GreenBuilding

enhanced energy efficiency for non-residential buildings
Energy efficiency in non-residential buildings

The savings potential

The building sector accounts for more than 40 percent of the end-energy consumed in the European Union. This is about 10 percent more than the transport sector’s total end-energy consumption. And the saving potentials until 2020 are enormous for buildings – for commercial buildings it is with 30 percent even higher than for residential buildings.

The largest potentials for energy savings can be exploited by e. g. optimizing the building envelope and by improving heating and cooling systems of buildings.

Energy consumption
Million tons of oil equivalent

Industry 28 percent

Households 26 percent

Transport 31 percent

Commercial Buildings 15 percent

End energy consumption EU.
Source: EU Commission 2006
The EU Green Building Programme

In the face of constantly rising oil prices, reduced amounts of fossil fuels and serious impacts of the climate change all over the world, the European Member States are determined to substantially raise energy efficiency and to promote the use of renewable energy sources.

The voluntary Green Building Programme is the EU Commission’s action aimed at private and public non-residential buildings. It awards a building’s substantial reduction of energy consumption and CO2 emissions. It serves with a Good Practice Database, the Green Building Diplomas and the accompanying PR as a platform that promotes and communicates forward looking organizations for their efforts – thereby enhancing their market situation.

Green Building Benefits

Green Building motivates building owners to invest in energy efficiency and renewable energies. Green Building:

- involves participant in broad PR and presents them on the European website and on national websites,
- creates publicity and recognition for companies investing energy efficiency and for their supporters (planners, energy consultants etc.) and strengthens the participants competitiveness and
- provides information about energy efficiency and renewable energies in non-residential buildings.

Becoming a GreenBuilding Partner

Every enterprise, company or organization that improves the efficiency and introduces renewable energy sources in its building stock can be rewarded with the GreenBuilding Partner Status. Provided that the minimum requirement of a reduction of the total primary energy demand by at least 25 percent is as fulfilled for:

- new buildings: compared to the legal regulations in force
- refurbishment: compared to the demand before and after the optimization

As a certified GreenBuilding Partner your company can present its actions for enhanced energy efficiency are European-wide.

Becoming a GreenBuilding Endorser

Organizations concerned with engineering consultancy, construction, architecture, design or energy services can be rewarded with the GreenBuilding Endorser Status. In this function they have to assist customers to improve the energy efficiency of their building stock and to introduce renewable energies. Being a GreenBuilding Endorser gives a company the opportunity to advertise its awarded competence, actions and services in an European context and to acquire clientele.

Participate!

There are two options how to participate in GreenBuilding.

- GreenBuilding Partner (applies to the owner of nonresidential buildings) or
- as GreenBuilding Endorser (applies to supporting planners, architects, energy consultants etc.).
Banco Sabadell is a financial company in Spain which planned a new warehouse for documentation and utilities. The new warehouse was developed in collaboration with Coperfil (endorser of the GreenBuilding program). The goal was to achieve a low consumption of energy. The building’s main characteristics to achieve energy efficiency are:

- Increase of sky domes and windows in façade.
- Low level lightning, daylight use at the working place
- Lightning regulation with the human presence
- Photovoltaic installation.

And complemented with other measurements the energy demand was reduced by 56,7 percent.

The building has a good level of insulation and it maintains a comfortable temperature, without heating or air conditioned in the warehouse, only in the picking and office areas.

Building data

Building type
Industrial Warehouse (new building)

Size
12,046 m²

Year of construction
2005

Measures performed
- Façade: Metallic insulated facade (type sandwich)
- Roof 10 percent sky domes
- Vertical windows, 5 percent surface
- Natural lighting by sky dome system and human presence detection
- Air conditioning only in picking and office areas
- 12 kWp photovoltaic roof system and solar thermal water heating system

Energy savings
- Primary energy demand: 1,377,358 kWh/a compared reference building
- Electricity demand: 468,000 kWh/a compared to reference building

Partner mission and strategy
Companhia Carris de Ferro de Lisboa is the Public Surface Transport Company of Lisbon. Founded on 18th September 1872, the company is closely connected to the development of the City of Lisboa. Furthermore, Carris main objectives are to improve its economic efficiency, supply of transport, to enhance the quality of service on offer, to protect environmental quality and to adjust the service to new situations in the city and new customer needs.

