generation (reserve power units for RES), but also in heating (district and individual heating) and...
transport (as an alternative fuel).
As an effect of changes in the electricity generation sector, CO₂ emissions will decrease.
In the energy transition process, a key point is to ensure that investments are financed in line with the principle of technological neutrality, without limiting the possibility of obtaining financing for any zero-emission technologies, and in the transitional period, low-emission technologies.

7. Just energy transition towards decarbonisation

In Poland, the medium- and long-term energy transition will proceed in an evolutionary manner, such as to guarantee energy security, and at an acceptable pace from the social, economic and regional perspective. Care will be exercised to carry out this process in the most equitable way and at the lowest possible cost.

Poland is in a specific situation compared to other EU countries due to a different starting point, economic, energy and technological conditions, reduction potential and financial capabilities. In the case of Poland, the costs of energy transition will be among the highest of all EU Member States.
The decarbonisation strategies in individual sectors will rely on a balanced approach, taking into account the need to protect the competitiveness of the Polish economy and its individual sectors, as well as the social dimension, by reducing disproportionate costs of the transition, especially among low-income earners. The above activities will affect the labour supply in related sectors, the welfare of Polish regions, and the wealth of the whole society.

Energy transition is a major challenge in Polish conditions, but also an economic opportunity for investment, economic growth and employment, producing concrete benefits such as diversification of the energy mix, cleaner air, local economic development, and jobs. The success of this process depends on a suitable adaptation policy, supported by domestic and European funds.

2.1.2. Renewable energy (2030 Framework Target)

a) Planned share of renewable energy in gross final energy consumption in 2030 as a contribution to the binding EU target being at least 32% in 2030.

As part of meeting the EU-wide 2030 target, Poland declares to achieve a 21%-23% share of RES in gross final energy consumption (aggregate consumption in the electricity sector, heating and cooling sector, as well as for transport purposes) by 2030, with a proviso that attaining the 23% will be possible if Poland is granted additional EU funds, inter alia for just transition.
The scale of use of RES will largely depend on technological progress – both in the area of existing energy generation methods and entirely new technologies, but also in the area of energy storage technologies. By 2030, the share of RES in the heating and cooling sector is estimated to grow on average by 1.1 percentage points annually, i.e. to 28.4%.
In transport, a 14% share of renewable energy is expected to be achieved by 2030, while that in the energy sector is bound to grow to around 32% by the same
II. National objectives and targets - Dimension Decarbonisation

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of renewable energy obliges Poland to achieve a minimum 15% share of renewable energy in gross final energy consumption by 2020. In 2018, the share of renewable energy in gross final energy consumption in Poland was 11%. Having regard to the progress in the development of RES to date, the national commitment concerning 2030 should be regarded as ambitious.

<table>
<thead>
<tr>
<th>b)</th>
<th>Linear trajectory of the share of renewable energy in gross final energy consumption in the period 2021-2030.</th>
</tr>
</thead>
</table>

Provided that additional financial support from EU funds is available, the trajectory for achieving the 23% renewable energy share in gross final energy consumption may be as follows:
- Base year 2015: 15%
- 2022: 16.4%
- 2025: 18.4%
- 2027: 20.2%

<table>
<thead>
<tr>
<th>c)</th>
<th>Trajectories of the sectorial share of renewable energy in final energy consumption in the electricity, heating and cooling and transport sectors in the period 2021-2030.</th>
</tr>
</thead>
</table>

Given the detailed nature of the data, it is presented in the analytical material: Annex 2 to the NECP – ‘Assessment of the impact of planned policies and measures’ (Annex 2, Chapter 5.1.2.2. Renewable energy).

<table>
<thead>
<tr>
<th>d)</th>
<th>Trajectories by renewable energy technology that are projected to be used to achieve the overall and sectorial trajectories for renewable energy from 2021 to 2030, including expected total gross final energy consumption per technology and sector in Mtoe and total planned installed capacity (divided by new capacity and repowering) per technology and sector in MW.</th>
</tr>
</thead>
</table>

Given the detailed nature of the data, it is presented in the analytical material: Annex 2 to the NECP – ‘Assessment of the impact of planned policies and measures’ (Annex 2, Chapter 5.1.2.2. Renewable energy).

<table>
<thead>
<tr>
<th>e)</th>
<th>Trajectories on bioenergy demand, disaggregated between heat, electricity and transport, and on biomass supply, by feedstocks and origin (distinguishing between domestic production and imports). For forest biomass, an assessment of its source and impact on the LULUCF sink</th>
</tr>
</thead>
</table>

1. As regards forest biomass, the main energy sources include round or cleft wood, rootwood and wood residues from forests and tree stands, as well as wood processing industry by-products.
In the context of accounting for and reporting greenhouse gas emissions from forest biomass used for energy purposes, it should be noted that it is included when accounting for and reporting the balance of removals and emissions of those gases as part of the forest land category. Emissions relating to forest biomass utilised for energy purposes are reported and accounted for as an effect of woodland biomass loss.

2. Potential of biomass used for energy purposes
Approximately 13% of the domestic biomass potential can be allocated for energy purposes without causing adverse effects in the form of soil degradation and a decrease in the supply of food while complying with the environmental protection requirements under the Common Agricultural Policy. The energy potential of agricultural biomass in Poland, which includes both special purpose crops and
II. National objectives and targets

- Dimension Decarbonisation

The most commonly available raw material to be used for energy purposes is straw. On average, the surplus of straw in Poland amounts to approximately 3.1 million tonnes, ranging from 2 to 4.5 million tonnes, depending on cereal yields in a given year.

Biomass stocks from energy crops are estimated to range from 120,000 to 130,000 tonnes of dry matter, and orchard wood stocks are estimated to amount to ca. 88,700 tonnes annually.

Along with the development of the agricultural biogas production sector, the importance of the use of agricultural by-products and agri-food industry residual products has been increasing. The energy potential of the agri-food processing industry as regards the production of agricultural biogas is estimated to exceed 7.8 billion m³ annually.

If applicable, other national trajectories and objectives, including long-term or sectorial ones (e.g. share of advanced biofuels, share of renewable energy in district heating, renewable energy use in buildings, renewable energy produced by cities, energy cooperatives and self-consumers).

1. Increase in the use of advanced biofuels to 0.1% by energy content in 2020

According to the RED (Renewable Energy Directive), Member States have been obliged to define the share of advanced biofuels (generated from the raw materials specified in Part A of Annex IX d to the Directive) for 2020. The recommended share of those biocomponents by energy content is to be 0.5%.

According to the analyses conducted, this target cannot be met in Poland due to limited access to ligno-cellulosic material and algae processing technologies and the limited supply of waste raw materials. In view of the above, the level of this obligation is set at 0.1% in the Act on biocomponents and liquid biofuels. At the same time, given the need to promote such biocomponents, their share is expected to grow radically in the period 2021-2030, as required by RED II.

2. Increased dynamics of development of RES-based microinstallations in the period 2020-2030

As at 30 September 2019, over 106,000 RES-based microinstallations with an aggregate installed capacity of over 684 MW were connected to the networks of the 5 largest Distribution System Operators (DSO). Further development of RES-based microinstallations (notably prosumer installations) constitutes a natural direction of development for the electricity sector, which ensues from the changing legislative environment (at the EU level) and decreasing technological costs. The dynamics of the development of RES-based microinstallations are expected to increase throughout the 2020-2030 period.
2.2. Energy efficiency

The objectives and priority lines related to the energy efficiency dimension are set out by sectoral development strategies, primarily by:

- Sustainable Transport Development Strategy 2030 of 24 September 2019

The above strategies identify the entities responsible for the implementation of individual activities and define the funding framework.

- a) Indicative national energy efficiency contribution to achieving the Union’s main energy efficiency target of 32.5% in 2030 as referred to in Article 1(1) and Article 3(4) of Directive 2012/27/EU, as amended by Directive 2018/2002, based on either primary or final energy consumption, primary or final energy savings, or energy intensity; expressed in terms of the absolute level of primary energy consumption and final energy consumption in 2020 and 2030, with a linear trajectory for that contribution from 2021 onwards; including the underlying methodology and the conversion factors used.

In its energy policy, Poland will continue to pursue directions contributing to an increase in energy efficiency. Improving energy efficiency is horizontal in nature and produces positive effects in all sectors of the economy, helping to enhance their competitiveness. Improving energy efficiency limits the increase in demand for fuels and energy, enhancing energy security through reduced energy demand and dependence on imports, and works to mitigate environmental impacts of the energy sector by supporting rational use of resources, abating pollution and GHG emissions, and reducing waste. Pro-efficiency measures produce real effects by reducing energy costs. They also involve the implementation of new technologies and enhance innovation of the economy, improving its attractiveness and competitiveness.

As at 2020, Poland confirms the target for reducing primary energy consumption at 13.6 Mtoe compared to the reference value included in the European Commission’s forecast (PRIMES – Baseline 2007). In absolute terms, the target translates into primary consumption at a level of 96.4 Mtoe and final consumption reaching 71.6 Mtoe in 2020.

On the basis of an analysis of the effects and impact on the GDP and the potential for savings, Poland declares a national 2030 energy efficiency improvement target of 23% for primary energy consumption compared to the PRIMES 2007 forecast. As is projected by this National Energy and Climate Plan, in 2030, primary energy consumption will be around 91.3 Mtoe, which means that, in natural values, the above target will translate into a reduction of primary energy consumption by approx. 27.3 Mtoe compared to the PRIMES 2007 forecast (which estimates primary energy consumption at approximately 118.6 Mtoe for the year).

The projected final energy consumption until 2030 will be around 67 Mtoe, and therefore the measures provided for in the National Plan will lead to a reduction of final energy consumption by around 18.4 Mtoe compared to the PRIMES 2007 forecasts.

In the period 2021–2030, Poland will continue to apply the energy efficiency obligation scheme also known as ‘white certificates’.

Detailed information on absolute levels of primary and final energy consumption in the

II. II. National objectives and targets - Dimension Energy efficiency

b)	Aggregate value of energy savings to be achieved in the period 2021-2030 in accordance with Article 7 of Directive 2012/27/EU, as amended by Directive 2018/2002, which concerns energy saving commitment. The **total cumulative final energy savings in the period 2021-2030**, calculated in accordance with the guidelines of the amended EED using forecasts on the annual average final energy consumption from the period 2016-2018, will amount to ca. 30,635 ktoe. For information on the methods and measures used by Poland to implement Article 7 of Directive 2012/27/EU on energy efficiency see paragraph 5.1.3.3 of Annex 2.
c)	The indicative milestones of the long-term strategy for the renovation of the national stock of residential and non-residential buildings, both public and private, the roadmap with domestically established measurable progress indicators, an evidence-based estimate of expected energy savings and wider benefits, and the contributions to the Union’s energy efficiency targets pursuant to Directive 2012/27/EU in accordance with Article 2a of Directive 2010/31/EU; Pursuant to Article 5 of Directive 2012/27/EU, 3% of the total heated or cooled area in buildings owned by governmental institutions and occupied by such institutions should undergo renovation on an annual basis in order to meet at least the minimum energy performance requirements determined with the application of Directive 2010/31/EU. The 2018 report, prepared in line with Part 1 of Annex XIV to Directive 2012/27/EU, shows savings of 4945.85 MWh attributable to such measures as improving the thermal transmittance parameters of public building envelopes, replacing window woodwork or lighting sources, or providing employees with internal training on how to save energy. Poland has adopted an alternative solution whereby the expected 2021-2030 target energy savings achievable as a result of measures improving the energy performance of buildings should amount to 43,440.1 MWh. The long-term renovation targets for the national housing stock are specified in the National Housing Plan: - the share of thermally insulated residential buildings in the total housing stock will amount to 70% in 2030 (as compared with 58.8% in 2015), - the number of people living in sub-standard conditions due to overpopulation, poor technical condition or absence of technical facilities will decrease to 3,300,000 in 2030 (from 5,360,000 in 2011). Poland is preparing a strategy for renovating the national stock of residential and non-residential buildings, both public and private ones, which will be aimed at ensuring improved energy efficiency and low-emissiveness of the building stock, by facilitating a cost-effective transformation of existing buildings into nearly zero-energy ones. The Strategy will be communicated to the EC in line with the requirements of the revised Directive 2010/31/EU as a separate document, other than an annex to the National Energy and Climate Plan.
d)	If applicable, other national targets, including long-term targets or strategies and sectorial targets. National targets in areas such as energy efficiency in the transport sector and with regard to heating and cooling. 1. Development of environment-friendly and efficient district heating systems In 2018, only about 20% of the district heating or cooling systems that provide around 85% of the total district heat volume in the country meet the criterion of an energy-efficient system. It is expected that in 2030 at least 85% of district heating or cooling systems with an ordered capacity of more than 5 MW will meet the criteria of an energy-efficient heating system.
The above target will be pursued by the following activities:
- development of cogeneration;
- converting power plants into heat and power plants;
- increasing the use of RES and natural gas in district heating;
- increasing the utilisation of waste for energy purposes;
- modernisation and expansion of the heating and cooling distribution systems;
- promoting heat storage facilities and smart networks;
- modernisation of heating and cooling distribution systems;
- promoting heat storage facilities and smart networks;
- simplification of procedures for investing in district heating network infrastructure;
- changing the heat market model and tariff policy.

The demand for heat should primarily be satisfied through the use of district heat, which ensures that fuels are utilised efficiently, improves the quality of life for citizens, and mitigates the problem of ‘low-stack’ emissions\(^\text{10}\). If connection to the heating network is not possible, efforts should be made to use individual sources with the lowest possible emissivity.

In 2015, 61% of households were connected to district heating networks within urban areas – the objective is to increase this rate gradually. The target is to ensure that 70% of households within urban municipalities are connected to district heating networks by 2030.

In accordance with the 2040 target set, the heating needs of all households are to be satisfied by district heating or zero- or low-emission heat sources.

2. Development of heat production in cogeneration processes

Poland has potential for considerably increasing the production of heat in cogeneration processes by replacing heating boilers with cogeneration sources. Exploiting the potential for high-efficiency cogeneration will add efficiency to the use of primary energy carriers, reduce CO\(_2\) emissions, and decrease the resource intensity of the national economy.

Support for electricity generated through high-efficiency cogeneration will be maintained. The scheme will be active as long as there is a need for market intervention. In the long run, district heat should be produced mainly through CHP.

\(^\text{10}\) See also Direction 8.
2.3. Energy security

The objectives and priority lines related to the energy security dimension are set out by sectoral development strategies, primarily by:
• sectoral programmes.

The above strategies identify the entities responsible for the implementation of individual activities and define the funding framework.

a) National targets concerning greater diversification of energy sources and supplies from third countries which may contribute to reducing energy import dependency.

b) National objectives with regard to reducing energy import dependency from third countries.

1. Deployment of nuclear power in Poland

The first unit (with a capacity of ca. 1.1-1.5 GW) of the first nuclear power plant is expected to be commissioned in 2033, with another five units to be launched at 2-3-year intervals (with a total capacity of approx. 6-9 GW).

The deployment of nuclear power will make it possible for Poland to satisfy the increasing electricity demand, will enhance the diversification of energy sources and will help to reduce national greenhouse gas emissions and dust and gas emissions. Nuclear power plants are a stable and reliable source of energy and will form a foundation of the national power system, which will strengthen electricity security in the long term. Nuclear energy will be deployed along the lines of actions envisaged by the updated "Polish Nuclear Power Programme".

2. Reduction of the share of coal in electricity generation to 56-60% in 2030

At present, the share of coal and lignite in electricity generation in Poland is ca. 77%. Owing to the decommissioning of end-of-life generation units, the need to meet strict environmental requirements, and the growingly difficult market situation (mainly the rise in CO2 emission allowance prices), the share of coal in electricity generation will be decreasing gradually.

In view of the fact that stable and reliable energy supplies contributing to energy security need to be guaranteed, and that it is appropriate to maintain a high level of energy independence – coal will remain the basic fuel in the electricity sector until 2030. In this respect, the optimisation of the production and use of this raw material must be ensured.

3. Expansion of electricity generation capacity to satisfy demand for power

At present, the level of conventional generation capacity satisfies peak power demand. Owing to the expected increase in demand for energy and power, in spite of the development of interconnections, generation and transmission infrastructures need to be expanded to safeguard electricity supplies to consumers. With respect to the development of electricity generation infrastructure until 2030, the share of RES is expected to increase from 14% at present to ca. 32%. Gas-based generation capacities will be developed in connection with the need to guarantee backup sources for weather-dependent RES, also on the basis of sources alternative to gas imported from third countries, e.g. methane from mines used for gas mixtures, synthesis gas, biogas, hydrogen. Energy storage technologies, especially those for storing renewable energy will be developed.

In order to satisfy the increasing demand, in a situation of substantial decommissioning
of power generation units, a capacity market has been implemented as an incentive for investments aimed at safeguarding the reliability of supplies. This mechanism will be crucial for expanding current generation capacities, but other market processes will also play a role in shaping the final balance.

4. **Diversification of crude oil supplies and expansion of oil and liquid fuel infrastructure**

Provision of existing crude oil and liquid fuel storage facilities, along with the accompanying infrastructure, with technical capacities for extruding raw material/fuels within a time limit enabling the raw material to be quickly supplied to the refinery and fuels to be delivered to the market.

Further diversification of crude oil import requires expanding the internal infrastructure so that the import of the raw material by sea may be increased. In the course of further development of the market, the possibility of increasing the level of storage and separation of various grades of oil imported by sea and efficient and safe transmission within the country must be ensured. The main objective is to ensure uninterrupted crude oil supplies to Polish refineries and to supply liquid fuels to the market at a level ensuring its normal operation in a crisis situation.

Adding importance to sea transport is crucial for diversifying the supply of oil to Polish refineries. For these reasons, the construction of the second leg of the Pomorski pipeline by 2023 is legitimate.

The need to ensure reliable fuel supplies to the market requires maintaining appropriate crude oil and fuel storage capacities. In this context, appropriate framework must exist, such as to guarantee optimum conditions for investing in storage infrastructure. With respect to the existing infrastructure, it must be guaranteed that all storage facilities operating in Poland have adequate technical capacities for oil to be quickly delivered to refineries and fuels to the market. Such conditions are necessary to ensure that the market functions effectively and that reserves are fully available at times of crisis.

The purpose of measures to be undertaken until 2030 is to ensure the continuity of fuel production by domestic refineries and uninterrupted supplies of fuels to the market should a crisis situation occur.

In 2018, the physical availability of fuels in storage facilities was 90 days both for aboveground and underground storage, while for crude oil, it was 90 days for aboveground storage and 150 days for underground storage.

In 2024, the physical availability of fuel reserves in storage is planned to be 90 days for aboveground and underground storage. That for crude oil will also be 90 days for both aboveground and underground storage.

5. **Diversification of sources and directions of natural gas supply and ensuring more possibilities of sourcing gas from markets alternative to the eastern market:**

The directions and sources of gas supply will be further diversified through the implementation of key projects, including the construction of the Baltic Pipe, expansion of the capacity to receive liquefied natural gas on the Polish coast, and development of interconnections with neighboring countries.
I. National objectives and targets
Dimension Energy security

6. Maintenance of the natural gas production level in Poland and attempts to increase it with the use of innovative hydrocarbon extraction methods

In 2016, natural gas output in Poland was ca. 4.2 billion m³ (as measured by methane-rich gas equivalent), whereas its output from mine demethylation and from offshore fields was 240 million m³ (methane-rich gas equivalent). As at the end of 2016, recoverable deposits of developed natural gas fields amounted to 98.9 billion m³, which accounts for 81% of the total volume of recoverable resources. Industrial natural gas deposits amounted to 52.3 billion m³ in 2016.

The main objective for 2030 in the segment is to maintain stable gas production, to continue exploration for new fields to replace depleted ones, as well as to increase output efficiency.

In 2017, the output, as measured by methane-rich gas equivalent, was ca. 4 billion m³ annually. The output is expected to remain at a similar level in 2030. Imports will continue to be the main method for meeting natural gas demand.

7. Development of electromobility and alternative fuels in transport

Heavy dependency on imported crude oil supplies requires an active policy also in the field of the management of demand for oil-derived fuels. **Achieving the above objectives will be based on the promotion of alternative fuels in transport.** A support instrument in this respect is the Act on electromobility and alternative fuels. The Act is aimed at stimulating the development and electromobility, and the use of other alternative fuels (natural gas in the form of LNG and CNG, LPG, liquid biofuels, hydrogen, as well as synthetic and paraffinic fuels) in transport.

Dependency on crude oil imports will be reduced by increasing the use of cars powered by alternative fuels, including electric cars, and by expanding infrastructure (including core networks) for charging electric cars and CNG/LNG refuelling in the transport sector. The development of fuel cell electric vehicles contributes significantly to the decarbonisation of transport, which is currently based mainly on diesel and gasoline.

Nowadays, e-mobility highly reduces emissions from transport, but when planning to decarbonise this branch completely, efforts should be taken to promote zero-emission vehicles, including hydrogen-powered ones. It is worth emphasising that the potential for using hydrogen should not only be sought in road transport, but also in rail, air and maritime transportation.

8. Maintenance of autonomy as regards electricity imports from third countries

Poland expects to remain independent of electricity imports from third countries until 2030.

The National Power System (NPS) is interconnected by the following transboundary lines with third countries:
- single-circuit 750 kV Rzeszów-Chmielnicka (Ukraine) line, (inactive since the 1980s);
- single-circuit 220 kV Zamość-Dobroń (Ukraine) line;
- double-circuit 110 kV Wólka Dobryńska-Brześć (Belarus) line (a local line out of operation);
<table>
<thead>
<tr>
<th>c) National objectives with regard to readiness to cope with constrained or interrupted supply of an energy source (including gas and electricity) and, where appropriate, a timeframe for when the objectives shall be met.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Since 2011, electricity has been imported to Poland from third countries only through one line, namely the 220 kV Zamość-Dobrotwór one, in volumes not exceeding 0.7% of the country’s peak power demand. This interconnection operates on market terms and access to transmission capacity is provided on the basis of monthly tender procedures.</td>
</tr>
<tr>
<td>1. Diversification of natural gas supply sources and directions and improvement of the possibilities of gas supply from directions alternative to the eastern direction – objectives defined in 2.3.(a) item 5.</td>
</tr>
<tr>
<td>Pursuant to national legislation adopted, until 2022 the share of natural gas imported by energy companies from a single source in a given calendar year may reach a maximum of 70%. From 2023 onwards, this share may not exceed 33%. The above limits do not apply to intra-Community purchases.</td>
</tr>
<tr>
<td>2. Maintenance of the natural gas production level in the territory of Poland and attempts to increase it with the use of innovative hydrocarbon extraction methods – objectives described in 2.3.(a) item 6.</td>
</tr>
<tr>
<td>In the event of an exceptionally high gas demand, major supply disruptions or other severe deterioration in the gas supply, and in the event that all relevant market measures have been implemented, but the supplies of gas are insufficient to meet the remaining gas demand, non-market-based measures need to be additionally deployed with a view, in particular, to safeguarding supplies of gas to protected customers.</td>
</tr>
<tr>
<td>Depending on how the situation is assessed and what measures need to be deployed to eliminate the supply disruption, mandatory reserves may be released or restrictions on natural gas consumption imposed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d) National objectives with regard to deployment of domestic energy sources (notably renewable energy).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enhancement of the possibilities of gas supply from directions alternative to the eastern direction and maintenance of the natural gas output level in the territory of Poland, and attempts to increase it with the use of innovative hydrocarbon extraction methods – objectives defined in 2.3.(a) items 5 and 6.</td>
</tr>
<tr>
<td>2. Development of energy sustainable areas at the local level</td>
</tr>
<tr>
<td>Safeguarding energy security requires the diversification of sources, raw materials and energy generation and distribution methods. With respect to electricity, this requires developing energy sources balanced with demand by tapping the national potential, with only partial back-up from interconnections. The right choice of renewable and other energy sources for energy clusters, energy cooperatives etc. may ensure local self-sufficiency and thus also energy security.</td>
</tr>
<tr>
<td>It is expected that 300 energy sustainable areas will be created by 2030 locally (energy...</td>
</tr>
</tbody>
</table>
I. National objectives and targets

Dimension Energy security

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters, energy cooperatives etc.</td>
<td></td>
</tr>
</tbody>
</table>

3. Inventory of the national uranium deposits (conventional and non-conventional), including the exploration of deposits and analyses of their recovery possibilities in technical and economic terms (i.e. whether and on what terms it would be viable) until 2030

The analyses conducted so far show that Poland does not have industrial quantities of uranium in conventional deposits, but there is unconventional deposit potential (e.g. in ashes, copper mining waste). Their exploitation requires a detailed inventory of conventional and unconventional deposits and technical and economic analyses of the possibilities of using them for national industry purposes, including nuclear energy generation.

The appraisal of the size of potential uranium deposits, in particular unconventional ones, is planned to be conducted by 2030, along with the assessment of the possibilities of recovering uranium, including of using it commercially, for the production of nuclear fuel for Polish nuclear power plants.

4. Maintenance of domestic coal production at a level enabling the satisfaction of the demand of the energy sector

Domestic coal is the basic electricity, heat and coke production carrier. The Polish energy sector relies on coal, with the share of electricity produced from coal/lignite amounting to 77% of all electricity produced nationwide in 2018 and that produced from hard coal to about 48%. The share of primary coal-derived energy consumption in primary energy consumption amounts to ca. 39%. For the above reasons coal will continue to determine the nature of the broad energy market in Poland for many years to come. There is a need to guarantee the greatest possible rationality of the recovery and use of coal to ensure reliable supplies of the resource for the purposes of the energy, heat and coke markets. At the same time, the sector should also ensure supplies to the small- and individual-consumer market, *inter alia* through newly created and expanded distribution networks, with the product range and quality offer to be characterised by a growth in the production and supply of higher value-added types of coal, i.e. medium-sized and coarse coal and qualified low-carbon fuels.

Demand for coal will be met by domestic resources whereas imported coal will be treated as supplementary.

The planned measures are oriented to ensuring cost-effectiveness of the coal mining sector, rational management of opened deposits, reasonable distribution of the resource, use or sale of mining by-products (methane, hydrogen, minerals), and innovative extraction and utilisation methods. In the context of the decreasing role of coal, preparing a restructuring plan for Poland’s mining regions to ensure their just transformation will be crucial.
2.4. Internal energy market

The objectives and priority lines related to the internal energy market dimension are set out, in the first place, by the draft Energy Policy of Poland – strategy for the development of the fuel and energy sector (November 2019), as well as by national and EU legislation.

2.4.1. Electricity interconnectivity (2030 framework target)

a) The level of electricity interconnectivity that the Member State aims for in 2030 in relation to the October 2014 European Council objective.

Increasing the availability and capacity of existing interconnections

The interconnection capacity among Member States should be increased primarily by the optimum use of the existing interconnectors and eliminating barriers that block grid access for market participants, including bottlenecks in national systems, i.e. by:

• developing rules for the allocation of costs of remedial actions taken to manage network flows,
• constructing missing lines within national systems,
• optimising the methods of providing market participants with access to those capacities (introduction of FBA methodologies),
• installing phase shifters or other devices optimising transmission where necessary.

In connection with the above, investments are planned to develop the national transmission network and interconnections by 2030, including:

- investments to improve flow in the synchronous area involving Germany, the Czech Republic, and Slovakia;
- construction of a new submarine cable connection between Poland and Lithuania (Harmony Link) and completing the synchronisation of the Baltic countries/continental Europe transmission systems involving the Polish transmission system.
By 2030, the capacity of Poland’s existing interconnections is planned to be enhanced through the projects planned.

Pursuant to Regulation (EU) 2019/943 of the European Parliament and of the Council on the internal market for electricity, from 1 January 2020, TSOs should maximise the interconnection capacity offered for transboundary trade. As a consequence, Regulation 2019/943/EU requires that TSOs provide market participants with cross-zonal capacity at a level not lower than 70% of the transmission capacity for a given border or critical network element/contingency (CNEC) pair, subject to operational security limits (hereinafter the ‘CEP 70% target’). The power TSO can use the remaining 30% for the purposes of reliability margins, loop flows, and internal flows at each critical network element.

Providing the 70% of transmission capacity is a challenge for the TSO, as currently, the Polish market suffers from structural network constraints. As a result, a decision has been made to prepare an Action Plan that best responds to the nature of structural network constraints in Poland. **With the application of the Action Plan, the deadline for achieving the CEP 70% target is 31 December 2025.** The Plan will be implemented from 1 January 2020, with the measures scheduled for four years (1 January 2020 to 31 December 2023).

Achieving the target will increase the level of diversification of electricity supply, contribute to the equalisation of wholesale electricity prices in the region, and mitigate the impact of external factors (e.g. prices of CO₂ emission allowances – EUA) on the price of electricity in Poland.

Additionally, curbing loop flows will improve the availability of existing interconnections for the participants of the National Power System. The subdivision of the bidding zone into two – AT and DE/LU – bidding zones (from October 2018) as a result of the implementation of the ACER Decision of 17 November 2016 establishing the Capacity Calculation Regions (CCR) should produce positive effects.

It should be assumed that the above measures will improve the interconnection capacity between Poland and EU Member States.

2.4.2. Energy transmission infrastructure

a) Key national objectives for electricity and gas transmission infrastructure that are necessary for the achievement of objectives and targets under any of the dimensions referred to in the Energy Union strategy.

1. **The key national objectives concerning electricity transmission infrastructure are as follows:**
 - to safeguard the security of electricity supplies – understood as the capacity of the electricity system to ensure the security of operation of the electrical network and to balance supply with demand;
to ensure long-term capability of the power system to satisfy justified needs as regards domestic and international transmission of electricity, *inter alia* by expanding the transmission network, and, where applicable, developing interconnections with other power systems.

In order to achieve the above objectives, the Transmission System Operator (TSO) is creating a backbone network, which is necessary for the National Power System (NPS) to operate correctly, and at the same time to ensure:

- consumer supply reliability, including in large urban agglomerations, by meeting the n-1 supply reliability criteria and network operation quality parameters;
- power interconnection and evacuation from existing generation sources and sources under construction, including RES;
- fulfilment of the legal requirements concerning the capacity for power exchange with EU’s neighbours.

The backbone network enables flexible adaptation to various NPS operation scenarios, even if the role of the transmission network is limited to a reserve function the sole purpose of which is to guarantee system operation security.

Polskie Sieci Elektroenergetyczne S.A. (PSE) is planning to develop its transmission network to meet the increasing demand, energy market requirements and the NPS users’ needs.

The development of extra high voltage (EHV) networks will contribute to:

- achieving national strategic objectives defined in the energy policy;
- integrating the market, *inter alia* through the development of cross-border interconnections and the reduction of bottlenecks in energy infrastructure;
- safeguarding the security of supply, *inter alia* through interoperability, appropriate connections and secure and reliable system operation;
- ensuring sufficient transmission capacity on the basis of the power and electricity demand of particular NPS areas forecast until 2025;
- connecting and evacuating power from new generation units based on conventional technologies for which connection conditions have been issued and/or connection agreement have been concluded;
- ensuring transmission capacity for connecting and evacuating power installed in wind farms at a level allowing Poland to meet the required RES share ratios in the national energy balance;
- reducing unscheduled power flows;
- increasing the reliability of supply to major receiving hubs;
- increasing the ability to exchange capacity with other systems operating synchronically;
- strengthening the role of the transmission system in the NPS through the expansion of the 400 kV network and partial and gradual assumption of transmission functions from the 110 kV distribution network;
- increasing voltage control capability;
- creating conditions for safe NPS operation while ensuring compatibility between...
II. National objectives and targets

| Energy sources based on different generation technologies and various performance characteristics; |
| Enhancing the transmission system’s operating flexibility so that major network elements can be shut down for maintenance or overhaul, where the shut-down of such elements is difficult given the present form and load of the network; |
| Improving the efficiency of electricity use; |
| Creating a platform for further network expansion (potential development directions). |

2. Construction, extension and modernisation of the domestic gas transmission network:

The obligation to develop the transmission system ensues from the need to ensure the long-term capability of the gas system to satisfy reasonable gaseous fuel transmission needs in domestic and cross-border trading by extending this system and, where applicable, by expanding interconnections with other gas systems. The length of the transmission network, which was 11 744 km in 2017, does not enable free gas distribution in all directions, as there are bottlenecks in the network. The expansion of the national transmission network is helpful in constructing an integrated and competitive gas market in Central and Eastern Europe. By making use of the geographical location of Poland, the national transmission system may play a new transit role, constituting a regional gas distribution hub.

3. Integration of the national natural gas transmission system with the systems of the Central and Eastern Europe states and the Baltic Sea region

At present, Poland is not sufficiently integrated with neighbouring states in terms of the gas transmission system. By 2030, the sources and directions of gas supply to Poland are planned to be diversified by the construction of the Baltic Pipe and expansion of liquefied natural gas receiving capacities on the Polish coast (LNG Terminal in Świnoujście, LNG Floating Storage and Regasification Unit in the Bay of Gdańsk), as well as by boosting the import-export potential thanks to the planned construction of interconnections with Ukraine, Slovakia, Lithuania, and the Czech Republic.

At the end of 2018, there were no high-capacity interconnections with Lithuania, the Czech Republic or Slovakia.

b) Where applicable, main infrastructure projects envisaged other than Projects of Common Interest (PCIs)\(^1\):

| 1. Building an interconnector with Ukraine |
| The main purpose of the project is for the Poland-Ukraine interconnection to be able to handle physical gas transmission to Ukraine at 5 billion m\(^3\)/year and to Poland also at 5 billion m\(^3\)/year (after 2022). The new interconnection will create a transport corridor between Poland and Ukraine and will enhance Poland’s exporting capacity, creating conditions for increased utilisation of the transmission potential of the Polish transmission system. |
| Initial value (2017): preparatory work. |
| Target value (2030): operational interconnection. |
2.4.3. Market integration

a) National objectives related to other aspects of the internal energy market such as market integration and coupling, including a timeframe for when the objectives shall be met

The integration of electricity systems requires transmission capacities to be allocated and made available for trading purposes in a coordinated manner, having regard to technical power transmission capabilities in the interconnected systems, as well as the safety and reliability standards concerning system operation to be satisfied.

It is necessary to develop and launch coordinated allocation of transmission capacity comprising the countries of Continental Europe (CCR CORE) in accordance with the FBA methodology (flow-based approach)\(^{12})\.

Having regard to the above limitations, Poland will pursue its commitments stemming from framework guidelines and codes.

