The ECORails Guidelines in use
Examples from the pilot application
Berlin-Brandenburg

Technology Innovation Agency
Berlin (TSB)
Content

1. Test site
2. Typical Dimensions for Awarding
3. Site Stakeholder Group
4. Pilot Application Objectives
5. Leading questions
6. Steps of Testing
7. Baseline
8. Results
9. Agreed ENV/EE Criteria
1. Test Site:
Basics of the Federal State of Brandenburg

area: 29.478 km²
inhabitants: 2,56 million (2005)
car ownership: 497 cars/1.000 inhab.
railway infrastructure: 2.500 km
1. Test Site: Federal State of Brandenburg - Figures of Regional Passenger Train Services

Network: 2.214 km (2007)
Main lines: 1.456 km (66 %)
Regional lines: 680 km (31 %)
S-Bahn network: 78 km (3 %)
334 stations (2007)
Traffic performance: 35 Mio. train-km/a

Regional Railway Concept 2008 – 2012
Federal State of Brandenburg
1. Test Site: Basics of Berlin

- Area: 889 km²
- Inhabitants: 3.4 million
- 43% car-free households
- Car ownership: 317 cars/1,000 inhab.

- 147 bus lines - 1662 km
- 22 tram lines - 189 km
- 9 metro lines - 144 km
- 32 MRT lines* - 458 km

* S-, RB-, RE- lines
2. Typical Dimensions for Awarding of Regional Rail Passenger Transport Services

Virtual test case for future awarding facing the competitive situation:

- Connections issued for awarding: Regional Express (RE) 74, 75, 76
- Traffic performance:
 - Total: 12,500,000 train-km/year
 - In Berlin: 2,800,000 train-km/year
 - In Brandenburg: 9,700,000 train-km/year
- Share Diesel traction: line RE 76, 1,500,000 train-km/year
- Maximum speed: 160 km/h, Diesel 120 km/h
- Contract period: 12 years
- Start for operation: December 2014
- Number of vehicles:
 - Electric traction: Doubledeck EMU or locomotive-hauled doubledeck trains – ca. 190 coaches
 - Diesel traction: Two-car DMUs or the respective number of coaches (one-level)
3. Site Stakeholder Group

Public Transport Administrations
• Federal states of Berlin and Brandenburg
• Verkehrsverbund Berlin-Brandenburg (VBB) on behalf of both federal states

Train operating companies
• DB Regio North East (Regional-Express and Regional-Bahn lines)
• S-Bahn Berlin (S-Bahn lines)
• Niederbarnimer Eisenbahn (Regional-Bahn lines)

Rail Supply Industry
• Bombardier
• Siemens
• Stadler

Other institutions
• Association of German Public Transport Providers (VDV)
• Federal Environmental Agency (UBA)
• DB Environmental Center
4. Pilot Application Objectives Berlin I

- Consideration of the relevant risks for PTAs and TOCs, resulting from developments during the contract period, as there are
 - framework conditions rooting in public rail transport demand
 - energy prices
 - legal environmental requirements (e.g. ambient noise regulation) and juridical decisions

- Provision of information
 - For consumption and emission reduction potentials as well as cost estimations
 - LCC approaches
 - Further
4. Pilot Application Objectives Berlin II

- Reality check of the Guidelines test version by the Site Stakeholder Group acting as a „Sounding Board“

- Understanding about the interests of the different stakeholders (PTA, TOC, Rail Supply Industry)

- Test of the Guidelines in particular for the phases preparation and elaboration regarding
 - Comprehensiveness and correctness of contents
 - Perceivability
 - Completeness
5. Leading questions: “What do we want to test?”

• Are the awarding criteria well described and easy to handle?
• Can it be clearly decided which criteria are relevant for the application in question?
• Are the criteria easy to handle (i.e. to be integrated in the tendering documents, the contract etc.)?
• Can the offers appropriately be evaluated in respect to the relevant criteria?
• Can the performance of the TOC sufficiently be monitored?
• Are the TOC (or the rail supply industry) able to fulfill the criteria, at least to a certain extent? Can the bidders easily and clearly handle the criteria?
• Is the cost situation analysed to a sufficient extent?
6. Steps of Testing

- Simulation of energy consumption and CO₂ emissions of vehicles which are currently in operation and which will be in operation in the near future
- Deep discussion of the Guidelines with the members of the Site Working Group and development of energy efficiency and environmental criteria
- Discussion and plausibility check of the developed energy efficiency and environmental criteria with the members of the Site Stakeholder Group
- Evaluation of the Guidelines’ test version by the Site Stakeholder Group with the help of questionnaires
7. Baseline for Simulation of Energy Consumption

<table>
<thead>
<tr>
<th></th>
<th>RE6</th>
<th>RE7</th>
</tr>
</thead>
<tbody>
<tr>
<td>train km per year</td>
<td>1.9 Mio.</td>
<td>2.4 Mio.</td>
</tr>
<tr>
<td>length of the line</td>
<td>168 km</td>
<td>180 km</td>
</tr>
<tr>
<td>max. speed</td>
<td>120 km/h</td>
<td>120 km/h</td>
</tr>
<tr>
<td>average distance</td>
<td>7 km</td>
<td>6 km</td>
</tr>
<tr>
<td>between stops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicles in use</td>
<td>DMU</td>
<td>loco hauled double deck</td>
</tr>
<tr>
<td>seats per train</td>
<td>108/216</td>
<td>478</td>
</tr>
</tbody>
</table>
7. Baseline: Indicators

1. Basics
 • kWh per seat-km and passenger-km
 • Network stretches
 • Train km
 • Locomotive classes used for which amount of train km (or gross tonne km)
 • DMU classes used for which amount of train km
 • If available: information about the real energy consumption on these lines

2. Data about the vehicle classes

3. Data about CO$_2$ emissions
 (sources and energy mix of the electricity in the catenary)
8. Results of Simulating and Testing

Comparison with current awarding

• Significant difference between the future operated Talent 2 train sets and class 182 (Taurus) double train sets in terms of energy efficiency and CO₂ emissions.

• It should be stated that only the better train configuration will be offered by the TOCs if the energy efficiency and environmental criteria become higher weighted in future awarding procedures (→ 5 % target is probably to be reached)

Comparison with currently used rolling stock

• Comparison of the currently operated class 143 double deck train set with the future operated class 182 double deck train set shows possible energy savings for
 – traction only of about 21 %
 – traction and comfort functions of about 14 % (→ 10 % target will be reached)

System wide energy saving and CO₂ reduction potential by 2020

• Estimations of the stakeholders not homogenous
• Simulation results show that 15 % target will probably be reached.
9. Agreed EE/ENV Criteria (Text Modules)

- **Indexing of energy costs**
 on a realistic level, based on new rolling stock with low consumption

- **Maximum level of energy consumption**
 (verification by test run according to a specific service profile)

- **Option to offer lower energy consumption**
 and thus getting higher scores

- **Concept for parked train mode**
 (qualitative assessment)

- **Driver‘s training for energy efficient driving**
 (qualitative assessment: minimum requirements for training modules)
Contact

Martin SCHIPPER

TSB Innovationsagentur Berlin GmbH
Geschäftsbereich Verkehr & Mobilität (**FAV**)

Fasanenstraße 85, 10623 Berlin, Germany
Tel: +49 30 46302-577 / Fax +49 30 46302-588
e-mail: schipper@tsb-berlin.de

Internet:
www.fav.de