The building Edifício “A” do Complexo Carris is the partner’s headquarter and main service center. It has three floors that cover 2,038 m².

Building data

Building type
Office building (refurbishment)

Size
2,038 m²

Year of refurbishment
2005

Measures performed
- shading devices in South and East façades and internal blinds to control lighting level and uniformity
- double wave form roof; garden terrace in the west area of the roof and use of vegetation to shade surfaces in summer and reduce air temperature around the building (in South and West façades) via evaporation and transpiration
- reduction of 1/3 of windows previous height; installation of double glazing with low thermal transmittance values
- electronic ballasts and energy efficient lamps
- air handling unit (AHU) in the roof that permits interior air renewal and quality

Energy savings
- Annual primary energy demand for heating 26.8 kWh/m²a
- Annual primary energy demand for cooling 35.6 kWh/m²a
- Annual total energy savings: 137,2 MWh
Montana is a spectacular building outside Stockholm that belongs to Fastighets AB Brostaden. With its bold architecture and exclusive façade of polished granite, aluminium and glass it has a very strong profile. 5 floors are combined of offices- and storage space plus cellar, with a lettable area of 4043 m². The house was built in 1990 and is in a good condition with a high standard both inside and outside.

Fastighets AB Brostaden real estate portfolio consists of office and retail properties as well as warehouse and industrial properties concentrated in expansive inner suburbs with good service and communications. The through routes in Greater Stockholm locate nearby the warehouse and industrial properties. Brostaden’s headoffice is in Stockholm.

The office building of the company Manschein was build in 1999. During the last years it was several times enlarged. In 2007 it was decided to undertake an extensive renovation. The focus of this renovation was primarily a solar architectural aspect. It included insulation and tightness of the building envelope, mass storage optimization, sunscreen planning and of course the interior comfort (natural light, indoor air quality, organic materials, ...). This was related to the heating demand a Passive House. The objective of the efforts was to have the own office building representing a model for innovative building solutions. The concept stands for a balanced energy for heating and cooling as well as the 100 percent utilization of solar potential. Through simulation glazing, sunscreen, lighting and daylight quality the energy consumption was optimized further.
The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.

The buildings of JVA Schwalmstadt (Schwalmstadt Prison) were built in several stages between the 12th century and 1986 and have a gross floor area of 27,468 m². JVA Schwalmstadt is a closed institution of the highest security level with an affiliated closed section of a lower security level. At present, approx. 300 prisoners are imprisoned at the JVA. Lately large refurbishments in the heating, cooling, electricity, automation and energy controlling sections were performed.

The energy modernisation of the JVA Schwalmstadt reduced the primary energy consumption by approx. 60 percent and the annual carbon dioxide emission decreased by approx. 1,000 tons. The focus of the modernisation was the renewal of the heating facilities. In order to generate heat and electricity, a natural gas block heat and power plant with 238 kWₜₚ and 363 kWₑₑ was installed, too.

The Brothers Karl and Jakob Immler have been working in the building and construction industry for more than 30 years. Shortly before starting the construction it was decided to build the office according to the Passive House Standard. Compared to an average office building the energy demand for heating is reduced by 73 percent.
Piraeus Bank is one of the 3 largest private banks in Greece. Piraeus Bank Group has a growing international presence, focused in Southeastern Europe and Eastern Mediterranean, but also in the financial centres of London and New York. It is participating in several energy related projects. It has been a Greenlight member since 2002, has received the EU GreenLight Award for the same building in 2007. It has also has received numerous national awards. The Bank is developing a strong and ambitious energy management program, including the installation of a pilot BMS system, tele-controlling 40 branch offices, installing demonstration PV systems, analysing and optimising the energy consumption of all its branch offices and large buildings etc. The refurbishment of the specific building, designed by the GB endorser Thelcon Ltd, started in 2008 and is expected to be completed at the end of April 2009.