Furthermore, Poland will conduct additional actions to roll-out intraday market coupling mechanisms and mechanisms relating to electricity system balancing:

- With respect to the prices of electricity of the day-ahead and intraday markets, bid and price limits other than currently applied in the process of uniform, European day-ahead and intraday market coupling have not been applied in Poland since 1 July 2018. The above will not affect the application of the minimum and maximum prices pursuant to Article 41(1) and Article 54(1) of Regulation 2015/1222.
- With respect to price limits in the balancing market, from 1 January 2019 onwards, they will be set at a level not lower than that determined for the intraday market. This will not affect the technical price limits in the balancing market, to be applied, if necessary, pursuant to Article 30(2) of the Electricity Balancing Guideline.
- Starting from 1 January 2021, prices in the balancing market will be set as the marginal price defined in Article 30(1)(a) of the Electricity Balancing Guideline. This will not affect the possibility of differentiating prices in the Polish bidding zone depending on the location, by applying a solution based on the full transmission network model in the pricing process. If technical price limits are applied in the balancing market, they will take into account the minimum and maximum prices pursuant to Article 30(2) of the Electricity Balancing Guideline.

b) National objectives with regard to ensuring electricity system adequacy, as well as the flexibility of the energy system with regard to renewable energy production, including a timeframe for when the objectives shall be met;

1. **Flexibility of the energy system with regard to renewable energy production**

The low flexibility of the Polish energy market (on the demand and supply sides) is primarily due to the fact that in practice it has no regulating reserve sources (except for pumped-storage power plants) that would be capable of adjusting the production level dynamically depending on demand.

Most energy generated in Poland is derived from coal, but at the same time priority in access to the grid is given to renewable energy sources. Given the increase in wind power generation, the full responsibility for balancing variable wind energy generation rests on coal-fired power plants. In such a situation, coal-fired power plants must operate at a load close to technical minimum levels or even shut down units and then immediately switch to operating at full capacity, for which, in fact, they are not
technically designed. On top of all this, energy demand is becoming more and more variable, reaching record levels especially in largest agglomerations in peak periods. The improvement of flexibility is a priority which must be seen from the perspective of the entire chain, starting from generation sources, through transmission, distribution, energy market, to energy consumers and the entire demand side. Investments in gas production and transmission infrastructure are key to ensuring the system’s flexibility in the light of the growing role of RES. The share of active recipients and aggregators capable of responding at times of shortages is bound to grow thanks to the deployment of smart networks. In the long term, the development of demand side response (DSR), energy storage, and energy clusters, which should be capable of self-balancing, may also gain in importance.

The flexibility of system operation is expected to improve by 2030, so that it can respond adequately to changing electricity demand levels and the increased share of uncontrollable energy sources.

2. Development and use of offshore wind energy potential in Poland in the 2030 perspective.

The potential for the wind offshore sector in Poland in the Baltic Sea offers realistic opportunities for its development after 2025. To make it possible to evacuate full capacity generated by the offshore wind sector, the transmission network needs to be modernised and expanded, which is required in addition to providing electricity network elements necessary for applying voltage and for connection purposes. Such modernisation/expansion of the transmission network has already been envisaged by PSE S.A. in the Transmission Grid Development Plan and scheduled for completion.

Ensuring the adequacy of the power system and the flexibility of the energy system with regard to renewable energy production in the context of market integration is a process which, by definition, engages a larger number of entities. Therefore, setting national objectives in this respect is not reasonable. The reason for this is that their achievement will depend on other entities engaged in the process. At present, the development of RES, in particular offshore wind farms, is part of the planned deployment of renewable energy sources in Poland.

Given the need to ensure adequate offshore energy storage and transmission capacities, the existing offshore wind potential in the Baltic Sea does not make it possible for the technology to be developed and used by 2025. Until then, the expansion of individual local RES sources must be correlated with the retrofitting of traditional generation units and the modernisation of the power infrastructure that can be used for delivering Polish offshore wind energy to end users. The anticipated effect in 2030 will be approx. 3.8 GW of installed offshore capacity, which is expected to grow to approx. 8 GW in 2040.

1. Raising the awareness of consumers and encouraging them to play a more active
II. National objectives and targets - Dimension Internal energy market

Measures to enhance end consumer knowledge are planned to be continued in the period 2021-2030, with a focus on:

- consumer rights (relating to the conclusion of contracts, supplier switching, alternative dispute resolution methods),
- an active role in the energy market (prosumer, use of aggregation services, smart meters, dynamic price contracts).

2. Gas market liberalisation – tariff deregulation in the gas trading sector

A number of measures have been undertaken in recent years to stimulate the development of competition in the Polish natural gas market. The amendment to the Energy Law of 26 July 2013 introduced a gas exchange obligation to enable the creation of a liquid, wholesale natural gas market in Poland and to make the consumer’s right to switch suppliers a reality.

The President of the Energy Regulatory Office (URE), by issuing individual decisions, releases entities which have filed appropriate applications from the obligation to submit tariffs for approval with respect to natural gas trading: at a commodity exchange, in a wholesale gas market and in LNG and CNG form, and the sale of natural gas to gas system operators in order for them to carry out their duties.

As a result of a further amendment to the Energy Law, gas prices for trading companies were deregulated in December 2016 with respect to the sale: in a wholesale market, at a virtual point (including at a commodity exchange), of compressed natural gas (CNG) and liquefied natural gas (LNG), and by tender procedure, auction or public procurement. On 1 October 2017, prices for all remaining consumers were deregulated, except for household consumers. Natural gas prices for household consumers will continue to be regulated by the President of the Energy Regulatory Office by 31 December 2023 (as per Article 62b of the Energy Law).

The deregulation of natural gas prices for particular consumer groups will enable a far-reaching liberalisation of the gas market and the development of competition in the gas trading sector.

3. Development of a competitive gas market in Poland

The number of instances of supplier switching is a simple and reliable measure of the development of a competitive gas market. Pursuant to the TPA (Third Party Access) principle, which is regulated by Article 4(2) of the Energy Law, end consumers may use the local provider’s network on an individual basis to supply gas or energy purchased from any supplier. Several important factors affect the freedom of choice of the supplier, e.g.: the degree of awareness of customers and their motivation to switch supplier, as well as facility to switch suppliers or the number of competitive offers available on the market. The number of instances of natural gas supplier switching is expected to rise in connection with the development of the retail gas market.

According to the information provided by the President of the Energy Regulatory Office, the level of the natural gas supplier switching indicator among consumers reached 66...
II. National objectives and targets

- Dimension Internal energy market

| 889 in 2017. The number of instances of natural gas supplier switching is expected to reach 150,000 by 2030. |

2.4.4. Energy poverty

a) National objectives with regard to energy poverty including a timeframe for when the objectives shall be met.

1. **Reduction of energy poverty having regard to the protection of vulnerable social groups.**
 A comprehensive state policy oriented towards solving the problem of energy poverty is planned to be developed. An effect of the proposed comprehensive public policy will be the reduction of energy poverty and the enhancement of the protection of vulnerable consumers.

2. **Protection of vulnerable consumers of electricity by granting a flat-rate energy allowance.**
 In order to protect the poorest people, Amendment to the Energy Law of 26 July 2013 (Journal of Laws 2013, item 984) defines a vulnerable electricity consumer and a vulnerable gaseous fuel consumer. It puts in place a system of support for vulnerable electricity consumers in the form of an energy allowance. The number of vulnerable electricity and gaseous fuel consumers is expected to fall by 2030.
2.5. Research, innovation and competitiveness

a) National objectives and funding targets for public and, where available, private research and innovation relating to the Energy Union, including, where appropriate, a timeframe for when the objectives are to be met.

1. Reduction of the civilisation gap between Poland and highly developed economies and improvement of the quality of life of Polish people, as well as the fulfilment of the development aspirations of the present and future generations consistently with the sustainable development principle.

Increase in expenditure on research and development activities in Poland to 1.7% of the GDP in 2020 and 2.5% of the GDP in 2030

National objectives and budgetary funding targets for research and innovation, including with regard to the Energy Union, are pursued within the framework of the state science, technology and innovation policy. The objectives and targets of this policy have been defined in the strategic direction guidelines for research and development formulated in the National Research Programme (NRP) adopted by the Council of Ministers, which will be updated in 2020. The main criteria applied in the NRP to choose strategic directions for research and development include the long-term needs of the economy, high quality of research in national institutions – global competitiveness, development of innovative business sectors at the micro-, small- and medium-sized scale based on new Polish technologies, or the priority directions in research development defined in European research programmes and strategies (e.g. SET-Plan and Horizon 2020). Strategic directions for research and development defined in the NRP are as follows:

1. New energy technologies,
2. Diseases of affluence, new medicines and regenerative medicine,
3. Advanced information, telecommunications and mechatronic technologies,
4. Modern materials technologies,
5. Natural environment, agriculture and forestry,
6. Social and economic development of Poland in the conditions of increasingly global markets,
7. State security and defence.

The broad-ranging energy and climate issues addressed by the NRP, including low-carbon technologies, which fall within the scope of the research, innovation and competitiveness pillar pursuant to the Regulation on the Governance of the Energy Union, are included in as many as three out of the above seven strategic research and development directions, namely: (1.) New energy technologies, (4.) Modern materials technologies, (5.) Natural environment, agriculture and forestry.

As noted in the description of Strategic Direction 1 of the NRP, New energy technologies, research conducted in this area should support the implementation of the Polish energy policy and the targets of the energy and climate policy of the European Union.

The timeframe for the strategic research and development directions and strategic
research programmes are defined in a manner ensuring the stability of the research conducted. However, they should be modified in correspondence to the changing conditions, tasks and needs of the economy and society. Strategic directions for research and development are to be implemented over a period of 10-15 years, and strategic research programmes over 3-7 years, taking into account realistic funding levels.

The pursuit of the above will be founded equally on increasing research and development funding in Poland and establishing new rules for using such funding in a way reflecting the present-day conditions. This will result, *inter alia*, in raising the level and effectiveness of research in Poland, understood as the delivery of research results and products with a high cognitive quality and social, economic and technological usefulness. The aggregate effect of measures in all the NRP areas is the enhancement of innovation of the economy and an increase in the significance and competitiveness of Polish science internationally.

The implementation of the NRP helps to enhance the effects of research in new technological solutions, the number of patents and the development of an innovative economy. The achievement of the aforementioned objective requires the concentrated efforts of the scientific community and financial expenditures from the state budget on a limited number of singled out priority areas.

The update of the above national strategic research and innovation directions, priorities and objectives regarding energy and climate as part of the new research policy of the state will be aligned to the new Energy Policy of Poland and will contribute to its delivery.

2. Directions for development of energy innovations:

1) Improvement of competitiveness of the Polish energy sector through:
 - continuous technological advancement and efficiency of operation;
 - implementing competitive organisational and business models;
 - optimising resource use.

2) Maximisation of gains for the Polish economy derived from changes in the energy sector through:
 - taking advantage of innovation in the energy sector for industrial development,
 - reducing specific energy consumption and consumption of raw materials,
 - fostering cooperation between enterprises, public institutions and the research sector.

In 2017, the Ministry of Energy developed a document on innovation in the energy sector entitled Directions for Energy Innovation Development. The document covers energy innovations both from the perspective of technologies, processes and funding sources and models, and from the perspective of the implementation of new solutions, and contains a list of indicators relating to innovations and the development of new business models.

Cooperation is pursued with energy sector entities with a view to engaging this sector
in innovation projects, and with organisations supporting the development of research, innovations and implementations.

Projects implementing the Directions for Energy Innovation Development concern the following areas:
• integrated and interconnected energy system giving a central role to the energy user;
• effective and flexible energy generation and use of raw materials that combine environmental impact mitigation with energy security;
• diversification of energy generation and use technologies;
• green and energy-efficient city.

In the context of energy-related R&D&I, a central focus will be on supporting investments in infrastructure (including technologies) for the production, storage and use of hydrogen (e.g. support for research into hydrogen- and coal-based fuels), synthesis gas, and methanol for energy purposes. R&D and commercialisation support in the area of carbon cells and carbon nanostructures in energy storage will be also important.

3. Acceleration of energy sale in such areas as: air protection, RES, energy saving, water and waste water management, waste management and the protection of biodiversity by Polish companies in international markets

An increase in the sale of technologies by Polish companies in international markets will be supported by specialised training for entrepreneurs, foreign missions with the participation of representatives of ministries, the Polish Government or the President of Poland, and the participation of business entities in international events, fairs, and exhibitions. This form of assistance enables Polish companies to increase considerably sales of technologies on international markets at a relatively low cost. At present, the GreenEvo programme is planned to be implemented in the period 2018-2020.

Acceleration of the sales of Polish air protection, RES, energy savings, water and sewage management, waste management and biodiversity conservation technologies on foreign markets. The improvement of sales of Polish environmental technologies will be supported through the GreenEvo initiative (Green Evo – Green Technology Accelerator). The Accelerator will organise training for entrepreneurs to prepare them for foreign expansion, and business missions for such events as international fairs or exhibitions, as well as meetings accompanying foreign visits of representatives of the Polish government. This form of support can be used to promote effectively Polish environmental technologies on foreign markets, with relatively low financial outlays. Currently, the 2018-2020 edition of the GreenEvo programme is under way. GreenEvo supports entrepreneurs subject to the de minimis principle applicable to State Aid. Beyond 2020, Poland plans to support foreign transfer of Polish environmental technologies by the successive rounds of the GreenEvo programme and through inter-ministerial cooperation.

4. Determination of the potential of forest areas for carbon dioxide sinking and the
II. National objectives and targets - Dimension Research, innovation and competitiveness

A research project is envisaged to be funded as part of the Forest Carbon Farms (FCF) pilot project, which explores the mitigation capabilities of forest areas as a result of additional measures in these areas. The above work is expected to align the forest ecosystem carbon balance model to Polish conditions in order to determine accumulated carbon resources in all forest layers. The project is expected to develop carbon dioxide balance calculation methods, inter alia for reporting purposes, and to determine the potential for employing additional economic measures to improve the balance of greenhouse gas within forest land. As one of the effects, the research project will create detailed forest development models specific for Poland, such as to enable changes in the carbon balance for forest ecosystems in Poland to be estimated more precisely.

5. Determining the potential for production, use and development of hydrogen technologies in Poland.

The draft Hydrogen Technology Development Programme, which is being prepared now and responds to the growing need to reduce the share of conventional fuels in favour of alternative fuels, envisages setting the main lines for developing the potential of hydrogen technologies. The purpose of the above work is to address aspects related to the production, transport, use, and storage of hydrogen, taking into account the existing support system and the EU and Polish legal context. Owing to its properties, hydrogen can be an important area of development for the Polish economy. In accordance with the Hydrogen Technology Development Programme, there are new potential uses for hydrogen in:

- the energy sector;
- the transport sector;
- the natural gas transmission system.

The use of hydrogen is becoming a major direction of research and development, therefore activities are planned to support areas of the hydrogen economy and R&D.

b) Where applicable, national objectives with regard to competitiveness.

Enhancing the competitiveness of the economy through:

- innovation, export and increasing capital mobilised for investment in the enterprise sector (Specific Objective I of the SRD);
- fuller exploitation of the social and territorial potential (Specific Objective II of the SRD); and
- projects enhancing the efficiency of public institutions that serve enterprises and citizens (Specific Objective III of the SRD);
- enhancing sustainable use of renewable resources in industry,
- automation, robotisation and digitisation of enterprises.

Based on experience, it is envisaged that, in the period 2021-2030, the main competitiveness-oriented activities will focus around investing in areas ensuring an
increase in the value added of the economy and its competitiveness in foreign markets. A key role will be played by support instruments for businesses willing to engage in and develop (continue) B+R+I activities and thereby improve their competitiveness, especially in areas constituting economic priorities, including:

- high-efficiency, low-carbon and integrated energy generation, storage, transmission and distribution systems;
- smart and energy-efficient building technologies;
- environment-friendly transport solutions;
- minimisation of waste generation, including waste unfit for processing, and the use of waste for materials production and energy generation purposes (recycling and other forms of recovery).
- optimisation of the management of non-renewable resources with a focus on their quality, value and reusability,
- Eco-innovations.

There are plans to use instruments for supporting R&D leading to innovations in environmental and low-carbon technologies and in technologies enabling effective (economical) waste management.
3. POLICIES AND MEASURES

The structure of this chapter reflects the systematics and numbering from Annex I to Regulation 2018/1999
3.1. Decarbonisation

3.1.1. GHG emissions and removals (for the plan covering the period from 2021 to 2030, the 2030 Framework Target).

a) Policies and measures to achieve the target set under Regulation [ESR] as referred to in 2.1.1 and policies and measures to comply with Regulation [LULUCF], covering all key emitting sectors and sectors for the enhancement of removals, with an outlook to the long-term vision and goal to become a low-carbon economy with a 50 years perspective and achieving a balance between emissions and removals in accordance with the Paris Agreement;

Responsible/involved parties*:
Ministry of Climate (MK), Ministry of Infrastructure (MI), Ministry of Agriculture and Rural Development (MRiRW), Ministry of Development (MR), Ministry of State Assets (MAP), Ministry of Development Funds and Regional Policy (MFiPR) * subject to potential changes resulting from amendments to the Act on government administration departments.

1. Meeting the non-ETS (ESR) 2030 reduction target.
Poland has considerably reduced total GHG emissions as compared with 1988. Notably, a profound reduction took place before 2005: from 1988 to 2005, the decrease reached ca. 30%, and from 1990 to 2005 it amounted to ca. 15%. Since 2005, the trend in total GHG emissions of approx. 400 million tonnes of CO$_2$ equivalent may generally be regarded as stable, with some fluctuations in individual years.

Given the above-described trends, the reduction of GHG emissions in the non-ETS sectors covered by the ESR by -7% until 2030 as compared with 2005 will be an ambitious challenge for Poland. An analysis of the current 2030 GHG emission forecast shows that aggregate emissions in those sectors will decrease.

The following sectors have the largest shares in the GHG emission structure in Poland in the non-ETS sectors: households, i.e. municipal and domestic sector (ca. 30%), transport sector (ca. 27%), agricultural sector (ca. 15%). From the point of view of meeting the ESR target, the following sectors will be crucial for the level of GHG emissions: transport, agriculture, construction and non-ETS industry (which accounts for ca. 8% of GHG emissions in the non-ETS sectors). The emission trends in these sectors, as well as the actual emission levels in the period 2021-2030, will determine the final total emission level in the non-ETS area.

Since 1990 the EU has managed to reduce its total CO$_2$ emissions by 23%, mainly due to reductions in Central and Eastern Europe countries. Over the same period, CO$_2$ emissions from car transport have increased by 20%. GHG emissions from the Polish transport sector decreased from ca. 48.8 million tonnes of CO$_2$ equivalent in 2011 to ca. 44.1 million tonnes of CO$_2$ equivalent in 2013, to grow again to ca. 63.4 million tonnes of CO$_2$ equivalent in 2017, and constitute ca. 15.3% of the total domestic emission (in the EU transport emissions as much as 25% of the total emissions on average). Road vehicles, in particular passenger cars and light commercial vehicles, are responsible for the largest share (ca. 98%) of the transport sector emissions in Poland.

Actions to reduce greenhouse gas emissions in the transport and agriculture sectors (which fall in the non-ETS category) are specified in the Sustainable Transport Development Strategy 2030 (TDS) and the Strategy for Sustainable Development of Agriculture, Rural Areas and Fisheries 2030 (SSDARAF).

Actions to reduce emissions across the economy are foreseen by the State Environmental Policy 2030, which envisages the development in 2020 of a policy for reducing greenhouse gas emissions in non-ETS sectors and support for identified actions to reduce non-ETS emissions by 2030. Generally, the non-ETS reduction target will be pursued based on the existing and new policies.
and measures in the different sectors that fall outside of the scope of the Emissions Trading Scheme, including those discussed in the successive points of Chapter 3.1.1. If necessary, Poland intends to apply flexibility mechanisms provided for in the ESR to account for GHG emissions in the period 2021-2030, namely:

- **LULUCF flexibility (Article 7)** – the ESR takes into account flexibility between the ESR and the LULUCF area, which enables the use of a certain pool of units deriving from removals in LULUCF to cover ESR emissions. Pursuant to Annex III to the ESR, the maximum volume of this pool for Poland for the entire 2021-2030 period is 21.7 million tonnes of CO₂ equivalent. Units generated by the LULUCF sector will accounted towards the ESR target in the period 2021-2030, having regard to the aforementioned limit and the rules defined in the LULUCF Regulation.

- **adjustment – an additional pool of AEA units (Article 10(2))** – Article 10(2) provides for an adjustment for Poland which will constitute a certain additional pool of units increasing the annual limit on a one-off basis, to be added in the first year of the commitment period. The value for Poland envisaged in Annex IV to the Regulation is 7,456,340 tonnes of CO₂ equivalent;

- **banking, borrowing and transferring AEA units (Article 5)** – as in the 2013-2020 commitment period, also in the future period, Member States may bank the unused part of their AEA limits to subsequent years of the commitment period, borrow a part of their AEA limits from the following years or buy AEA units from other Member States. The transfer of units among states may be linked to the implementation of GHG emission reduction projects. If necessary, Poland intends to take advantage of the above possibility of having flexible access to and using its own AEA units, as well as of buying accounting units from other Member States;

- **security reserve (Article 11)** – should the remaining flexibilities turn out to be insufficient to cover an AEA shortfall in the period 2026-2030, Poland is planning to use an additional pool of units, taken from the security reserve, at the end of the commitment period (in 2032). The maximum total pool for all Member States that meet specific conditions is 105 million tonnes of CO₂ equivalent.

The detailed approach to be followed towards the reduction target in the non-ETS sectors will be outlined in the National Allocation Management Strategy, which will be prepared by 2022 and approved by the Council of Ministers pursuant to Article 21d of the Act on the management of greenhouse gas and other substance emissions. The purpose of the Strategy is to determine the objectives and guidelines for clearing non-ETS emissions, taking into account the actual and forecast GHG emissions and the market situation (the supply of and demand for AEA units).

At present, the reduction effort necessary to meet the 2030 non-ETS reduction target cannot be defined in a precise manner, as the key EU implementing legislation (including input data for calculations) which would precisely define the value of the reference point (the emission level in 2005) or emission allowances (allocations of AEA units) for particulars years in the period 2021-2030, are not available yet. However, it is expected that meeting the 2030 target will require a greater effort than attaining the 2020 target.
2. In accordance with the Sustainable Transport Development Strategy 2030, the negative impact of transport on the environment will be mitigated by supporting, *inter alia*:
 - solutions promoting low-carbon vehicles, including electromobility;
 - diversity and complementarity of individual forms of transport within the network, as well as by supporting the types of transport with the lowest environmental impact;
 - managing demand for transport, including promotion of sustainable mobility patterns;
 - deploying innovative traffic management systems;
 - modernisation and expansion of transport infrastructure in line with EU and national environmental standards and requirements;
 - modernisation of the rolling stock and vehicle fleet (vehicles and other necessary devices and accessories, including alternative fuel infrastructure) across the transport modes to align them at least to EU and domestic environmental standards and requirements;
 - managing demand for freight transportation by combining transport volumes;
 - public transport and vehicle sharing systems, while limiting the use of individual motor vehicles;
 - reallocation of tasks between individual types of transport (modal split) and maximising the share of zero- and low-emission vehicles;
 - striving to reduce pressure on the environment by developing transport infrastructure on the basis of existing spatial structure with priority given to the use of brownfield areas and taking into account landscape impact.
 - following the road transport-related Recommendations of the Economic Committee of the Council of Ministers knowns as the “Clean Air” Programme, adopted by the Council of Ministers on 25 April 2017, including recommendations on how to reduce exhaust emissions in road traffic, foster the creation of clean transport zones, and improve supervision over the quality of exhaust emissions from vehicles by redesigning the system of oversight over vehicle inspection stations.

The TDS provides for a number of activities dedicated to reducing the negative impact of transport on the environment, which address organisational and systemic issues, investments, as well as innovations and technologies.

3. Implementation of the 2030 Strategy for Sustainable Development of Rural Agriculture and Fisheries (SSDARAF) with a focus on environmental intervention.

The Polish agricultural sector accounts for around 12% of GHG emissions (including about half of non-CO₂ emissions, which are associated mainly with animal production and fertiliser management). Even though the potential for reducing emissions in agriculture is limited by biological processes, the agricultural sector has significant potential for CO₂ absorption and storing in biomass and soil. In agriculture, climate policy objectives can be pursued through the promotion of sustainable farm production structure, agrotechnical practices, fertiliser management, precision agriculture techniques, development of a circular bioeconomy, protection of permanent grassland, protection of organic soils and proper water management.

It is necessary to stress the risk that excessively restrictive requirements and too ambitious emission abatement targets in European agriculture, including that of Poland, could quickly...
cause it to be transferred to world regions with lower production standards and a high environmental and climate footprint (carbon leakage).

The SSDARAF provides for a number of environmental actions, including:
- adding momentum to projects to eliminate ‘low-stack’ emissions from heating systems;
- actions for high air quality in rural areas in transport and spatial management;
- maintaining and, if land for afforestation is available, increasing the total woodland area in the country and the compactness of forest complexes and afforested areas;
- supporting the development of green infrastructure in rural areas to adapt to climate change;
- promoting eco-farming, dissemination of environmentally-friendly methods of agricultural and fishery production, and management of by-products from agriculture, fisheries and agri-food processing;
- water quality protection, *inter alia* by rational management of fertilisers and plant protection products and promoting agrotechnical practices beneficial for water quality, as well as promoting parallel plant and animal production;
- protection of soils used for agriculture (against erosion, contamination, acidification, loss of organic matter);
- supporting environmentally sound investments in agricultural holdings and fisheries;
- dissemination of knowledge on how to protect the environment in agriculture and fisheries, e.g. improving and furthering the system of advice and promoting good agricultural practices;
- supporting research on environmental protection in rural areas and in fisheries.

The Common Agricultural Policy (CAP) will be an important policy in reducing GHG emissions in agricultural production and adapting agriculture to climate change in the period 2020-2030. The CAP 2020 legislative package presented by the European Commission assumes, *inter alia*, introducing a minimum level of spending on climate-related action of 40% of the CAP budget allocation.

4. Reducing CO₂ emissions in the construction sector

The key measures to reduce GHG emissions in this sector include gradual tightening of energy and thermal insulation standards and fostering the use of renewable energy sources in keeping with new legislation (newly formulated energy requirements, obligation to analyse alternative heating and electricity supply options for buildings) for newly erected and renovated buildings. In parallel, Poland is working on a strategy for renovating the national stock of residential and non-residential buildings, both public and private ones, the implementation of which will contribute to reducing emissions from the construction sector and reducing energy consumption in the area, while adding to the energy efficiency target.

In addition, Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions to be met by buildings and their siting (Journal of Laws 2019, item 1065) define, *inter alia*, the maximum values of the thermal transmittance coefficient for the building’s envelope and energy demand limit values. In addition, the technical and construction provisions that transpose Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings into Polish law are meant to ensure that after 31 December 2020 all new buildings are nearly zero-energy buildings. The above actions will reduce emissions
from the construction sector.

5. Reduction of CO\(_2\) emissions in the power and heating sector through actions envisaged by the State Environmental Policy 2030 and strategic documents for the energy sector (draft Energy Policy of Poland until 2040):
- retrofitting of power plants, combined heat and power plants, and heating plants – replacing low-efficiency coal-fired power plants by new high-efficiency facilities that meet strict environmental standards on emissions;
- increasing the use of renewable energy sources and developing reserve gas sources in connection with it, as well as expansion of transmission/distribution infrastructure;
- deployment of nuclear power;
- development of energy-efficient heating systems and low-emission individual heating;
- development of low-carbon transport, including electromobility;
- increasing energy efficiency.

The energy sector (referred to in the Inventory as Energy industries) accounted for ca. 50% of CO\(_2\) emissions in 2017. Thus, it is a sector with a major share in the greenhouse gas emissions, where even minor percentage changes result in considerable changes in the volume of emissions in CO\(_2\) tonnes and tonnes of CO\(_2\) equivalent.

The draft Energy Policy of Poland until 2040 from November 2019 provides for evolutionary transition of the electricity generation sector towards a lower-carbon sector, at a rate guaranteeing energy security and without jeopardising the competitiveness of the economy. The share of RES in electricity generation is expected to rise from the current 14% to ca. 32% in 2030 with further development of the sector expected over the next decade.

An increase in the use of RES, the decommissioning of end-of-life, low-efficiency coal-fired units which do not meet the emission requirements (under the BAT Conclusions), as well as the deployment of nuclear power, will reduce the average CO\(_2\) emission level per unit of generated electricity (kg of CO\(_2\)/MWh) by ca. 20% by 2030 and by ca. 50% by 2040 as compared with the present level.

A major part of the energy sector is covered by the EU ETS, which – by limiting the volume of emissions at the EU level and assessing the EUR value of each tonne of CO\(_2\), indirectly contributes to a systematic change in the fuel mix and the level of technologies used to generate energy in the EU and nationally. It should be stressed, though, that the EU ETS itself by definition does not set national reduction targets in relation to greenhouse gas emissions. It nevertheless does result in the need to undertake additional measures to support emission reduction at the level of individual Member States.

The use of mechanisms provided for in the EU ETS Directive to support the transformation of the electricity sector is described below in section 3.1.1.(c)

6. Launching climate change mitigation and adaptation measures
Testing the capacity of forest ecosystem elements to retain more carbon by methodologies involving the expansion of existing technologies and the scope of growing and management work for all forests irrespective of ownership type

For this purpose, measures forming part of the Forest Carbon Farm pilot project carried out by
the ‘State Forests’ National Forest Holding will be undertaken. The Forest Carbon Farm project envisages an attempt to achieve an increased carbon dioxide removal by forest areas through additional forest management activities to be carried out within its impact area. As part of the work already conducted in the initial period the scale and location of activities have been established and first forestry works have been started. Based on inventory data concerning the forest area involved in the FCF project, the expected effect, i.e. the volume of additional carbon dioxide accumulation, has been modelled.

The pilot part of the Project will last 10 years (2017-2026), with the effect modelling and effect durability periods expected to span 30 years. As one of its effects, the Forest Carbon Farm project, which is important for enhancing the quality of the carbon balance inventory in forest ecosystems, will improve the system for acquiring forest-related data for emission reporting and removal purposes, as envisaged in the project, by launching measures aimed at building a carbon removal model for forests in Central Europe conditions. The acquired data will also provide a basis for considering additional measures in the forest sector on a broader scale.

Adaptation actions

Measures will be introduced to adapt to climate change by ensuring the sustainable development and effective operation of the economy and society in climate change conditions, including measures to:

- ensure good environmental status, to promote compact, multi-function spatial systems and polycentric urban structures;
- include an environment-friendly and low-carbon spatial development approach in spatial planning processes;
- develop transport in climate change conditions;
- ensure sustainable regional and local development having regard to climate change;
- ensure effective adaptation to climate change in rural areas;
- stimulate innovations facilitating adaptation to climate change;
- form social attitudes helpful in adaptation to climate change.

The priority areas specified constitute an answer primarily to the ongoing climate changes and their current and expected consequences for vulnerable sectors. The intensity of adaptation measures will depend, *inter alia*, on the dynamics of climate change until 2030 and in subsequent decades. Furthermore, a low-carbon economy requires a spatial development approach that will ensure efficient use of land and infrastructure and reduce emissions from transport and individual heat sources while following the idea of a compact and cost-efficient city in the spatial planning process.

Work is under way to develop an updated strategy for adaptation to climate change, setting out measures and targets beyond 2020 (Strategic Adaptation Plan - SPA2020). The document is planned to be completed by 2020. Currently, in addition to SPA2020, adaptation issues are also addressed by the draft State Environmental Policy 2030, as adopted by Resolution No 67 of the Council of Ministers of 16 July 2019.

Owing to the absence of clear national or European indicators concerning adaptation measures, the expected effects of measures undertaken in the period 2021-2030 are of general and qualitative nature.
7. Rationalisation of the use of fertilisers, including nitrogen fertilisers

Issues relating to the storage and use of fertilisers containing nitrogen, including livestock manure, are regulated in the Water Law of 20 July 2017 and Regulation of the Council of Ministers of 5 June 2018 regarding the adoption of the ‘Programme of measures aimed at reducing water pollution caused by nitrates from agricultural sources and preventing further pollution’, known as the Nitrate Programme, issued on the basis of Article 106 of the Water Law. The Water Law stipulates in particular that a livestock manure dose used in a year for agricultural purposes may not contain more than 170 kg of nitrogen in terms of pure ingredient per hectare of agricultural area used. Additionally, Chapter 1.5 of the aforementioned Regulation of Council of Ministers provides that a nitrogen fertilisation plan is to be prepared by entities:

- having a farm with an area of more than 100 ha of agricultural land used, or
- growing intensive crops on arable land in an area in excess of 50 ha, or
- maintaining stocking density in excess of 60 livestock units (LU) on an annual average basis.

All entities will thus be obliged to apply fertilisers in a rational fashion. The Nitrate Programme will require entities engaged in agricultural production to undertake necessary and long-lasting investment activities. Pursuant to the Nitrate Programme, entities engaged in agricultural production and in the activities referred to in Article 102(1) of the Water Law are obliged to put the area or capacity of sites designated for storing natural fertilisers (livestock manure) in line with the requirements set out in the Programme, by:

1. 31 December 2021 – in the case of entities breeding animals in numbers exceeding 210 LU, including entities raising or breeding poultry in numbers exceeding 40,000 places or raising or breeding pigs in excess of 2000 sty places for pigs with weight exceeding 30 kg or 750 sty places for sows;
2. 31 December 2024 – in the case of entities engaged in raising or breeding livestock in numbers not exceeding 210 LU.

To adapt to the new requirements farmers must ensure appropriate funds in their farm budgets. Additionally, funds must also be ensured in the state budget to support investment activities. The Water Law (by amending Article 400a(1)(2a) of the Environmental Protection Law of 27 April 2001) has obliged environmental protection and water management funds to finance projects involving the implementation of a programme of measures aimed at reducing water pollution with nitrates from agricultural sources. Explanatory Memorandum The explanatory memorandum of the Law notes that projects involving the implementation of the Nitrate Programme will be funded with the use of repayable instruments, subject to State Aid rules. Additionally, some of the measures relating to the implementation of the Nitrate Programme may be supported by EU funds, subject to State Aid rules.

