ADVANCES IN CHILDHOOD ACUTE LEUKEMIAS: GENERAL OVERVIEW

Danièle SOMMELETT

European Scientific Seminar

Luxemburg, 3.11.2009
Definition of acute leukemias

- Malignant process coming from lymphoid (85%) or myeloid (15%) precursor cell
- Combined with dysregulation of following programs:
 - proliferation
 - differentiation
 - senescence
 - apoptosis

Acquired genetic abnormalities

- The most frequent childhood cancer (30%)
 - 420 new cases per year in France 0 – 15 yrs
 - + 50 15 – 19 yrs Peak age 2 – 4 yrs ALL
 - No peak age AML
Interactions between the patient and his disease (1)

1) **Predisposing factors**
 - Known
 - Down’s syndrome
 - Immunodeficiencies
 - Chromos. instability syndromes
 - Possible
 - Genetic variability in xenobiotic metabolism (drugs, environment)
 - DNA repair pathways
 - Cell-cycle checkpoint functions

2) **Subtle genetic alterations**
 - or variations affecting response to specific environmental exposures

3) **Role of combination of parents/child genotypes**
Interactions between the patient and his disease (2)

The leukemic cell + stroma

- Cytology: 3 ALL, 8 AML
- Immuno phenotype
 - Diagnosis, lineage, prognosis, residual disease, therap. target?

- Conventional and molecular cytogenetics
- Target molecular biology
- Global approaches:
 - Transcriptome, CGH array, SNP, proteome
 - Chromosom. and molecular diagnosis, MRD, leukemogenesis

- Subsequent consequences of genetic abnormalities
 - Immunological response
 - Neoangiogenesis

In vitro cell cultures
Animal models
Advances (1)

Survival rate: 1% 1960 → 85% (ALL), 60% (AML)

Why?
- (Inter)-national therapeutic trials, supportive care
- Better knowledge of prognostic factors to stratify patients
- Improved understanding of genetic abnormalities involved in leukemogenesis
- The follow-up of response to CT, evaluation of minimal disease
- Development of new target drugs aiming to cure more and better
Advances (2)

- Strict organisation of pediatric oncology:
 everywhere, the same objectives, the same rules, referent centres with appropriate technic equipment

- More and more sophisticated biology:
 - To classify, stratify at diagnostic and thereafter
 - To better understand leukemogenesis
 - To contribute to therapeutic innovation
 - To propose epidemiological studies and to combine them with biological criteria?
 - To prevent the disease?
Current risk stratification in AL

- Cytology
- Clinical variables: age, WBC
- Immunophenotype
- Detection of cytogenetic or molecular lesions
- Early response to therapy (ALL)
BPC-ALL prognostic factors at diagnosis → risk groups (1)

- **Age**: < 1 yr, (> 10 yrs)
 - 5 yr DFS: 30-50 %

- **WBC**: > or < 50 000/mm³

- **Cytology**: L1 / L2: No
 - L3 (Burkitt) treated differently

- **Immunophenotype**: BPC-ALL: 85 %
 - T-ALL: 75 %
BPC-ALL prognostic factors at diagnosis → risk groups (2)

- Caryotype and molecular genetics
 - High risk, N < 10%: unfavorable genetic criteria
 - t (9;22) (q34; q11) BCR – AB 2-3% 20 > 40%
 - IKZF1 mutation or del, without BCR – ABL 20%
 - t (4;11) (q21;q23) MLL – AF4 2-3% 30-50%
 - hypodiploidy ≤ 44 chr 1-2% 40-50%
 - intrachromosomal amplification on chr.21 (AML1) 29%
BPC-ALL prognostic factors at diagnosis → risk groups (3)

Non unfavorable genetic criteria N # 50 %

• Hyperdiploidy > 50 chr 85 – 90 %

• $t (12;21)$ TEL – AML1 (RUNX1) 85 – 90 %

• $t (1;19)$ E2A – PBX1 85 – 90 %

5 yr DFS
Prognostic factors in-ALL

- **WBC** > 200,000/mm³

- **Immunophenotype** (CD₁₀, M₇)

- **Cytogenetics ±**
 - t (1;14)(p33,q11)SIL-TAL
 - t (10;14) (q24;q11)
 - or t (7;14) (q35.q24)
 - t (5;14) (q35;q32)

Incidence
- 10-30 % TAL
- 5 % TLX1/HOX11
- 20-25 % TLX3/HOX11

* TLX3/HOX11 expression → adverse outcome (FRALLE93)
* Negative role of cryptic changes
Minimal residual disease: a major criteria of therapeutic decisional value (ALL)

Methods: Cytology
- Flow cytometry (10^{-4})
- Molecular biology
 - Ig/TCR rear.
 - PCR $10^{-2} - 10^{-5}$
 - Fusion transcripts
 - RT-PCR $10^{-3} - 10^{-5}$

Blood, bone-marrow

2 points
- d21 / 29
- d35 / 42
 - Low risk MRD $\leq 10^{-4}$
 - High-risk of relapses MRD $> 10^{-2}$
 - Intermediate MRD $> 10^{-4}$ and $< 10^{-2}$

Late monitoring =12 and = 24 mo: under study
Gene expression signatures predictive of response and outcome in high-risk children
Bhogvani D., JCO 2009

- Bone-marrow content d7 in high risk patients
- Apoptosis-facilitated genes: upregulated in rapid responders
- Multiple genes involved in cell adhesion, proliferation, antiapoptosis: upregulated in slow responders
- Analysis of gene expression profiles
 → rapid approach of biologic understanding of why clinical and laboratory variables are associated with outcome
 → to improve treatment

but no links evoked with causes
Childhood AL : a multitude of diseases

Product of alterations to the germline genetic and epigenetic code → clonal disease