University of Split was founded in 1974 and consists of 9 Faculties, an Academy of Arts and several institutes and scientific facilities. Scientific work is in the field of natural, historic, social, economic and other disciplines characteristic of Croatian, Adriatic and Mediterranean area. The University library in Split uses alternative energy sources and high efficient systems with heat recovery. The building is completely ventilated and air-conditioned for specific purpose (underground archive) and better indoor environment conditions. Total net building surface is 13,700 m². There are three main areas: lower building with 6 underground levels and upper building with 7 levels.

Office Building

Building data

Building type
Office Building (Refurbishment)

Size
19,250 m²

Year of refurbishment
2008/9

Measurements performed
- Replacement of all AHUs, fan coils
- New Ventilation system with heat recovery
- Multi-zone system fully BMS controlled
- Installation of regulated venetian blinds in the internal space.
- Energy saving lighting system with local switches in all working spaces
- Utilisation of natural lighting using light sensors and dimmable ballasts for perimetrical light fixtures
- Movement sensors in WC, archives and conference rooms
- High efficient cooling towers
- Monitoring of indoor temperature, humidity etc. and controlling relevant subsystems (heating, cooling, lighting etc.)
- Photovoltaic System

Savings
- Primary energy demand 238 MWh/a
- Electricity demand 2375 MWh/a
- Total energy savings 480 MWh/a
- CO₂-savings 480 t/a

University Library

Building data

Building type
Library (new building)

Size
13,700 m²

Year of construction
2008

Measurements performed
- Heating system: heat pumps (also for air-condition system using exhaust air and air from underground levels)
- Double skin glass façade with inner space 80 cm width in which natural air is circulating providing buffer zone both in winter and summer.
- Ventilation system with heat recovery of 80 to 92 percent
- Cooling energy is supplied by adiabatic process and mechanical cooling integrated in air-conditioning system and compact cooling device
- CCMS coordinates air-condition system, heat energy production, cooling energy production and individual indoor environment conditions

Savings
- Primary energy demand of 806.400 kWh for heating and cooling is 51 kWh/m²a
- Total energy savings of about 79,800 €/a, estimated to 35 percent
- CO₂-savings of 149.600 kg/a
Situated at the eastern end of the Kilometro Rosso Scientific Technology Park in Stezzano (Bergamo, Italy), the Italcementi Centre for Research and Innovation (ITCLab) is the new iconic building designed by the American architect Richard Meier for Italcementi Group. The building is “V”-shaped in plan and it accommodates a laboratories building in a wing and an administrative building in the other; a central atrium, sited in the centre of the two wings, contains a public reception, a security control and provides a circulation space for both wings of the ITCLab. The building benefits from a high insulated envelope. The flat concrete roof has an important exposed thermal mass that ensures a large inertial behaviour. Over it, a Sarnafil membrane with solar reflectance of 83 percent has been proposed to reduce absorbed solar energy in order to minimize solar loads transmitted into air-conditioned spaces during summer.

The GreenBuilding partner Rotonde vzw is a Belgian non-profit organisation taking care of mentally handicapped adults. Energy management is a core element of the general policy of the organisation. The energy management policy is described in the formal key-documents of the organisation. The organisation Rotonde is recognised in Belgium as a pioneering organisation concerning energy management in its sector. The organisation has two sites, both located in the neighbourhood of the city of Antwerp. On the site ‘Campus De Vluchtheuvel’, they recently constructed two new buildings according the „Passive house“ concept. The second site ‘Centrale campus Augustijnslei’ exists out of several individual buildings (office space, care centre, palliative unit,…). A wide range of energy saving measures were successfully performed on this site. The measures vary from the installation of a high efficient heating system to the installation of energy saving light bulbs.