Having regard to the conditions referred to above and the fact that the Nitrate Programme, pursuant to Article 102 of the Water Law, will be applied by all entities engaged in agricultural production, including special branches of agricultural production, and in activities as part of which livestock manure is stored, the following solutions have been applied:

- the requirements applicable to date with respect to manure storage have been transferred from the Fertilisers Act (i.e. 4 months’ storage of natural liquid fertilisers) to the Nitrate Programme, and have been set to apply from the effective date of the Programme,
- the gradual adaptation of farms to the requirements concerning appropriate facilities to store liquid manure (with watertight bottom and sides and covered) and places for storing solid manure (watertight bottom and sides) for livestock manure storage over 6 and 5 months, respectively, has been staggered over time. Measures in this respect will be continuous, spanning the period 2021-2030.

8. Measures to improve air quality

As a result of the air protection policy pursued, emission of pollutants into the air has been reduced considerably over the last thirty years, including that of PM by more than 80%, sulphur dioxide by 70%, and nitrogen oxides by 40%. Nevertheless, in accordance with the report entitled Air Quality Assessment for 2018, out of all 46 zones in Poland, exceedances of limit values were found in 39 zones for PM10 and in 14 zones for PM2.5. Analyses show that the responsibility for this state of affairs rests primarily on the household and municipal and domestic sector, transport and, to a minor extent, industry. Improving the quality of the air is one of the priorities of the Government of the Republic of Poland. Detailed activities in this respect are set forth in the State Environmental Policy 2030, which provides, inter alia, for:

- the implementation of the Clean Air strategic project,
- support for local governments as regards multi-criteria management of area emissions (heating systems) and line emissions (transport), as well as the siting of investments with point emitters,
- supporting the development of low-carbon transport,
- abatement of air pollutant emissions through the implementation of the MCP and NEC Directives, support of pro-environmental investments,
- developing an odour policy,
- adjusting the legal framework to further reduce emissions of air pollutants, including 'low-stack' emissions,
- creation of a nationwide system of advisory support in the field of energy efficiency and RES for the public, housing and enterprise sectors,
- Development and financial support of the State Environmental Monitoring as regards air quality measurements.

The strategic project of the State Environmental Policy 2030 named Clean Air involves creating nationwide legal and financial mechanisms for effective delivery of air quality programmes at the provincial and local levels, mainly in respect of the municipal and domestic sector and transport, in particular through:

- creating and improving a legal framework stimulating effective measures to improve air quality,
- popularisation of financial mechanisms that work towards improving air quality,
- involving residents in action to improve air quality by raising public awareness and creating sustainable platforms for dialogue with public organisations,
- development and popularisation of technologies conducive to improving air quality,
- developing mechanisms to control 'low-stack' emission sources helpful in improving air
For several years, Poland has been pursuing a number of measures to eliminate what is referred to as ‘low-stack’ emissions, both at the local and central government level. First, the National Air Quality Programme was developed and adopted on 9 September 2015. It is aimed at bringing emissions below the limit values for particulate matter and other hazardous substances in the air, as set out in the applicable laws. Furthermore, it is worth stressing that to enhance the effectiveness of measures envisaged in air quality programmes and short-term action plans local governments have been provided with an additional tool as part of the amendment to the Environmental Protection Law (known as the Anti-Smog Act) of 10 September 2015 (Journal of Laws 2015, item 1593). Pursuant to Article 96 of the Environmental Protection Law of 27 April 2001 (Journal of Laws 2017, item 519, as amended) provincial assemblies may, by resolution, restrict or prohibit the operation of installations in which fuels are combusted, in order to prevent an adverse impact on the environment. At the same time, such resolutions must specify the types or quality of fuels to be admitted for use or prohibited from being used. By 1 November 2019, 11 provinces had adopted what is referred to Anti-Smog Resolutions.

Owing to the unsatisfying condition of the air in Poland, on 25 April 2017, the Economic Committee of the Council of Ministers presented Recommendations for the Council of Ministers – the Clean Air Programme, which contain a set of actions necessary to improve air quality. The actions are implemented gradually. It should be emphasised that measures aimed at improving the quality of the air are also envisaged in other documents of key importance for the development of Poland, including in the Strategy for Responsible Development – the ‘Clean Air’ project, the Electromobility Development Plan ‘Energy for the Future’, the State Environmental Policy 2030, as well as in the draft Energy Policy of Poland until 2040.

At present, Regulation of 1 August 2017 on the requirements for solid fuel boilers (Journal of Laws, item 1690) is in force. The Regulation obliges entities marketing solid fuel boilers with a rated thermal output of not more than 500 kW to comply with boiler design requirements ensuring the achievement of specific limit values of the emissions of carbon oxide, gaseous organic compounds and particulate matter. Additionally, it bans the use of an emergency grate in boiler structures. The adoption of Regulation of the Minister of Energy of 27 September 2018 on the quality requirements for solid fuels is worth highlighting.

The improvement of the air quality is also to be achieved through measures relating to the development of district heating systems (in particular heating networks and energy-efficient heating systems based on cogeneration or RES or using waste heat from industrial plants). Additionally, one of the basic measures to improve the quality of the air will be the development of gas distribution to satisfy heating needs.

A pilot programme for thermomodernisation and replacement of individual heating devices for the poorest has been prepared under the name SMOG STOP. The programme was published on 22 February 2018. It is addressed to 23 towns ranked among the 50 most polluted towns in Europe presented by the World Health Organization.

In 2018, Poland launched the “Clean Air” investment support programme, financed by the National Fund for Environmental Protection and Water Management. It is a comprehensive government scheme aimed at improving air quality, which provides support for
thermomodernisation of single-dwelling houses and replacement of old heating sources. The programme is dedicated to improving energy efficiency and reducing air emissions of PM and other pollutants, caused by the use of outmoded heat sources and low-quality fuel to heat single-family houses. The programme is to be delivered until 2029, with a budget of PLN 103 billion. Since the transport sector in large cities is the main cause of nitrogen dioxide limit value exceedances, an expert study entitled *Analysis of the possibilities of creating reduced transport emission zones in Poland* has been prepared, as required by the National Air Quality Programme. The results of the analysis are the basis for defining eco- and cost-efficient solutions capable of effectively contributing to the reduction of transport emissions in a given area and will constitute justification for taking decisions to create reduced transport emission zones in Poland. It should also be pointed out that under the Act of 11 January 2018 on electromobility and alternative fuels (Journal of Laws 2018, item 317), in order to prevent the negative impact of emissions from transport on human health and the environment, municipal councils can resolve, under Article 39 of the Act, to establish within high-density housing areas with a concentration of public buildings clean transport zones with restricted access for vehicles other than electric, hydrogen-powered, or gas-fuelled vehicles.

The problem of inadequate air quality in cities is also caused by inappropriate spatial planning. In city centres, natural aeration corridors become blocked. Therefore, the issue of reducing undesirable urban sprawl and green wedge blocking has been signalled in the reform of the spatial planning system which is currently being prepared by a team of experts. The problem of inadequate spatial planning covers also the issues of the construction of transit routes in densely populated areas. Their location outside urban areas should be considered, along with the construction of by-pass roads taking traffic outside urban areas, the construction of inter-modal nodes and the expansion of environment-friendly transport networks (including a railway system).

8. Just energy transition

The idea of just social and infrastructural transition, associated with the transformation of mining regions, plays a central role in achieving the growingly demanding climate goals. Polish mining regions face major transformational challenges, such as changes in the labour market, and reclamation and regeneration of brownfield land. Minimising the social costs that will accompany economic changes towards low-carbon economies will be crucially important. This means that regions exposed to the negative effects of the transformation should receive support. The pace of energy transition must be adapted to the economic standing and financial capabilities of mining regions. Optimally, the development of solutions in support of just transition should take the form of further dialogue with social partners and local authorities, which is particularly important in restructuring the mining regions that are most vulnerable to climate and energy transition. There is a need to implement development programmes for such regions, e.g. through special support for development projects, creating favourable conditions for conducting and developing business activity, or additional labour market mechanisms, as well as through modernising the sector, and investing in low- and zero-emission generation sources.

Given the challenges facing coal mining regions, a restructuring plan for hard coal and
Policies and measures - Dimension Decarbonisation

III. Policies and measures

- Dimension Decarbonisation

lignite mining areas, to be co-financed by EU funds, will be developed in 2020. The above plan will require preparing an in-depth analysis of the impact of the transformation of mining regions, notably the economic development of the regions, society, employment and skills. Poland strives to provide adequate financial resources to accelerate the transition of the energy sector (including mining) towards decarbonisation as part of modernising the entire economy. In December 2017, the Polish Government launched the Programme for Silesia (Program dla Śląska), a strategic project of the government's Responsible Development Strategy. In addition, Poland has actively joined the Coal Regions in Transition Initiative, which was launched by the European Commission in December 2017. Initially, of the 6 Polish coal regions identified by the European Commission, only Silesia participated, which – being the largest mining region in the EU – was selected as the pilot region. Given the growing interest in the programme by other Polish coal producing areas, now the Dolny Śląsk and Wielkopolska regions have joined in. Work is under way to involve a new region, namely Małopolska. There is also potential for attracting other regions. Poland considers the platform an opportunity for stepping up efforts towards social and infrastructural transition through cooperation between regional authorities, social partners, and the government administration.

In addition, there are regional strategies for the transformation of coal regions. These include the Sudety Strategy 2030 in Dolny Śląsk and the Clean Air Programme in Małopolska, to name but two. Furthermore, work is underway to prepare a document setting out the transition strategy for the Wielkopolska region.

It is necessary to intensify the transfer of EU funds dedicated to coal and lignite production regions in order to support the transformation and minimise the socio-economic effects produced by the EU climate and energy policy in those regions. Therefore the Polish Government will strive to develop, in cooperation with the EU, financial instruments supporting energy transition, such as the Just Transition Fund, and to ensure that the funds are used by the Polish coal regions with high levels of employment in mining.

As regards employment policy, high-quality job creation and requalification efforts will be crucial to transform the economy into a low-carbon one. Actions will be needed in support of just transition in coal-dependent regions to help employees change jobs and acquire new and specialised skills, support employment initiatives and start-ups, while maintaining dialogue with social partners. Existing "dirty jobs" should not be liquidated, but aligned to the requirements of the green economy. A profound modernisation of workers' skills profile is crucial, especially in regions where hard coal and lignite are extracted. Changes in the economy, including the energy sector and the labour market, should be looked at as development opportunities.

The Polish government attaches great importance to the job potential associated with renewable energy sources. The development of renewable energy will translate into new job creation in the wind, solar, bioenergy and other sectors. The development of renewable energy will benefit the national, regional, and local labour markets.

b) Regional cooperation in this area.

Responsible authority: MK

1. Work concerning the international process of negotiation of the United Nations Framework Convention on Climate Change

Poland is a party to both the UN Convention on Climate Change, and the Kyoto Protocol and the
Paris Agreement (PA), which are international legal instruments obliging countries to reduce greenhouse gas emissions. Pursuant to the Paris Agreement, all parties are required to prepare, communicate and maintain, on a regular basis, nationally determined contributions to achieving the objectives of the Paris Agreement, as well as to take measures at the national level aimed at reducing emissions for the purpose of attaining these contributions. Both the EU and Member States have fulfilled this obligation by submitting, in 2015, their intended Nationally Determined Contribution (NDC), which envisages, inter alia, a EU declaration to carry out its internal commitments to reduce greenhouse gas emissions by at least 40% from 2021 to 2030, as compared with 1990, throughout the EU.

The Paris Agreement does not impose specific solutions which might affect the sovereign decisions of the parties to the Agreement, but aims at reducing CO\textsubscript{2} concentration in the atmosphere through both the reduction of emissions and an increase in their removal by forests and soil. Poland’s accession to the PA implies its declaration of preparedness to undertake commitments in the form of further NDCs. They will not be legally binding, but in the case of Poland will be submitted as part of the common European Union’s NDC, the content of which will be based on the internal decisions of the EU and its Member States with respect to the future EU energy and climate policies (and thus the emission reduction targets binding under the EU internal laws, defined in such policies).

The nationally determined contribution is expected to be achieved in accordance with the adopted guidelines.

The decisions on climate neutrality until 2050 adopted at the December 2019 European Council are an important issue in the context of the EU NDC contribution to achieving the objectives of the Paris Agreement.

If applicable, without prejudice to the applicability of State aid rules, financing measures, including EU support and the use of EU funds, in this area at national level.

Responsible/involved parties: MK, MR, MAP, MI, MFiPR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Financing of elimination of ‘low-stack’ emissions

Poland’s decarbonisation efforts include actions undertaken to eliminate what is referred to as “low-stack” emissions by supporting investments that involve:

- constructing renewable energy generation installations or high-efficiency cogeneration installations;
- promoting energy-efficiency at companies and public and residential buildings;
- improving the efficiency of heat supplies to consumers;
- developing low-carbon transport.

The aforementioned areas are planned to be supported also after 2020.

Additionally, Poland plans to deploy instruments supporting the reduction and then elimination of ‘low-stack’ emissions through the development of energy poverty mitigation policies, connection to district heating networks having regard to the optimisation of expenditures, the development of the natural gas network infrastructure, the introduction of low-carbon zones (at present, clean transport zones are covered by the Act on electromobility and alternative fuels of 11 January 2018).

2. Mechanisms envisaged in the new EU ETS Directive to be in force in the period 2021-2030

According to the emission allowance allocation for the 4th period of the EU ETS (2021-2030),
Poland’s auction volume is to include around 884,970,000 allowances. On 30 July 2019, by its decision on the division of the 2021-2030 auction pool and on whether or not to take advantage of mechanisms provided for by the Directive, the Council of Ministers waived the derogation for the energy sector and allocated Poland’s entire auction volume for auctioning. The proceeds from the sale of 275 million emission allowances will be allotted to the national specific-target fund for the modernisation of the energy sector, which is managed by the minister competent for energy. In addition, decision was taken to auction in 2020-2021 the emission allowances unused in the current accounting period, as per Article 10c. The funds obtained in this way are to constitute state budget revenues, with the proviso that proceeds from the sale of approx. 30 million allowances will be allocated for investments in the energy sector.

The Modernisation Fund provided for in the EU ETS Directive is a new instrument of the European Energy Policy, which is to span the years 2021-2030. Its main goal is to promote investments aimed at modernising the energy sector (modernisation of energy systems, improvements in energy efficiency). The Modernisation Fund will be financed through the auction of up to 2% of the total EU ETS allowances (optionally to be increased by another 0.5%). Poland will highly benefit from the Modernisation Fund, consuming a share of 43.41%. A portion of Poland’s allocation (approx. 57.5 million allowances) should be dedicated to energy sector companies, while the rest for implementing programmes addressed to wider target groups.

In light of the above, given the Polish and EU climate and energy policy lines, the resources of both Funds should be primarily allocated to investments aimed at delivering the National Energy and Climate Plan, in particular:

- nuclear energy;
- repowering of generating units in the energy sector,
- development of transmission and distribution networks, including heating systems,
- improving energy efficiency, including in construction,
- RES along with accompanying infrastructure, including dams where hydroelectric power stations can be built,
- curbing emissions from transport, including electromobility,
- energy storage,
- promoting the use of hydrogen fuels,
- increasing interconnections between EU Member States,
- measures to ensure just transition.

In 2023, the funding mechanisms and absorption of funds are to be reviewed, in particular to check whether the mechanisms need to be changed or not.

3. Development of district heating and co-financing of the connection of new consumers

Having regard to the need for multifaceted measures to improve air quality, the development of district heating in urbanised areas improves the situation in a unique way and reduces low-stack emissions from inefficient local boilers.

11 According to estimates of the Ministry of State Assets, in cooperation with the Ministry of Climate and KObiZE
Supporting Financial Measures

Making use of financial support dedicated to district heating systems is intended to expand their coverage and connect new consumers. This measure is necessary to improve the quality of the air in Poland by eliminating individual heat sources and replacing them with district heating. Consideration should be given (especially in the context of regional measures) to possible financial support for the modernisation of the internal infrastructure of buildings, necessary to receive heat supplied by district heating systems.

A parallel measure necessary to increase the efficiency of the use of primary energy carriers, and thus to reduce CO₂ emissions from the district heating sector, is the reduction of distribution losses of heating networks. Funds assigned to this measure should be expended, *inter alia*, on the retrofitting of district heating substations and replacement of heating pipes by pre-insulated piping.

Proposed form of financing: a grant or preferential lending.

4. Support for the utilisation of coal-bed methane

Approximately 80% of coal resources in Poland constitute deposits classified as deposits containing methane, and the greenhouse effect of methane is 21 times greater than that of CO₂. Therefore, if appropriately included in the sector transformation process, methane may become an important raw material in the Polish energy mix, contributing to the energy security of the country and, at the same time, to a considerable reduction in greenhouse gas emissions. The use of methane for energy purposes exemplifies an activity which is not only beneficial for the environment, but also brings economic gains (the calorific value of methane is more than double of the calorific value of coal) and social gains (improvement of the work safety of miners).

Coal mine methane has already been used to some extent in the economy (mainly for the production of electricity and heat) both by its “producers”, i.e. coal mines and external counterparties to which it is sold by mines. Activities are needed to support increased use of CMM, because currently only about 20-25% of methane released in coal mining processes is ultimately utilised.

The utilisation of methane is consistent with EU targets concerning the development towards circular economy, since at present a large portion of methane is treated as waste, whereas it can be used as fuel.

3.1.2. Renewable energy (2030 Framework Target)

<table>
<thead>
<tr>
<th>Policies and measures to achieve the national contribution to the binding EU-level 2030 target for renewable energy and trajectories as presented in 2.1.2 including sector- and technology-specific measures[^16]</th>
<th>Support for renewable energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Policies and measures to achieve the national contribution to the binding EU-level 2030 target for renewable energy and trajectories as presented in 2.1.2 including sector- and technology-specific measures[^16]</td>
<td>Support for renewable energy</td>
</tr>
<tr>
<td>Responsible/involved parties: MAP, MR, MFIPR, MGMiŻŚ, MRiRW, MK, URE</td>
<td>Pursuant to EU regulations concerning State Aid for energy, support for renewable energy should be based on competitive systems, promoting the reduction of costs involved in meeting targets. In Poland, renewable energy sources in the electricity sector are supported with the use, inter alia, of an auction system, which should be regarded as the most effective solution from the economic point of view. Support granted on the basis of an auction offers permanent and stable conditions for investing in new RES installations. The support system adopted in the form of auctions enables aid to be channeled to selected areas and sectors and thus the energy mix to</td>
</tr>
</tbody>
</table>
be optimised with regard to electricity. The auction system mechanisms make it possible to stimulate the development of areas with potential for the development of renewable energy sources based on economic, environmental and climate conditions, taking into account and having regard to energy security, technical criteria and the needs of local communities.

The mechanisms for supporting and promoting energy production from renewable energy and the time horizon of support will be tailored to market needs (although it is expected to be necessary until 2030), and will prioritise the following solutions:

- ensuring maximum availability (high efficiency and utilisation rate, controllability, the use of an energy storage facility), with a relatively lowest energy generation cost;
- satisfying local energy needs (heat, electricity, transport), but also those relating to waste treatment and disposal (consistent with the waste management hierarchy) and the use of local potential.

The support will depend on the type of source and its size, with the following hierarchy:

- priority access to the network – currently granted all RES installations and the central focus of support. This measure may be modified in the future, but after 1 January 2020, installations with a capacity below 400 kW (and from 1 January 2026 below 200 kW) will continue to have priority access, as required by Regulation 2019/943 of 5 June 2019 on the internal market for electricity.
- auctions – designated for commercial power plants i.e. those ensuring that capacity is available at sufficient levels. The choice of areas to be supported depends on preferences as to the stimulation of the development of RES areas, based on economic, environmental and climatic conditions and having regard to energy security;
- feed-in tariff system and feed-in premium system – they are targeted on sources with a relatively low capacity and applied to utilise energy which is not consumed by small producers;
- grants, repayable aid – a mechanism depending on local needs, mainly distributed in regions;
- guarantees of origin – documents confirming to the final customer that a certain amount of electricity supplied to the grid has been generated from renewable energy sources – they take the form of certificates and the demand for them is driven by consumers that wish to be perceived as green companies or want to demonstrate high energy efficiency (e.g. building administrators, SMEs or operators of electric car chargers);
- aid mechanisms targeted on special technologies – a solution designated for sources for which there is no competition in the market, since they are a new technology (e.g. offshore wind energy generation), but their implementation is important for the country for various reasons, e.g. high consumption of demand over the year.

Progress in the field of renewable energy will be ensured, *inter alia*, by a range of solutions provided for in the amended RES Act, which entered into force on 29 August 2019. The amendment enabled RES electricity auctioning in 2019, with more than 3400 MW allocated for the auctions. It was assumed that the results of the 2019 auctioning would allow annual RES production to be increased by about 9.2 TWh of electricity. In addition, the above amendment introduced solutions stimulating prosumer energy generation and energy cooperatives.
Furthermore, in order to give a boost to prosumer energy production, additional schemes were put in place, such as ‘My Electricity Bill’ (Mój Prąd) with a pool of funds of PLN 1 billion. The Scheme, whose goal is to increase energy production from solar sources, foresees the co-financing of new 2-10 kW solar photovoltaic microinstallations. It is estimated that 200,000 beneficiaries will take advantage of the subsidies.

In 2019, additional renewable energy schemes were launched with resources available from the National Fund for Environmental Protection and Water Management:

- Energy Plus (Energia Plus) – with a pool of funds of PLN 4,000,000,000, intended for projects aimed at reducing the negative impact of enterprises on the environment, including for renewable energy development,
- Poviat District Heating (Ciepłownictwo Powiatowe) – a pilot project with a pool of funds of PLN 500,000,000, intended for projects aimed at reducing the adverse effect of heating enterprises on the environment, including for renewable energy development,
- Agroenergy (Agroenergia) – with an allocation of PLN 200,000,000, which involves providing comprehensive support for reducing the negative environmental impacts of agricultural activities, including through the development of renewable energy sources,
- Polish Geothermal Energy Plus (Polska Geotermia Plus) – with an allocation of PLN 600,000,000 for increasing the use of geothermal resources in Poland.

The boosting of the RES support system in 2019 will contribute to achieving the 15% target for the share of energy from renewable sources in 2020. A stable and competitive RES support system will increase the share of renewable energy in the gross final energy consumption, without leading to a considerable increase in prices or serious disturbances in the operation of energy markets. The stabilisation of legal regulations and the consistent implementation of the long-term action plan covering support for individual sectors will contribute to the dynamic growth of new investments. The optimisation of the support system will enable the 2030 target to be achieved through modern, distributed and cost-effective investments, increasing the security and flexibility of the Polish electricity system.

Role of particular RES technologies in the energy mix broken down to controllable and non-controllable sources

The role of non-controllable RES sources is expected to be as follows:

- **solar energy (photovoltaics)** – an asset of this technology is a positive interdependence between the intensity of insolation and the daily demand for electricity, and increased generation in summer correlated with cooling demand. They are installations with relatively small capacities, but the total installed capacity is bound to have a growing importance for the National Power System. The use of solar energy is an alternative way for utilising brownfield areas and poor-quality land, as well as building roofs. It is of key importance for the current dynamic development of microinstallations\(^\text{12}\), strengthened by dedicated financial

\(^{12}\) At the end of 2017, approx. 28 800 microinstallations with a total capacity of approx. 183 MW were connected to the six main DSOs. At the end of 2018, these figures almost doubled to 54 200 of microinstallations with a capacity of 343 MW, and after Q3 2019, the number grew to 106,000 with a total capacity.
support schemes. Photovoltaic sources are expected to achieve economic and technical maturity after 2022 in the sense that they will not require operational support past this date. In accordance with the projections to the National Energy and Climate Plan, the capacity achievable in PV installations is expected to increase to approx. 7.3 GW in 2030 and approx. 16 GW in 2040.

- **offshore wind energy** – offshore wind blows at relatively high speeds not encountering any obstacles (low terrain roughness), which makes offshore wind farms more productive than those located on land. To start investing in these capacities, work on strengthening the transmission network in the northern part of the country must be completed, so that power can be evacuated inland. It is expected that the first offshore wind farm will be included in the electricity balance after 2025. The Polish coastline offers opportunities for building further off-shore installations, but the possibility of balancing them in the NPS remains a key issue. It is expected that in the 2040 perspective, these sources will be responsible for the largest amount of electricity generated from RES. In accordance with the National Plan, the capacity achievable by offshore wind farms is expected to increase to approx. 3.8 GW in 2030 and approx. 8 GW in 2040.

- **onshore wind energy** – it is expected that in the medium term the increase in the share of this technology in the energy balance will be less dynamic than in previous years. An important difficulty in using on-shore wind farms is the absence of correlation between their operation and demand for energy and therefore the rate of their development should depend on costs and balancing possibilities. Another problem is the varied level of acceptance for the construction of wind farms by local communities. To reduce potential conflicts, investors might create systems encouraging resident participation in the implementation of projects; In accordance with the projections of the National Plan, the capacity achievable by onshore wind farms is bound to increase to approx. 9.6 GW in 2030, and the volume will be maintained until 2040.

- **hydropower** – owing to the negligible use of available hydropower potential, it is reasonable to enhance the use of run-of-the-river hydropower. In the long-term, the development of hydropower may be stimulated by the development of inland waterways and the regeneration of dams, which are important from the perspective of watercourse regulation and rational water management (flood and drought retention, increased retention). It should be noted that the operation of run-of-the-river plants can be regulated, but to a limited extent. Pumped-storage hydropower plants are not regarded as RES plants, but play a regulating function for the NPS. Bearing in mind the regulating potential of hydropower, it is worth looking for new ways to use it, also on a small scale.

With respect to controllable sources, the use of the following technologies is envisaged:

- **energy from biomass** (and waste-derived heat) – this source will be well suited for households and for cogeneration purposes; it has the largest potential for achieving the RES target in heat generation given the availability of fuel and the technical and economic
parameters of installations. Generation units working on biomass should be located close to where it is produced (rural areas, wood processing industry areas, or areas where municipal waste is produced) and where it is possible to maximise the use of primary energy contained in fuel, thus making it possible to minimise the environmental costs of transport. The use of biomass for energy purposes also contributes to better waste management;

- energy from biogas – the use of biogas will be particularly useful in combined electricity and heat generation. One benefit is the possibility of storing energy in biogas, which may be used for regulating purposes. The high investment outlays are the main factor determining the moderate increase in installed capacity of biogas plants. From the point of view of the overall economy, biogas provides extra value added, since it makes utilising particularly noxious waste (e.g. animal waste, landfill gases) possible. Energy products of biogas plants will be increasingly used in the energy sector. Depending on local demand, biogas plants can provide electricity, biomethane, heat or cold using locally available resources for their production. As regards agricultural biogas plants, the raw material potential is rising from year to year as the Polish agricultural sector grows.

- geothermal energy – although its use is currently at a relatively low level, an upward trend is expected. Major financial expenditures are required to determine geothermal potential, with the degree of certainty being very small, but the use of this type of energy may be instrumental to the development of certain areas;

- heat pumps – their use in households is becoming more and more common, with the estimated potential similar to that of geothermal energy. Electricity is required for them to be used and therefore linking installations with another RES which generates electricity is a good solution;

b) Where relevant, specific measures for regional cooperation, as well as, as an option, the estimated excess production of energy from renewable sources which could be transferred to other Member States in order to achieve the national contribution and trajectories referred to in 2.1.2.

Responsible authority: MAP

* subject to potential changes resulting from amendments to the Act on government administration departments.

c) Where relevant, specific measures on financial support, including EU support and the use of EU funds, for the promotion of the production and use of energy from renewable sources in the electricity, heating and cooling, and transport sectors.

1. Support for the production of electricity and heat from renewable energy sources and for the production of biofuels

The funds allocated to support the production of electricity and heat from renewable sources as part of the Operational Programme Infrastructure and Environment 2014-2020 amount to EUR 150 million. The funds allocated as part of Regional Operational Programmes (ROPs) amount to ca. EUR 890 million, which includes ca. EUR 50 million in the form of repayable instruments.
III. Policies and measures

Dimension Decarbonisation

Responsible/involved parties: MAP, MFIPR, MK

* subject to potential changes resulting from amendments to the Act on government administration departments.

Support for the production of biofuels is possible within the framework of seven ROPs, as part of measures dedicated to RES. In accordance with the ‘n+3’ rule, funds for the above purposes may be expended until 2023.

Financial support for the area in question in the financial perspectives 2021-2027 and 2028-2034 is likely, but its amount and scope cannot be defined at the present stage. The scope of support for renewable energy sources is also envisaged by the National Fund for Environmental Protection as part of national funds.

2. Support for innovative solutions in the production of 2nd generation biocomponents and other renewable fuels

An important element of measures relating to the implementation of the new Directive on the promotion of the use of energy from renewable sources (RED II) will be issues concerning the use of biofuels and electricity in the transport sector, whose share in this sector in 2030 should reach 14%. An increase in the commitment concerning the share of energy generated from RES in transport beyond the current commitments (10% in 2020), combined with the restriction on the use of conventional biofuels generated from raw materials for feed production, shows that there is a need for the development and application, to a much greater extent than so far, of new production technologies, which implies the need to construct plants based on new technologies. Otherwise, it will be necessary to purchase considerable quantities of such fuels from abroad.

Given the fact that renewable fuels used in transport are more expensive than conventional (mineral) fuels, and the demand for them stems from law (a high regulatory risk), such innovations pose a high risk. Additionally, in the case of innovative technologies high investment costs must be incurred, which considerably reduces the cost-effectiveness of production. This is why supporting this sector is reasonable.

Proposed form of support: grants, subsidies, repayable instruments.

3. Development of distributed energy generation

Directive on the promotion of the use of energy from renewable sources (RED II) and the Market Directive introduce new obligations to increase the share of renewable energy: REC (Renewable Energy Communities) and EC (Energy Communities), which additionally emphasises the importance of energy sustainable areas, in particular energy clusters and energy cooperatives. Ultimately, the supply/demand balancing certainty in clusters should be high enough for the energy needs of those areas not to be included in the power reserve planned by the transmission system operator. Considering the above, registration of measurement data, balancing energy volumes, and settlements by energy cooperatives and their members, as well as access to measurement data will be governed in detail by legislation.

Support for the development of distributed energy generation in energy clusters and energy cooperatives is particularly important from the point of view of the construction of generation sources, networks and control systems.

It is estimated that ca. **300 energy sustainable areas will operate at the local level in Poland in 2030**. This task has been included in the Strategy for Responsible Development as one of the priorities in the energy area, and also in the draft Energy Policy of Poland until 2040.

Proposed form of financing: grants, repayable aid, guarantee funds.
What is more, legislation will be amended to improve the development of energy using solar radiation in post-mining areas requiring reclamation, degraded, or mine dumps.

4. Development of stabilising technologies (production and storage) non-controllable RES

Directive on the promotion of the use of energy from renewable sources (RED II) introduces new obligations to increase the renewable energy share. The development of storage technologies is a precondition for growth of RES and changes in the energy market. An excessively high number of intermittent renewable energy sources endangers the security of the NPS and drives prices up. Support for stable RES or other stabilising measures useful in balancing non-controllable RES will be important. Proposed form of financing: grants, repayable aid, guarantee funds.

5. Development of installations for generating heat from RES

The new Directive on the promotion of the use of energy from renewable sources (RED II) introduces new obligations to increase the share of renewable energy in the heat generation sector. Owing to its local nature, heat generation will require funds to be invested at the local government level, which implies the need for the financing of the development of RES mainly by municipal utility companies, whose financial condition does not always guarantee the availability of surplus funds for investment purposes. Proposed form of financing: grants, repayable instruments, guarantee funds.

6. Development of off-shore energy generation

The development of off-shore energy generation is one of the areas of activities that are to guarantee the energy security of the country (satisfaction of the increasing electricity demand) and a contributor to the targeted share of RES in the gross final energy consumption in 2030. Support relating to the development of the off-shore energy generation sector is envisaged. Support in this area will also contribute to building regional cooperation in the Baltic Sea region.

III. Policies and measures - Dimension Decarbonisation

(d) Specific measures to introduce one or more contact points, streamline administrative procedures, provide information and training, and facilitate the uptake of power purchase agreements.

Responsible/involved parties: MAP, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Obtaining the confirmation of qualifications/competences of persons operating in the commercial market

Regarding the issue of granting official authorisations to installers of renewable energy sources (only biomass-fired boilers, photovoltaic systems, solar heating systems, heat pumps, shallow geothermal systems), the minister competent for energy has issued a regulation to enable persons operating on the commercial market to confirm their qualifications/competence. The provisions of the regulation ensure standardised assembly of microinstallations, small installations or renewable energy installations with an aggregate installed thermal capacity not exceeding 600 kW and the impartial and independent conduct of procedure for accrediting entities providing training and certification for installers of a given type of installations. They also ensure that certification procedures are properly documented and registered, and that documentation concerning the certification procedure is kept. The Office of Technical Inspection is the implementing authority responsible for enforcing the regulation.

2. Enhancing services provided to electricity producers to be covered by the auction-based renewable energy support system
III. Policies and measures - Dimension Decarbonisation

The solutions adopted by the Energy Regulatory Office guarantee the provision of efficient and modern services to electricity producers to be covered by the auction-based renewable energy support system – from the pre-qualification process and auctioning itself to post-auction support relating to the fulfilment of reporting obligations. Solutions enabling the process to be handled in a swift and intuitive manner with the use of the dedicated IT tools need to be maintained and developed.

Streamlining the achievement of the RES target in the electricity generation sector through effective services provided to entities applying for support will speed up investments and construction processes.

(e) Assessment of the necessity to build new infrastructure for RES-based district heating and cooling.

Responsible/involved parties: MAP, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

The changing business environment and technological development constitute major challenges for the heating sector. Important issues to be regulated in the near future include: changing the heat market model and tariff policy, developing smart network infrastructure, regulating the rules on the purchase of RES heat, fostering the use of district cooling, etc.

The draft Energy Policy of Poland until 2040 envisages the development of district heating as one of the strategic directions. Having regard to the above, measures will be taken to ensure conditions for the development of environment-friendly and efficient heating systems by providing financial, organisational and legal support, including by:

- development of cogeneration;
- increasing the use of RES and waste in district heating;
- conversion of power plants into heat and power plants;
- modernising and expanding heating systems and developing technologies for the production of cooling from district heat;
- promoting heat storage facilities and smart networks.

A measure connected with the measure specified in 3.2.d in this respect.