- **Mainly translocations** → fusion transcription factors or activated signaling kinases

- **Aneuploïdy, deletions** in cell-cycle checkpoint genes and mutated genes (FTL3, RAS, other growth promoting pathways)
In utero origin of leukemias

- Short latency of leukemias (infancy, peak age 2-4 yrs, ALL)
- Extreme developmental and cellular kinetic stress of a foetus
- Concordance of leukemia in twins
- Archived new-born bloods: discovery of preleukemic clones

- Rearrangts of MLL gene at 11q3 (+ chr.4,9,19): 80% of AML1 and 60% of ALL (infants)
- Rearrangts of ETV6 at chr 12 + RUNX1 on chr 21 (TEL-AML1): 25% ALL
- Rearrangts of RUNX1/ETO at chr 8 in 15% AML
- Trisomy 21: 10-20% AML and ALL
- NOTCH1 mutation in TALL

- Initiation: in utero exposure to mutagen agents?
Secondary oncogenic events: obviously needed \rightarrow leukemias

- Cord blood screening $\leq 1\%$ positive for TEL-AML, only 1% of them \rightarrow leukemia

- Down’s syndrome
 - 1st hit: trisomy 21
 - Acquired mutation of GATA1
 \rightarrow Transient leukemia at birth in 5-10\% of children
 - Further mutations \rightarrow M7 leukemia

- TEL-AML transloc (t12 ; 21) + partial del (12p)

- NOTCH1 mutation + SIL-TAL fusion
Role of first and 2ary environmental ± genetic events?

Most remain unknown, but new technologic approaches → hypotheses concerning initiation and development of BPC-ALL (85 %) and T-ALL:

- Transfection to animal models
- In vitro long-term cultures of leukemic cells
- Use of human embryogenic stem-cells
- Sequencing of human genome, analysis of transcriptome, comparative genomics, genome sequencing of tumoral cells
TEL-AML1 leukemia fusion
ETV6 – RUNX1 \(t(12;21) \)
The most common chimeric fusion gene of BCP-ALL \(^1\)

- **A preleukemic phenotype**, predominantly in utero
 \((1\%)\) of newborns

- **A key promotional event**: an aberrant immune response to common infections (Greaves)

↓

Pre-B Cell ALL
TEL-AML1 leukemia fusion (2)

TEL-AML1 can → a population of self-renewing human cord blood cells CD34⁺CD38⁻CD19⁺, very early B cell stage (1st hit) to sustain a persistent preleukemia state

→ Interference with the TGFβ pathway (murine and human model systems)
TEL-AML1 leukemia fusion (3)

- TEL-AML1 expression → inhibition of response to TGFβ
 → TEL-AML1 cells proliferate slowly, but continuously, until 2nd hit → ALL
 TGFβ signaling contributes to self-renewal and differentiation + regulation of immunologic and inflammatory reactions

 → Dysregulation of TGFβ signaling (loss of sensitivity) by TEL-AML1 protein: blocks the ability of TGFβ to contribute to cell differenciation and suppress proliferation of cells.

 = Argument in favor of a dysregulated immune response to infection, 2nd hit: malignant evolution of the TEL-AML1, preleukemic clone
Pharmacogenetics: influence of polymorphisms of genes involved in several metabolic pathways

- May alter activity of drug metabolizing enzymes → efficacy and toxicity of therapy

- May influence the risk for ALL
 - Genes involved in folate metabolism pathways (DNA synthesis and repair, methylation processus)
 - Genes P450 and glutathion S-transferase enzymes
 - Multidrug resistance gene (MDR1)
 - NQO1: protects again oxydative stress and toxic metabolites
Present needs

Better evaluation and understanding of the heterogeneity and complexity of leukemias

- New molecular technics, animal models, human embryonic cells
- Role of leukemic stem cells and of stroma
- Pharmacogenetics (pt, parents)

New epidemiological approaches

Taking into account the multitude of these diseases, their multi-step development

→ Large-scale studies including the analysis of geno-environment interactions.
Between March and December 2008

Objectives:

- To evaluate, if possible, the real risk of childhood leukemias in the vicinity of nuclear sites
- To better approach the knowledge of causal genetic and environmental factors of childhood leukemias
- To clarify the content of communication given to the population, which needs to receive neutral, transparent and updated information
It has been decided to propose under the auspices of ASN:

- **A pluralist and pluridisciplinary working group of experts** (institutional and independent) in: hematology, epidemiology, nuclear industry, chemistry, infectiology, immunology…

- **A national committee in charge of follow-up of the working group** and particularly its proposals with the aim to promote the most appropriate epidemiological future studies
Five meetings of the working group between December 2008 and September 2009, usually in the presence of B. GROSCHE

- Descriptive and analytic *epidemiological French* studies (genetic and environmental factors)
- **Nuclear sites**, and activation of a specific sub-group
 - listing of sites, types, classification, surrounding population, types and measures of rejet
- **Leukemic stem cells**
- **German** past and present studies
Childhood AL: a multitude of diseases

- A lot of potential causes \(\rightarrow\) several hypotheses
 - a lot of case-control studies
 - a lot of controversial data

A multitude of epidemiological studies

Future epidemiologic studies have to be designed around the characterization of the childhood acute leukemias, with the aim to better approach the relationships between the causes and the consequences of the development of the (pre)-leukemic cell and notably the role of post-natal factors.