Research Centre ITCLab

Building data

Building type
Research Centre (new construction)

Size
Total floor area 17 000 m² (including parking); conditioned net floor area 9 759 m²

Year of construction
2009

Measurements performed
- thermal system bases on 3 geothermal heat pumps with an additional condensing boiler
- Variable speed drives for HW pumps
- External walls, roof and ground floor built with thermal resistance
- Roof has Sarnafil membrane with solar reflectance of 83 percent
- Transparent building envelope composed of triple and double pane windows and skylights
- Fluorescent tubes powered by electronic ballasts
- Occupancy sensors in enclosed offices, conference rooms and laboratories
- Daylight dimming controls in perimeter spaces and spaces with skylights
- Ventilation: Variable speed tower fans

Savings
- geothermal system covers part of the cooling demand in addition to two chillers Wet-bulb reset control for condenser water temperature
- solar thermal panels which have to supply 87 percent of the domestic hot water;
- 422 roof-mounted photovoltaic

Care Center Augustijnslei

Building data

Building type
Care centre for mentally handicapped adults (refurbishment)

Size
7,314 m²

Year of refurbishment
2003 – 2010

Measurements performed
- Heating system: condensation boiler which with improved control of space temperature in the separate buildings
- 12 cm insulation on the roof
- High performance double glazing windows
- Energy saving lamps
- 11.2 kW photovoltaic
- Professional energy monitoring system
- High performance pumps for central heating system

Savings
- 3,316,000 kWh (consumption) primary energy demand
- 372,000 kWh/a (consumption) electricity demand
- 1,500,400 kWh/a (or 45 percent) primary energy savings
- 18 percent electricity savings and 56 percent savings of natural gas
- CO₂-savings: 309,000 kg/a

www.italcementigroup.com

www.rotonde.eu
how to contact

GreenBuilding

For the up-to-date list of GreenBuilding National Contact Points, please consult the internet site http://www.eu-greenbuilding.org or http://energyefficiency.jrc.cec.eu.int/greenbuilding/

Deutsche Energie-Agentur GmbH (dena)
German Energy Agency
Nana Doerrie
Chausseest. 128A, 10115 Berlin, Germany
Tel.: +49 (0) 30 72 61 65 - 667, Fax: +49 (0) 30 72 61 65 - 699
http://www.green-building.de

Berlin Energieagentur GmbH
Philipp Kasch
Französische Str. 23, 10117 Berlin, Germany
Tel.: +49-30-29 33 30-68, Fax: +49-30-29 33-90-99

Ecole des Mines de Paris
Prof. Jerome Adnot
60, boulevard Saint-Michel, 75272 Paris Cedex 06, France
Tel.: +33-1-40 51 91 74, Fax: +33-1-6 34 24 91
http://www.cenerg.ensmpf.fr/francais

Centre for Renewable Energy Sources
Dr. Ilias Sofronis
19th Km Marathonos Avenue, 19009 Pikermi, Attiki, Greece
Tel.: +30-2 10-66 03 32 87, Fax: +30-2 10-6 60 33 05
http://www.cres.gr/greenbuilding

Jožef Stefan Institute
Marko Peckaj
Jamova 39, 1000 Ljubljana, Slovenia
Tel.: +3 86-1-5 88 53 25, Fax: +3 86-1-5 88 53 7
http://www.rcp.ijs.si

Fastighetsägarna
SOFie Roy-Norelid
Box 16132, 10323 Stockholm, Sweden
Tel.: +46-6-13 57 21, Fax: +46-6-13 57 01
http://www.fastighetsagarna.se

The German activities within the GreenBuilding project are supported by the German Federal Ministry of Transport, Building and Urban Affairs.

The Italian activities within the GreenBuilding project are supported by la 220 azzurra S.r.l.