(f) Where applicable, specific measures on the promotion of the use of energy from biomass, especially for new biomass mobilisation

Responsible/involved parties: MRRW, MAP

* subject to potential changes resulting from amendments to the Act on government administration departments.

With respect to the promotion of the use of energy from biomass, especially new biomass mobilisation, Polish agriculture has considerable resources of biomass and agriculture and agri-food processing by-products which should be used for energy purposes (biogas production). The development of new technologies should take into account the needs of individual sectors, both as regards the supply of energy and the utilisation of the types of biomass produced as a by-product of the agri-food sector. The method of utilising this type of biomass should contribute to the sustainable development of agriculture (preserving soil fertility – humus level, water resources management etc.).

Changes in agricultural production constitute a long-term process and the introduction of new plant species takes time and requires the production profile to be changed. Often, this also involves the need to replaced the entire machinery stock. Therefore, the proposed amendments to legal regulations supporting the use of agricultural biomass for energy purposes will allow for an appropriate adaptation period.
3.1.3. Other elements of the dimension

<table>
<thead>
<tr>
<th>a)</th>
<th>Where applicable, national policies and measures affecting the EU ETS sector and assessment of the complementarity and impacts on the EU ETS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Responsible/involved parties*: MK, KOBiZE, MAP, MR</td>
</tr>
<tr>
<td></td>
<td>* subject to potential changes resulting from amendments to the Act on government administration departments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Emissions Trading Scheme (EU ETS) is a market-type system, aimed at reducing greenhouse gas emissions. Entities covered by the Scheme account for the quantity of released greenhouse gases by balancing them with emission allowances. Installations eligible for the Scheme are those belonging to specific sectors or meeting the defined threshold conditions set out in Directive 2003/87/EC. The number of installations covered by the Scheme changes from one year to another (ca. 800 installations in Poland). The EU ETS itself by definition does not set national reduction targets, but deploys additional mechanisms that force Member States to reduce emissions at country level. The phasing out of emission allowances (MSR Decision) available at auctions or reduction in the number of free allowances allocated to eligible installations, combined with the rising costs of allowances, forces the units that participate in the Scheme to take measures to reduce emissions. Therefore, it is necessary to undertake modernisation activities in the ETS sectors, especially in the electricity and heating sectors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The introduction of the following, from 2021, within the framework of the EU ETS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The Modernisation Fund,</td>
</tr>
<tr>
<td>- The Innovation Fund.</td>
</tr>
<tr>
<td>At present, work is under way to define, at the national level, in the best possible way, the areas and methods for using innovation support mechanisms provided for in the EU ETS Directive. The framework for the use of revenues derived from the auctioning of CO2 emission allowances in the pool allocated to Poland is described in section 3.1.1(c). It is worth highlighting that pursuant to the EU ETS Directive measures to decarbonise the economy should be partly financed or co-financed with funds originating from emission allowance auctions (at least 50% of revenues from the sale of allowances by auction should be used for at least one of the environmental objectives specified in the EU ETS Directive).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b)</th>
<th>Policies and measures to achieve other national targets, where applicable.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Responsible/involved parties*: MK, MGMiŻŚ, MRRiRW, MR, MAP, MI</td>
</tr>
<tr>
<td></td>
<td>* subject to potential changes resulting from amendments to the Act on government administration departments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Actions to adapt the water management sector to climate change</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Developing and implementing flood risk assessment methods for urban areas, with particular emphasis on flash flooding.</td>
</tr>
<tr>
<td>- Improving the resistance of the flood risk management system to the effects of climate change, including by ensuring critical infrastructure.</td>
</tr>
<tr>
<td>- Enhancing retention capacities and restoring aquatic habitats in watercourses (where this is not contrary to other important public objectives).</td>
</tr>
<tr>
<td>- Restoring and maintaining the good status of water, water ecosystems and water-dependent ecosystems, including actions stemming from river basin management plans and updates thereof.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Measures to adapt the energy sector to climate change</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Preparing the energy system for changed conditions, having regard to winter and summer peak energy demand periods.</td>
</tr>
</tbody>
</table>
III. Policies and measures

- Ensuring reserve energy and transmission sources where the use of primary sources is not possible.
- Securing reserve cooling sources in commercial power plants.
- Designing transmission and distribution networks, including underground and on-ground ones, having regard to extreme weather circumstances, in order to limit the risk, *inter alia*, of snow and ice accumulation on them, flooding or damage caused by strong wind.
- Supporting distributed RES development, with a focus on microinstallations in agriculture.

3. Measures to protect biodiversity and forest management in the context of climate change

- Preparing nature preservation strategies or plans, or plans of nature preservation tasks having regard to changing climate conditions.
- Developing programmes aimed at adapting the forest sector to climate change having regard to the conditions and needs of the industry, energy, agriculture and tourism and recreation sectors, regional development and biodiversity.
- Increasing woodland area through artificial afforestation and natural succession, and rationalising the use of land and reducing forest complex fragmentation.
- Introducing ecosystem-based forestry principles to the economy, ensuring the dynamic protection of existing biodiversity, using both natural genetic processes (adaptation) and human activities aimed at preserving the existing biodiversity, focusing artificial selection also on adaptive traits enabling adaptation to changing climate conditions.
- Continuing the implementation of and developing instruments for the protection of agricultural space, forest and high-productivity soil resources.
- Diversifying forest stand, in particular during the change of its structure, in terms of: density, species composition (increasing the share of deciduous species), height and age structure and patch/mosaic structure.
- Continuing the soil erosion protection programme, continuing and extending the programme for small-scale water retention and soil retention, particularly for forests and grassland.
- Monitoring, controlling and counteracting the spread of alien species that endanger native species or natural habitats.
- Monitoring forests in terms of tree response to climate change, among others, by phenological observations, changes in species range zones, especially in mountain areas.
- Monitoring, in association with the natural dynamics of ecosystems, and conducting periodic assessment of natural areas under protection, and creating a data collection and processing system.
- Enhancing forest fire protection by developing systems of monitoring fire risks and fire prevention infrastructure relating to the protection of forests.

4. Measures to adapt rural areas to climate change

- Developing monitoring systems and systems of early warning against possible effects of climate change for plant and livestock production.
- Providing investment support for farms along with training and technology advisory services, taking into account issues concerning the adaptation of agricultural production to an
increased climate risk and climate change prevention.
- Improving the system of building up and managing food, seeds, and feed reserves in case of poor harvest.
- Promotion of farming systems optimising the demand for water as well as fertilisers and plant protection products, including crops under cover.
- Growing plants resistant to water shortages and with a lower demand for nitrogen fertilisers.

Rural areas, due to agricultural and forestry activities conducted in them, are particularly vulnerable to climate change. Adaptive measures must be undertaken both in the area of the protection of people in crisis situations along with necessary adaptive measures in agricultural and fishery production and forestry.

Local risk monitoring and warning systems are anticipated to be established by 2030 and agricultural and fishing activities are expected to be adapted to climate change in organisational and technical terms within the same timeframe.

5. Measures to develop transport in the conditions of climate change
- Considering changed climate conditions in the process of designing and constructing transport infrastructure.
- Establishing a permanent monitoring system or adapting the existing monitoring systems to the need to control construction and transport infrastructure elements vulnerable to climate change and establishing or adapting warning systems used by technical services.
- Reviewing or creating measures and plans designed to maintain smooth traffic flow in transit routes or to change routes and apply substitute means of transport.

Most elements of the transport system, especially infrastructure, are directly exposed to climate factors and operate in direct contact with atmospheric factors. The vulnerability of transport infrastructure to climate factors needs to be properly assessed in order to undertake effective adaptive and preventive measures, to be developed as a result of an analysis of climate and weather data and the impact of these factors on the condition of infrastructure.

Design standards are expected to be developed and a transport route management system is expected to be implemented by 2030 having regard to climate change.

6. Measures to ensure sustainable regional and local development having regard to climate change
- Preparing a risk management strategy at the national, regional and local levels taking into account adaptive measures.
- Implementing the local systems of monitoring and warning against, and responding to, extraordinary climate phenomena (e.g. absence of blockages in sewer systems and underground structure drainage systems, situations contributing to an increase in air or water pollution), in cities.
- Preventing and reducing the effects of disasters and enhancing the effectiveness of response.
- Considering the blue-green infrastructure concept and the system of aeration corridors (wedges) in zoning plans, and specifying permissible heat sources for heating buildings to increase the resilience and improve the operation of ecosystems. Revitalising natural
III. Policies and measures
- Dimension Decarbonisation

environment, including by restoring greenery in degraded areas and original functions to water reservoirs, with emphasis on small-scale retention in cities. Replacing water-tight land surfaces with permeable surfaces.

In the light of a number of measures relating directly or indirectly to adaptation, as specified in various strategic documents, appropriate monitoring, warning and response systems are needed in the context of regional and local development. At the same time, the vulnerability of cities to climate change is particularly important, and thus they should be given special significance and priority in the adaptation process.

A system for monitoring the state of the environment is planned to be implemented by 2030, along with an early warning and response system for cities and rural areas in the context of climate change. At the same time, work on urban spatial policy will be conducted, having regard to climate change aspects.

7. Measures to stimulate innovations helpful in adaptation to climate change.
Promoting innovative solutions in the area of adaptation to climate change.
- Analysing the potential of the Polish economy to generate and implement innovative adaptation technologies.
- Consolidating/creating new financing sources for innovative adaptation technologies, including research and implementation projects.
- Creating an online platform providing information on Polish adaptation technologies.

Work aimed at developing new, innovative organisational and technical solutions that support adaptation needs to be undertaken. The primary objective is to stimulate innovative technologies and to introduce mechanisms enabling cooperation among institutions in situations of complex hazards relating to climate change. The existing sources of funding research on adaptation technologies also need to be adjusted and new ones need to be created, and the results of work must be published.

8. Measures to encourage social attitudes facilitating adaptation to climate change
- Educating people and enhancing their awareness of climate change and methods of minimising its effects, the impact of invasive alien species and the importance of the need to save resources.
- Extending programmes for upgrading qualifications for medical professionals by topics relating to climate-dependent and tropical diseases and vector-borne diseases.
- Organising training programmes on climate change and methods for preventing and mitigating its impact on people living in areas under threat of floods, landslides and strong winds.
- Organising training programmes for farmers concerning climate change and methods for preventing and limiting its impact.
- Involving local communities and local government administration authorities in activities preventing the impact of climate change.
- Developing comprehensive solutions concerning State Aid granted to cover losses in case of natural disasters and insurance systems covering risks caused by climate change.

Effective adaptation to climate change cannot be achieved without raising the awareness of...
hazards and challenges among institutions involved in the adaptation process and people to an appropriate level. In view of the above, educational measures must be implemented, both as part of formal education systems and broadly understood extra-formal education, helping to raise the social awareness of risks related to extreme phenomena and methods for limiting their impact. The primary objectives will also include enhancing the understanding of the impact of climate processes on social and economic life and ensuring appropriate protection to particularly vulnerable groups from the effects of adverse climate phenomena.

9. Mitigation of climate change, adaptation to it and prevention of natural disaster risks by:
 - Creating a generally available online Base of knowledge about climate change and adaptation to its effect in the context of improving the resilience of the economy, environment and society to climate change, and preventing and minimising the effects of extraordinary hazards;
 - Developing adaptation plans in cities with population exceeding 100,000;
 - Developing and implementing plans for counteracting the effects of draught;
 - Reviewing and updating flood risk management plans;
 - Implementation of the Water Shortage Prevention Programme for 2021-2027 with an outlook for 2030,
 - Review and update of the preliminary flood risk assessment and review and update of flood hazards maps and flood risks maps,
 - Review and update and implementation of river basin management plans,
 - Developing flood prevention infrastructure on the basis of high-efficiency and highly viable investments and appropriate spatial planning methods, including by constructing multifunction, functionally coherent small- and, in special cases, large-scale retention reservoirs as part of implementing flood-prevention projects;
 - Protection against sea erosion and coastal flooding by carrying out protective measures on the sea shore and in the coastal zone (e.g. beach nourishment, storm banks, seawalls and groynes, breakwater structures, underwater barriers), along with monitoring the sea coast, including immediate coastal area;
 - Managing precipitation water in urbanised areas by using various retention forms and developing greenery infrastructure,
 - Implementing the strategic project Adaptation to Climate Change.

Adaptive measures will consist in developing and implementing strategic/planning documents concerning water resource management, supporting the development and implementation of climate change adaptation plans for urbanised areas, constructing necessary flood prevention infrastructure and small-scale retention structures and implementing projects aimed at protecting the coastline. These measures will also be aimed at managing precipitation water in urbanised areas through various retention forms and the development of greenery infrastructure, the development of blue-green infrastructure in urbanised areas, the limitation of land occupation and soil sealing.

c) Policies and measures to achieve low-emission

1. Development of energy efficient low-carbon transport
In addition to electromobility and the use of alternative fuels in transport, an improvement in the energy efficiency of transport and emission reduction has been planned. The Sustainable Transport Development Strategy 2030 sets out a number of actions dedicated to reducing the negative impact of transport on the environment, which can be grouped into the following lines of intervention:

- organisational and system intervention, *inter alia*:
 - support for solutions leading to reducing the transport-intensity of the economy;
 - promoting energy efficiency through the development of inter-modal freight transport, promotion of energy efficient means of transport resulting in, among other things, reducing the dependence of the transport sector on fuels derived from non-renewable energy sources, developing systems supporting logistical optimisation, including fuller use of freight and passenger spaces of means of transport;
 - support for environment-friendly transport (railway transport, sea transport and inland waterway transport) and efforts to create conditions for a road-to-rail shift and for inland waterway transport, in particular at distances of more than 300 km, promotion of clean means of transport powered by alternative energy sources, resulting, *inter alia*, in reduced emissions;
 - reducing congestion, in particular in urban areas by: increasing the share of public passenger transport, designating lanes reserved for public transport, integrating public transport in cities and urban agglomeration areas with the construction of P&R and R&D parking systems, optimisation and integration of urban and agglomeration transport and regional passenger transport systems, promoting pedestrian traffic and cycling, organisation and development of delivery systems within settlement units (urban logistics) and elimination of heavy freight traffic and mass transport of hazardous substances across urbanised areas, *inter alia* by using environmentally friendly inland waterway transport, working towards even distribution of urban traffic to reduce rush hours, handling transport by relying on various modes, especially those less harmful to the environment, such as rail and water transportation;
 - promoting new forms of mobility through: access to travel information, integrated tariffs, delimitation of limited traffic zones in residential areas and city centres, educational and information activities aimed at promoting sustainable and public transport, transport demand management;
 - Delimitation of low-emission zones (LEZ), with access and parking restrictions for combustion vehicles, especially in city centres;
 - development of the system of fees and tariffs stimulating desirable transport trends, e.g. with regard to the limitation of pressure on the environment;

- investment-related intervention:
 - modernisation and expansion of linear and nodal transport infrastructure to improve the efficiency of the transport system in line with the EU and national environmental standards and requirements;
 - modernisation of the rolling stock and vehicle fleet (vehicles and other necessary devices and accessories) across the transport modes to align them, at least, to the EU and domestic environmental standards and requirements, as well as to improve their energy efficiency;
- implementation of innovative transport management systems for individual modes and interoperative systems contributing to the optimisation of vehicle traffic and thus to a reduction in transport generated emissions;
 - innovative and technical interventions, including:
 - application of new technologies, procedures and systems improving the energy efficiency of transport and contributing to a reduction in pollution emissions to the environment – modernisation and provision of the internal interoperability of telematic systems supporting particular transport modes, such as: ITS (road transport), ERTMS, SDIP, CBRK (railway transport), SESAR (air transport), VTMS (maritime transport), RIS (inland waterway);
 - more common use of environment-friendly means of transport: low-carbon and energy-efficient cars and municipal vehicles (e.g. using fuel cells and hydrogen, or the following drives: electric, gas, hybrid, compressed air) – along with the establishment, especially in agglomerations and densely populated areas and along the TEN-T core network corridors, of a network of battery recharging or replacement points and natural gas or hydrogen refuelling stations, if cost-effective; environment-friendly low-noise and low-carbon rolling stock and airplanes, maritime vessels fuelled by compressed or liquid natural gas, new generation inland waterway vessels (including energy-efficient and low-carbon inland waterway container vessels), use of second and third generation fuels and biofuels based on biocomponents.

2. Construction and putting in service of inland vessels using alternative fuels
A high proportion of inland waterway fleet on Polish rivers is powered by very obsolete engines, which often do not meet the ambitious combustion and emission standards specified for newer types of vessels.
New, well defined financial incentives must appear in the Polish market in order to introduce new solutions based on alternative fuels in place of imported old and long-serving vessels.
Proposed measures:
- developing systemic legislative solutions to streamline the process of building and placing craft in service, including financial incentives,
- economic, business and social analyses for water transport, including supply and demand research,
- cooperation in the preparation of prototype barges and pusher vessels by research and development units,
- institutional support for the preparation of accompanying infrastructure (wharf equipment; recharging and refuelling stations),
- cooperation in the preparation of accompanying technologies for the use of barges by research and development units (e.g. methods of disposing of material excavated from places of rockfill accumulation in rivers – in the case of dredgers etc.),
- institutional support for vessels manufactured in Poland.

3. Development of alternative fuel infrastructure, enhancement of operation security, development of electromobility industry and improvement of the quality of the air and comfort of living
The market of electric vehicles in Poland is at the stage of formation. The regulatory basis for this changes is provided by the Act on electromobility and alternative fuels of 11 January 2018, which provides for the construction of basic infrastructure for alternative fuels in urban agglomerations, in densely populated areas and along roads forming part of trans-European transport corridors. The Act implements the European Directive on the deployment of alternative fuels infrastructure into Polish law. The expansion of the core network will enable the free movement of vehicles using alternative fuels – without the need to be concerned that recharging them will not be possible. The Electromobility Act also provides for the removal of the excise duty on electric and plug-in hybrid vehicles (PHEV), the exemption of such vehicles form parking fees as well as greater possibilities for depreciation charges for companies than in the case of combustion vehicles. In addition to financial benefits, the act envisages a package of solutions useful for drivers in their everyday lives. It is planned that the core network will comprise 6,000 normal recharging points and 400 high power recharging points and 70 CNG refuelling points in 32 urban agglomerations and densely populated areas by 2020. Pilot programmes aimed at intensifying measures in the area of the construction of infrastructure and the development of electromobility industry will be implemented. Conditions and tools will be defined the implementation of which will make it possible to commence the strengthening of the Polish electromobility industry. Regulatory conditions for the development of electromobility were created in the period 2017-2019. It is envisaged that the prototypes of vehicles adapted to the needs of the Polish and European markets will be created and the production of short series of electric vehicles will be launched in the period 2020-2030. In subsequent years, other measures will be proposed, such as further tools aimed at integrating electric vehicles with the network, and instruments for the development of the charging infrastructure will be indicated, which will accelerate the process of constructing it. It is expected that the aforementioned measures will contribute to changes in social awareness, which will lead to electromobility being seen as a necessary response to the challenges of the changing reality. Growing popularity of electric vehicles in households and public transport will drive the demand for green transport. The newly constructed recharging infrastructure will be an additional factor. The network will be fully prepared to provide power to 1 million electric vehicles and will be adapted to the use of vehicles as the electricity system stabilisers. The public administration will use electric vehicles in its fleet. Polish industry will produce subassemblies for electric vehicles, vehicles themselves and instrumentation and infrastructure necessary for the development of electromobility. The task of the Low-Emission Transport Fund is to support the expansion of alternative fuels infrastructure and to build up a market for those fuels. Over the next 10 years, the Fund will have financial means of ca. PLN 6.7 billion. The following areas will be financed from the Fund in the period 2018-2027:
(1) supporting investments related to the production of biocomponents, liquid biofuels, and other renewable fuels;
(2) supporting the construction or development of infrastructure for the distribution or sale of compressed natural gas (CNG) or liquefied natural gas (LNG), including that derived from biomethane, or for the distribution and sale of hydrogen, or the construction or development
III. Policies and measures - Dimension Decarbonisation

of infrastructure for recharging electrical vehicles, used in transport;

(3) assistance for manufacturers or producers of biocomponents, liquid fuels, liquid biofuels, other renewable fuels, compressed natural gas (CNG), or liquefied natural gas (LNG), including that derived from biomethane, used in transport;

(4) supporting:
 a) producers of vehicles powered by electricity, compressed natural gas (CNG), or liquefied natural gas (LNG), including that derived from biomethane, or by hydrogen,
 b) Entrepreneurs within the meaning of the Business Enterprise Law of 6 March 2018 (Journal of Laws, item 646) conducting activities in the field of production of subassemblies for the vehicles referred to in (a);

(5) supporting public transport based on liquid biofuels, other renewable fuels, compressed natural gas (CNG) or liquefied natural gas (LNG), including from biomethane, hydrogen or electricity, especially in urban agglomerations, health resorts and nature conservation areas delimited pursuant to nature protection laws;

(6) subsidising port fees charged for the mooring of vessels propelled by compressed natural gas (CNG), or liquefied natural gas (LNG), including that derived from biomethane, or by hydrogen, or powered by electricity;

(7) supporting:
 a) research aimed at developing new types of biocomponents, liquid biofuels, other renewable fuels, or the use of compressed natural gas (CNG) or liquefied natural gas (LNG), including that derived from biomethane, or hydrogen, or electricity, used in transport, or at developing new design-related solutions in this area,
 b) operational implementations of the outcomes produced by the research referred to in point (a);

(8) supporting educational programmes intended to promote the use of liquid biofuels or other renewable fuels, compressed natural gas (CNG) or liquefied natural gas (LNG), including that derived from biomethane, or hydrogen, or electricity, used in transport;

(9) supporting the purchase of new vehicles and vessels powered by liquid biofuels, compressed natural gas (CNG), or liquefied natural gas (LNG), including that derived from biomethane, or by hydrogen, or powered by electricity;

(10) supporting analyses and research of the market for biocomponents, liquid fuels, liquid biofuels or other renewable fuels, or the use of compressed natural gas (CNG) or liquefied natural gas (LNG), including that derived from biomethane, or hydrogen, or electricity, used in transport;

(11) promoting the production and use of biocomponents and liquid biofuels;

(12) and performance of other tasks specified in specific legislation.

The development of draft documents involves the need to eliminate legislative barriers, to create a market framework (e.g. to define the vehicle charging service) and to develop alternative fuel infrastructure.

In connection with the introduction of new legislation dedicated to electromobility, actions are planned to stimulate the implementation of the following directional goals at the national level:

- for 2025:
• there will be 1 million electric vehicles on roads in the segment of electricity-powered vehicles;
• there will be 54,000 vehicles on roads in the segment of vehicles fuelled by CNG, and 32 refuelling points will be available along the core TEN-T corridors;
• there will be 3,000 LNG-fuelled vehicles, and 14 LNG refuelling points along the core TEN-T roads;
• LNG bunkering installations for vessels will operate in the sea ports of Gdańsk, Gdynia, Szczecin, Świnoujście;
- there will be 3,000 electric buses in the public transport segment at the national level in 2030.

The above benefits and related instruments aimed at influencing the market will contribute both to the security of operation and to the development of the electromobility industry, as well as to the improvement of the quality of the air and the comfort of life.

4. Zero-Emission Public Transport Programme
Public transport is an important segment of the development of transport using alternative fuels. At present, a growing number of local governments and bus transport companies in Poland add electric buses to their fleets or plan to do so in the near future. Electric buses are still a small part of municipal transport fleet in Poland.

Public transport is a transport segment that may be used as a testing ground for a new technology and may be an element contributing to the development of electricity-based transport. Public transport is also an element of the strategy of switching the economy to alternative fuels, with fleet replacement projects constituting a perfect area for the development of new technologies and, consequently, of the entire economy.

Local governments, when deciding to purchase electric buses, are guided mainly by the need to improve the quality of the air, the intention to reduce the noise level or the need to systematically raise the standards of passenger transport. The partial replacement of fleet with electric vehicles reflects commitment to modernisation, thus attracting investors and tourists. These objectives are consistent with the government Electromobility Development Plan for Poland, as well as with the EU Clean Mobility Package of 2017.

Among the main barriers to transport electrification, the higher costs of purchase of electric vehicles should be mentioned, along with the lack of access to rapid charging infrastructure and the lengthy investment process. None of these barriers may be overcome without the commitment of public funds. Therefore, the Government is planning to provide financial support for investments aimed at expanding electric bus charging infrastructure, to be carried out by entities providing mass transport services. Support for zero- and low-carbon public transport is one of the priorities of the Polish Government listed in the Strategy for Responsible Development. This segment requires support in the form of public funding not only in the area of the construction of infrastructure for public transport, but also in the area of fleet replacement. The reduction of the emissions of pollutants and CO\textsubscript{2} in the public transport sector is linked to its development and, consequently, to at least partial departure from individual motor transport in urbanised areas. It may significantly contribute to the improvement of the air quality in Poland, the reduction of emissions, the achievement of climate targets and the protection of health and the natural
At the same time, there is a need for financial support for local governments in the field of public transport fleet replacement, which may be carried out only by co-financing the purchase of zero- and low-carbon vehicles, enabling not only the Total Cost of Ownership (TCO) of both means of transport to be brought to the same level, but primarily the difference in the purchase price, which is often decisive in the provision of public transport services, to be compensated for.

The financing of the purchase of low-carbon buses and the construction of charging/refuelling infrastructure for these types of vehicles will be provided from, among others, the Low-Emission Transport Fund (LETF). The Act of 11 January 2018 on electromobility and alternative fuels includes a number of obligations and recommendations for local governments, which in many cases may be fulfilled with the use of methane fuel-based transport services. Among more important provisions in this respect is the provision stipulating that local government units in areas with more than 50,000 residents must procure, from 1 January 2025, the performance of public tasks from companies with at least a 30% share of electric vehicles or natural gas-fueled vehicles in the fleet in use. It is estimated that there will be 3,000 electric buses in the public transport segment at the national level in 2030.

5. Supporting public transport systems in cities with EU Cohesion Policy funds

Public transport systems in cities are also supported by EU Cohesion Policy funds under Operational Programmes for 2014-2020 (Operational Programme Infrastructure and Environment, Operational Programme Eastern Poland, Regional Operational Programmes), e.g. the Operational Programme Infrastructure and Environment allocates approx. EUR 2.3 billion worth of subsidies for the construction and modernisation of infrastructure, and the purchase and modernisation of low-emission rolling stock and fleets in the 13 provincial capitals that implement Integrated Territorial Investment Strategies, as well as for competition-based projects related to electric rolling stock, also in medium-sized cities that are losing their socio-economic functions. Financial support for the area in question in the financial perspective 2021-2027 is likely, but its amount and scope cannot be defined at the present stage.

In the context of the potential phase-out of subsidies in the energy sector, it is crucial that a balanced approach be used, such as to allow maintaining the competitiveness of the national economy and achieving the development goals. The subsidy phase-out process should be supported by flexible transitional measures enabling enterprises to adapt to the new way of production funding, and by preparing mechanisms helping enterprises to modernise production. A list of support measures in the energy sector, including subsidies, is provided in Chapter I.
3.2. Energy efficiency

Planned policies, measures and programmes to achieve the indicative national energy efficiency target for 2030 as well as other objectives presented in 2.2, including planned measures and instruments (also of financial nature) to promote the energy performance of buildings, in particular as regards the following:

1. Energy efficiency obligation scheme referred to in Article 7a of Directive 2012/27/EU:

Article 7a of Directive 2012/27/EU provides that Member States may decide to fulfill their obligations to achieve the amount of energy savings required under Article 7(1) of the Directive by means of an energy efficiency obligation scheme. Under the energy efficiency obligation scheme, Member States are required to ensure that the obligation to achieve end-use energy savings by obliged entities, i.e. energy distributors or retail energy sales companies operating on their territory, is met.

The Scheme is expected to remain in effect until 2030, i.e. over the next 10 years, with the annual energy savings it produces averaging 445 ktoe over the timespan. The cumulative final energy savings will be around 55 x 445 = 24 500 ktoe, which represents 80% of the total energy savings required, namely 30 635 ktoe.

In Poland, the energy efficiency obligation scheme was created by the statutory imposition of an obligation on obliged entities from 1 January 2013. Currently, the scheme is governed by the Energy Efficiency Act of 20 May 2016.

A mechanism stimulating pro-savings behaviour is expected to be in place in the period 2021-2030. Its shape and form will depend on decisions concerning energy efficiency regulations, in particular in the context of the implementation of the new Energy Efficiency Directive adopted in 2018.

The Energy Efficiency Act requires that energy efficiency certificates, also known as 'white certificates', be submitted to the President of the Energy Regulatory Office for redemption by the following entities:

- energy companies which carry out economic activity in the field of generation or trade in electricity, heat or natural gas, and which sell electricity, heat or natural gas to final consumers connected to the network,
- connected end consumers which are members of an exchange within the meaning of the Commodity Exchanges Act of 26 October 2000 or members of a regulated market by virtue of transactions they make on a commodity exchange or a regulated market on their own behalf,
- commodity brokerage houses or brokerage houses, for transactions made on a commodity exchange or on a regulated market at the request of final consumers connected to the network.

Pursuant to Article 30(1) of the Energy Efficiency Act, energy efficiency certificates incorporate alienable property rights which represent a tradable commodity within the meaning of the Commodity Exchanges Act of 26 October 2000, which means that they can be traded in. Entities which are required by the Act to acquire energy efficiency certificates, but fail to do so and do not redeem or do not complete energy efficiency projects at a final consumer, as documented by an energy audit, must pay a substitution fee as per the Act. Under the energy efficiency obligation scheme, obliged entities are required to obtain and submit for redemption for each subsequent...
year specific amounts of final energy, as defined by the Act. Energy efficiency certificates can only be obtained for the types of projects specified in Article 19(1) of the Act. Pursuant to the Energy Efficiency Act, the President of the Energy Regulatory Office issues certificates at the request from the entity where the energy efficiency project is to be delivered, or from an entity it has authorised.

A list of all activities/projects eligible under the energy efficiency obligation scheme notified by Poland has been published by the minister competent for energy by a notice, which is available in the Monitor Polski Official Gazette of the Republic of Poland. An energy efficiency certificate issued under the Scheme confirms the declared energy savings derived from the implementation of the respective energy efficiency project. An energy efficiency certificate may be obtained for an action resulting in annual final energy saving of no less than 10 tonnes of oil equivalent (toe) or for a set of actions of the same type whose aggregate effect exceeds 10 toe. The white certificate scheme supports the implementation of investment projects such as: insulation of industrial installations; redevelopment or renovation of a building along with technical systems and equipment; modernisation or replacement of lighting systems, equipment and systems used in industrial processes or in energy, telecommunications or information technology processes, local heating networks and local heat sources. Completing an energy efficiency audit for a given project is a condition for obtaining a certificate. The audit document is submitted to the President of the Energy Regulatory Office by the entity notifying the energy efficiency improvement project.

The energy efficiency obligation scheme does not include measures addressed to households affected by energy poverty, nor does it take into account the share of energy savings to be achieved by households pursuant to Article 7(11). It has been decided that the need to mitigate energy poverty should be addressed through alternative policy measures by incorporating social issues in thermomodernisation and renovation support schemes.

With regard to the possibility provided for by Article 7a(6)(a), it should be highlighted that obliged entities may count certified energy savings achieved by third parties towards their obligations, but this does not mean that the latter are required to achieve energy savings on behalf of obliged entities. Energy efficiency certificates are issued at the request from the entity where the energy efficiency project is to be delivered or from an entity it has authorised. The entities operate on an arm’s length basis and are independent of obliged entities. The scheme does not allow obliged entities to fulfill their commitment through other state-accredited parties. In accordance with the Energy Efficiency Act, the property rights arising under the certificates are alienable and are considered commodities tradable on a commodity exchange or a regulated market. Therefore, obliged entities may buy these property rights on the market and submit them for redemption to the President of the Energy Regulatory Office in order to credit them against their obligations.

In accordance with section 4.1 of Commission guidelines, under Article 7a(6)(b) of Directive 2012/27/EU, Member States may provide for the possibility of ‘banking and borrowing’, i.e. allowing obligated parties to count savings obtained in a given year as if they had been obtained in any of the four previous or three following years. It should be noted that this flexibility:

- applies only for energy savings stemming from EEOs implemented since 1 January 2014 and not for alternative policy measures; and
- is restricted in time, i.e. Member States may allow obligated parties to “bank and borrow” only
III. Policies and measures

- **Dimension Energy efficiency**

The energy efficiency obligation scheme operating in Poland meets all the conditions for resorting to this derogation set out in Article 7(8) of Directive 2012/27/EU. Therefore banking and borrowing can be used in Poland, but subject to a time restriction, i.e., for the purposes of the first subparagraph of Article 7(1)(a) of Directive 2012/27/EU – in particular, energy savings obtained after 2010, but before 1 January 2014, will be counted towards the 2014-2020 obligation.

2. Alternative measures referred to in Article 7b and Article 20(6) of Directive 2012/27/EU

Directive 2012/27/EU no longer contains a list of alternative policy measures, but the definition of policy measure in Article 2(18) sets out a non-exhaustive list of the possible types of such measures, i.e. regulatory, financial, fiscal, voluntary or information provision instruments formally established and implemented in a Member State to create a supportive framework, requirement or incentive for market actors to provide and purchase energy services and to undertake other energy efficiency improvement measures.

Following an analysis of the energy efficiency improvement instruments and measures in place in Poland, a selection of priority measures for the second obligation period was made to ensure that the final energy savings required by Article 7(1) of Directive 2012/27/EU are achieved by 2030. Accordingly, the following alternative policy measures are envisaged for the period 2021-2030:

1. Thermomodernisation and Renovation Fund;
2. Tax relief for expenditure on thermomodernisation of single-dwelling residential buildings;

THERMOMODERNISATION AND RENOVATION FUND – supports investments for improving energy efficiency of existing residential buildings. The key objective is to provide financial assistance to investors carrying out thermomodernisation or renovation projects of existing single-dwelling residential buildings using loans from commercial banks. Amendments are planned to the Act on supporting thermomodernisation and renovation to enable inclusion of local governments at the municipality level in the implementation of low-emission projects targeted at the energy poor in their territory, financed in part from the Thermomodernisation and Renovation Fund. The introduction of the above changes will make the Thermomodernisation and Renovation Fund a policy measure which takes into account actions targeted at households affected by energy poverty. Beneficiaries of State aid will include, in particular, persons who meet certain income and/or property criteria, i.e. State aid for thermomodernisation and renovation projects will also take into account social aspects, such as energy poverty.

<table>
<thead>
<tr>
<th>Name of measure</th>
<th>Thermomodernisation and Renovation Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>The main objective of the Fund is to provide financial assistance to investors carrying out thermomodernisation and renovation projects.</td>
</tr>
<tr>
<td>Final energy savings</td>
<td>Expected energy savings: 70 ktoe/year, a 10-year total of: 10 x 70 = 700 ktoe</td>
</tr>
<tr>
<td>Implementation period</td>
<td>2021-2030</td>
</tr>
<tr>
<td>Implementing/supervisory authorities and bodies</td>
<td>Bank Gospodarstwa Krajowego/Minister for Development</td>
</tr>
</tbody>
</table>
Beneficiaries

A thermomodernisation bonus is available to owners and administrators of:
- residential buildings;
- collective accommodation buildings;
- public buildings owned by local governments and occupied by them for public tasks;
- local district heating networks;
- local heat sources.

The bonus is available to investors regardless of their legal status, i.e. legal persons (e.g. housing cooperatives and commercial companies), local governments, housing associations, and natural persons, including owners of single-dwelling houses. Budgetary entities and budgetary establishments are not eligible for the bonus.

Description/eligible activities

The specific rules on bonus-based co-funding are laid down by the Act of 21 November 2008 on supporting thermomodernisation and renovation. A thermomodernisation bonus is available for projects aimed at:
- reducing the consumption of energy for heating and warm service water preparation in residential buildings, collective accommodation buildings, and buildings owned by local governments and occupied by them for the fulfilment of public tasks;
- reducing the cost of obtaining heat delivered to the above buildings by connecting them to a centralised heat source in connection with the elimination of a local heat source;
- reducing primary energy losses in local district heating networks and the local heat sources which supply them;
- partial or full replacement of energy sources with renewable sources or using high-efficiency cogeneration, subject to energy consumption reduction requirements referred to in the Act.

THE THERMOMODERNISATION BONUS FOR SINGLE-DWELLING RESIDENTIAL BUILDINGS

takes the form of a tax relief aimed at creating an incentive for the thermal modernisation of single-dwelling residential buildings through the personal income tax. The current State budget support for thermomodernisation of residential buildings, consisting, amongst others, in granting a thermomodernisation bonus amounting to 20% of the loan taken out for a thermomodernisation project, has been insufficient to achieve the required effects in terms of energy efficiency improvements. For this reasons, State measures have been stepped up in Poland to improve air quality and energy efficiency of single-dwelling residential buildings through their thermomodernisation, i.e. a reduction of demand for thermal energy and the resulting reduction of
pollution emissions from the process of burning fuels for heating.

<table>
<thead>
<tr>
<th>Name of measure</th>
<th>Thermomodernisation bonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>The main purpose is to create an incentive for the thermal modernisation of single-dwelling residential buildings through the personal income tax.</td>
</tr>
<tr>
<td>Final energy savings</td>
<td>Expected average energy savings: 200 ktoe/year, a 10-year total of: $10 \times 200 = 2,000$ ktoe</td>
</tr>
<tr>
<td>Implementation period</td>
<td>2021-2030</td>
</tr>
<tr>
<td>Implementing/supervisory authorities and bodies</td>
<td>Minister for Finance/Minister for Development</td>
</tr>
<tr>
<td>Beneficiaries</td>
<td>The beneficiaries of the thermomodernisation bonus are personal income taxpayers paying the tax according to the tax scale, at a rate of 19% and as a lump-sum on recorded income, who are owners or co-owners of single-dwelling residential buildings, incurring expenses on thermomodernisation projects; however, taxpayers benefiting from other State aid for thermomodernisation projects, e.g. those who received a subsidy from NFOŚiGW/WFOŚiGW funds, cannot deduct the expenditure financed by that subsidy (only the surplus is deducted).</td>
</tr>
</tbody>
</table>
| Description/eligible activities | A detailed list of types of building materials, equipment and services related to the supported thermomodernisation projects is set out in the Regulation of the Minister for Investment and Development of 21 December 2018. The thermomodernisation bonus is granted in particular for the following building materials, equipment and services:
- window and door joinery, including windows, roof windows with assembly systems, balcony doors, garage doors, non-opening transparent surfaces,
- building materials comprised in heating, domestic hot water and electric heating systems,
- heat pumps, solar collectors or photovoltaic cells with accessories,
- installation of the above-listed materials and equipment,
- start up and control of the heat source, flue gas analysis, hydraulic control and balancing of the system, removal of the solid fuel-fired heat source. |

DEVELOPMENT OF PUBLIC TRANSPORT IN CITIES – support for low-emission public transport in cities from the EU Cohesion Fund will be continued under the Operational Programme Infrastructure and Environment 2021-2027.
III. Policies and measures - Dimension Energy efficiency

<table>
<thead>
<tr>
<th>Name of measure</th>
<th>Development of public transport in cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>The main purpose of the Programme will be to develop and enhance the use of low-emission urban transport in serving residents of cities' functional areas.</td>
</tr>
<tr>
<td>Final energy savings</td>
<td>Expected energy savings: 130 ktoe/year, a total of: $10 \times 135 = 1,350$ ktoe</td>
</tr>
<tr>
<td>Implementation period</td>
<td>2021-2030</td>
</tr>
<tr>
<td>Implementing/ supervisory authorities and bodies</td>
<td>Centre for European Union Transport Projects (CUPT) / Minister for Funds and Regional Policy</td>
</tr>
</tbody>
</table>
| Beneficiaries | The participation in the programme is open to:
- local governments and their unions – province capital cities and their functional areas, as well as organisational entities and special purpose vehicles acting on their behalf;
- managers of infrastructure used by urban transport;
- public transport operators. |
| Description/eligible activities | The Programme covers infrastructure investments: adaptation, construction, reconstruction, extension of urban transport networks, including:
- construction, reconstruction, and development of the track system along routes, and at terminuses, sidings, and depots;
- construction of a metro line,
- construction, reconstruction, and extension of tramway and trolleybus overhead line networks and traction substations;
- reconstruction and development of roads for the purpose of introducing privileged traffic or privileging existing traffic of public transport vehicles,
- providing roads, streets, and tracks with engineering structures and necessary road facilities/purchase of necessary equipment to ensure traffic safety of public transport vehicles;
- providing roads and streets with infrastructure serving public transport (e.g. lay-byes, ramps, exit roads) and passengers (e.g. stops, islands);
- construction, reconstruction and development of transport interchanges, including "Park & Ride" and "Bike & Ride" systems;
- construction of Personal Rapid Transport (PRT) systems.
Rolling stock investments: purchase, upgrading of rolling stock (trams, metro) and trolleybus and bus fleets, including infrastructure necessary for their maintenance (e.g. technical facilities for rolling stock and fleet servicing and maintenance, including the necessary...
III. Policies and measures - Dimension Energy efficiency

b) Long-term renovation strategy to support the renovation of the national stock of residential and commercial buildings (public and private) 17, including policies, measures and actions to stimulate thorough and cost-effective renovations, as well as policies and actions targeting the national building stock with the poorest energy performance, in accordance with Article 2a of Directive 2010/31/EU;

Responsible/involved parties: MI, MR, MFiPR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Improvement of housing conditions, technical condition of housing stock and enhancement of energy efficiency

This measure will comprise support for thermal upgrading and renovation investment projects, including broader ones undertaken as part of revitalisation of degraded areas. These instruments envisage in particular financial support for renovation and thermal upgrading investment projects, both using national and European Union funds, the implementation of instruments supporting the processes of revitalisation of degraded areas and a review of regulations concerning technical parameters affecting energy efficiency in residential buildings.

The long-term renovation targets for the national stock of residential buildings have been specified by the Government of the Republic of Poland in the National Housing Plan.

Activities related to the renovation of the national stock of residential and commercial buildings (public and private), including policies, measures and actions to stimulate thorough and cost-effective renovations, as well as policies and actions targeting the national building stock with the poorest energy performance, will be specified in the building renovation strategy, which is currently being developed and which, in accordance with the amended Directive 2010/31/EU, is to be submitted to the Commission in 2020.

2. Promoting low-energy buildings, including at the design, construction and redevelopment stages, in a manner ensuring their energy efficiency, and improvement of the availability of renewable energy in new and existing buildings

The national plan to increase the number of low-energy buildings defines measures to be undertaken by the government administration authorities to promote low-energy buildings, including at the design, construction and redevelopment stages, in a manner ensuring their energy efficiency, and to improve availability of renewable energy in new and existing buildings, as well as specifies the time schedule for achieving the targets.

Pursuant to Article 9(3)b of Directive 2010/31/EU, the National Plan sets out, among others, indirect targets aimed at improving the energy performance of new buildings for 2015, as a way forward towards the achievement of the following assumptions:
- all new buildings are to be nearly zero-energy buildings by 31 December 2020, and
- new buildings occupied and owned by public authorities are to be nearly zero-energy buildings after 31 December 2018.

c) Description of policy and measures to promote energy services in the public sector and measures to remove regulatory and non-regulatory barriers that impede the increase in the number of energy efficiency contracts and other energy efficiency service models18;

Responsible/involved parties: 1.

1. The Act on energy efficiency of 20 May 2016 (Journal of Laws 2016, item 831, as amended) defines the energy efficiency duties of public sector units.

Public sector units are to carry out their duties by applying at least one of the following measures to improve energy efficiency:
- implementing and funding projects aimed at improving energy efficiency;
- purchasing devices, installations or vehicles with low energy use or low operating costs;
- replacing or upgrading the used devices, installations or vehicles;
- implementing thermal upgrading projects within the meaning of the Act on supporting specialist equipment, and refuelling stations and equipment for alternative fuel).
III. Policies and measures

- Dimension Energy efficiency

MAP, MI, MFiPR, MR

* subject to potential changes resulting from amendments to the Act on government administration departments.

thermomodernisation and renovation of 21 November 2008 (Journal of Laws 2014, item 712; 2016, item 615);

Additionally, at the national government level, the minister responsible for energy, the minister responsible for transport and the minister responsible for construction, spatial planning and development and housing are to:

1) organise campaigns promoting the use of measures to improve energy efficiency, including the introduction of innovative technologies;

2) conduct information and educational campaigns to raise awareness of the available energy efficiency improvement measures.

Furthermore, Article 7 of the Act on energy efficiency expressly allows energy efficiency contracting by public sector units. The act stipulates that an energy efficiency contract is a contract that specifies, in particular, possible energy savings to be achieved as a result of carrying out a project or projects of the same type aimed at improving energy efficiency with the use of an energy efficiency improvement measure, as well as defines the method of determining the fee, the amount of which is to depend on the energy savings achieved as a result of carrying out those projects.

d) Other planned policies, measures and programmes to achieve the indicative national energy efficiency contribution targets for 2030, as well as other objectives presented in 2.2 (for example measures to promote the exemplary role of energy-efficient public buildings and public procurement, measures to promote energy audits and energy management systems, consumer information and training measures and other measures to promote energy efficiency);

Responsible/involved parties*:

MAP, MI, MFiPR, MR, MMR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Introduction of a new support mechanism for high-efficiency cogeneration and systemic changes in the heating sector

The Act of 14 December 2018 on the promotion of electricity from high-efficiency cogeneration (Journal of Laws 2019, items 42 and 412), together with its implementing acts, introduced a new support mechanism for electricity from high-efficiency cogeneration, the aim of which is both to stimulate the construction of new cogeneration units (it is expected that units with a total capacity of 5.1 GWe will receive support by 2028) and to continue the generation of electricity from high-efficiency cogeneration in existing units which would not be able to operate without support due to a financial gap in operating costs.

The implementation of the new mechanism is mainly motivated by the necessity to improve air quality in cities, which can be achieved through the development of district heating from the least carbon-intensive sources. In view of the above, support for all electricity generated in high-efficiency cogeneration that has been fed into the grid and sold will concern cogeneration units that supply, at a minimum, 70% of useful heat from cogeneration to the public district heating network. Where less than 70% of generated heat is fed into the grid, support will be granted proportionally to the share of heat fed to the grid in the total amount of heat generated. Moreover, support will only be available to units whose carbon dioxide emission factor (EPS) is not higher than 450 kg/MWh of energy generated (electricity and heat combined).

The proposed support system will be largely dedicated to the construction of cogeneration units
II. Policies and measures

- Dimension Energy efficiency

with an installed capacity of up to 50 MWe. However, support for larger units (above 50 MWe) is also envisaged under the mechanism, including due to the need to replace older sources supplying large heating systems (to be decommissioned, e.g. upon cessation of the district heating derogation under the Industrial Emissions Directive (IED)) with newer ones with lower emission levels of CO2, SOx, NOx, dust and other substances.

2. Promotion of the use of high-efficiency alternative energy and heat supply systems for buildings

Pursuant to the Regulation of the Minister for Transport, Construction and Maritime Economy of 25 April 2012 regarding the detailed scope and form of a building permit design (Journal of Laws, item 462, as amended), the technical description of an architectural and construction design should contain an analysis of the possibilities of using high-efficiency alternative energy and heat supply systems. They include renewable energy-based decentralised energy supply systems, cogeneration, local or block heating or cooling, in particular if it is based, whether entirely or partly, on renewable energy sources, and heat pumps. The use of these systems should be considered at the stage of preparing a building permit design. The above-mentioned regulations are aimed at promoting alternative solutions where economically, technically and environmentally justified.

The above requirement corresponds to the technical and construction requirements concerning energy efficiency of newly designed buildings, specified in the Regulation of the Minister for Infrastructure of 12 April 2002 regarding the technical conditions to be met by buildings and their location (Journal of Laws 2015, item 1422, as amended). The requirements have been formulated using the indicator specifying the annual calculated demand for non-renewable primary energy in a manner that should stimulate the use of renewable energy sources where technically justified.

The aforementioned regulation and related National Plan aimed at increasing the number of low-energy buildings provide for a time schedule for meeting targets concerning the promotion of low-energy buildings, including at the design, construction and redevelopment stages, in a manner ensuring their energy efficiency and the improvement of the availability of renewable energy in new and existing buildings.

3. Improving energy efficiency in the transport sector – measures in this area are consistent with those related to reducing emissions from the transport sector, as described in chapter 3.1.3.c)

1. Development of smart electricity grids

With respect to smart metering, a legal framework will be created concerning the technical, legal and economic aspects of bringing smart meters into universal use. It is expected that 80% of consumers will be equipped with smart meters by 2028. Specific measures are described in 3.4.3(e).

2. Financial support for measures to improve energy efficiency in gas transmission and distribution and in underground gas storage (UGS) facilities

The following measures are envisaged:

- modernisation of old and end-of-life gas transmission pipelines;
- minimisation of gas losses;

MAP, electricity distribution system operators, electricity transmission system operator (PSE S.A.), MFIPR, MR, gas distribution system operators and gas transmission system operator (GAZ-SYSTEM S.A.)

* subject to potential changes resulting from

Description of measures to utilise energy efficiency potential of gas and electricity infrastructure

Responsible/involved parties*:

MAP, electricity distribution system operators, electricity transmission system operator (PSE S.A.), MFIPR, MR, gas distribution system operators and gas transmission system operator (GAZ-SYSTEM S.A.)
amendments to the Act on government administration departments.

- pumping stations – application of energy recovery technologies and effective control of the operation of the transmission system;

Gas distribution system:
- expansion and modernisation of low- and high-pressure distribution pipelines;
- minimisation of gas losses;
- use of smart metering systems;
- use of smart pressure regulators;

Underground gas storage facilities:
- installation of expanders in process systems;
- energy recovery from exhaust gases;

Use of underground gas storage (UGS) facilities under the SMART GRID concept:
- cooperation of the Storage System Operator (SSO) with the operators of other networks;
- use of cavern underground storage facilities to store hydrogen generated from P2G (Power to Gas) processes;

Gas infrastructure in mines:
- use of expanders in process systems;
- use of high-efficiency cogeneration facilities;
- use of energy recovery technologies;

SMART GRID concept for gas networks:
- smart grid metering (SM) – cooperation with end consumers;
- interoperability – cooperation with power systems;
- use of the network for transmission of unconventional gases;
- management of energy efficiency at all stages of the investment process. Given the commitments made with regard to the European Union-wide 2030 targets for energy efficiency and the share of RES in the gross final energy consumption, the support for the above-described area must be maintained in the upcoming financial perspective, i.e. 2021-2027.

f) Financing measures, including EU support and the use of EU funds, in this area at national level.

Responsible/involved parties*:

MAP, MFIPR, MR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. **Co-financing of energy efficiency measures in gas transmission and distribution and in underground gas storage (UGS) facilities**

Approximately EUR 1.4 billion has been allocated to support energy efficiency measures as part of the Operational Programme Infrastructure and Environment 2014-2020 (OPI&E), and ca. EUR 2 billion as part of the Regional Operational Programmes (ROP). Out of the amount mentioned above, approximately EUR 320 million has been allocated through the ROP as repayable assistance. The assistance concerns investments in such areas as energy efficiency of buildings, energy efficiency of enterprises, high-efficiency cogeneration and energy-efficient heating and cooling systems. In accordance with the ‘n+3’ rule, funds for the above purposes may be expended until 2023.

As part of the Smart Growth Operational Programme 2014-2020 (SM OP), ca. 150 smart and energy-efficient construction projects received assistance of approximately PLN 677 million. Given the commitments made with regard to the European Union-wide 2030 targets for energy efficiency and the share of RES in the gross final energy consumption, the support for the above-described area must be maintained in the upcoming financial perspective, i.e. 2021-2027.
2. Support for companies operating in the energy efficiency and RES sectors, with priority being given to the suppliers of energy services (under the ESCO scheme) The amended directive on energy efficiency stipulates that a Member State is to support the energy services market and the access of small and medium-sized companies to this market, and is also to support the public sector in the acceptance of offers of energy services, in particular with regard to the modernisation of buildings. Despite the fact that the provisions of Directive 2012/27/EU have been incorporated into the Polish legislation, the energy services market is not yet mature and companies operating under the ESCO scheme tend to struggle on the market. Therefore, measures will be undertaken in the period 2021-2030 to extend support onto small and medium-sized companies, including start-ups, especially those serving the public administration sector, i.e. both government or local government administration authorities.

3. Support for the development of energy management efficiency solutions by linking building energy management systems (BEMS) with the demand side response (DSR) tool The above-mentioned solutions should contribute to the flattening of the energy demand curve and to more effective energy management, which will allow to provide consumers with access to energy without having to excessively expand generation capacity or transmission and distribution networks. The above specified measures will have positive economic and environmental effects – reducing the needs of end consumers will translate into reductions throughout the energy chain, as a result of which emissions from the energy sector and the entire economy will decrease. It should be stressed that the potential for linking BEMS with DSR is particularly high in the case of industrial consumers due to the characteristics of their consumption, high degree of predictability, the economies of scale owing to considerable volumes of consumed energy, as well as its importance for the system.

4. Development of heat consumption rationalisation technology Heat consumption rationalisation technologies which may potentially be supported from public funds include:
- insulation and dewatering of steam systems;
- renewable energy sources, including geothermal systems, solar collectors, heat pumps,
- thermal upgrading of industrial and office buildings;
- recuperation and heat recovery from processes and devices;
- modernisation of internal heating networks;
- using energy from waste generated in industrial processes;
- construction/modernisation of own (internal) energy sources, including high-efficiency cogeneration.
3.3. Energy security

a) Policies and measures to achieve the objectives set out in 2.3

Responsible/involved parties: MAP, URE, Government Plenipotentiary for Strategic Energy Infrastructure, companies operating in the energy sector

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Implementation of the Energy Policy of Poland until 2040 (EPP2040)

The objective of the energy policy outlined in the draft EPP2040 is energy security while ensuring the competitiveness of the economy, energy efficiency and reduction of the impact of the energy sector on the environment, as well as the optimum use of own energy resources. Energy security is the priority component of the aforementioned objective.

Actions carried out along eight strategic lines described in detail in the draft EPP2040 will lead to guaranteeing Poland’s energy security.

2. Implementation of the Polish Nuclear Power Programme (Program polskiej energetyki jądrowej – PPEJ)

The draft Energy Policy of Poland until 2040 envisages the implementation of nuclear power programme. The first unit (with a capacity of ca. 1-1.5 GW) of the first nuclear power plant is planned to be commissioned in 2033. Further five units are planned to be commissioned at two or three years' intervals. The installed capacity in nuclear power units is expected to reach ca. 6-9 GW.

In the case of Poland, infrastructure necessary for the development and operation of the nuclear power sector (legal, organisational and institutional infrastructure, scientific and research backup facilities, personnel training systems) must be built in order for nuclear power programme to be implemented. An exhaustive diagnosis of individual issues relevant to the development of the nuclear power sector has been presented in the Polish Nuclear Power Programme (PPEJ), which is due to be updated soon. PPEJ is a strategic document which sets out the objectives, stages (milestones) and tools (legal, organisational, financial), as well as entities implementing nuclear power projects in Poland. The milestones in the period 2021-2030 include:

- selection of technologies by 2021;
- commencement of the construction of the nuclear part (first nuclear concrete placement) by 2024.

3. Implementation of the Programme for the Coal Mining Sector in Poland 2016-2030

The objective of the Programme for the Coal Mining Sector in Poland is to create conditions conducive to building a profitable, effective and modern coal mining sector based on cooperation, knowledge and innovation, which, while operating in a friendly and predictable policy and legal setting, enables an effective use of resources and the social and economic capital to safeguard Poland’s high energy independence and to support the competitiveness of the national economy.

The programme’s implementation will reflect the rapidly changing settings of the mining sector. A restructuring plan for hard coal and lignite mining areas, with support from EU funds, will be prepared in 2020.

4. Implementation of the Programme for the Lignite Mining Sector in Poland

Lignite resources in the currently exploited deposits enable a stable level of production and the operation of production complexes only until approximately 2030.

The programme’s implementation will reflect the rapidly changing settings of the mining sector. A restructuring plan for hard coal and lignite mining areas, with support from EU funds, will be prepared in 2020.
CO2 emission allowance prices and the emergence of new technologies will play a key role in the development of new deposits. Innovations are to contribute to the implementation of low-carbon technologies and an alternative use of lignite. Gasified raw material (synthesis gas) is characterised by lower emissions and its use may be synchronised with demand. Due to its characteristics, lignite lends itself to gasification and, in the long term, also to hydrogenation for the production of liquid fuels. Synthesis gas may be used to generate energy and heat, but also to produce synthetic petrol and many other chemical products.

5. Monitoring the market in terms of compliance with the Regulation of the Council of Ministers of 24 April 2017 regarding the minimum diversification level of natural gas supplies from abroad.

Pursuant to the provisions of the aforementioned regulation, the product to be diversified is imported gas, with diversification to be achieved with the use of the transmission infrastructure on interconnections with other countries. This refers to gas imported to Poland from non-EU and non-EFTA countries, with supplies from non-EU countries by land (with the use of gas pipeline networks) to be treated in aggregate. The application of such a structure is justified by the fact that, at present, all gas supplies through entry points from non-EU countries are carried out from the East, in view of which they should be subject to the diversification obligation in aggregate. Also gas imported in any other form will be subject to diversification. This includes CNG and LNG imports, with the exclusion of gas imported through the LNG terminal in Świnoujście.

The percentage thresholds specified in the aforementioned Regulation of the Council of Ministers take into account the long-term contractual commitments of the natural gas sector companies existing at the time of adoption of the Regulation. Setting the threshold at 33% after 2022 is justified by similar regulations in other EU Member States and by the need to diversify sources of natural gas supplies to Poland.

The expected outcome is primarily an increase in the level of the security of natural gas supplies and the enhancement of competition on the domestic natural gas market.

The Preventive Action Plan contains proposals for measures which will contribute to the improvement of the energy security of Poland in the natural gas sector. The preventive measures specified in the aforementioned document are consistent with the recommendations of the International Energy Agency.

Entities carrying out the measures specified in the Preventive Action Plan are obliged to submit quarterly reports to the Minister for Energy on carrying out measures aimed at improving the security of natural gas supplies. The reports include the schedule of works, the expected date of completing an investment project, the risks for the implementation of the investment project identified by the entity responsible for carrying it out and its impact on the emergency scenarios identified in the Preventive Action Plan.

Additionally, by 1 September of each year, the transmission system operator, in consultation with entities transporting natural gas into the territory of Poland, is obliged to prepare a report concerning
the preparation of the gas system for the winter season, including an analysis of the coverage of the peak natural gas demand in non-fault conditions.
The aforementioned measures are aimed at ensuring continuous and uninterrupted natural gas supplies to consumers.

7. Construction of a direct connection between gas fields in the Norwegian Continental Shelf and expansion (increasing offtake and regasification capacities) of the LNG terminal in Świnoujście

Within the framework of measures relating to the diversification of natural gas supply directions and sources, the following projects are carried out: the construction of the Baltic Pipe, the expansion of the LNG terminal in Świnoujście and the construction of the floating regasification terminal in the Gulf of Gdańsk.

The following targets are expected to be achieved by 2030:
- 2022: an operational two-way connection between Poland, via Denmark, and the fields located in the Norwegian Continental Shelf, which will enable the import of ca. 10 billion m3 of natural gas;
- 2021: an operational expanded LNG terminal in Świnoujście, with a regasification capacity of 7.5 billion m3 annually (to be possibly further expanded depending on market conditions), along with additional functions enabling vessel bunkering and LNG transshipment to rail, vessels and tank trucks in increased quantities.
- 2025: the construction of the FSRU project in the Gulf of Gdańsk – the first phase of construction ensuring the capacity of at least 4.5 billion m3.

8. Construction of a transmission system enabling natural gas supplies from the north, west and south, and the construction of system interconnections to meet the requirement to diversify supply sources

The current capacities of transmission infrastructure do not allow the full substitutability of natural gas supply sources in the event of supply disruptions. The investment will make it possible to increase natural gas supplies from new directions (LNG, Norwegian Continental Shelf, system interconnections).

Expansion of interconnections with neighbouring countries, along with the development of the national transmission network and the expansion of gas storage facilities, is an element of the natural gas supply diversification strategy, which at the same time will create conditions for market development and the growth of the importance of Poland as a regional gas trading hub. Currently, apart from supplies to the LNG terminal, gas supplied to Poland includes mainly Russian gas brought via Belarus and Ukraine, as well as supplies from the territory of Germany and the Czech Republic.

To increase import and export capacities, Poland will aim at constructing or expanding interconnections with:
- Slovakia – up to an import capacity of 5.7 billion m3 and an export capacity of 4.7 billion m3 annually (by 2021);
- Lithuania (GIPL) – up to an import capacity of 1.9 billion m3 and an export capacity of 2.4 billion m3 annually (by 2021);
- Czech Republic (Stork II) – up to an import capacity of 6.5 billion m3 and an export capacity of 5
III. Policies and measures - Dimension Energy security

9. Expansion of natural gas storage capacities, as well as capacities for natural gas offtake and injection to underground storage (UGS) facilities in Poland

In Poland, the overall capacity of underground storage facilities exceeds 3 billion m3 with an offtake capacity below 50 million m3/day. The total available working gas volume of underground high-methane gas storage facilities in the 2017/2018 season is 2,985.4 million m3. In addition to the aforementioned high-methane gas storage facilities, two high-nitrogen gas storage facilities managed by PGNiG S.A. are in operation, namely:

- UGS Daszewo with a capacity of 40 million m3;
- UGS Bonikowo with a capacity of 200 million m3.

The high-nitrogen gas system is a closed system and the aforementioned high-nitrogen storage facilities are used to stabilise production.

It is advisable to continue the development of storage facilities as part of the UGS Working Volume Development Scheme that consists in the construction of the Kosakowo Cover Underground Storage Facility (CUGS) with the aim of stabilising the supply of gaseous fuels to the Tricity-Koszalin areas. Once the expansion process is completed, the working gas volume of CUGS Kosakowo will be a minimum of 250 million m3. The completion of the investment project is planned in 2021. At present, CUGS Kosakowo has a working gas volume of 145.5 million m3.

Additionally, Operator Gazociągów Przesyłowych Gaz-System S.A. (OGP Gaz-system S.A.) is analysing the possibility of expanding its operations to include underground gas storage in accordance with its 2016-2025 strategy. The baseline scenario is the construction of a storage facility in Damasławek near the locality of Świątkowo (Janowiec Wielkopolski municipality) and Ustaszewo (Żnin municipality) in the Kujawsko-Pomorskie Province, with Białogard in the Pomorskie Province being an alternative location.

Other gas storage expansion projects are also under consideration, such as UGS Wierzchowice or CUGS Mogilno.

The expected effects of the measures by 2030 include, if sufficient internal and external funding is obtained, an increase in the capacity of underground gas storage facilities to a minimum of 4 billion m3 by the 2030/2031 winter season and an increase in maximum offtake capacity from the current 48.7 million m3 per day to a minimum of 60 million m3 per day.

The implementation of the construction projects concerning new underground gas storage facilities and the expansion of existing ones will considerably contribute to the improvement of the country’s energy security through an increase in storage capacities which may be used to maintain commercial stocks for balancing and emergency purposes.

10. Implementation of investment plans and strategies of companies with State Treasury shareholding in accordance with the Policy of the Government of the Republic of Poland for Logistic Infrastructure in the Oil Sector

The construction of the second leg of the Pomorski pipeline (Płock-Gdańsk) is an undertaking of vital importance to safeguarding the energy security of the Republic of Poland. The current transmission infrastructure of the Pomeranian section, in spite of comprising a reversible-flow pipeline, constitutes
III. Policies and measures - Dimension Energy security

- Dimension Energy security

a single artery only and is the weakest link of the crude oil pipeline transport system due to the fact that it is not substitutable by other logistic infrastructure. This is why it is appropriate and necessary to aim at creating redundancy infrastructure, which will constitute an additional security measure for crude oil transport in the Pomeranian section. A single pipeline makes it impossible to meet the demand from PKN ORLEN refineries in Płock and, at the same time, from LOTOS GROUP refineries in Gdańsk. Furthermore, if an emergency occurs or security incidents pile up in this section of the pipeline, there is a risk of prolonged stoppage in crude oil injection and, consequently, of destabilisation of the chain logistics of supplies to the most important Polish refinery. Baseline value (2017): Three-element infrastructure for crude oil transmission, comprising the Friendship Pipeline (Eastern Section – 240 km, Western Section – 416 km) and the Pomeranian Pipeline (235 km)

Expected effects (2030): Expansion of crude oil transmission infrastructure – construction of the second leg of the Pomeranian pipeline (Płock-Gdańsk)

11. Development of regulations concerning crude oil and petroleum product stocks

To ensure an efficient emergency stock system in Poland, legal regulations must be amended to increase the role of the Agency of Stocks Reserves in building up, maintaining and financing (through the stock fee system) emergency stocks. Producers and traders build up and maintain mandatory stocks of crude oil or fuel, with the exclusion of liquefied petroleum gas (LPG), in quantities corresponding to the product of 53 days and the average daily output of fuels or the imports of crude oil or fuels by the producer or trader in the preceding calendar year. The optimisation of crude oil and fuel emergency stock system management should be achieved by lessening the administrative burden resting on producers and traders obliged to build up and maintain obligatory crude oil and fuel stocks.

12. Development of the rules for electricity market operation

Lessons learned from the operation of a single-commodity market and theoretical studies concerning electricity markets show that the achievement of an ‘ideal’ single-commodity electricity market where there is no missing money problem resulting subsequently in the missing capacity problem, is a difficult task. This concerns both the substantive solutions and the acceptance of periodically high electricity prices, or even restrictions on electricity supplies. The problem is made worse by support systems used in Europe on a large scale in relation to some generation technologies, which currently, due to the lack of developed energy storage technologies, cannot safeguard the security of supplies. In connection with the results of analyses concerning the assessment of capacity adequacy, which clearly show that there is a threat to the security of electricity supplies in Poland over the next years, a decision has been taken to implement a capacity market in order to have an effective tool in place for safeguarding the security of supplies. The efficiency of operation of the electricity market depends largely on solutions adopted on the balancing market and the system services market. The balancing market ensures that the energy demand and generation are balanced on an on-going basis, while at the same time the energy supply security criteria are met. The energy prices on this market are reference prices for forward markets (bilateral and exchange prices) and for spot markets (day-ahead and intraday), since they reflect the
value of energy at the time of its supply. The system services market makes it possible to ensure short-term excess capacity in the system with specific technical parameters, maintained for the purpose of balancing the electricity system. Prices of balancing energy from reserve capacity show, in the first place, balancing tensions (reserve shortfall leads to an increase in prices), which generates investment signals by influencing prices. The prices of individual system services create incentives for the development of sources with specific technical abilities, which support the safe operation of the electricity system, such as the ability to quickly increase or reduce the quantity of generated electricity, in accordance with the current demand, or the ability to operate with a broad range of loads. For the above reasons, correct pricing processes in the balancing market and in the system services market are an important factor affecting the quality of operation of market mechanisms in the electricity sector.

The following measures are underway in Poland to improve the efficiency of operation of the electricity market:

- **ancillary frequency control services** – changes are aimed at applying market mechanisms for obtaining reserve capacity (system services) which generate pricing signals for the development of sources necessary to balance the system in an effective manner and at the same time assume an increase in prices of reserve capacity when it is in deficit;
- **balancing energy pricing mechanism** – changes are aimed at applying a pricing mechanism based on offers actually used to generate electricity, which at the same time reflects various energy values in particular system locations due to restrictions on available network resources. By applying this approach, appropriate pricing incentives will be created for market participants to counteract short-term balancing difficulties in the system;
- **development of consumer participation in the balancing market** – changes are aimed at expanding consumer participation by enabling consumers to offer both energy supplies and system services (reserve capacity). When offering their services, consumers should be able to define the specific reduction parameters, such as the time of activating a reduction, the maximum and minimum reduction period and level, intervals between subsequent reductions etc. Such a solution will ensure conditions for maximizing the available volume of consumer load reduction and its effective use by the system operator for system balancing purposes.

The above-mentioned measures are carried out as part of a broader project aimed at implementing advanced tools for managing the operation of the national electricity system in market conditions (Market Management System – MMS), enabling its operation to be optimised with the use of precise technical and cost models and techniques of allowing for uncertainties caused by unstable sources.

13. Introduction of a capacity market as a solution ensuring the sufficiency of generation in a medium- and long-term perspective

The main goal of the capacity market is to safeguard the security of electricity supplies to end consumers in a long-term perspective.

The capacity market is a market mechanism whose objective is to safeguard the required level of security of energy supplies while minimizing costs for the economy.

The capacity market is neutral in technological terms, as a result of which it creates a level playing field for all electricity generation technologies, energy storage facilities and DSR (Demand Side Reserve).
Response) 25, taking into account the degree in which particular technologies contribute to safeguarding the security of supplies and provided that the requirements set out in the Act on the capacity market of 8 December 2017 are met. The capacity market rewards capacity market units which supply capacity in risk periods, that is in periods in which the risk of losing the continuity of supplies in the National Power System (NPS) has been identified.

The capacity market operates in parallel to the electricity market and does not introduce restrictions on pricing processes in the electricity market – prices are formed on the basis of the relationship between electricity demand and supply.

The capacity market is a commodity derivatives market, where physical delivery of capacity is carried out after the main trading processes are completed. The primary market has the form of auctions with the transmission system operator (TSO) as the only buyer. The primary market consist of the main auction that will take place in the fifth year before the delivery period and additional auctions that will take place in the year preceding the year to which the delivery periods relate. There is the secondary market to complement the primary market by enabling the reduction of risks borne by the capacity market participants, at which capacity obligations of certified capacity market units are traded in.

The capacity market is an additional market mechanism complementary in relation to the energy market:
- it creates conditions for the stable operation of existing generation sources and their repowering, as long as these sources are necessary to safeguard the security of supplies;
- it ensures clear pricing signals aimed at coordinating decisions to construct new generation capacities, as well as to decommission specific generation resources;
- it limits the investment cycle phenomenon that can be observed in energy prices for end consumers on a single-commodity electricity market, since decisions to invest in or to decommission resources are coordinated by the capacity market;
- it creates conditions for developing DSR services, both through the participation of the DSR in capacity market processes and through the provision of DSR services at the facilities of industrial consumers in order to reduce their peak power demand and thus to reduce the operation costs of the capacity market.

In 2018 and 2019, the first four main auctions were conducted on the capacity market for delivery years: 2021, 2022, 2023, 2024.

The capacity market mechanism will be modified in view of the provisions of Article 22 of Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity, which prevent units emitting more than 550 g/kWh of carbon dioxide from receiving payments and commitments under the capacity market from 1 July 2025. Work will be carried out to amend the Capacity Market Act in order to bring it into line with EU regulations, while continuing to ensure security of electricity supply to end consumers.

14. Measures to ensure flexibility of the power system in line with the anticipated changes in the NPS.
Due to an increased use of weather-dependent renewable energy sources and the need to ensure availability of back-up sources for electricity generation, it is necessary to introduce measures for the
III. Policies and measures

- Dimension Energy security

flexibility of the power system. Some of these measures have already been implemented by means of programmes for Demand Side Reduction (DSR) units, which are being developed by the transmission system operator (TSO) and through the capacity market. Special attention should be paid to the capacity market, which allows DSR units and energy storage facilities to participate in auctions. Nearly 3,200 MW of DSR units and energy storage facilities obtained capacity contracts through auctions in 2018 and 2019.

Nevertheless, an analysis would be warranted to address potential barriers to emergency gas sources.

Moreover, the new regulations will introduce a legal framework for the operation of the smart metering system, which will have an impact on the flexibility of the power system. As regards the smart metering system, remote reading meters for at least 80% of end consumers connected to the distribution network with the rated voltage of no more than 1 kV are planned to be installed by the end of 2028.

15. Identification of barriers and support for the development of energy sustainable areas at the local level.

Barriers to the implementation of local investments, in particular those resulting from the lack of social acceptance for the development of dispersed power generation, will be identified together with their causes. The analysis will concern the lack of acceptance for the development of, for example, wind power plants, agricultural biogas plants, biomass-fired thermal power plants, etc. Steps will be taken to address concerns and possibly carry out measurements of noise, odours or other nuisance factors associated with power facilities with the aim of encouraging local communities to change their negative attitude towards investment projects. The results of measurements will be communicated to local communities as they are released.

b) Regional cooperation in this area.

Responsible/involved parties: MAP, MSZ

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Co-operation within the framework of the Visegrad Group (V4)

Co-operation on the following issues is planned in the period 2021-2030 among the Visegrad Group states:

- joint position within the European Union on the directions of development for the energy sector,
- scientific research and development cooperation,
- experience sharing in the area of development of the energy sector, including cooperation with the particular technology suppliers, in particular nuclear power suppliers.

2. Market integration

Poland is a member of the following groups: Penta Plus ‘Electricity Neighbours’ HLG and Penta Initiative Technical Group on Flexibility (SG III). Poland declares its further participation in the work of the aforementioned groups and its involvement in creating an appropriate framework for further market integration.

Poland expects that the continuation of the above-described measures will result in the achievement of market integration targets through an agreement among EU Member States on matters concerning the elimination of all barriers restricting flexibility in the areas of generation, demand side involvement and development of spot and balancing markets at the level of Member States and at the regional and European Union-wide levels.

3. Co-operation with EU States and experience sharing relating to the implementation of
dimension Energy security

Poland is engaged in an active dialogue with EU States having advanced nuclear power programmes, taking advantage of their experience both in the field of development of nuclear power projects, including those aimed at increasing the share of domestic industry, as well as in the field of radioactive waste and spent fuel management. Talks are also underway concerning the development of new nuclear power technologies. Further cooperation agreements may be concluded with other countries in the field of nuclear power at the level of Ministers responsible for nuclear power.

4. Cooperation with pro-nuclear like-minded states

In November 2017, the United Kingdom proposed an initiative to re-activate the pro-nuclear like-minded group. The re-activated group is composed of representatives of Bulgaria, the Czech Republic, France, Finland, Hungary, Poland, Romania, Slovakia, Slovenia and the United Kingdom. To date, the Group has developed several joint positions on nuclear power matters, addressed to European Union institutions.

Expected effects of the Group’s operation:
- working party meetings of the Group (two meetings/semester at the level of ambassadors at the EU, working party coordination before meetings of the Working Party on Atomic Questions (WPAQ), appointment of the State to coordinate the work of the Group);
- joint positions within the EU on the optimisation of conditions for the development of nuclear power;
- coordination of positions on important issues within the Working Party on Atomic Questions (WPAQ);
- establishment of a coalition for the purpose of voting on an amendment to the regulation implementing Article 41 of the Euratom Treaty;
- establishment of a coalition for the purpose of possible voting on amendments to the Euratom Treaty – the sharing of information relevant to nuclear power in the EU.

c) If applicable, financing measures in this area at national level, including EU support and the use of EU funds.

Responsible/involved parties*:

MAP, MFiPR, MR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. The financing measures for, among other things, energy security in the electricity and gas sectors are described in 3.4.2.

2. Development of the use of LNG infrastructure in Poland

This area covers the following projects:
- **Construction of liquefying (LNG) installations with the use of technologies based on the transmission network capacity.** The rapid development of the LNG market in Poland requires that all available options be used to supply both enterprises and vehicle fleets with gas. By exploiting the capacity of high-pressure gas pipelines, energy-efficient gas liquefying installations make it possible to increase the energy efficiency of the transmission system and the scope of services provided.

- **Construction and operation of LNG bunkering infrastructure in the Baltic Sea-LNG Bunkering Vessel.** The objective of the project is to expand infrastructure for bunkering vessels in the Baltic Sea with low-sulphur LNG fuel. The planned development and modernisation of supply systems for vessels, relating to the legal regulations in force and the development of the LNG market, will require the expansion of LNG fuel bunkering infrastructure. Due to an expected increase in demand for LNG bunkering services, it is necessary to enable a quick and reliable
III. Policies and measures

- **Dimension Energy security**
 - **Bunkering of vessels in the Baltic Sea.**
 - **CHP (Combined Heat and Power)** – increasing the regasification capacity of the LNG terminal in Świnoujście. Project objective: Enhancing the energy efficiency of the terminal will allow to reduce its operating costs.
 - **Inter-modal LNG logistic base.** Project objective: Increasing the reach of the logistic services of the LNG terminal in Świnoujście. Possibility of implementing a virtual pipeline service. Possibility of transporting high volumes of LNG at long distances. Enhancing the effectiveness of services provided by the LNG terminal in Świnoujście and thus increasing its role in the CEE & Baltic region. Supplying the necessary volumes of LNG to peak shaving stations supporting the National Transmission System (NTS) and satellite regasification. Transmitting raw material for the purpose of providing other LNG services, e.g. supplying vehicle refueling stations, vessel bunkering stations etc.
 - **ISO containers.** Project objective: Use of intermodal gas carriers.
 - **Peak shaving regasification station.** Project objective: Using LNG to supply the areas of GAZ-SYSTEM infrastructure characterised by insufficient transmission capacity. Ensuring the possibility of providing areas and customers not connected to the NTS with gas infrastructure on a temporary or permanent basis. Creating infrastructural foundations (transshipment depots for ISO containers) for further distribution of natural gas in liquefied form.
 - **LNG transshipment skid.** Project objective: Ensuring a possibility of quick and reliable LNG transshipment and bunkering.
 - **Expansion of LNG regasification capacity on the Polish Baltic Sea coast.** Project objective: The developing LNG market makes it necessary to prepare gas infrastructure for an increased natural gas off-take in case of market interest.

The implementation of projects in the area concerned will contribute to improving energy security (not only in terms of imports, but also in terms of ensuring gas supplies, taking into account infrastructure constraints in Poland) and to a reduction in the emission of air pollutants and greenhouse gases. **Proposed form of financing:** CEF grant, non-repayable grant.

4. **Underground gas storage:**
 - From the point of view of increasing domestic gas consumption, subsidies for investments relating to the construction and expansion of underground gas storage facilities should be sought.
 - Expected increase in domestic gas consumption is due to:
 - investments in gas blocks (including cogeneration blocks);
 - provision of gas infrastructure to new areas and replacement of existing heat sources with gas;
 - increase in the importance of gas in road and maritime transport;
 - increase in the role of gas as an energy source providing back-up for the operation of the sector of unstable renewable energy sources.
 - Additionally, as a location in which a gas transmission and trading hub is planned to be created, Poland should have storage capacities to meet the requirements of the proper operation of the transmission system and the needs of entities from other countries of the region.
 - Support should be provided to investments relating to the construction or expansion of cavern underground gas storage facilities, which are of key importance to safeguarding the security of
supplies in winter and in a situation where supplies from prevailing import directions are discontinued. The construction and expansion of cavern underground gas storage facilities are characterised by high capital intensity and time consumption. In a majority of cases, the aforementioned factors and the low profitability of investments make it impossible to rely on market mechanisms when carrying out construction projects. Nevertheless, such projects are necessary in order to ensure the correct operation of the gas system.

5. Support for the development of large-scale energy storage facilities to balance energy demand and generation (power balance)

Having regard to current trends in the development of the energy sector and an unavoidable increase in the use of renewable energy sources, there is a need for developing an energy storage technology which will facilitate the integration and development of distributed RES. Support from European funds should cover both the application and purchase of storage technologies, as well as research, development and implementation. At the current level of technological progress and given the current economic situation, there are no incentives to vigorously pursue energy storage projects.

6. Improvement of Poland's energy security with regard to the diversification of crude oil supplies and expansion of liquid fuel storage facilities

This area covers the following projects (carried out by PERN S.A.):
- second stage of development of the Oil Terminal in Gdańsk;
- construction of two tanks for crude oil at the Storage Depot in Gdańsk/Górki;
- construction of tanks for liquid fuels;
- construction of the second leg of the Pomeranian Section;
- construction of the Boronów-Trzebinia fuel pipeline.

These projects contribute to the implementation of the Policy of the Government of the Republic of Poland for Logistic Infrastructure in the Oil Sector. The projects are aimed at supporting the diversification of crude oil supplies through the expansion of the infrastructure system for the supply of crude oil from sources alternative in relation to pipeline supplies from the Russian Federation. The projects will enable an increase in emergency stock storage capacities that will enhance regional energy security.
3.4 Internal energy market

3.4.1. Electricity infrastructure

a) Policies and measures to achieve the targeted level of interconnectivity presented in 2.4.

Responsible/involved parties*:

MAP, power transmission system operator (PSE S.A.), Government Plenipotentiary for Strategic Energy Infrastructure, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. The availability of the current cross-border interconnections will be increased by optimising the allocation of available capacity based on the flow-based approach. It is expected that by better addressing network conditions (including congestion), the FBA, which is planned to be implemented by 2025, will enable a more accurate calculation of electricity flows. In connection with this optimisation measure, an increase is expected in the transmission capacities made available by Poland for cross-border trade.

The determination of interconnection capacity planned in 2030 depends on the implementation of the investment schedule and progress in the implementation of the coordinated methodology for capacity determination.

In view of the above, Poland is unable to set a numerical target at the present stage. It should be stressed that phenomena such as unscheduled compensatory power flows (loop flows) have to be taken into account when determining the interconnectivity factor.

In accordance with Regulation (EU) 2019/943 of the European Parliament and of the Council on the internal market for electricity, an Action Plan that addresses the nature of structural network congestion in Poland has been prepared with a view to making available 70% of transmission capacity. When the Action Plan is applied, the final deadline for achieving the CEP 70% target is 31 December 2025. The Action Plan will be carried out from 1 January 2020. The measures adopted under the Action Plan are scheduled over four years (1 January 2020 to 31 December 2023).

2. With respect to the development of the transmission network by 2030, the following three projects concerning the development of the national transmission network and cross-border interconnections have been included in the TYNDP2018:

1. GerPol Improvements
2. GerPol Power Bridge I
3. LitPol Link Stage II

Poland is aware of the need to ensure efficient and well developed network infrastructure, which is why the investment area related to transmission infrastructure is regarded as extremely important. The cross-border interconnection capacity between Member States should be increased primarily by the optimum use of existing interconnections and the elimination of barriers preventing market participants from getting access to the grid, including the elimination of bottlenecks in national systems.

The purpose of GerPol Improvements is to increase cross-border transmission capacities within the synchronous area (covering interconnections at the border with Germany, the Czech Republic and Slovakia) by switching the 220 kV Krajnik-Vierraden line to 400 kV and installing phase-shifters on the existing Poland-Germany interconnections. The implementation of the project will enable
increasing the NPS’s import capacities by 500 MW and its export capacities by 1,500 MW.
The purpose of GerPol Power Bridge I is to increase cross-border transmission capacities within
the Polish synchronous area. Looking forward to 2030, the expansion of the internal transmission
network is planned in the western part of the country, which will enable increasing import capabilities
of the National Power System by 1,500 MW and its export capacities by 500 MW. GerPol Power
Bridge I is included in the fourth PCI list, published in 2019, and covers the following investment
projects:
- the internal 400 kV Krajnik-Baczyna line,
- the internal 400 kV Mikulowa-Świebodzice line,
- the internal 400 kV Baczyna-Plewiska line.
LitPol Link Stage II was a follow-up to the construction of an interconnection between Poland and
Lithuania to achieve the planned transmission capacity of 1,000 MW in both directions. The
construction of additional transmission network facilities in Poland and Lithuania (including the
second back-to-back converter at the Alytus station) was planned under the project. However, in
2016, the Lithuanian Government decided not to proceed with the construction of the second
converter in view of ongoing discussions within the framework of BEMIP HLG on another option of
interconnection with the European transmission system, which was to include elements of LitPol
Link Stage II.
The third PCI list included a project covering the construction of the 400 kV Stanisławów-Ostrołęka
line. The investment project will be completed by 2023 and will result in the creation of conditions
for electricity exchange with the Lithuanian electricity system while ensuring safe operation of this
interconnection. In connection with the political agreement of 28 June 2018 between the Baltic
states and Poland concerning the synchronisation of the Baltic states, Poland regards this project
as necessary for the Synchronic Integration of the Baltic States with the Continental Europe system
and will proceed with the construction of the Stanisławów-Ostrołęka line despite Lithuania’s
withdrawal from the Alytus second direct current converter project.

b) Regional cooperation in this area

Responsible/involved parties*:
MAP, power transmission system operator (PSE S.A.), Government Plenipotentiary for
Strategic Energy Infrastructure
* subject to potential changes resulting from amendments to the Act on government
administration departments.

Support, as part of regional fora (Penta Plus ‘Electricity Neighbours’ HLG, Penta on
Flexibility (SG III)), for the implementation of the FBA for calculating and allocating
transmission capacities throughout the region and the adoption of fair rules for settling the
costs of remedying measures conducted in the region.

To increase the transmission capacities of cross-border interconnections Poland intends to develop
cooperation with neighbouring countries, primarily with the Republic of Lithuania and the Federal
Republic of Germany. Among the positive results of cooperation to date is the construction of a
‘power bridge’ between Poland and Lithuania completed in 2015. The project included the
construction of an interconnection between the Elk Bis station with the Alytus station in Lithuania
and, at the same time, on the Polish side, the construction and modernisation of power lines and
stations in three provinces. Eleven major network infrastructure investment project were carried out
as part of the project, four 400 kV power lines were constructed with an aggregate length of ca. 400
km, five power stations were constructed and two power stations already in operation were
modernised.

c) If applicable, financing measures in this area at

1. Monitoring the operator’s use of proceeds from interconnection capacity allocation
III. Policies and measures - Dimension Internal energy market

1. National level, including EU support and the use of EU funds.

Responsible/involved parties: MAP, URE, MFiPR, MR

* subject to potential changes resulting from amendments to the Act on government administration departments.

The transmission system operator will use any revenues resulting from the allocation of interconnection in accordance with the provisions of Regulation 714/2009 and its amending Regulation COM (2016)861. The President of the Energy Regulatory Office (URE) will monitor the implementation of this measure. By 31 July of each year, the President of URE publishes a report specifying:

- the amount of revenue collected for the 12-month period up to 30 June of the year concerned,
- the use made of the revenues in question, together with verification that use complies with the amended Regulation 714/2009, its amending Regulation COM (2016)861 and the Guidelines; and
- information on whether the total amount of congestion income is devoted to one or more of the three prescribed purposes.

The assignment of income from the allocation of interconnection capacity will contribute to ensuring the desirable level of the available cross-border transmission capacity and to developing transmission infrastructure.

2. Inclusion of projects which can contribute to the integration of regional markets in the list of Projects of Common Interest (PCI) and their effective implementation

Poland actively participates in the preparation of lists of Projects of Common Interest (PCI). The lists created so far include projects promoted by Polskie Sieci Elektroenergetyczne S.A. (PSE S.A.). In the period 2021-2030, Poland will seek to include new PCIs in future PCI lists, which will contribute to the further integration of regional markets.

3. Investment support under the Connecting Europe Facility (CEF)

Poland intends to take advantage of funding for infrastructure projects under the Connecting Europe Facility as part of the future financial perspective. The CEF instrument is dedicated to PCIs and Poland will seek the PCI status to be granted to new infrastructure projects.

4. Development of the gas transmission network

Support in the form of EU funds should be allocated to, among other things, the development of a transmission network in Poland. Following the implementation of transmission investments, it will be possible to increase the volumes of natural gas transmitted to consumers connected both to the transmission and distribution networks, including in the areas not yet connected to gas infrastructure.

GAZ-SYSTEM is going to carry out most of the planned intersystem projects by the end of 2022, i.e. under the current financial perspective, which includes the expansion of the LNG terminal in Świnoujście and of interconnectors with neighbouring EU Member States. Pursuant to the new Ten-Year National Plan (TYNP) 2018-2027, a far-reaching investment plan is to be carried out in the first five-year period, i.e. from 2018 to 2022. In 2023-2028, that is in the actual period of implementation of the future EU financial perspective, GAZ-SYSTEM's investment plans focus on the expansion of the transmission network in the eastern part of Poland and in other regions of the country.
3.4.2. Energy transmission infrastructure

a) Policies and measures related to the elements set out under 2.4.2, including, where applicable, specific measures to enable the delivery of Projects of Common Interest (PCIs) and other key infrastructure projects.

Responsible/involved parties*:

MAP, power transmission system operator (PSE S.A.), gas transmission system operator (GAZ-SYSTEM S.A.), Government Plenipotentiary for Strategic Energy Infrastructure, electricity and gas distribution system operators, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Inclusion of projects which can contribute to the integration of regional markets in the list of Projects of Common Interest (PCI) and their effective implementation

Poland is actively participating in the preparation of lists of Projects of Common Interest (PCI) in relation to electricity and natural gas investments. The lists to date include projects promoted by the Polish electricity transmission network operator Polskie Sieci Elektroenergetyczne S.A. (PSE S.A.) and the Polish natural gas transmission network operator OGP GAZ-SYSTEM S.A.

In the period 2021-2030, Poland will seek to include new PCIs in future PCI lists that will contribute to the further integration of regional markets, their competitiveness, the safety of energy supply and sustainable development.

2. Investment support under the Connecting Europe Facility (CEF)

It is reasonable to keep the possibility of funding infrastructure projects under the Connecting Europe Facility as part of the future financial perspective. The CEF instrument is dedicated to PCIs and Poland will seek the PCI status to be granted to new infrastructure projects.

3. Poland’s electricity projects regarded as Projects of Common Interest (PCI)

Poland’s electricity projects are classified as Projects of Common Interest in the first, second and third lists of Projects of Common Interest (PCI). The projects located in the Poland-Lithuania and Poland-Germany corridors (phase shifter at the Mikulowa station) have already been completed.

The PCI list published in 2017 includes three Polish projects forming part of the NSI East Group:
- 3.14.2 Krajnik-Baczyna internal line (expected to be completed by the end of 2023);
- 3.14.3 Mikulowa-Świebodzice internal line (expected to be completed by the end of 2023);
- 3.14.4 Baczyna-Plewiska internal line (expected to be completed by the end of 2023);

and one project forming part of the BEMIP Group:
- 4.5.2 Stanisławów-Ostrołęka internal line (expected to be completed by the end of 2023).

The aforementioned projects are expected to be carried out as part of investment activities aimed at developing the transmission network and cross-border interconnections by 2030.

4. Poland’s gas projects regarded as Projects of Common Interest (PCI)

The PCI list published in 2019 includes four Polish projects forming part of the NSI East Gas Group:
- 6.2.1 Poland-Slovakia Interconnector
- 6.2.2 North-South gas corridor in Eastern Poland
- 6.2.10. Poland-Czech Republic Interconnector [‘Stork II’]
- 6.2.11. North-South gas corridor in Western Poland

and three projects forming part of BEMIP Gas:
- 8.3.2 Poland-Denmark Interconnector [Baltic Pipe’]
- 8.5 Poland-Lithuania Interconnector [GIPL’]
- 8.7 – Expansion of the LNG Terminal in Świnoujście

Implementation of investment tasks consisting in the construction of infrastructure enabling gas supplies to Poland from new sources (Norway and LNG), the development of the national transmission network, the increase of storage, offtake and injection capacity of underground gas...
storage facilities, and the construction of a system of interconnections integrating the national transmission system with the neighbouring markets.

Expected effects for 2030: Operational cross-border interconnections with the neighbouring EU countries and Ukraine and an expanded and modernised transmission network enabling gas to be supplied to customers in Poland and abroad.

5. Monitoring of the implementation, by the operators, of investment projects included in the development plans for meeting current and future electricity demand

An energy company transmitting or distributing gaseous fuels or energy is required to prepare a development plan for its area of operation, concerning the satisfaction of current and future demand for gaseous fuels or energy, for a period of at least three years.

Pursuant to Article 16(2) of the Energy Law (Journal of Laws 2017, item 220), a gas transmission system operator and an electricity transmission system operator are required to prepare a development plan concerning the satisfaction of current and future demand for gaseous fuels or electricity for a period of 10 years. The aforementioned plan is subject to updating every two years as regards demand for gaseous fuels, and every three years as regards electricity demand.

Pursuant to Article 16(4) of the Energy Law, a gas distribution system operator and an electricity distribution system operator are to prepare a development plan concerning the satisfaction of current and future demand for gaseous fuels or electricity for a period of at least five years.

The President of the Energy Regulatory Office (URE) is obliged, under Article 23(2a)(2) of the Energy Law, to prepare a report presenting and assessing, among other things, the implementation of the plans referred to in Article 16(2) and 16(4) (i.e. development plans concerning the satisfaction of current and future demand for gaseous fuels or electricity of the operators of the transmission and distribution systems). The report is to be prepared in accordance with Article 23(2c) of the Energy Law every two years. It was prepared in the years 2013, 2015 and 2017.

In addition to the above, the achievement of the planned volumes is analysed on an annual basis and the results of the analysis are used in the process of agreeing subsequent editions of development plans or their updates. Such analyses are conducted on the basis of annual reports on the implementation of the development plan, which energy companies are obliged to submit on the basis of Article 16(18) of the Energy Law.

In the period 2021-2030, the President of URE will monitor the implementation of development plans on an annual basis and will prepare, on a biannual basis, a report presenting and assessing the conditions for undertaking and conducting business activities in the field of electricity generation, transmission or distribution and the implementation of development plans of transmission and distribution system operators with respect to the satisfaction of current and future demand for gaseous fuels or energy.

b) Regional cooperation in this area

1. Integration of the electricity transmission networks of the Baltic States

The third list of Projects of Common Interest (PCI) was published in 2017, including projects relating to the integration of the networks of the Baltic states and the North-South (N-S) Corridor projects. The PCI list includes the Stanisławów-Ostrołęka line project, identified with number 4.5.2., as an element of the Baltic Energy Market Interconnection Plan (BEMIP Electricity) corridor. The investment project will be carried out before 2030, and its effects will include the creation of...
III. Policies and measures - Dimension Internal energy market

1. Financial support for the construction of electricity transmission and distribution and gas transmission and distribution infrastructure

Given the electricity system interconnections target set at 15%, support must be provided for this area within the next financial perspective. The acceleration of the transition of the EU power system towards a low-carbon system and the increasing share of renewable energy sources in energy mix results in the need to ensure appropriate funds to invest in flexible generation sources and the expansion of gas and electricity infrastructures in relation to distribution and transmission networks. Financial support for the area in question in the financial perspectives 2021-2027 and 2028-2034 is desirable. The amount and scope of support for distribution projects should take into account the need to reduce low-carbon emission and to improve the quality of the air.

Support for cross-border electricity and gas interconnections is possible as part of the Connecting Europe Facility (CEF) or other EU financial instruments to be in operation after 2020. Strong competition from Member States in the process of seeking funds for the expansion of transmission infrastructure results in a situation where financial support, if any, as part of this source will only be granted to few investment projects.

If necessary, funds will be applied for under the Connecting Europe Facility financial instrument or other EU financial instruments in operation after 2020.

2. Development of an electricity transmission network

This category covers the following project areas, in which Polskie Sieci Elektroenergetyczne S.A. operates.

The listed projects improve Poland’s energy security. The implementation of the specified projects enhances the energy efficiency of the electricity transmission network in Poland.

- Expansion of the transmission network to improve the reliability of power evacuation from conventional energy sources – location of the project (province): Dolnośląskie, Mazowieckie, Śląskie;
- Expansion of the transmission network to improve the reliability of power evacuation from

- [PSE S.A.], gas transmission system operator (GAZ-SYSTEM S.A.), Government Plenipotentiary for Strategic Energy Infrastructure

* subject to potential changes resulting from amendments to the Act on government administration departments.
III. Policies and measures - Dimension Internal energy market

- Renewal energy sources – location of the project (province): Zachodniopomorskie, Wielkopolskie;
- Development of the transmission network to enhance transmission capacities of the NPS – location of the project (province): Dolnośląskie, Lubuskie, Łódzkie, Świętokrzyskie;
- Enhancement of the security of electricity supplies and the improvement of the conditions of supply from the transmission network – location of the project (province): Łódzkie, Małopolskie, Mazowieckie, Śląskie, Zachodniopomorskie;
- Interconnection of and power evacuation from the first nuclear power plant in Poland – the construction of a nuclear power plant will imply the need to adapt the transmission network to safe power evacuation from the facility. The determination of the investment needs will be possible once the location has been selected and the basic parameters of the facility have been specified;
- Interconnection of and power evacuation from off-shore wind farms (including the construction of off-shore transmission capacities). The scope of the necessary investments in transmission networks will depend on the installed capacity of off-shore wind farms and the model of their connection to the NPS.

3. Improving the reliability of electricity supply to consumers, including conversion of MV overhead lines to underground lines in forested areas.

Over 41,000 km of overhead MV lines are located in forest and woodland areas, where the overhead-to-underground conversion is particularly important for the reduction of the causes and effects of failures.

To achieve a more reliable operation of the network, medium voltage networks must be successively converted from overhead to underground lines. For this purpose, a national plan of overhead-to-underground conversion until 2040 will be developed in 2020. Additionally, equipping medium voltage line connectors with remote control systems is also regarded as a priority. Appropriate funding for the aforementioned investments needs to be guaranteed.

4. Provision of gas supply infrastructure in Poland through the development of the distribution network and local LNG supply stations

If financing is obtained from EU funds as part of Multiannual Financial Frameworks for the period 2021-2027 for projects in the gas sector, a portion of funds should go to the gas distribution sector understood as a distribution network and local networks equipped with local LNG regasification stations, with an emphasis on the following issues:
- civilizational advancement of rural areas and Eastern Poland not connected to gas infrastructure;
- reduction of low-carbon emissions – PM2.5 and PM10 (smog);
- gas as low-carbon fuel in the context of CO2 emissions.

Despite the fact that in a vast majority of cases investments in distribution networks are regarded as commercial investments, it is appropriate to accelerate investments enabling an increment in areas covered by gas supply infrastructure. The measures taken are expected to result in bringing gas infrastructure to ca. 77% of Polish municipalities (compared to the current figure of 65%). As part of the assessment of projects for which financial support is sought, the impact of the project...
III. Policies and measures - Dimension Internal energy market

<table>
<thead>
<tr>
<th>5. Expansion of gas transmission infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the case of granting financing from EU funds for investments in the gas sector, the area covers the following projects, planned to be implemented by the company Operator Gazociągów Przesyłowych GAZ-SYSTEM S.A.:</td>
</tr>
<tr>
<td>- Rembelszczyzna-Wronów DN 1000 gas pipeline,</td>
</tr>
<tr>
<td>- Rozwadów-Końskowola-Wronów gas pipeline with a diameter of at least DN 700,</td>
</tr>
<tr>
<td>- Jarosław-Rozwadów gas pipeline with a diameter of at least DN 700,</td>
</tr>
<tr>
<td>- Hermanowice-Jarosław gas pipeline with a diameter of at least DN 700,</td>
</tr>
<tr>
<td>- Gustorzyn-Wronów DN 1000 gas pipeline,</td>
</tr>
<tr>
<td>- Reszki-Gustorzyn DN 1000 gas pipeline,</td>
</tr>
<tr>
<td>- Tworzeń-Oświęcim gas pipeline with a diameter of at least DN 500,</td>
</tr>
<tr>
<td>- Damasławek-Mogili-Odolanów DN 1000 gas pipeline,</td>
</tr>
<tr>
<td>- Racibórz-Oświęcim gas pipeline with a diameter of at least DN 700/</td>
</tr>
<tr>
<td>- STORK II gas pipeline (Kędzierzyn-Hat)</td>
</tr>
</tbody>
</table>

The projects enhance the energy efficiency of the natural gas transmission system in Poland. Investments are a form of implementing the policy of levelling differences between regions in the area of energy network infrastructure. The projects are aimed at supporting the diversification of natural gas supplies through the expansion of transmission system infrastructure, which will allow to improve the energy security of Poland.

on the air pollution with particulate matter should be treated as an equally important criterion as maturity (understood as a possibility of carrying out the investment project within the financial perspective). Plans for the provision of gas supply infrastructure for areas currently regarded as most polluted on the basis of the official data of the Chief Inspectorate for Environmental Protection (Główny Inspektorat Ochrony Środowiska - GIOŚ) should be treated on a priority basis.
3.4.3. Market integration

a) Policies and measures related to the elements set out in 2.4.3.

Responsible/involved parties*:

MAP, URE, power transmission system operator (PSE S.A.) and gas transmission system operator (GAZ-SYSTEM S.A.), MK

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Integration and improvement of market operation

In the past four years, the Government of the Republic of Poland has taken a number of measures aimed at integrating and improving the operation of the electricity market. The examples of such measures include:

- increasing the exchange obligation from 15% to 30% (January 2018),
- increasing the exchange obligation to 100% (January 2019),
- changing price caps on the Day-Ahead Market, the Intraday Market and the Balancing Market,
- significantly reducing technical barriers to cross-border trade within the synchronous area,
- acting as a leader in the process of synchronising the power systems of the Baltic States with the continental Europe system.

Poland is currently carrying out or planning to carry out shortly the following actions:

- carrying out investments in electricity networks to significantly increase, by 2025, interconnection capacities made available for trade and in times of emergency (in connection with the implementation of the Action Plan),
- accession of the Polish Power Exchange (Towarowa Giełda Energii S.A.) and the TSO to the European XBID trading system on the intraday energy market (IDM),
- a programme to improve liquidity on the energy exchange through designation of market makers,
- using marginal pricing as a basis for balancing market prices,
- enabling balancing service providers to update their integrated scheduling bids as close as possible to real time (intraday market gate closure),
- implementing the scarcity pricing mechanism,
- phasing out system services in relation to the provision of the necessary capacity in the NPS: Cold Contingency Reserve (Interwencyjna Rezerwa Zimna), Intervential Operation (Praca Interwencyjna), Guaranteed DSR Emergency Programme (Gwarantowany Interwencyjny Program DSR), Operational Capacity Reserve (Operacyjna Rezerwa Mocy).

2. Implementation of the provisions of network codes and the European Commission guidelines concerning mechanisms for allocating transmission capacities and coupling markets in various time horizons

Participation in the implementation of network codes and the European Commission guidelines prepared in the form of EU regulations. The aforementioned tasks will be implemented in accordance with the time schedules specified in these regulations.

The most important change to the amended network code consists in supplementing the regulation by new provisions setting out the Europe-wide rules for identifying market demand for the expansion of existing system interconnections or the construction of new interconnections and the rules for...
allocating additional capacity or new capacity referred to as incremental capacity (the so-called incremental procedure).

The Regulation has also been supplemented by new dates of interconnection capacity auctions for annual and quarterly products. In the case of quarterly product auctions, the frequency with which they are organised has also been increased. Also the rules for offering firm and interruptive capacity for long-term products have been defined more precisely.

Regulation (EU) 2019/943 widened the scope of the provisions of the existing network codes and Commission guidelines by introducing, amongst others, a target relating to the provision of cross-zonal capacity for the purposes of cross-border trade. This target has been imposed on TSOs as an obligation to provide market participants, as of 1 January 2020, with cross-zonal capacity at a level not lower than 70% of the transmission capacity for a given border or critical network element/contingency (CNEC) pair, subject to operational security limits. If network constraints exist in a bidding zone, a Member State may decide to meet the target at a later date on the assumption that the provided transmission capacity will increase annually. Poland has decided to prepare an Action Plan under which the 70% target will be reached by 31 December 2025 through the adoption of a variety of measures.

On 17 March 2017, Commission Regulation (EU) 2017/460 of 16 March 2017 establishing a network code on harmonised transmission tariff structures for gas was published. It entered into force on 6 April 2017 and was to be implemented by 31 May 2019.

The purpose of the new regulation is to enhance the transparency of the process of determining gas transmission tariffs, as well as to make their structures in the European Union area uniform. The Regulation also sets out consultation and publication obligations concerning the calculation methodology and the technical parameters to be adopted to calculate transmission tariffs, which is to ensure the users of EU systems a greater predictability of the level of fees and their comparability.

Solutions enabling the application of a discount at the entry to the transmission system from an LNG terminal have also been adopted.

The adoption of the uniform standards of capacity allocation in transmission systems throughout the EU will contribute to the smooth operation of the gas market and to increasing energy security. The implementation of the Code concerning the harmonisation of gas transmission tariff structures should contribute to a better integration of the European gas market, enhancement of the security of supplies and the development of system interconnections, which in turn may improve the competitiveness of EU companies and will contribute to reducing gas bills issued to households.

3. Monitoring the security of electricity and natural gas supplies in various time horizons

The President of the Energy Regulatory Office (URE) is obliged, under Article 23(2)(20) of the Energy Law, to monitor, among other things, the operation of the electricity system as regards the security of electricity supply, under Article 23(2a) of the Energy Law, to prepare a report presenting and assessing the conditions for undertaking and conducting business activities in the field of generation, transmission and distribution of electricity and the fulfilment of the plans referred to in Article 16(2) and (4) (i.e. development plans concerning the satisfaction of current and future demand for gaseous fuels or electricity of the Operators of transmission and distribution systems).

The existing powers are expected to be maintained in 2021-2030, i.e. the President of URE will
monitor the operation of the electricity system in terms of the security of electricity supply and will prepare a biannual report presenting and assessing the conditions for undertaking and conducting business activities in the field of electricity generation, transmission and distribution and the fulfilment of the plans referred to in Article 16(2) and (4). With respect to the gas sector, the minister responsible for energy will assess, on an annual basis, the security of natural gas supplies.

With regard to the natural gas sector, the minister responsible for energy, pursuant to Article 15b of the Energy Law, is obliged to assess annually the security of gaseous fuel supplies, in particular by monitoring a sustainable and continuous supply of natural gas to the country. The results of the assessment are presented in the Report on the results of monitoring the security of gaseous fuel supplies, which is published in the ministry’s public information bulletin (BIP) and communicated to the European Commission. Moreover, the minister responsible for energy, as a competent authority within the meaning of Regulation (EU) 2017/1938 concerning measures to safeguard the security of gas supply and repealing Regulation (EU) No 994/2010, prepares Assessment of risk relating to the security of natural gas supply to Poland (updated every 4 years), as well as preventive action plans and emergency plans (updated every 2 years).

4. Actions to guarantee an appropriate level of flexibility of the electricity system through:
 - expansion of transmission and distribution networks;
 - construction of modern generation units with an extensive range of control options;
 - modernisation of small and medium-sized units (redevelopment of thermal units enabling operation with a minimum technical load of up to 20-30%);
 - expansion of smart energy networks along with smart metering systems enabling electricity demand to be shifted;
 - shifting electricity demand from daily peaks to periods of low demand at night (night valleys);
 - use of system ancillary frequency control services.

The changing characteristics of operation of the National Power System (NPS), including in particular the growing share of uncontrollable renewable sources, increasing participation of prosumers and also – in the future – of electric vehicles, accompanied by changes in the development of power demand during the 24 hour cycle, result in the need to implement measures aimed at increasing power system flexibility.

Additionally, there are practically no regulating reserve sources in the Polish NPS (except for pumped-storage plants) that would be capable of adjusting the level of production to changes in electricity demand.

The implemented measures will contribute to a greater flexibility of the NPS and will enable the transmission system operator and distribution system operators to operate the power system in a secure and effective manner.

5. Strengthening mechanisms for the protection of electricity consumers’ rights in the retail market

The task will be carried out by making the existing consumer protection mechanisms more efficient, partly also by implementing Directive of the European Parliament and of the Council on common rules for the internal market in electricity COM(2016)864 into the Polish legal regime. In this respect,
new mechanisms will be expanded to protect household consumers. The platform for comparing vendors’ offers will be expanded. Additionally, information will be presented in bills in an expanded form, so that end consumers know the components of the electricity fees they pay. At the same time, bills and additional information will be presented more clearly to make them more comprehensible to end consumers. Moreover, the existing alternative dispute resolution methods will be further developed and improved so that end consumers have access to information on available alternative solutions (e.g. spreading payments into installments, advice on debt management) reasonably in advance before the suspension of supplies of electricity or gaseous fuels.

6. Strengthening regulations to increase the activity of household consumers and proposing new legal solutions
The task will be carried out by streamlining the existing incentive mechanisms aimed at encouraging consumers to be more active in the electricity market. The task will be partly carried out by implementing Directive of the European Parliament and of the Council on common rules for the internal market in electricity into the Polish legal regime.
It is expected that new mechanisms will be introduced and the existing ones will be expanded in the period 2021-2030 as part of work on strengthening the legal environment encouraging household consumers to take a more active role in the electricity market.
The first solution to be applied will be the introduction of regulations encouraging suppliers to offer dynamic price contracts. The availability of these services will be linked to the popularisation of smart meters.
Additionally, regulations encouraging consumers to engage in prosumer activities will be drafted, so that consumers can generate energy as well as store and sell it. In view of the fact that consumers will adopt more active roles, the legal settings will have to be prepared for the development of demand aggregation services, not only at the level of entities with a greater demand for electricity, but also at the level of household consumers. What is more, households may become active in the electricity market not only on an individual basis (as prosumers), but also on a collective basis, for example by becoming involved in setting up local energy communities.
Strengthening of the legal environment, which is an additional incentive for the implementation of prosumer investments, will also consist in detailed regulation of technical requirements, grid connection conditions and cooperation of RES micro-installations with the power system. This will be done taking into account the need to increase the share of electricity from microinstallations in the State’s energy balance, while ensuring the safety and reliability of the operation of the power system.
Moreover, issues such as the registration of metering data, energy balancing, billing of renewables self-consumers and provision of measurement data will be regulated. It should be noted that the detailed regulation of phase-to-phase balancing will bring measurable benefits for the billing of micro-installations and the final balance of energy generated from these installations and that taken from the grid.

| b) Measures to increase the flexibility of the power system with regard to renewable energy production | Implementation of intraday market coupling mechanisms relating to electricity system balancing |

III. Policies and measures - Dimension Internal energy market
such as smart grids, aggregation, DSR, storage, distributed generation, mechanisms for grid traffic dispatching, re.dispatching and curtailment, real-time price signals, including the roll-out of intraday market coupling and cross-border balancing markets.

Responsible/involved parties: MAP, URE, power transmission system operator (PSE S.A.)

* subject to potential changes resulting from amendments to the Act on government administration departments.

c) If applicable, measures to ensure a non-discriminatory share of renewable energy, DSR and storage, in all energy markets.

Responsible/involved parties: MAP, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

The task will be implemented in accordance with the time schedules specified in the following regulations:
- Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management,
- Commission Regulation (EU) 2016/1719 of 26 September 2016 establishing a guideline on forward capacity allocation,

The implementation of measures will allow to ensure the security of the national power system while enabling integration in the field of cross-border exchange. An important integration element to be considered when implementing balancing guidelines is the specific nature of the Polish centrally dispatched balancing system. The rules and time schedule for carrying out the task may be changed if an amendment to the EU legislative acts referred to under 1-3 is adopted, which is planned to take effect in 2020.

Ensuring priority access and transmission of renewable energy or energy from high-efficiency cogeneration on the basis of the Energy Law and the Act on renewable energy sources

To meet the target, the Polish legal order contains the rule of priority for connecting installations using renewable energy to the electricity grid (Article 7(1) of the Energy Law), as well as the rule of priority for transmitting and distributing electricity from renewable sources and for cogeneration (Article 9c(6) of the Energy Law).

Regulation (EU) 2019/943 of 5 June 2019 on the internal market for electricity has introduced, as of 1 January 2020, capacity limits to which mandatorily applies the principle of priority access to the network.

d) Policies and measures to protect consumers, especially vulnerable and, if applicable, energy poor consumers, and to improve the competitiveness and contestability of the retail energy market.

Responsible/involved parties: MAP, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

Awareness actions targeted at electricity and gas consumers

On-going information actions addressed to electricity and gas consumers, to the extent these tasks are currently carried out by:
- operating an Information Centre for electricity and gas consumers,
- operating an online energy price calculator,
- preparing a Set of Consumer Rights.

The President of the Energy Regulatory Office (URE) is engaged in the work aimed at developing standard agreements between suppliers and operators of electricity systems (the so-called general distribution agreements), as well as monitors the retail energy market on an on-going basis.

With respect to the improvement of protection of household consumers, mechanisms are currently in place aimed at protecting these consumers, among other things, by URE enabling them to have access to the offer calculator or to alternative dispute resolution methods. Once the calculator has been expanded and billing information has been simplified, household consumers will have an easier and broader access to information about offers and, consequently, more possibilities of deciding whether to switch suppliers. Additionally, due to active forms of participation in the
III. Policies and measures - Dimension Internal energy market

1. Description of measures to enable and develop demand response including those addressing tariffs to support dynamic pricing.

Expected effects (2030):
- Increasing the share of system services of the demand side in the operation of the energy market.
- Reducing energy shortfalls during peak demand.

1. Amendment to transmission network codes which set out the detailed rules for participating in system services on the demand side

The development of these rules will be supported by the President of the Energy Regulatory Office (URE) to the extent they meet the proportionality and effectiveness conditions, including cost-proportionality and effectiveness, and to the extent they are based on the implementation of network codes and guidelines developed in the form of EU regulations.

Expected effects (2030):
- Increasing the share of system services of the demand side in the operation of the energy market.
- Reducing energy shortfalls during peak demand.

2. Development of smart electricity grids

The minister responsible for energy prepared a draft amendment to the Energy Law that introduces a smart metering system in Poland. The draft amendment provides for, among other things:
- Installing, by 2028, remote reading meters for at least 80% of end consumers connected to a distribution network with the rated voltage of no more than 1 kV, in accordance with a specified time schedule;
- Designating a metering information operator (MIO);
- Settling the costs of electricity or distribution services on the basis of metering data received from the MIO;
- Managing the operation of household equipment forming part of the Home Network Infrastructure (the Internet of things) and metering electricity fed into the grid by prosumers;
- Ensuring the standards of metering data protection against unauthorised access.

Benefits deriving from the implementation of the system will include mainly:
- A possibility of managing electricity consumption by controlling the system – connecting and...
III. Policies and measures - Dimension Internal energy market

3.4.4. Energy poverty

a) Policies and measures to achieve the objectives set out in 2.4.4.

Responsible/involved parties: MR, Plenipotentiary of the Prime Minister for the Clean Air Programme, MAP, MRPiPS, MK, URE

* subject to potential changes resulting from amendments to the Act on government administration departments.

<table>
<thead>
<tr>
<th>Policies and measures to achieve the objectives set out in 2.4.4.</th>
<th>1. The definition of energy poverty and the development of methodology adapted to Polish conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>disconnecting equipment depending on the time of day and year and the electricity price; a possibility of using dynamic tariffs offered to consumers; a possibility of settling consumer costs on the basis of actual consumption data within a time limit and for a settlement period convenient for the parties; the improvement of the quality parameters of electricity supplied by the provider to the benefit of the consumer and a possibility of applying a discount on account of a failure to meet quality parameters and interruptions in electricity supply; the simplification and shortening of the procedure of switching electricity suppliers; an increase in the share of informed electricity consumers which will decrease the system balancing costs and contribute to the final cost of electricity supply; a decrease in consumer service costs; the enhancement of competitiveness in the electricity market; the enabling of the development of distributed electricity sources; the reduction of peak power demand due to demand side response possibilities; the reduction of imbalance by decreasing the level of commercial losses (theft); the reduction of the costs of analyses relating to the determination of the conditions for connection to the grid; the improvement of the effectiveness of maintenance, renovation and modernisation works.</td>
<td>The problem of protection of vulnerable consumers against energy poverty has been addressed in the Recommendations of the Council of Ministers Economic Committee (CEC) under the Clean Air Programme. Pursuant to the Programme guidelines, work on the following issues was carried out in 2018: creating a definition of energy poverty adapted to Polish conditions, developing a coherent methodology for diagnosing energy poverty and creating a statistical model necessary to monitor the scale of the phenomenon in Poland. Based on the results of the work, the number of households affected by energy poverty will be determined. Where this figure represents a significant share in terms of the number of households, the most effective tools to reduce energy poverty will be identified. The issue of protection of vulnerable consumers is related to the problem of energy poverty. A vulnerable electricity consumer is defined in the Energy Law (Article 3(13c)) and is entitled to receive a flat-rate energy allowance. The amount of the energy allowance is specified each year by the responsible ministry.</td>
</tr>
</tbody>
</table>

Moreover, the construction of a smart grid is inextricably linked to: advanced power system monitoring technologies, automation, remote control and redevelopment of communication systems in the power industry.

The implementation of the Programme is linked directly to measures undertaken as part of the Strategy for Responsible Development.
III. Policies and measures - Dimension Internal energy market

1. Determination of household energy credit

the minister responsible for energy and depends on the product of electricity consumption limit and the average electricity price for household consumers.

2. Monitoring the number of households affected by energy poverty

Currently (Q4 2019), a report has been accepted that includes recommendations for the definition of energy poverty and a model for measuring and monitoring such poverty. This will enable quantifying the phenomenon of energy poverty. The methodology is based on data from statistical surveys that are updated annually. Depending on the adopted definition of energy poverty (and its related components, e.g. the threshold of energy costs in household disposable income), the target groups eligible for support will be specified.

The monitoring of the number of households affected by energy poverty will enable a reliable evaluation of the effects of the proposed solutions. It will make it possible to assess whether the proposed solutions are effective and which of them need to be changed (e.g. the tool's ineffectiveness due to an incorrect assessment of the needs of the poor).

3. Continuation of publicly (including EU) funded programmes and their possible adaptation to the needs of energy poor consumers, in particular loan programmes intended to finance modernisation measures aimed at improving energy efficiency

Multi-dwelling residential buildings

The national instrument for supporting the improvement of energy efficiency of buildings is governed by the provisions of the Act of 21 November 2008 on supporting thermomodernisation and renovation. Support from the Thermomodernisation and Renovation Fund in the form of a thermomodernisation bonus and a renovation bonus (non-refundable support) is intended for creditworthy entities and is mainly used by housing cooperatives and communities.

Over 31,000 bonuses were granted from the Thermomodernisation and Renovation Fund in 2009-2019. The total amount of support granted exceeded PLN 1.7 billion and covered 460,800 dwellings. The value of investments supported under the fund amounted to over PLN 11.1 billion.

Work is underway to amend the Act on supporting thermomodernisation and renovation. Such amendments will, amongst others, enable municipalities to apply for support for renovation of municipal buildings (renovations would have to be combined with, for example, the requirement to adapt the building to the current technical conditions concerning thermal insulation and energy efficiency). This is a solution aimed at reducing energy poverty, as municipal buildings often have poor energy standard that translates into high living costs and, at the same time, are inhabited by people with the lowest income. Increased intensity of works in this type of development may, therefore, not only to contribute to the improvement of energy efficiency, but also reduce pollution (through replacement of heat sources) and mitigate the problem of energy poverty (through reduction of heating costs).

Single-dwelling buildings

According to preliminary research, ca. 60% of energy poor people use single-family dwellings. What is more, a considerable proportion of energy poor people have no creditworthiness. As a result, a considerable proportion of such people are excluded from support programmes.

Due to subsidy programmes, energy poor people will be able to carry out the most expensive investment projects (e.g. thermal upgrading), which will contribute to a considerable increase in the
efficiency of energy consumption and to a reduction in the share of energy costs in household budgets.

In addition to thermomodernisation support programmes, support systems are currently in place for the replacement of heating sources in newly built and existing single-dwelling houses. The ‘Clean Air’ and ‘Stop Smog’ programmes enable the use of subsidies and preferential loans to support the poorest households. Award and payment of support are carried out by local government organisations and coordinated at the level of the national government plenipotentiary. In addition, a thermomodernisation bonus has been in place as of 1 January 2019, offering the possibility of deducing costs of construction materials, equipment and services incurred in connection with a thermomodernisation project in a single-dwelling building from the taxable base.

In February 2019, the governmental programme ‘Stop Smog’ was launched upon entry into force of the Act amending the Act on supporting thermomodernisation and renovation (Journal of Laws 2019, item 51). The programme is targeted at the energy poor living in single-dwelling buildings. The programme is addressed to all municipalities that are able to demonstrate poor air quality in their territory, i.e. concentrations of air pollutants exceeding EU standards.

The programme covers the following projects carried out in the above-mentioned households:

• replacement of heating devices or systems with those compliant with low-emission standards,
• removal of heating devices or systems and connection to the district heating, electricity or gas network,
• comprehensive building thermomodernisation.

Projects are carried out by the municipality for the benefit of the final beneficiary and financed from public funds up to 100% of their value. The municipality provides an own contribution of 30% (or higher if it has more than 100,000 inhabitants). The remaining part of the Programme (70%) is financed from the State budget via the Thermomodernisation and Renovation Fund. The programme is currently planned to run in 2019-2024 and its total budget (comprising the State’s and local governments’ contributions) amounts to PLN 1.2 billion.

4. Construction, expansion and upgrading of district heating networks

The expansion and upgrading of existing district heating networks towards efficient district heating and cooling systems will have a direct impact on the reduction of areas at risk of energy poverty and will enable an effective fight against low-stack emissions and smog.

5. Monitoring the protection of vulnerable consumers of electricity and gaseous fuels

To protect the poorest, the group of vulnerable consumers of electricity and gaseous fuels is defined and the system of support for this group is regulated in an amendment to the Energy Law of 26 July 2013 (Journal of Laws 2013, item 984).

A vulnerable consumer of electricity is a person who is granted a housing allowance within the meaning of Article 2(1) of the Act on housing allowances of 21 June 2001 (Journal of Laws of 2017, item 180) and who is eligible for a lump-sum energy allowance. A vulnerable customer of gaseous fuels is defined similarly.

The following elements of the support system (as laid down in the Act of 10 April 1997 – Energy Law, Journal of Laws 2019, item 1556) have also been introduced:

• installation of a prepayment metering and billing system (Article 6f),
III. Policies and measures - Dimension Internal energy market

6. Anti-smog tariff
The aim of the new tariff is to encourage household owners to replace outdated furnaces and heat their homes at night with electricity. The above tariff is set out in the Regulation of the Minister for Energy of 29 December 2017 on detailed rules for the determination and calculation of tariffs and billing in electricity trade that entered into force on 30 December 2017.

Following the introduction of the anti-smog tariff and its adjustment by energy companies, the tariff rates for night-time distribution of electricity have been reduced, on average, by 10 times compared to fixed tariff rates (G11). Electricity rates have been reduced, too, as a result of the introduction of the anti-smog tariff. They are 35-50% lower than the rates in the G11 tariff most commonly used in Poland.

The new tariff provides for lower distribution rates for electricity additionally consumed between 10 p.m. to 6 a.m. Lower rates apply to electricity in excess of that consumed in the corresponding period of the previous year. During the remaining hours of the day, the consumer will pay for energy as much as in the G11 tariff, i.e. the most popular tariff among households (with fixed rates throughout the day).

Taking into account the above, in all the cases under consideration, the cost of electricity in a household using heat sources powered by electricity is much lower than the cost of heating according to the existing tariffs (G11, G12, G13).

- 487 contracts were concluded by the end of May 2018.
3.5. Research, innovation and competitiveness

a) Policies and measures including those to achieve the objectives set out in 2.5

Responsible/involved parties*: MNiSW, MAP, MR, MFIPR

* subject to potential changes resulting from amendments to the Act on government administration departments.

1. Implementation of the State science, technology and innovation policy

The targets and objectives of the national science, technology and innovation policy are set out within the seven strategic directions for research and development formulated in the National Research Programme (NRP) adopted by the Council of Ministers in 2011. These directions form the basis for the Council of the National Centre for and Development (Rada Narodowego Centrum Badań i Rozwoju – NCBiR) to develop strategic research and development programmes as part of which R+D projects are subsidised. Strategic programmes have been carried out since 2011, depending on the availability of budgetary funds, consecutively for all seven NRP areas.

On 1 October 2018, an act reforming the science and higher education system in Poland took effect, i.e. the Higher Education and Science Law of 20 July 2018 (Journal of Laws, item 1668). Pursuant to the new regulations, the NRP will apply until the Council of Ministers adopts (no later than by 31 March 2020) a new state science policy as part of which the priorities and strategic research programmes will be updated. The updated strategic research directions in the field of energy and climate should be consistent with the Strategy for Responsible Development (SRD) and, in the field of low-carbon technologies, additionally with the new Energy Policy of Poland until 2040.

The expenditures on research and development activities in Poland are planned to be increased to 1.7% of the GDP in 2020 and to 2.5% of the GDP in 2030, and new rules for using these expenditures as part of the science and higher education reform carried out since 2016, better adapted to prevailing social and economic conditions, are planned to be implemented. This will lead, among other things, to an increase in the level and effectiveness of science in Poland, understood as providing results and products of scientific research of high cognitive quality and high social, economic and technological utility. As a joint effect of these actions, the innovativeness of the economy will be enhanced and the international importance and competitiveness of Polish science will increase.

2. Implementation of the Directions for Energy Innovation Development Programme

In 2017, the Ministry of Energy developed the Directions for Energy Innovation Development (DEID). It is a document defining the broad innovation activity framework for the sector and institutions supporting it. The directions are to correlate strategic documents at the level of government administration and state agencies in the field of development and innovation policy for the energy sector. From the point of view of the implementation of the DEID, it is important to target public expenditures at the most attractive and at the same time the most urgent challenges, as well as to activate leading business entities operating in the Polish energy sector and to increase their involvement in, including financial commitment to, research, development and implementation activities.

Pursuant to the objectives of the aforementioned document, projects in the following areas will be carried out:
- an integrated and interconnected power system giving the central role to the energy user;
- effective and flexible energy generation and the use of raw materials combining the reduction
of the impact on the environment with energy security;
- diversification of energy generation and use technologies;
- a green and energy-efficient city.

The key factor for the development and implementation of innovation is the understanding of particular types of innovation and the development stages of a given technology. Innovation does not concern new technologies only, but also processes and organisational structures. Therefore, much attention has been devoted in the DEID to, among other things, new business models which are based on the application of technologies in a different manner or in another market segment. Moreover, to understand the fundamental problems of the phenomenon known as the valley of death, faced by companies not only in Poland but also worldwide, innovations have been divided according to their type and duration:
- current projects – short-term incremental innovations (up to two years),
- development projects – medium-term incremental projects (two to four years),
- projects for the future – long-term breakthrough innovations (more than four or five years).

In view of the above, in the period 2021-2030, efforts should be focused mainly on three levels:
- support for new ideas and incubation, where a condition for success is the generation of as many low-funding and high-risk projects as possible, with short processing and decision making time, and the creation of a start-up community and an innovation ecosystem;
- support for dissemination and commercialisation, where a condition for success is the commitment of venture capital and the involvement of large entities as customers and product consumers;
- support for expansion and international development, where a condition for success is cooperation of large and medium-sized companies and support for international expansion through economic diplomacy.

A weakness of the Polish system is undoubtedly the technology development and implementation stages which involves the need for technologies to be piloted and scaled. This is why, in the operation of existing institutions dealing with energy sector innovations or institutions established for this purpose, special emphasis is placed on precisely the aforementioned issues.

To streamline efforts in the area of energy sector innovations, work carried out as part of research and analytical back-up facilities must be coordinated. The objective remains to be the optimisation of the use of funds allocated to research, development and innovation through streamlining the operation of various institutions.

Cooperation between universities and companies should lead to an increase in the number of patents, and also in the exchange of personnel between academia and industry. An important issue is the enhancement of the exchange of knowledge with foreign centres and the implementation of placement programmes for researchers in energy sector entities. One of the tools may be course programmes sponsored by and created jointly with market entities, conducted by lecturers working on a permanent basis for the most renowned foreign centres and the cooperation of the Polish energy business entities with renowned foreign research centres. Moreover, in addition to researchers, sector company employees should be more involved in international cooperation, through study visits or educational programmes in Poland or work for foreign subsidiary entities. This is particularly important for creating and developing an innovation ecosystem which should
also cover cooperation with the following related sectors: chemical, information technology and telecommunications, motor industry or defence sectors.

It is important to ensure that, within the framework of the regulations in force both concerning the energy sector (tariff system) and intersectoral ones (Public Procurement Law), entities investing in Poland in research, development and innovations be rewarded, e.g. by taking into account expenses on R+D+I and on cooperation with local research centres. It is also important that space be created for the implementation of new solutions.

Investments in the energy sector, in particular in innovations, may leverage the development of the entire economy and should be analysed from the point of view of the maximisation of benefits for the Polish economy – not only in terms of standard economic parameters, but also in terms of their potential for the development of science and industry. Natural synergies exist between the energy sector and related sectors, e.g. the chemical, information technology and telecommunications, transport or construction sector. The use of these synergies is beneficial for companies operating in these sectors and offers new possibilities to consumers. Therefore, the criterion for the assessment whether to invest in the energy sector should be the maximisation of national value added, in particular the possibility of obtaining technologically advanced products and services.

The achievement of the objectives set out in the strategic document Directions for Energy Innovation Development by 2030 will result in the strengthening of the synergy effect in the area of innovations between companies, public institutions and the science sector, leading to such effects as e.g.:

- increase in expenditure on R+D+I in energy sector entities by 200% as compared with 2018;
- revenues in energy sector entities from segments which were not included in the existing offer or were marginal in 2018 reaching 25%;
- increase in employee innovation in energy sector entities;
- utilisation of 30% of waste generated in the energy sector;
- utilisation of at least 0.5 billion m3 of coal-bed methane (CBM) annually;
- increase in the utilisation of coal-mine methane (CMM), ventilation-air methane (VAM) and abandoned-mine methane (AMM) by 100% as compared with 2018;
- reduction of energy-consumption of buildings by 20% as compared with 2018;
- 10% of industrial buildings being equipped with BEMS (Building Energy Management Systems);
- increase in the number of patent applications in energy sector entities and research institutes;
- reduction of unit energy consumption in industry by 20% as compared with 2018;
- increase in the number of agreements and understandings between the energy sector, industry and research units;
- enhancement of the technological advancement and competitiveness of the Polish energy sector and reduction of the adverse impact on the environment.

3. Implementation of the strategic project ‘Environmental Technology Verification (ETV) System/Implementation of the Environmental Technology Verification (ETV) Programme in Poland’

Environmental Technology Verification (ETV) is a system supporting the commercialisation and
III. Policies and measures - Dimension Research, innovation and competitiveness

dissemination of innovative environmental technologies that consists in an impartial and reliable confirmation that performance and benefit claims put forward by a technology manufacturer are credible, complete, and based on reliable research results. The system is implemented in Poland through a strategic project that forms part of the Strategy for Responsible Development. ETV verifies the innovation of the solution in the context of the environmental effect of the technology from a life-cycle perspective. The pilot project is addressed to operators offering technologies in the following areas: water treatment and monitoring, materials, waste and resources, energy technologies. The ultimate ETV programme will depend on decisions taken at EU level and on the results of the evaluation of the EU ETV Pilot Programme. In addition to the above technical areas, the programme is also planned to cover: technologies for soil and groundwater monitoring and soil treatment, technologies and processes for cleaner production, technologies for limiting air pollution and monitoring and reducing emissions from stationary sources, environmental technologies for agriculture.

4. Implementation of and support for national smart specialisations (NSS)
National smart specialisations are economic priorities determined by EU Member States and their regions in the area of research, development and innovation (R&D&I) under a given financial perspective. Smart specialisations are designed to contribute to the transformation of the national economy through modernisation, diversification of products and services, structural transformation and creation of innovative social and economic solutions. Analyses of endogenous economic advantages and cooperation with social and economic partners led to the establishment of a list of 15 national smart specialisations (effective from 1 January 2019), three of which are directly related to sustainable energy:

- **NSS 1. A healthy society**
- **NSS 2. Innovative technologies, processes and products of the agri-food and forest wood sectors**
- **NSS 3. Biotechnological and chemical processes, bio-products, specially chemicals and environmental engineering products**
- **NSS 4. High-efficiency, low-carbon and integrated energy generation, storage, transmission and distribution systems**
- **NSS 5. Smart and energy-efficient building construction**
- **NSS 6. Environment-friendly transport solutions**
- **NSS 7. Circular economy – water, fossil fuels, waste**
- **NSS 8. Multifunctional materials and composites with advanced properties, including nanotechnologies and nanoproducts**
- **NSS 9. Sensors (including biosensors) and smart sensor networks**
- **NSS 10. Smart ICT and geoinformation networks and technologies**
- **NSS 11. Printed, organic and flexible electronics**
- **NSS 12. Automation and robotics of technological processes**
- **NSS 13. Photonics**
- **NSS 14. Smart creative technologies**
- **NSS 15. Innovative maritime technologies for specialised vessels, marine and coastal
III. Policies and measures

- Dimension Research, innovation and competitiveness

The result of the determination of NSSs is a system underlying the bottom-up creation of priority developmental areas of Poland’s scientific and innovation policies. The formulation of a vision for the development of the Polish economy is instrumental to the targeting of financial support to specialisations that are the most promising in developmental terms, thereby contributing to the improvement of innovation and competitiveness of the Polish economy and to the emergence of a knowledge-based economy.

5. Preparation and implementation of Technology Foresight of the Polish economy by 2040

The aim of Technology Foresight is to analyse the state of technological development of the Polish economy by 2040, identify technological trends and foresight technologies, and establish scenarios for the development of the Polish economy. Prior to foresight analysis, an analysis will be carried out of resources, activities and achievements of scientific units and enterprises in the field of technology development, as well as of technology trends. Technology Foresight of the Polish economy will contribute to the selection of the most competitive technological areas that will have a long-term impact on accelerating social and economic development and will be the areas of specialisation of the Polish economy towards 2040. The results of the analysis will form the basis for verifying and updating the list and descriptions of national smart specialisations. Thanks to this analysis, measures under National Smart Specialisation and the Responsible Development Strategy will be complemented with specific recommendations and actions aimed at implementing the vision of the future in the area of technology.

b) Cooperation with other Member States in this area, including information on how the SET Plan objectives and policies are being translated to a national context.

Responsible/involved parties: MNiSW, MAP, MR, MFiPR

* subject to potential changes resulting from amendments to the Act on government administration departments.

Cooperation with the European Commission and Member States as part of the SET-Plan Steering Group

Due to the range of topics: science-energy-industry, Members States are represented in the Steering Group both by representatives of the ministries responsible for energy policy, and those responsible for research (Poland is represented by the representative of the Ministry of Energy and the Ministry of Science and Higher Education). At present, cooperation concerns primarily the participation in TWGs (temporary working groups), which are successively converted to IWGs (implementation working groups), the main task of which is to develop and then carry out implementation plans for the 10 key actions listed in the Commission Communication of 19 September 2015 on accelerating the European energy system transformation – an integrated SET Plan (C(2015) 6317).

A total of 15 TWGs have been set up in line with the ten key areas specified in the aforementioned Communication (two different groups have been set up for the selected priorities in view of their complexity). Poland has joined two TWGs: TWG Action 6 ‘Energy efficiency in industry’ and TWG Action 10 ‘Nuclear’.

c) If applicable, financing measures in this area at national level, including EU support and the use of EU funds.

Responsible/involved parties: MNiSW, MAP, MR, MI, MK, MFiPR

1. Obtaining of European funds by domestic research units and companies for research and innovation projects

An analysis of the experience based on measures undertaken to day within the framework of the innovation policy conducted by Poland and the lessons learned from the implementation of the previous and current financial perspectives have highlighted the need to target support at areas that offer the greatest competition and innovation potential for the national economy. The current share
III. Policies and measures

- Dimension Research, innovation and competitiveness

* subject to potential changes resulting from amendments to the Act on government administration departments.

of Polish entities in the Horizon 2020 framework research and innovation programme barely reaches 1%. Among the reasons for Poland's insufficient participation in framework programmes, one should point out, among others, the low capacity of Polish entities to generate projects that can successfully compete for European funding. The low level of this share is correlated with low national expenditures on research, development and innovation.

On the basis of this experience, investments should be focused on areas ensuring an increase in the value added of the economy and its competitiveness in foreign markets. The basic instrument is support addressed to companies to enable them to undertake and develop (continue) R+D+I activities, owing to which companies will raise their competitiveness, relating to, among others, the following areas:
- high-efficiency, low-carbon, flexible and integrated energy generation, storage, transmission and distribution systems;
- smart and energy-efficient building technologies;
- environment-friendly transport solutions;
- minimisation of waste generation, including waste unfit for processing, and the use of waste for materials production and energy generation purposes (recycling and other forms of recovery).
- research on clean coal technologies.

At present, funding is provided to research and development projects that lead to innovations in the area of environmental and low-carbon technologies and technologies enabling an effective (economical) resource management. Innovative solutions to problems in the area of sustainable development, including low-carbon transport and renewable energy generation, identified by the public sector (e.g. through the pre-commercial public procurement mechanism) can also be developed.

Moreover, the executive agency overseen by the Ministry of Science and Higher Education – the National Centre for Research and Development will subsidise the participation of Polish companies in R+D projects from the European Structural Funds, which should lead to carrying out between ten and twenty sector projects and research and innovation joint venture projects, including in the area of low-carbon emission technologies.

2. Energy storage facilities, including cells and batteries for electric vehicles

The development of electromobility is consistent with the EU strategic direction presented in e.g. the Clean Mobility Package (an initiative related to batteries) and the European Commission Communication concerning innovations in the energy sector COM (2016) 763. This area must be covered by a support instrument as a market that is only at the stage of development. The solutions that are currently in operation are expensive and do not meet consumers’ expectations. Projects carried out in this area are characterised by a long payback period and a high-risk rate of return and therefore the private sector is not interested in investing on the required scale. New technologies in this area may have many applications, e.g. in the energy sector and in transport.

3. Support for the expansion of infrastructure for the distribution and sale of alternative fuels used in transport

Alternative fuels are at an early stage of development or at the pilot or even experimental stage and therefore this area needs special financial support. Due to the low level of development of the
market, as well as the fact that it is a key element for bringing electric vehicles into universal use, vehicle charging and refueling infrastructure should be supported primarily from public funds. In all market analyses, the absence of infrastructure is indicated as the main barrier, and because of major differences in the profitability of projects carried out in various locations support should be provided in as flexible forms as possible. Poland intends to be an active partner in creating the European network of alternative fuel charging and refueling stations in accordance with the guidelines set out in Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure and the Clean Mobility Package published by the EC in November 2017. The Act on electromobility and alternative fuels implements Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure into Polish law. The act is to regulate the newly emerging market for the distribution and sale of alternative fuels used in transport and to enable the fulfilment of the obligation towards the EU.

Due to the fact that air pollution and CO$_2$ emission in Polish cities exceed pollution and emissions in most EU states, support should be sufficiently intense and instruments sufficiently flexible to ensure reasonably quick development of zero- and low-carbon transport. Due to increasing global competition in the market of alternative fuel vehicles and infrastructure and software for them, Poland finds it necessary to support domestic industry with public funds at this early stage of its development. This is consistent with the incentivising models for the so-called infant industries adopted in the world, as well as is underpinned in, among other things, the directions set in the EC Communication on accelerating clean energy innovation COM (2016) 763.

4. Implementation of the Power-to-Gas group technologies
The implementation and development of Power-to-Gas technologies will make it possible to:
- prevent electricity network congestion caused by over-generation of energy from the unstable operation of renewable sources;
- optimise the use of the gas network (after power-to-gas transformation);
- integrate the electricity and gas systems.

The Power-to-Gas technology is currently used at an early stage of development. It should be assumed that the implementation of the technology on a scale having a real impact on the energy sector in Poland cannot be financed with the use of market mechanisms.

5. Construction of small-scale regasification plants with a cooling energy recovery module
The purpose of the project is to construct a small-scale regasification plant with a cooling energy recovery module which might also operate as a plant supplying natural gas to make up for shortfalls in the transmission/distribution system. The implementation of the project would contribute to enhancing the flexibility of the operation of the transmission network and to improving the energy efficiency of the natural gas transmission system in Poland. The project enhances the use of LNG importing infrastructure and promotes the development of low-carbon energy sources.

6. Support for research and implementation projects relating to putting autonomous or partly autonomous alternative fuel vehicles into service
The Act on electromobility and alternative fuels of 11 January 2018 introduces the possibility of using roads for testing autonomous vehicles, thus contributing to the development of this technology.
The issue of introducing autonomous vehicles into transport services has also raised interest in the European Commission, which in its report Autonomous cars: a big opportunity for European industry (published in January 2017 in Digital Transformation Monitor) indicated the main areas of benefits – not only for the European economy, but primarily for EU citizens. First of all, the improvement of safety should be mentioned (ADAS – Advanced Driving Assistance System) and the fact that smart and interconnected transport systems (ITS – Intelligent Transport Systems) will be brought into universal use, an expected effect of which is, among other things, the shortening of the time of transport of goods in the EU. The need to drive the vehicle being eliminated, semi-autonomous cars will save approximately one hour of spare time for the driver each day. In view of the above it is expected that part of work-related activities could be carried out already in the vehicle. In the opinion of some analysts, this may contribute to the improvement of employee productivity by as much as 10% to 15%.

7. Support for recycling batteries from electricity-fuelled vehicles
This area needs to be covered by a support instrument as a market at the development stage. Electric vehicles have appeared on roads relatively recently and, consistently with European plans and the economic trend, their number will be growing. Taking into account the rare-earth materials from which batteries are made, the current and planned price and also the fact that they continue to preserve ca. 80% of their initial performance capacity, battery recycling is an area to develop. Moreover, recycling issues are also consistent with the sustainable growth and circular economy policies promoted in the European Union.

8. Use of mining waste and combustion by-products
The minimisation of the impact on the environment, implying, among other things, the reduction of waste generation at source, must refer to the conditions and specific nature of particular industries. The mining industry has its characteristics and circular economy (circular economy, CE) targets should be adapted to them.

The mining sector, by using natural resources as the main raw material, has limited possibilities of becoming a typical area of circular activities. In spite of this, mining companies, when conducting their medium- and long-term operations, should take into account those changes in the political, legislative and market environment which will affect their competitiveness, flexibility, efficiency and innovativeness in the future. In the mining sector, waste generation at source is reduced already at the stage of designing mineral exploitation as well as through the optimisation of the applied deposit mining technologies.

Waste in the form of fly ash, slag, ash-and-slag mixture and reaction waste from exhaust gas treatment plants constitutes anthropogenic minerals (AM), whose pozzolanic and hydraulic properties have been known for years. They may and should be fully used by construction industry. Due to their specific properties, combustion by-products (CBP) and mining by-products may replace natural raw materials and thus reduce the need to mine them and emissions relating to this process. There is a great potential in Poland for using anthropogenic minerals in the process of mining site recultivation. This area will develop in Poland due to a considerable scale of mining (both deep and open-cast mining) in the recent decades and growing pressure to restore environmental conditions in mining areas and thus to increase their potential to be used for other purposes.
9. Creation of investment areas at former mining sites

Development of former mining sites to assign them new economic functions along with a possibility of promoting them.

Former mining sites are attractive in economic terms due to their location (agglomeration centres, vicinity of motorways) and the fact that they have utilities infrastructure, railway sidings, are zoned industrial in local zoning plans and occupy large areas.

Possible measures in this respect will consist in the comprehensive preparation of sites for economic activity. The purpose will be to prepare investment sites, including economic activity zones, to be used for the needs of potential investors.

Projects may be carried out that consist of the comprehensive preparation of an investment site, that is projects improving the site’s attractiveness for investors, e.g. recultivating or securing former mining sites (e.g.: landslides), site levelling, providing or supplementing infrastructure (i.e. sewage and rainwater systems, water supply networks and power, heat supply, telecommunications or gas supply networks etc.). Expenditures on internal transport infrastructure (internal roads) should be treated as a complementary element of the project and thus may only account for a smaller portion of the project budget. Investments in the information technology infrastructure (ITI) are permissible if they are necessary to provide comprehensive infrastructure for the investment site. They may consist in providing a telecommunications and data transmission network while excluding the site on which the investment project is being carried out.

10. Support for the producers of means of transport using alternative fuels

Due to increasing global competition in the market of alternative fuel vehicles, Poland finds it necessary to support domestic industry with public funds at the early stage of its development. The main instruments stimulating the development of vehicle production should be repayable mechanisms, such as loans, capital entries and the acquisition of bonds. Non-repayable instruments should be applied only in exceptional and justified cases, particularly in relation to minor investment projects where the grant component is the final element completing the financial setup.

10. Supporting national research on clean coal technologies (CCT)

EU climate and energy policy will affect the competitiveness of coal-fired power generation. One of the promising solutions is the alternative use of coal, i.e. a shift from normal combustion in power boilers to coal gasification and the use of the resultant synthesis gas to obtain methanol or hydrogen. The resulting products can be used to generate electricity using innovative IGCC systems, and in further stages also to power fuel cells or hydrogen cells.

The use of clean coal technologies brings multiple benefits, such as:
- ensuring greater energy security of the State,
- diversification of raw materials for the domestic chemical industry,
- technological development that will have an impact on economic development and improvement of Poland's competitiveness.

12. New directions of hydrogen use

According to the assumptions of the draft Programme of Hydrogen Technology Development in Poland, the use of hydrogen serves three main purposes:
- increasing the competitiveness of energy companies;
III. Policies and measures

- increasing energy security;
- maximising gains for the Polish economy in connection with changes in the energy sector.

The above mentioned Programme outlines the directions and potential opportunities for the use of hydrogen in, amongst others, the power industry and transport. One of the uses of hydrogen is to obtain a chemical element from a power-to-gas (P2G) installation, where redundant electricity can be used to produce hydrogen (typically produced from water in the electrolysis process). Currently, the hydrogen obtained in this way has three uses:

- it is used in natural gas networks as a process input or, in pure form, in fuel cells;
- for the conversion of carbon dioxide into methane; the resulting gas can either be fed directly into the grid or used to produce electricity (through a cogeneration module);
- for the improvement of biogas quality, which is a promising way of increasing the use of biomethane and reducing dependence on fossil fuels.

Another way is to produce hydrogen-based liquid fuels (P2L), which can be CO2-neutral and contribute to a significant reduction in greenhouse gas emissions while staying liquid. Liquid form makes energy transport and storage a much easier task.

An option to use fuel cells and hydrogen for prosumer power generation, as elements of small hybrid systems connected to the power grid or operating in island mode is an interesting alternative avenue of development.
I. Energy support measures, including grants – national and non-national measures

<table>
<thead>
<tr>
<th>Name / Type</th>
<th>Funding area</th>
<th>Amount of funds</th>
<th>Horizon</th>
<th>Additional information</th>
</tr>
</thead>
</table>
| RES support systems:
a) ‘green certificates’ – number of aid measure: SA.37345 (2015/NN),
b) RES auctions – number of aid measure: SA.43697 (2015/N),
d) development of renewable energy sources
a) PLN 450 million (annually)*
b) PLN 40,000 million
c) PLN 622.2 million |
| Support scheme – capacity market (CM) – number of aid measure: SA.46100 (2017/N) | providing an investment incentive for a stable and secure energy supply | ca. PLN 4,000 million (annually) | 2020-2042* | The costs of the scheme will be included in the electricity bills.
The support scheme has been in place since the third quarter of 2020 (the cost will be lower this year). The scheme has been approved by the European Commission for a period of 10 years, but the aid granted under the scheme will continue to be paid after this period. The capacity market has been developed to safeguard the security of electricity supplies to end consumers in a long-term perspective. The Polish CM is to ensure sufficiency of generation in the national system from 2021. The CM creates the conditions for the stable operation of existing generation sources and for their modernisation, but above all it provides clear pricing signals aimed at coordinating decisions to construct new generation capacities. The amount of remuneration received under the scheme is determined through auctions. Capacity auctions are open to existing and new generation units, irrespective of the type of fuel used and the technology applied, and to energy storage facilities and demand-side entities. The ability to deliver capacity is the determining factor for admission to an auction. |
| Support scheme for high-efficiency cogeneration – number of aid measure SA.51192 (2019/N) | development of high-efficiency cogeneration | PLN 36,300 million | 2019-2048* | The costs of the scheme will be included in the electricity bills.
* The scheme has been approved by the European Commission for a period of 10 years, but the aid

* The amount of funds for 'green certificates' is indicative (it is not a maximum amount either) given the fact that the price of certificates of origin is market driven.
** Support schemes are in place for the following periods:
a) by 30 June 2016,
b) by 30 June 2021 (option to organise auctions),
c) by 30 June 2021.
<table>
<thead>
<tr>
<th>Name / Type</th>
<th>Funding area</th>
<th>Amount of funds</th>
<th>Horizon</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aid scheme SA.52832 (2019/N) – Poland – Modification of State aid to the Polish coal sector in 2015-2023</td>
<td>Aid for: a) covering exceptional costs and b) shutting down of production units*</td>
<td>PLN 12,991.97 million, including: PLN 320.33 million for the shutting down of production units</td>
<td>2015-2023**</td>
<td>granted under the scheme will continue to be paid after this period. The implementation of this scheme is mainly motivated by the necessity to improve air quality in cities, which can be achieved through the development of district heating from the least carbon-intensive sources. Support for all electricity generated in high-efficiency cogeneration that has been fed into the grid and sold will concern cogeneration units that supply, at a minimum, 70% of useful heat from cogeneration to the public district heating network. Where less than 70% of generated heat is fed into the grid, support will be granted proportionally to the share of heat fed to the grid in the total amount of heat generated. Support will only be available to units whose carbon dioxide emission factor (EPS) is not higher than 450 kg/MWh of energy generated (electricity and heat combined). * The aid for the shutting down of coal production units was discontinued in 2016. ** The aid was granted for the first time in 2014 due to the fact that it was allocated by production year and not by calendar year. State aid to the hard coal mining sector to cover exceptional costs is granted in the form of: subsidies, exemptions from mandatory fees and penalties, exemptions from payments to PFRON and from fees and penalties to NFOSiGW and PGWWP, relief on the tax on civil law transactions (PCC), relief on the corporate income tax (CIT), exemptions from payments from profit, exemptions from the obligation to obtain a licence for methane mining. Aid is granted by: - Minister for Energy - National Fund for Environmental Protection and Water Management (NFOSiGW) - State Fund for the Rehabilitation of Persons with Disabilities (PFRON) - Państwowe Gospodarstwo Wodne Wody Polskie - The First Silesian Tax Office in Sosnowiec - Minister for the Environment</td>
</tr>
<tr>
<td>Name / Type</td>
<td>Funding area</td>
<td>Amount of funds</td>
<td>Horizon</td>
<td>Additional information</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>NFOŚiGW funds, including:
a) Energy Plus
b) Poviat District Heating – pilot
c) Agro-energy
d) Polish Geothermal Energy Plus
e) My Electricity*
f) Co-financing of projects financed under Axis I of OPI&E 2014-2020
g) 'Clean Air' Programme**</td>
<td>Measures improving energy efficiency, low-carbon energy sources, including renewable energy sources and high-efficiency cogeneration, district heating, environmental education, other green investments, improving air quality, low-carbon transport</td>
<td>a) PLN 4,000 million
b) PLN 500 million
c) PLN 200 million
d) PLN 600 million
e) PLN 1,000 million
f) PLN 2,000 million
g) PLN 103,000 million</td>
<td>2019-2025</td>
<td>Details of the NFOŚiGW power sources are available at:
https://nfosigw.gov.pl/oferta-finansowania/br
* The My Electricity programme is financed from the climate account. The funds come from the ETS and the National Fund for Environmental Protection and Water Management (NFOŚiGW) acts as the National Green Investment System Operator.
** Funds to be disbursed until 2029.</td>
</tr>
<tr>
<td>Low-Emission Transport Fund
(Fundusz Niskoemisyjnego Transportu)</td>
<td>Development of electromobility and transport based on alternative fuels, including CNG, LNG, biocomponents (e.g. for fleet purchases, charging infrastructure, public transport, promotional and educational activities)</td>
<td>PLN 6,700 million</td>
<td>2021-2025</td>
<td>LETF revenues are:
- targeted State budget subsidies,
- funds provided by the TSO,
- proceeds from the substitution fee,
- proceeds from the emission fee.
The Fund is administered by the minister responsible for energy and managed by the National Fund for Environmental Protection and Water Management.
https://www.gov.pl/web/energia/fundusz-niskoemisyjnego-transportu</td>
</tr>
<tr>
<td>European Funds – Operational programmes under the financial perspective 2014-2020
a) RES
b) Energy efficiency in buildings
c) Energy efficiency in enterprises
d) district heating networks
e) high-efficiency cogeneration
f) electricity infrastructure
g) gas infrastructure</td>
<td></td>
<td>a) EUR 150.00 million
b) EUR 486.54 million
c) EUR 78.11 million
d) EUR 559.20 million
e) EUR 200.88 million
f) EUR 573.67 million
g) EUR 750.00 million</td>
<td>2014-2020</td>
<td>Funds at the disbursement phase
http://www.funduszeeuropejskie.gov.pl/
https://www.gov.pl/web/energia/co-robimy-fundusze-europejskie</td>
</tr>
<tr>
<td>European Funds – Operational programmes under the financial perspective 2021-2027
a) RES
b) Energy efficiency in buildings
c) Energy efficiency in enterprises
d) district heating networks
e) high-efficiency cogeneration</td>
<td>Estimated above EUR 6,000 million (probably ca. EUR 3,000-4,000 million under national programmes and a similar allocation under Regional Operational Programmes)</td>
<td></td>
<td>2021-2027</td>
<td>Funds at the financial setup phase – neither the overall fund framework nor the breakdown by programme is known.</td>
</tr>
<tr>
<td>Name / Type</td>
<td>Funding area</td>
<td>Amount of funds</td>
<td>Horizon</td>
<td>Additional information</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| European funds – Connecting Europe Facility (CEF) | construction and modernisation of energy infrastructure, smart grids, CCSs (including projects of common interest) | EUR 4,700 million* PLN 40.00 million | 2014-2020 2021-2025 | *The amount until 2020 is the total budget of the facility for non-reimbursable grants. The amount since 2021 is included in the national budget http://www.funduszeeuropejskie.gov.pl/strony/o-funduszach/zasady-dzialania-funduszy/program-laczac-europe/informacje-o-cef/.
| European Funds - the Just Transition Fund under the European New Deal | transition of mining regions | No data available | 2021-2027 | Funds at the financial setup phase |
| Modernisation Fund | modernisation of the energy sector | ca. EUR 2,000-4,800 million | 2021-2030 | The Fund will be financed through the auctioning of 2% of all emission allowances under the EU ETS. The amount of the funds will depend on the prices of the allowances. The Fund will be available to EU countries whose GDP per capita is below 60% of the EU average, including Poland. Power generation from solid fuels will be excluded, with the exception of district heating in Bulgaria and Romania.
<p>| InvestEU | Low-carbon infrastructure, R&D, SMEs, competence building | Estimated over EUR 6,000-7,000 million (the allocation for the energy sector is difficult to estimate) | 2021-2027 | Under the existing Investment Plan for Europe (Juncker Plan), over EUR 3.7 billion has been allocated for investments in Poland worth nearly EUR 18.6 billion. |
| Horizon Europe | Research and development | – | 2021-27 | The successor of Horizon 2020 |
| LIFE Programme | Protection of the environment and climate | ca. EUR 5,000 million | 2021-27 | Follow-up to the programme launched in 1992 |
| Norwegian Financial Mechanism, EEA Financial Mechanism | High-efficiency cogeneration, modernisation of networks and sources in district heating systems, improvement of energy efficiency in schools, geothermal power, small hydropower, pellet | PLN 862.35 million | 2021-2025 | The amount in the State budget may be increased as part of co-financing from NFOŚiGW funds. The mechanism goes beyond the area of energy |</p>
<table>
<thead>
<tr>
<th>Name / Type</th>
<th>Funding area</th>
<th>Amount of funds</th>
<th>Horizon</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans from international financial institutions (e.g. World Bank, European Investment Bank, Council of Europe Development Bank)</td>
<td>Particularly anti-smog measures related to transition and modernisation of the energy sector, improvement of energy efficiency</td>
<td>No data available</td>
<td>No data available</td>
<td>Programmes and mechanisms are developed on an ongoing basis as needs arise.</td>
</tr>
<tr>
<td>‘White certificates’ support scheme</td>
<td>Improving energy efficiency of enterprises</td>
<td>No data available</td>
<td>2030</td>
<td>The horizon can possibly be extended</td>
</tr>
<tr>
<td>Thermomodernisation and Renovation Fund</td>
<td>Thermomodernisation projects</td>
<td>No data available</td>
<td>since 1999</td>
<td>The Fund is financed from the State budget. In 1999 and 2018, PLN 2,575 million was transferred to the Fund, with further amounts being arranged https://www.bgk.pl/samorzady/fundusze-i-programy/fundusz-termomodernizacji-i-remontow/</td>
</tr>
</tbody>
</table>

In accordance with Regulation 2018/1999, each Member State should take due account of any recommendations from the Commission in its integrated national energy and climate plan, and if the Member State concerned does not address a recommendation or a substantial part thereof, that Member State must provide and make public its reasons. **This means that pursuant to Regulation 2018/1999, the Commission’s recommendations are not binding.** It is, therefore, within the discretion of the Member State concerned whether and to what extent to address the Commission’s recommendations in the final national energy and climate plan.

Recommendation 1 Provide more information on planned policies and measures to address the projected substantial gap to Poland’s greenhouse gas target for sectors not covered by the EU emissions trading system for 2030 of -7% compared to 2005. This includes more clarity on transport measures and more details on additional measures, notably in the building, agriculture and land use, land use change and forestry sectors and the application of accounting rules as set out in the Regulation (EU) 2018/841 of the European Parliament and of the Council.

As recommended by the Commission, corrections have been made to the analytical part of the NECP concerning the base year for GHG emission forecasts and the emission projections themselves. The information on policies and measures to reduce emissions from sectors not covered by the EU’s emissions trading system has been clarified and supplemented in Chapters 2.1.1 and 3.1.1.

Recommendation 2 Increase the level of ambition for 2030 to a renewable energy share of at least 25% as Poland’s contribution to the Union’s 2030 target, as indicated by the formula in Annex II under Regulation (EU) 2018/1999. Include an indicative trajectory in the final integrated national energy and climate plan that reaches all the reference points pursuant to Article 4(a)(2) of Regulation (EU) 2018/1999 in accordance with that share, in view of the need to increase the level of efforts for reaching this target collectively. Put forward detailed and quantified policies and measures that are in line with the obligations laid down in Directive (EU) 2018/2001 of the European Parliament and Council to enable a timely and cost-effective achievement of this contribution. Ensure that the renewable energy target for 2020 set out in Annex I of Directive 2009/28/EC of the European Parliament and of the Council is fully met and maintained as a baseline from 2021 onwards, and explain how such a baseline share will be met and maintained. Increase the level of ambition in the heating and cooling sector to meet the indicative target included in Article 23 of Directive (EU) 2018/2001 and put in place detailed measures to meet the transport target set in the draft integrated national energy and climate plan, in line with Article 25 of Directive (EU) 2018/2001. Provide additional details and measures on simplification of administrative procedures, on the enabling frameworks for renewable selfconsumption and renewable energy communities, in line with Articles 21 and 22 of Directive (EU) 2018/2001.

The increase in RES share of gross final consumption of energy up to 25% in 2030, as recommended by the Commission, is too ambitious given the domestic conditions, forecasts for the development of the economy and the particular sectors, the development potential of individual technologies, as well as the evolutionary process of a just energy transition and its social and economic considerations. Nevertheless, the NECP sets a target share of RES at 21-23% in 2030, although the 23% target is achievable only if Poland is granted additional funds, including those for just transition.

Otherwise, the Commission’s recommendations have been addressed in the NECP by:

- demonstrating an indicative trajectory that reaches all the reference points for the achievement of the 2030 RES target – in point. 2.1.2(b) of this document and in the analytical annex,
- keeping the RES target as the base year for forecasting analytics,
- setting the average annual target for an increase of RES share in heating at 1.1 p.p. and taking that target into account in forecasting analytics,
- identifying the additional measures implemented in 2019 to achieve the 2020 RES target and complementing the policies and measures to meet the 2030 RES target, including those to support selfconsumption and energy communities – Chapters 2.1.2 and 3.1.2.

Recommendation 3 Review its contributions and identify additional policies and measures that could deliver further energy savings in view of the need to increase the level of efforts to reach the Union’s 2030 energy efficiency target. The proposed level of ambition towards reducing the final contribution should be better justified.
and backed by adequate and quantified savings from policies and measures. Support policies and measures with an impact assessment and deliver more detailed information on the scale and timeframe of implementation. Further explore policies and measures in transport considering the expected increase in the sector’s energy demand in the future.

Chapters 2.2 and 3.2 and forecasting analyses of the NECP have been supplemented in accordance with the above recommendation from the Commission.

Recommendation 4 Specify the measures supporting the energy security objectives on diversification and reduction of energy dependency, including measures ensuring flexibility of the energy system to accommodate the foreseen changes towards 2030 and beyond.

Chapters 2.3 and 3.3 of the NECP have been supplemented in accordance with the above recommendation from the Commission.

Recommendation 5 Define forward-looking objectives and targets concerning market integration, in particular measures to assess the impact of public service obligations, in particular gas storage and price regulation on market functioning and clarify how negative consequences will be mitigated. Outline a strategy and timeline for progressing towards fully market based prices.

Chapter 3.4.3 has been supplemented in accordance with the above recommendation.

Recommendation 6 Clarify the national objectives and funding targets in research, innovation and competitiveness, specifically related to the Energy Union, to be achieved between now and 2030, so that they are readily measurable and fit for purpose to support the implementation of targets in the other dimensions of the integrated national energy and climate plan. Underpin such objectives with specific and adequate policies and measures, including those to be developed in cooperation with other Member States, such as the Strategic Energy Technology Plan.

The Commission’s recommendations have been reflected in NECP by means of supplementing Chapters 2.5 and 3.5 thereof.

Recommendation 7 Continue and broaden the consultation of neighbouring Member States and regional cooperation in the context of the Visegrad Group (Czechia, Hungary, Poland and Slovakia) and in the respective high-level groups. The focus of the regional exchanges could be on further integration in the internal energy market, assessing system adequacy in light of the planned continuation of a capacity market, just transition issues, decarbonisation and renewables deployment and the impact on the energy system and cross-border electricity trade.

The Commission’s recommendation has been followed by including information on regional consultations in Chapter 1.1.

Recommendation 8 List all energy subsidies, including in particular for fossil fuels, and actions undertaken as well as plans to phase them out.

The recommendation has been followed by supplementing Chapter 3.1.3 of the NECP and adding a list of energy support measures in Chapter I.

Recommendation 9 Complement the analysis of the interactions with air quality and air emissions policy, including from a quantitative perspective, and presenting the impacts on air pollution for the various scenarios.

The forecasting part of the NECP has been extended to include results of analyses of the impacts of implementation of air quality improvement policies and measures on the reduction of pollutant emissions.

Recommendation 10 Integrate just and fair transition aspects better, notably by providing more details on social, employment and skills impacts of planned objectives, and policies and measures. The final integrated national energy and climate plan should particularly address the impact of the transition on the populations living in coal regions, reinforcing the link to the ongoing coal regions in transition initiative and the corresponding national and regional transition plans, as well as those affected by adjustments in other energy-intensive sectors. Further develop the approach to addressing energy poverty issues, including by specifying objectives and
intended impacts of planned policies and measures as required by the Regulation (EU) 2018/1999.

The Commission’s just transition recommendation has been addressed by supplementing Chapters 2.1 and 3.1. However, a comprehensive analysis of the impact of the energy transition on mining areas (including society, employment and skills) was not possible within the timeframe required to submit the NECP. This analysis will be carried out as part of the restructuring plan for coal and lignite mining areas to be drawn up in 2020. Energy poverty issues are addressed in Chapters 2.4.4 and 3.4.4.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT</td>
<td>- best available techniques</td>
</tr>
<tr>
<td>CNG</td>
<td>- compressed natural gas</td>
</tr>
<tr>
<td>DSR</td>
<td>- demand side response</td>
</tr>
<tr>
<td>NP</td>
<td>- nuclear power plant, nuclear power generation</td>
</tr>
<tr>
<td>ENTSO-E</td>
<td>- European Network of Transmission System Operators for Electricity</td>
</tr>
<tr>
<td>ENTSO-G</td>
<td>- European Network of Transmission System Operators for Gas</td>
</tr>
<tr>
<td>EU ETS</td>
<td>- European Union Emissions Trading System</td>
</tr>
<tr>
<td>FBA</td>
<td>- flow-based allocation</td>
</tr>
<tr>
<td>FSRU</td>
<td>- floating storage regasification unit</td>
</tr>
<tr>
<td>FTN</td>
<td>- Low-Emission Transport Fund</td>
</tr>
<tr>
<td>GDA</td>
<td>- general distribution agreements</td>
</tr>
<tr>
<td>GUS</td>
<td>- Central Statistical Office (Główny Urząd Statystyczny)</td>
</tr>
<tr>
<td>HTR</td>
<td>- high temperature reactor</td>
</tr>
<tr>
<td>ICT</td>
<td>- information and communication technology</td>
</tr>
<tr>
<td>IOŚ</td>
<td>- Institute of Environmental Protection (Instytut Ochrony Środowiska)</td>
</tr>
<tr>
<td>CDGU</td>
<td>- centrally dispatched generating units (managed by the TSO)</td>
</tr>
<tr>
<td>NPS</td>
<td>- national power system</td>
</tr>
<tr>
<td>LNG</td>
<td>- liquified natural gas</td>
</tr>
<tr>
<td>MAP</td>
<td>- Minister for State Assets (in charge of the energy and mineral deposits management departments of government administration as of December 2019)</td>
</tr>
<tr>
<td>MF</td>
<td>- minister responsible for public finance</td>
</tr>
<tr>
<td>MFIPR</td>
<td>- minister responsible for regional development</td>
</tr>
<tr>
<td>MGGMiŻŚ</td>
<td>- minister responsible for maritime economy and inland navigation</td>
</tr>
<tr>
<td>MI</td>
<td>- minister responsible for transport</td>
</tr>
<tr>
<td>MNiSW</td>
<td>- minister responsible for science and higher education</td>
</tr>
<tr>
<td>MK/MŚ</td>
<td>- minister responsible for the environment (Minister for Climate as of December 2019)</td>
</tr>
<tr>
<td>MR</td>
<td>- minister responsible for development, economy, construction, land use planning, spatial development and housing</td>
</tr>
<tr>
<td>MRPIPS</td>
<td>- minister responsible for family, labour and social security</td>
</tr>
<tr>
<td>MRRiRW</td>
<td>- minister responsible for agriculture and rural development</td>
</tr>
<tr>
<td>MSWiA</td>
<td>- minister responsible for internal affairs and public administration</td>
</tr>
<tr>
<td>MSZ</td>
<td>- minister responsible for foreign affairs</td>
</tr>
<tr>
<td>NIT</td>
<td>- National Indicative Target (relating to the share of RES in transport)</td>
</tr>
<tr>
<td>LV</td>
<td>- low voltage power lines</td>
</tr>
<tr>
<td>EMIO</td>
<td>- energy market information operator</td>
</tr>
<tr>
<td>EDSO</td>
<td>- electricity distribution system operators</td>
</tr>
<tr>
<td>GDSO</td>
<td>- gas distribution system operators</td>
</tr>
<tr>
<td>ETSO</td>
<td>- electricity transmission system operator – Polskie Sieci Elektroenergetyczne S.A. (PSE S.A.)</td>
</tr>
<tr>
<td>GTSO</td>
<td>- gas transmission system operator – Operator Gazociągów Przesyłowych GAZ-SYSTEM S.A.</td>
</tr>
<tr>
<td>RES</td>
<td>- renewable energy sources</td>
</tr>
<tr>
<td>UGS</td>
<td>- underground gas storage facilities</td>
</tr>
<tr>
<td>PNPP</td>
<td>- Polish Nuclear Power Programme</td>
</tr>
<tr>
<td>PRMCoPzP</td>
<td>- Plenipotentiary of the Prime Minister for the Clean Air Programme</td>
</tr>
<tr>
<td>PRSIE</td>
<td>- Government Plenipotentiary for Strategic Energy Infrastructure</td>
</tr>
<tr>
<td>SAIDI</td>
<td>- System Average Interruption Duration Index</td>
</tr>
<tr>
<td>SAIFI</td>
<td>- System Average Interruption Frequency Index</td>
</tr>
</tbody>
</table>
MV - medium voltage power lines
SRD – Strategy for Responsible Development
EU - European Union
URE – Energy Regulatory Office (Urząd Regulacji Energetyki)
1 Regulation of the Council of Ministers of 24 April 2017 regarding the minimum diversification level of natural gas supplies from abroad.

4 Regulation of the European Parliament and of the Council on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030 for a resilient Energy Union and to meet commitments under the Paris Agreement and amending Regulation No 525/2013 of the European Parliament and of the Council on a mechanism for monitoring and reporting greenhouse gas emissions and other information relevant to climate change.

5 As assessed by the Institute of Agricultural and Food Economics (Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej – IERiGŻ) of the National Research Institute (Państwowy Instytut Badawczy – PIB) in a study prepared at the request of the Ministry of Agriculture and Rural Development.

6 Estimates of the Institute of Agricultural and Food Economics (IERiGŻ).

7 Institute of Soil Science and Plant Cultivation – National Research Institute (Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy) in Puławy, study entitled: “Sprzedaż słomy przez rolników na cele energetyczne i jej wpływ na żywność i urodzajność gleb” (“Sales of straw by farmers for energy purposes and the associated impact on soil fertility and yield.”

8 The presented solid agricultural biomass estimates are based on crops harvested every year, having regard to the demand for it in agriculture.

9 In accordance with the waste hierarchy and waste management plans, for municipal waste, this activity only applies to waste other than collected selectively to the extent it cannot be recycled.

10 Consistency will be ensured by the preventive action and emergency plans under Regulation [as proposed by COM(2016) 52] concerning measures to safeguard the security of gas supply and repealing Regulation (EU) No 994/2010, and the risk preparedness plans under Regulation [as proposed by COM(2016) 862] on risk-preparedness in the electricity sector and repealing Directive 2005/89/EC.

12 The ‘flow-based approach’ means a capacity calculation method in which energy exchanges between bidding zones are limited by power transfer distribution factors and available margins on critical network elements. The FBA enables available transmission capacity to be used in a better way, which is more effective in economic terms.

13 Source: National Inventory Report 2019, KOBiZE

14 Available at: http://powietrze.gios.gov.pl/pjp/content/show/1001777,

16 When planning these measures, Member States are to take into account the end of life of existing installations and the potential for repowering.

17 In accordance with Article 2a of Directive 2010/31/EU, version as amended in accordance with proposal [COM(2016) 765].

18 Pursuant to Article 18 of Directive 2012/27/EU.

19 Pursuant to Article 8 of Directive 2012/27/EU.
Pursuant to Articles 12 and 17 of Directive 2012/27/EU.

Pursuant to Article 19 of Directive 2012/27/EU

Pursuant to Article 15(2) of Directive 2012/27/EU.

Policies and measures must reflect the energy efficiency principle above all else.

The Demand Side Response (DSR) service consists in reducing power demand with the use of tools to manage energy demand.

Policies and measures must reflect the energy efficiency principle above all else.

The ‘flow-based approach’ means a capacity calculation method in which energy exchanges between bidding zones are limited by power transfer distribution factors and available margins on critical network elements. The FBA enables available transmission capacity to be used in a better way, which is more effective in economic terms.

Other than the PCI Regional Groups established under Regulation (EU) No 347/2013.

In accordance with Article 15(8) of Directive 2012/27/EU.